
Received 1 February 2023; revised 10 July 2023 and 22 August 2023; accepted 23 August 2023.
Date of publication 29 August 2023; date of current version 20 September 2023.

The associate editor coordinating the review of this article and approving it for publication was N. H. Tran.

Digital Object Identifier 10.1109/TMLCN.2023.3309773

Communication-Efficient Federated Learning
for Resource-Constrained Edge Devices

GUANGCHEN LAN , XIAO-YANG LIU (Graduate Student Member, IEEE), YIJING ZHANG,
AND XIAODONG WANG (Fellow, IEEE)

Department of Electrical Engineering, Columbia University, New York, NY 10027 USA

CORRESPONDING AUTHOR: X. WANG (wangx@ee.columbia.edu)

ABSTRACT Federated learning (FL) is an emerging paradigm to train a global deep neural network (DNN)
model by collaborative clients that store their private data locally through the coordination of a central server.
A major challenge is a high communication overhead during the training stage, especially when the clients
are edge devices that are linked wirelessly to the central server. In this paper, we propose efficient techniques
to reduce the communication overhead of FL from three perspectives. First, to reduce the amount of data
being exchanged between clients and the central server, we propose employing low-rank tensor models to
represent neural networks to substantially reduce the model parameter size, leading to significant reductions
in both computational complexity and communication overhead. Then, we consider two edge scenarios and
propose the corresponding FL schemes over wireless channels. The first scenario is that the edge devices
barely have sufficient computing and communication capabilities, and we propose a lattice-coded over-the-
air computation scheme for the clients to transmit their local model parameters to the server. Compared
with the traditional repetition transmission, this scheme significantly reduces the distortion. The second
scenario is that the edge devices have very limited computing and communication power, and we propose
natural gradient-based FL, that involves forward pass only, and each client transmits only one scalar to the
server at each training iteration. Numerical results on the MNIST data set and the CIFAR-10 data set are
provided to demonstrate the effectiveness of the proposed communication-efficient FL techniques, in that
they significantly reduce the communication overhead while maintaining high learning performance.

INDEX TERMS Federated learning, wireless channels, deep neural networks, low-rank tensor decomposi-
tions, over-the-air computation, lattice code, natural gradients, communication overhead.

I. INTRODUCTION

W ITH the increasing attention to user privacy, data
protection becomes a fundamental requirement in

many machine learning applications. A promising solution
is federated learning (FL) [1], [2] where a number of clients
perform individual local training using locally stored data,
and periodically fuse the local models into a global model
through the coordination of a central server. FL methods
play a critical role in privacy-sensitive applications [3], [4],
where training data are typically locally stored at the wireless
network edge [5], [6], [7].

A major challenge of FL is the high communication
overhead during the training process, especially when the
communication links are wireless. In particular, the periodic
model fusion involves two data transmissions between the

clients and the central server: the uplink transmission where
all clients send their local models or gradients to the server,
and the downlink transmission where the server broadcasts
the updated global model to all clients. Both transmissions
typically involve a large neural network model. The uplink
transmission is usually considered as the bottleneck [8] since
it is a many-to-one transmission (i.e., multiple-access), while
the downlink transmission is one-to-many, i.e., broadcast [7],
[9].

Most existing FL works focused on reducing the data
exchanges between clients and the server by model or gra-
dient sparsification without considering the actual commu-
nication channel. For the uplink transmission, the clients
can transmit either their local models [9] or the gradients
to the server. The former commonly occurs every a number

210
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2023

https://orcid.org/0000-0001-7969-7303
https://orcid.org/0000-0002-9532-1709
https://orcid.org/0000-0002-2945-9240

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

of local training epochs, while the latter needs to be per-
formed every epoch. In [10], each client transmits only part
of its updated local model according to a random sparsity
pattern. In [11] and [12], each client transmits only the k
largest values of its gradient. In [13], such top-k gradient
sparsification is extended to downlink transmission. Note
that these sparsification methods are ad hoc and reduce the
amount of data exchanges at the expense of degraded learning
performance.

When the communication channels are explicitly taken into
account in FL, both digital and analog transmission schemes
have been considered. In particular, for digital transmission,
the model parameters are first quantized before transmission.
In [14], the feasibility of 1-bit quantization is investigated,
where only the signs of the gradients are transmitted. In [15]
and [16], a dithered scalar quantization method is adopted.
The works in [6] and [17] extended scalar quantization to
vector quantization by lattice quantization and Grassmannian
quantization, respectively. However, they all assume that the
communication channel is perfect, and therefore the perfor-
mance loss is due to the quantization distortion only, and
the effect of the noisy nature of the channel, especially the
wireless channel, is ignored.

Considering non-ideal wireless communication channels,
in [18] and [19], it is shown that by taking advantage the over-
the-air computation property of a wireless multiple-access
channel (MAC), the analog transmission outperforms the dig-
ital transmission. Specifically, clients transmit local models
simultaneously to the central server over the same wireless
channel, and the server receives the sum of the local models
directly. Thus, it is more efficient than the conventional
scheme where each client separately transmits its local model
to the server, and the server performs model averaging after
receiving all local models. The works in [19] and [20]
extended Gaussian MACs to Gaussian fading MACs, and
the work in [21] focused on receiver beamforming design.
However, in these works, only uncoded transmission is used,
which is not effective to combat the channel noise. Overall,
lattice-coded over-the-air computation has not been well
exploited in federated learning.

In this paper, we propose communication-efficient feder-
ated learning bymaking use of three key techniques: low-rank
tensor models for neural networks, lattice-coded over-the-
air computing, and natural gradient learning. We next briefly
review related works in these three areas.

1) Low-rank tensor decomposition methods based on dif-
ferent rank models such as tensor-train (TT) [22], canonical
polyadic (CP) [23], [24], and Tucker [24], [25], [26], have
been applied for model compression on fully connected (FC)
networks [27], convolutional neural networks (CNNs) [28],
[29] and recurrent neural networks (RNNs) [26], and
achieved relatively high compression ratios. A low-rank
matrix decomposition method has also been proposed for FL
in [30]. However, tensor decomposition methods with higher
compression ability have not been considered in the context
of FL.

2) Lattice code is a vector quantization scheme, and has
recently been adopted for digital transmission in FL [6].
On the other hand, lattice-coded analog transmission for
over-the-air computation has been analysed in [31] for Gaus-
sian MAC. Information theoretic analysis in [32] showed
that lattice-coded scheme can significantly outperform the
conventional uncoded and repetition scheme for over-the-air
computation. However, this technique has not been used for
FL.

3) The natural gradient descent method [33] essentially
replaces the true gradient in the back propagation process
of DNN training with random perturbation and therefore
consists of forward pass only. The work in [34] employed
an unbiased estimate of the natural gradient. In [25], the
natural gradient is used for parallel GPU training with high
performance. In [35], the effectiveness of a parallel natural
gradient method is shown in training a very deep neural
network. However, the natural gradient descent has not been
studied in FL with wireless channels.

In this paper, to reduce the communication overhead in
FL, we first propose to replace the linear layers in conven-
tional neural networks by low-rank tensor layers to achieve
model compression. Compared with the existing sparsifi-
cation approaches, in our low-rank tensor representation
approach, the computations in both the forward and backward
passes are on the tensor parameters, instead of the original
model parameters as in sparsification, which leads to both
reduced computational complexity and communication over-
head. Moreover, the tensor approach has a sound theoretical
basis, unlike the ad hocmethod of randomly discardingmodel
parameters as in sparsification. Then we propose to employ
a lattice-coded scheme for each client to transmit its local
model to the central server, which can substantially reduce
the distortion, leading to a smaller number of channel usages
and therefore smaller communication overhead. Finally, for
the FL scenario where the clients are low-complexity devices
with very limited computing and communication capabil-
ities, we propose natural gradient-based FL, where each
client performs only forward pass and the transmission of a
single-scalar at each iteration.

The remainder of this paper is organized as follows.
Section II introduces some background and outlines our pro-
posed schemes for reducing the communication overhead
in FL. In Section III, we describe neural network compres-
sion using low-rank tensor decompositions. In Section IV,
we present the lattice-coded transmission scheme from the
clients to the central server. In Section V, we describe the nat-
ural gradient-based FL. Section VI presents the experimental
results and we conclude this paper in Section VII.

II. BACKGROUND AND PROBLEM STATEMENT
In this section, we briefly describe deep neural networks and
wireless communication models in a federated learning sce-
nario. Then, we give an overview of our proposed approach.

Notations: Scalars, vectors, matrices, and tensors
are denoted by lowercase, boldface lowercase, boldface

VOLUME 1, 2023 211

uppercase, and calligraphic letters, respectively, e.g., x ∈ R,
x ∈ Rn, X ∈ Rn1×n2 , and X ∈ Rn1×n2×n3 .

A. DEEP NEURAL NETWORKS
A linear layer is the building block of neural network archi-
tectures [36], such as FC networks, CNNs, and RNNs. For an
input vector x ∈ RN0 , it applies a transform using a weight
matrix A ∈ RN0×N1 , resulting in a feature vector y ∈ RN1 ,
which can be expressed as

y = Ax+ b, (1)

where b ∈ RN1 is an offset.

1) FULLY CONNECTED (FC) NETWORK
For an L-layer FC network [36] with input x0 ∈ RN0 , weight
matrices Aℓ

∈ RNℓ×Nℓ−1 and offsets bℓ
∈ RNℓ , ℓ = 1, · · · ,L,

the forward pass can be expressed as follows

yℓ = Aℓxℓ−1
+ bℓ, (2)

xℓ
= σ (yℓ), (3)

where yℓ ∈ RNℓ is the ℓ-th layer’s feature vector, and σ (·)
is an element-wise activation function, e.g., ReLU, sigmoid,
and softmax [36]. The last layer produces an output vector
ŷ ∈ RNL that denotes an estimated label,

yL = ALxL−1 + bL ,

ŷ = f (yL), (4)

where f (·) is an output function, e.g., softmax and maxout.
For an L-layer FC network, we denote the parameters asW =
{A1,A2, · · · ,AL; b1, b2, · · · , bL}.
Consider a supervised learning task, an update step

takes a mini-batch of B samples from a training data set
{(xb, yb)}

B
b=1, where xb ∈ RN0 is a data sample and yb ∈ RNL

is the corresponding label such that if xb belongs to class i
then yb(i) = 1 and yb(i

′) = 0 for i′ ̸= i. The cross-entropy
loss of the b-th sample-label pair (xb, yb) can be computed
through a forward pass as follows

L
(
W ; (xb, yb)

)
= −

NL∑
i=1

1(yb(i) = 1) · ln (̂yb(i)), (5)

where 1(·) is an indicator function. Other types of loss func-
tion L

(
·
)
can also be employed, such as mean squared

error (MSE), mean absolute error (MAE), etc. The model
parameters are updated by the gradient descent method as

ĝ =
1
B
∇W

B∑
b=1

L
(
W ; (xb, yb)

)
, (6)

W ← W − ξ ĝ, (7)

where ĝ is an estimate of the gradient, and ξ is a learning rate
parameter.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
For an L-layer CNN [36], an input image is a third-order data
tensor X 0

∈ RW0×H0×C0 , where W0 × H0 is the spatial size
and C0 is the number of channels. The input to the ℓ-th layer
X ℓ−1

∈ RWℓ−1×Hℓ−1×Cℓ−1 is processed by a kernel weight
tensor Aℓ

∈ RW ′ℓ×H
′
ℓ×Cℓ−1×Cℓ and an offset Bℓ

∈ RCℓ as
follows

Yℓ(w, h, c) =
W ′ℓ∑
i=1

H ′ℓ∑
j=1

Cℓ−1∑
s=1

Aℓ(i, j, s, c) (8)

·X ℓ−1(w+ i− 1, h+ j− 1, s)+ Bℓ(c),

Pℓ(w, h, c) = σ (Yℓ(w, h, c)), (9)

where Yℓ
∈ RW ′′ℓ ×H

′′
ℓ×Cℓ with W ′′ℓ = Wℓ−1 − W ′ℓ + 1 and

H ′′ℓ = Hℓ−1 − H ′ℓ + 1 is a linear output, Pℓ
∈ RW ′′ℓ ×H

′′
ℓ×Cℓ

is an activated output, and σ (·) is an element-wise activation
function, e.g., ReLU and tanh. Pℓ is then processed by a
pooling operation channel by channel independently. Within
each channel, the matrix with W ′′ℓ × H

′′

ℓ elements is divided
intoWℓ×Hℓ non-overlapping subregions, each subregion of
size W × H with W ′′ℓ = WℓW and H ′′ℓ = HℓH . The pooling
operator then maps each subregion to a scalar resulting in the
output of the ℓ-th layer X ℓ

= pooling(Pℓ) ∈ RWℓ×Hℓ×Cℓ ,
which is the input to the (ℓ+ 1)-th layer.
At last, the L-th layer outputs a feature vector ŷ that

denotes the estimated label

ŷ = f (vec(X L)), (10)

where vec(·) maps a tensor to a vector, and f (·) is
an output function. For an L-layer convolutional neu-
ral network, the parameters are denoted as W =

{A1,A2, · · · ,AL
;B1,B2, · · · ,BL}. The loss function and

back propagation model update are similar to (5)-(7) of the
FC networks.

B. FEDERATED LEARNING
Federated learning [2] enables multiple clients to learn a
global DNN model with the training data stored locally. Dur-
ing the training process of the conventional FL, each client
performs a gradient descent update using its local training
data; and periodically, the latest trained models of all clients
are fused through a central server. In particular, one FL train-
ing iteration consists of the following three steps:

1) The server broadcasts the current global modelW to all
K clients, whereW represents model parameters.

2) Using its own local training data {(xki , y
k
i)}

nk
i=1, each

client k updates its local model that is initialized as
W k = W , by running multiple gradient descent steps:

ĝk =
1
nk
∇W k

nk∑
i=1

L
(
W k ; (xki , y

k
i)
)
, (11)

W k ← W k − ξ ĝk , (12)

to obtain the updated local modelW k , k = 1, · · · , K .
Then, it sendsW k back to the server.

212 VOLUME 1, 2023

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

3) The server updates the global model as linear combina-
tions ofW k , k = 1, · · · ,K , as follows

W ←
K∑
k=1

ρkW k , (13)

where the weights {ρk}Kk=1 are non-negative and∑K
k=1 ρk = 1.

The global training loss L is evaluated by

L =
∑K

k=1 ρkLk , (14)

where Lk = 1
nk

∑nk
i=1 L

(
W k ; (xki , yki)

)
is the training loss

based on the local data set from client k . The weight ρk
specifies the relative impact of client k , with one natural
setting ρk =

nk
n , k = 1, · · · , K , where nk is the number of

data samples at client k and n =
∑K

k=1 nk is the total number
of data samples [2].

In each FL iteration described above, there are two com-
munication rounds between the clients and the server: the
uplink round at the end of step 2 where each client sends
its local model W k to the server, and the downlink round
in step 1 where the server broadcasts the global model W
to all clients. The uplink is the bottleneck since it is a
multiple-access channel (MAC). Next, we describe tradi-
tional methods for the uplink transmission in FL.

C. UPLINK TRANSMISSION SCHEMES
Let the size of local model W k be S, and we reshape the
parameters {W k}

K
k=1 to vectors {wk ∈ RS

}
K
k=1 for each trans-

mission. To combat the channel noise at each FL iteration,
{wk ∈ RS

}
K
k=1 need to be transmittedM times. There are two

wireless analog transmission schemes in the literature [37],
one is for each client to use a point-to-point channel to
transmit its data to the server, and the other is for all clients to
transmit their data simultaneously through a multiple-access
channel to the server.

1) TRANSMISSION THROUGH ORTHOGONAL
CHANNELS
In this case, each client k transmits its data xk = cρkwk to
the server through a separate additive white Gaussian noise
(AWGN) channel, where c is a scaling parameter to meet the
average codeword power constraint of all clients:

1
S

E[∥xk∥2] ≤ P, k = 1, · · · ,K , (15)

where E[·] denotes the expectation operator, and ∥·∥ denotes
the Euclidean norm. In the following, we focus on the trans-
mission of one element xk of xk . The channel between the k-th
client and the central server is modeled as yk = hkxk + zk ,
where hk is the channel gain, xk is the transmitted signal
from client k , zk is the Gaussian channel noise, and yk is
the received signal by the server. Each client k transmits the
signal xk

hk
through this channel M times, and therefore the

central server receives

yk (m) = xk + zk (m), m = 1, · · · ,M , k = 1, · · · ,K ,

(16)

where zk (m) ∼ N (0, σ 2) are i.i.d. Gaussian noise samples.
Recall that the server needs w = ρ1w1 + · · · + ρKwK =

(x1+· · ·+xK)/c. We consider the simple estimator of xk that
is based on the sample average, i.e., x̂k = 1

M

∑M
m=1 yk (m).

This estimator is unbiased and the mean squared error (MSE)
is given by

MSE (̂xk) = Var (̂xk) =
σ 2

M
. (17)

An estimate of w is then given by

ŵ = (̂x1 + · · · + x̂K)/c, (18)

which is also unbiased with the MSE

MSE(ŵ) = Var(ŵ) =
Kσ 2

Mc2
. (19)

2) TRANSMISSION OVER MULTIPLE-ACCESS CHANNEL
In this case, each client k transmits its data xk = cρkwk to
the server through a Gaussian MAC, where c is a scaling
parameter to meet the same average codeword power con-
straint in (15). The Gaussian MAC channel is modeled as
y =

∑K
k=1 hkxk + z, where hk and xk are the channel and

the transmitted signal from client k , respectively, z is the
Gaussian channel noise, and y is the received signal by the
server. Each client k transmits its signal xkhk through this MAC
M times, and the central server receives

y(m) =
K∑
k=1

xk + z(m), m = 1, · · · ,M , (20)

where z(m) ∼ N (0, σ 2) are i.i.d. Gaussian noise samples.
Since the server needs w = ρ1w1 + · · · + ρKwK =

1
c

∑K
k=1 xk , we consider the simple sample average estimator

ofw, i.e., ŵ = 1
Mc

∑M
m=1 y(m). This estimator is unbiased and

the MSE is given by

MSE(ŵ) =
σ 2

Mc2
. (21)

Compared to (19), the MAC reduces the MSE by a factor of
K . This scheme is also called over-the-air computation since
the MAC channel automatically performs the summation
computation. In this paper, Sec. IV, we will employ the lattice
code to substantially reduce the MSE in (21) of the simple
repetition transmission.

D. OVERVIEW OF PROPOSED SOLUTIONS
Our goal is to reduce the communication overhead in the
uplink wireless transmission for federated learning, while
keep the training loss in (14) as low as possible. Our proposed
solution consists of the following three main ingredients to
mitigate the communication overhead.

VOLUME 1, 2023 213

FIGURE 1. Schematic diagram for FL methods.

1) Network compression using low-rank tensor models:
From Sec. II-C, the communication overhead is pro-
portional to the model parameter size S. Hence model
compression will lead to reduced communication over-
head. To that end, we map the traditional neural net-
work layers to low-rank tensor layers, which can sig-
nificantly reduce model parameter size S. Under the
tensor model, the computations of both the forward
and backward passes are implemented in the com-
pressed domain, which also reduces the computational
complexity. Then for low-overhead and high-precision
uplink transmissions in federated learning, we con-
sider two scenarios and propose the corresponding
approaches, as follows.

2) Over-the-air computation via lattice code: The first
scenario is that local clients have sufficient computing
and communication capabilities. In this case, we will
enhance the MAC channel transmission scheme dis-
cussed in Sec. II-C.2 for over-the-air computation by
employing lattice code, that can substantially reduce
the distortion, which will lead to a reduced number of
transmissions M and thus lower communication over-
head.

3) Natural gradient based approach: The second scenario
is that the local clients are simple devices with very
limited computing and communication power. For this
case, we propose to replace the conventional gradient in
(6) with the natural gradient, such that model training
involves only the forward pass and no back propagation
is needed. Moreover, at each training iteration, each
client only needs to transmit to the central server a
scalar loss value.

As shown in Fig. 1, the upper process is our proposed
method for edge devices with sufficient or limited computing
and communication power. The lower process is the conven-
tional method, regardless of edge constraints.

III. NETWORK COMPRESSION USING
TENSOR MODELS
Since the communication overhead is proportional to the net-
work parameter size S, in this section, we propose to replace

the linear layers in FC networks andCNNs by low-rank tensor
layers to achieve model compression.

A. TENSOR OPERATIONS
Mapping between a vector/matrix and a tensor: We specify
a mapping rule between a vector/matrix and a tensor-based
on [27]. To map a vector x ∈ RN into a J -th order tensor
X ∈ RN1×···×NJ , where N =

∏J
j=1 Nj, we have x(n) =

X (n1, n2, · · · , nJ) with

n = 1+
J∑
j=1

(nj − 1)Kj, Kj =
J∏

i=j+1

Ni, where KJ = 1.

(22)

This is denoted as x = vec(X), and X = vec−1(x).
On the other hand, a mode-(J ,D) mapping between

a matrix X ∈ RN×M and a D-th order tensor
X ∈ RN1×···×NJ×NJ+1×···×ND , where N =

∏J
j=1 Nj

and M =
∏D

d=J+1 Nd , is given by X(n,m) =

X (n1, · · · , nJ , nJ+1, · · · , nD),

with n = 1+
J∑
j=1

(nj − 1)Kj, Kj =
J∏

i=j+1

Ni,

and m = 1+
D∑

d=J+1

(nd − 1)Kd , Kd =
D∏

i=d+1

Ni.

(23)

Tensor contraction operation: A tensor contraction opera-
tion [38], [39] combines two tensors along a certain dimen-
sion. In particular, given two third-order tensors A ∈

RN1×N2×N3 and B ∈ RN3×N4×N5 , the tensor contraction
results in a fourth-order tensor C = A ◦ B ∈ RN1×N2×N4×N5 ,
where

C(n1, n2, n4, n5) =
N3∑
n3=1

A(n1, n2, n3) · B(n3, n4, n5).

(24)

B. TENSOR LAYERS FOR DEEP NEURAL NETWORKS
We explain how to compress FC layers and convolutional
layers using different tensor decomposition models. Specif-
ically, we adopt the tensor train (TT) decomposition for FC
layers [27], and the canonical polyadic (CP) decomposition
for convolutional layers [28] in order to reduce the commu-
nication overhead in FL, as they can respectively achieve
the highest compression ratios from previous experimental
results.

1) TT DECOMPOSITION FOR FC LAYER
Weconvert a fully connected layer in (2) into a TT layer, using
the following four steps:

i. Map xℓ−1
∈ RNℓ−1 , Aℓ

∈ RNℓ×Nℓ−1 , and bℓ
∈ RNℓ in

(2) to their tensor formsX ℓ−1
∈ RN (J+1)

×···×N (D)
,Aℓ
∈

RN (1)
×···×N (J)

×N (J+1)
×···×N (D)

, Bℓ
∈ RN (1)

×···×N (J)
.

214 VOLUME 1, 2023

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

ii. Decompose the weight tensor Aℓ into D core tensors,
namely, a conventional fully connected layer in (2) is
decomposed into D sub-layers.

iii. Forward pass: Propagate X ℓ−1 through these D sub-
layers and obtain the output tensor Yℓ

∈ RN (1)
×···×N (J)

that corresponds to yℓ ∈ RNℓ .
iv. Back propagation: Compute the gradient descent using

the automatic differentiation module.

To illustrate the above procedure, we set J = 2 andD = 4.
Using a mode-(2, 4) mapping in (23), matrix Aℓ is mapped
into a fourth-order tensor Aℓ

∈ RN (1)
×N (2)

×N (3)
×N (4)

with
Nℓ = N (1)N (2) and Nℓ−1 = N (3)N (4). Vectors yℓ, bℓ, xℓ−1

are mapped into second-order tensors Yℓ
∈ RN (1)

×N (2)
, Bℓ
∈

RN (1)
×N (2)

, and X ℓ−1
∈ RN (3)

×N (4)
, respectively.

Next, the fourth-order weight tensor Aℓ is decomposed
into 4 third-order tensors under the TT decomposition:

Aℓ
= Zℓ

1 ◦ Z
ℓ
2 ◦ Z

ℓ
3 ◦ Z

ℓ
4 , (25)

where {Zℓ
d ∈ RRd−1×N (d)

×Rd }4d=1 are core tensors. The tuple
(R0, · · · ,R4) is called TT-ranks, with R0 = R4 = 1. Assume
N (1)
= N (2)

= N (3)
= N (4)

= N , R1 = R2 = R3 = R, and
R ≪ N . The layer size is reduced from N 4 which is the size
of matrix Aℓ to 4R2N which is the total size of the four core
tensors {Zℓ

d }
4
d=1.

Then, the forward pass in (2) becomes the following four
steps of tensor contractions

X4(n3, r3) =
N (4)∑
n4=1

Zℓ
4 (r3, n4, 1) · X

ℓ−1(n3, n4),

n3 = 1, · · · ,N (3), r3 = 1, · · · ,R3,

X3(r2) =
N (3)∑
n3=1

R3∑
r3=1

Zℓ
3 (r2, n3, r3) · X4(n3, r3),

r2 = 1, · · · ,R2,

X2(r1, n2) =
R2∑
r2=1

Zℓ
2 (r1, n2, r2) · X3(r2),

r1 = 1, · · · ,R1, n2 = 1, · · · ,N (2),

X1(n1, n2) =
R1∑
r1=1

Zℓ
1 (1, n1, r1) · X2(r1, n2),

Yℓ(n1, n2) = X1(n1, n2)+ Bℓ(n1, n2),

n1 = 1, · · · ,N (1), n2 = 1, · · · ,N (2),

(26)

where {Xd }4d=1 are intermediate tensors.
As shown in Fig. 2, the TT decomposition compresses the

FC layer. The dot lines on the left side denote the tensor
contraction operation described in Sec. III-A. Note that the
time complexity of the forward pass is reduced from O(N 4)
in the conventional FC layer to O(2RN (R+ N)) ≈ O(2RN 2)
in the TT decomposition-based FC layer.

FIGURE 2. Illustrations of the TT decomposition for the FC layer,
where TT-rank R = 1.

2) CP DECOMPOSITION FOR CONVOLUTIONAL LAYER
We convert a convolutional layer in (8) into a CP layer to
reduce the kernel size, using the following three steps:

i. Decompose the weight tensor Aℓ
∈ RW ′ℓ×H

′

ℓ×Cℓ−1×Cℓ

into four factor matrices as in (27), namely, a convolu-
tional layer in (8) is decomposed into four sub-layers.

ii. Forward pass: Propagate X ℓ−1 through these four
sub-layers and obtain the output tensor Yℓ

∈

RW ′′ℓ ×H
′′

ℓ×Cℓ .
iii. Back propagation: Compute gradient descent by the

automatic differentiation module.
In CP decomposition, a fourth-order kernel tensor Aℓ

∈

RW ′ℓ×H
′

ℓ×Cℓ−1×Cℓ in (8) is decomposed into four matrices as
follows

Aℓ(i, j, s, c) =
R∑
r=1

Aℓ
1(i, r)A

ℓ
2(j, r)A

ℓ
3(s, r)A

ℓ
4(c, r), (27)

where the minimal possible R is called the CP-rank, R <

min(W ′ℓ,H
′

ℓ,Cℓ−1,Cℓ), and Aℓ
1 ∈ RW ′ℓ×R, Aℓ

2 ∈ RH ′ℓ×R,
Aℓ
3 ∈ RCℓ−1×R, Aℓ

4 ∈ RCℓ×R are the factor matrices. Assume
W ′ℓ = H ′ℓ = K , Cℓ−1 = Cℓ = N , and W ′′ℓ = H ′′ℓ = W . The
kernal size is reduced from N 2K 2 which is the size of tensor
Aℓ to 2R(N + K) which is the total size of the four matrices.

The forward pass in (8) becomes the following four con-
volutions

X4(w+ i− 1, h+ j− 1, r)

=

Cℓ−1∑
s=1

Aℓ
3(s, r) · X

ℓ−1(w+ i− 1, h+ j− 1, s),

j = 1, · · · ,H ′ℓ,

X3(w+ i− 1, h, r)

=

H ′ℓ∑
j=1

Aℓ
2(j, r)X4(w+ i− 1, h+ j− 1, r),

i = 1, · · · ,W ′ℓ,

X2(w, h, r)

=

W ′ℓ∑
i=1

Aℓ
1(i, r)X3(w+ i− 1, h, r), r = 1, · · · ,R,

VOLUME 1, 2023 215

TABLE 1. Space and computation complexities of various
networks

X1(w, h, c) =
R∑
r=1

Aℓ
4(c, r)X2(w, h, r),

Yℓ(w, h, c) = X1(w, h, c)+ Bℓ(c),

w = 1, · · · ,W ′′ℓ , h = 1, · · · ,H ′′ℓ , c = 1, · · · ,Cℓ (28)

where {Xk}4k=1 are intermediate tensors. Note that the time
complexity of the forward pass is reduced from O(W 2N 2K 2)
in the conventional convolutional layer toO(W 2R(N +K)) in
the CP decomposition-based convolutional layer.

One can train the tensor layers using the stochastic gra-
dient descent (SGD) method. The backward propagation
process in (6) employs a chain rule [36] over the tensor
factors in (26) and (28), respectively, which can be computed
automatically by PyTorch’s automatic differentiation module
Autograd [40]. We summarized the theoretical complexities
of various networks in Table 1.
Remark: We showed how to compress FC layers and

convolutional layers using tensor decomposition models in
FL. As for other neural networks, tensor methods may be still
applicable, e.g., RNN compression in [26].

IV. OVER-THE-AIR COMPUTATION VIA LATTICE CODE
In Sec. II-C.2, it is seen that when the clients transmit their
locally updated weights through a multiple-access channel,
the central server receives the combined weights, realiz-
ing over-the-air computation. In this section, we propose a
lattice-coded transmission scheme over the same multiple-
access channel, that can significantly reduce the MSE of the
combined weights received by the central server.We first pro-
vide some basic background on lattice code. Then we present
our proposed lattice-coded uplink transmission scheme for
federated learning. Finally, we describe the implementation
details of some lattice operations.

A. BACKGROUND ON LATTICE CODE
Lattice code [41] is a vector quantization scheme that exhibits
a number of asymptotic optimalities. We next list several
key concepts that will be used in our proposed lattice-coded
transmission scheme [42], [43], [44], [45].
An s-dimensional lattice, 3, is a set of points in Rs such

that if s1, s2 ∈ 3, then s1 + s2 ∈ 3, and if s ∈ 3, then
−s ∈ 3. Moreover, 3 can be directly defined in terms of a
nonsingular generator matrix G ∈ Rs×s:

3 ≜ {s = vG : v ∈ Zs
}. (29)

A lattice quantizer, Q : Rs
→ 3, maps x ∈ Rs to the

nearest lattice point in Euclidean distance:

Q(x) ≜ argmin
s∈3
∥x− s∥. (30)

We denote quantization residual as

x mod 3 = x− Q(x), ∀ x ∈ Rs. (31)

The fundamental Voronoi region, V0, of a lattice, is the set
of all points that are closest to the zero lattice point: V0 ≜ {x :
Q(x) = 0}.
The second moment per dimension of a lattice is

G(3) ≜
1
s
E[∥d∥2] =

1
s

∫
V0
∥x∥2dx∫
V0
dx

, (32)

where d is uniformly distributed in V0.

B. LATTICE-CODED UPLINK TRANSMISSION SCHEME
Recall from Sec. II-C. that at each FL iteration, each client
k transmits M copies of xk = cρkwk to the central server
through amultiple-access channel. By using a sample average
estimator of the combined weight w =

∑K
k=1 ρkwk , the

following MSE can be achieved

MSE(ŵ) =
1
S

E[∥w− ŵ∥2] =
σ 2

Mc2
. (33)

In this section, we will consider a lattice-based transmis-
sion scheme over the same multiple-access channel that can
significantly reduce the MSE. The first transmission is the
same as that described in Sec. II-C with M = 1. Then in
each subsequent transmission, each client transmits a lattice
quantization residual signal.

First, each client k divides its local model wk ∈ RS into
subvectors of size s. Denote such a subvector as wk ∈ Rs,
and the corresponding transmitted signal as xk = cρkwk ∈
Rs. We next describe the procedure for transmitting xk , k =
1, · · · ,K , over the multiple-access channel M times using
an s-dimensional lattice code 3, which is scaled such that
its second moment per dimension G(3) = KP, where P is
given in (15). The transmission consists of two phases. The
first phase is an uncoded transmission that is the same as the
transmission scheme overmultiple-access channels described
in Sec. II with M = 1. That is, client k transmits xk

hk
, k =

1, · · · ,K , and the central server receives

y(1) =
K∑
k=1

xk + z(1), (34)

where z(1) ∈ Rs contains i.i.d. Gaussian noise N (0, σ 2)
samples. The server then obtains an estimate of w as ŵ(1) =
y(1)
c . Then we can write

ŵ(1) = w+ e(1), (35)

where the variance of the error term e(1) is MSE(ŵ(1)) =
1
sE[∥e(1)∥

2] = σ 2

c2
≜ η1.

The second phase consists of M − 1 lattice-coded trans-
missions, each transmitting a lattice-coded residual signal.

216 VOLUME 1, 2023

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

Denote the estimate ofw by the central server after the (m−1)-
th transmission as

ŵ(m− 1) = w+ e(m− 1) =
K∑
k=1

(ρkwk)+ e(m− 1), (36)

where m = 2, · · · ,M , with the corresponding MSE(ŵ(m −
1)) = 1

sE[∥e(m − 1)∥2] ≜ ηm−1. In the m-th transmission,
client k generates a dither dk (m) ∈ Rs uniformly distributed
over the fundamental Voronoi region V0, and makes it avail-
able to the server through sharing a random seedk (m) [6],
k = 1, · · · ,K . Client k transmits xk (m)

hk
, where

xk (m) = 1
√
K

(
(γmρkwk + dk (m)) mod 3

)
, k = 1, · · · ,K .

(37)

Here, we scale down the lattice residue by 1
√
K

to meet
the average codeword power constraint in (15). The server
receives

y(m) =
∑K

k=1 xk (m)+ z(m), (38)

where z(m) ∈ Rs consists of i.i.d. Gaussian noise N (0, σ 2)
samples. The server then computes the latest estimate ŵ(m)
of w according to

t = αy(m)−
(K∑
k=1

dk (m)+ γmŵ(m− 1)
)
, (39)

r = t mod 3, (40)

ŵ(m) = βmr+ ŵ(m− 1). (41)

Assume P > K−1
K σ 2, and the constants are given as follows

α =
KP
√
K

σ 2 + KP
, γm =

√
KP

ηm−1

(
1−

Kσ 2

σ 2 + KP

)
,

βm =
ηm−1γm

KP
. (42)

If s is large enough, the MSE of the estimate ŵ(m) is

ηm = ηm−1
Kσ 2

σ 2 + KP
= η1

(Kσ 2

σ 2 + KP

)m−1
. (43)

See Appendix for the derivation of (43).
Hence after the M -th transmission, the MSE of the final

estimate ŵ(M) of w is

ηM =
σ 2

c2

(
Kσ 2

σ 2+KP

)M−1
. (44)

Compared with (33), we conclude that for the uncoded case,
the MSE is inversely proportional to the number of trans-
missions M ; whereas for the proposed lattice-coded scheme,
the MSE decreases exponentially with M . Hence to achieve
a given MSE, the lattice-coded approach requires a smaller
number of channel usages M than the uncoded repetition
transmission scheme discussed in Sec. II-C.2. Note that for
each lattice transmission step m, each client k and the central
server share a common random dither signal dk (m), which
can be realized through a shared random seedk (m).

C. IMPLEMENTATION DETAILS OF LATTICE OPERATIONS
In this subsection, we explain the computational procedures
for lattice scaling, modulo operation, and uniform dither
generation.

1) LATTICE SCALING
Given an s-dimensional lattice 30 with the second moment
per dimension G(30) = P0, and ∀v ∈ Rs, denote the corre-
sponding lattice quantizer as Q0(v). Let 3 be the scaled ver-
sion of 30 with the second moment per dimension G(3) =
KP and denote the corresponding lattice quantizer as Q(v).
Then these two quantization operations are related as Q(v) =
λQ0(v/λ), where the scaling factor λ is determined by λ2 ·

P0 = KP. Thus, v mod 3 = v− λQ0(v/λ).

2) MODULO OPERATION
In this paper, we choose s = 8, and use the E8 lattice [46] as
30. E8 lattice is an 8-dimensional lattice 30 = {s ∈ Z8

∪

(Z + 1
2)

8
:
∑8

i=1 s(i) is even} with the second moment per
dimension P0 = 929

12960 ≈ 0.0717. Hence for a given vector
v ∈ R8, v mod 3 = v− λQ0(v/λ), where λ = 3.735 ·

√
KP.

Denoting x = v/λ, we outline the procedure for computing
the quantization Q0(x) using the E8 lattice based on the fast
algorithm in [47]. We first define element-wise functions f :
R8
→ Z8 and g : R8

→ Z8 such that f (x) = [x] rounds each
element in x to the nearest integer where [·] is the rounding
operator; and g(x) is the same as f (x) except at the element
xi with the largest absolute rounding residual for which g(xi)
is rounded the other way, i.e., g(xi) = ⌈xi⌉ if [xi] = ⌊xi⌋,
and g(xi) = ⌊xi⌋ if [xi] = ⌈xi⌉, where ⌈·⌉ and ⌊·⌋ are the
ceiling and flooring operators, respectively. In case of a tie,
we choose xi with the smallest index i. To encode x, we first
compute f (x) and g(x), select the one whose sum is even, and
call it y0. Then, compute f (x− 1

2) and g(x−
1
2), also select the

one with even sum, add 1
2 to it, and call it y1. Finally, compare

y0 and y1, and choose the one that is closer to x as the result,
i.e., Q0(x) = argmin

y∈{y0,y1}
∥y− x∥2.

As an example, consider x = [0.2, 0.7, 1.9, 0.8, −
0.1, 0.55, − 0.1, 2.1]. We have:

f (x) = [0, 1, 2, 1, 0, 1, 0, 2], sum = 7, odd,

g(x) = [0, 1, 2, 1, 0, 0, 0, 2], sum = 6, even ✓.

Hence y0 = g(x). Next

x−
1
2
= [−0.3, 0.2, 1.4, 0.3,−0.6, 0.05,−0.6, 1.6],

f (x−
1
2
) = [0, 0,1, 0,−1, 0,−1, 2], sum = 1, odd,

g(x−
1
2
) = [0, 0,2, 0,−1, 0,−1, 2], sum = 2, even ✓.

Therefore y1 = g(x − 1
2) +

1
2 = [0.5, 0.5, 2.5, 0.5, −

0.5, 0.5, − 0.5, 2.5]. Finally,

||x− y0||
2
= 0.51 < ||x− y1||

2
= 1.06.

VOLUME 1, 2023 217

Hence Q0(x) = y0 = [0, 1, 2, 1, 0, 0, 0, 2], and
v mod 3 = v − λQ0(x) = v − λy0. For other commonly
used lattice types, the algorithms in [47] can be adopted for
fast quantization.

3) GENERATION OF UNIFORM DITHERS
We use an acceptance-rejection method [48] to generate
a dither uniformly distributed in the fundamental Voronoi
region of a lattice.

For the E8 lattice, we list all 240 lattice points {si}240i=1
that are closest to the origin [49] with ∥si∥ =

√
2. The

perpendicular bisector between each si and the origin forms
a face of the fundamental Voronoi region. Then we generate
a vector d ∈ R8 of i.i.d. samples uniformly distributed in
[−1, 1]. By computing the projections of d on all lattice
points {si}240i=1, we accept d as a dither if

|dT si| ≤
1
2
∥si∥2 = 1, i = 1, · · · , 240. (45)

If d does not satisfy (45), then it is discarded and we repeat
the same procedure until a dither that satisfies (45) is found.

V. NATURAL GRADIENT BASED FEDERATED
LEARNING
Conventional federated learning imposes certain computing
and communication capabilities on the clients, since the back
propagation training is computationally intensive, and each
transmission involves sending all model parameters from the
client to the central server. In this section, we consider the
scenario where each client has only very limited computing
and communication power, and propose the corresponding
federated learning strategy based on natural gradient learn-
ing [34]. Specifically, the local update at each client involves
only the forward pass and no back propagation. Moreover, for
each uplink transmission, each client transmits only a single
scalar.

As before, denote the training data of client k as
{xki , y

k
i }
nk
i=1. Specifically, to update the global model param-

eters W , the gradient in (6)-(7) is replaced by the following
natural gradient

Lk =
1
nk

nk∑
i=1

L
(
W +4k ; (xki , y

k
i)
)
, k = 1, · · · ,K ,

(46)

g̃ =
1
ν2

K∑
k=1

ρkLk4k , (47)

where L
(
·
)
is the loss function, 4k is a perturbation matrix

that has the same size as W with S i.i.d. Gaussian N (0, ν2)
samples, ρk =

nk
n with n =

∑K
k=1 nk being the total number

of data samples. It is seen from (46)-(47) that the natural
gradient g̃ is a linear combination of the perturbations to
the global model W , with the weights being the losses of
the perturbed networks on the local training data. At each
iteration during training, the scalar loss Lk in (46) is computed

at client k , and sent to the central server; The central server
receives the loss values {Lk}Kk=1 from all clients and then
computes the natural gradient g̃ in (47) and update the global
model as

W ← W − ξ g̃, (48)

where ξ is the learning rate parameter. The updated global
model W is then broadcast to all clients. Note that the same
random perturbation matrix 4k needs to be generated at both
client k and the central server, which can be implemented by
using a shared common random seed. According to the anal-
ysis in [50] and [51], without channel noise, the convergence
rate of the exact natural gradient descent is O(1/t), where t is
the number of global updates.

The simple natural gradient estimate (46)-(47) has a
high variance. Here we adopt an antithetic sampling (AS)
method [52] to reduce the variance. AS perturbs the network
twice in opposite directions using the same4k , and computes
the loss as

Lk = 1
2nk

nk∑
i=1

(
L
(
W +4k ; (xki , y

k
i)
)

−L
(
W −4k ; (xki , y

k
i)
))

, (49)

where k = 1, · · · ,K . Other estimators can be found in [34]
and [53].

For natural gradient-based federated learning, the central
server shares a common seed with each client k , which is used
to generate a random seedk at each iteration. Each training
iteration consists of the following steps:

1) The server broadcasts the current global modelW to all
K clients, whereW represents model parameters.

2) Client k generates a random seedk using the common
seed shared with the server, and then generates the
perturbation matrix 4k that contains i.i.d. Gaussian
N (0, ν2) samples using seedk . Then client k performs
the forward pass using parametersW+4k andW−4k
on its local training data set, and obtains the loss Lk in
(49).

3) Each client k transmits the signal xk
hk
=

cρkLk
hk

to
the server M times through orthogonal channels as
described in Sec. II-C., where hk is the channel gain,
and c is a scaling parameter to meet the codeword
power constraint as follows

E[x2k] ≤ P, k = 1, · · · ,K . (50)

4) The server receives

yk (m)=xk+zk (m), m=1, · · · ,M , k = 1, · · · ,K ,

(51)

where zk (m) ∼ N (0, σ 2) are i.i.d. Gaussian noise
samples. The server then uses sample average to get
the estimate ρ̂kLk =

1
cM

∑M
m=1 yk (m), k = 1, · · · ,K .

5) The server generates seedk from the common seed
sharedwith client k , and then generates4k using seedk ,

218 VOLUME 1, 2023

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

FIGURE 3. Illustrations of natural gradients, where the black
arrows are exploration directions, the blue arrows are the
weighted losses in each direction, and the red arrow, which is
the weighted average of explorations, denotes the natural
gradient.

k = 1, · · · ,K . The server then estimates the natural
gradient g̃ = 1

ν2

∑K
k=1(ρ̂kLk4k), and update the global

modelW according to (48).

As shown in Fig. 3, we describe the virtualized illustration
of the natural gradient method. Each client k calculates the
weighted loss ρkLk (blue lines) in its direction 4k (black
lines), and transmits the loss to the server. The server gets
the weighted average as the natural gradient g̃ (the red line).

VI. PERFORMANCE EVALUATIONS
We first evaluate the compression-performance tradeoff of
the tensormodels for federated learningwith ideal (i.e., noise-
less) communications. Then, under the noisy communication
channels, we evaluate the lattice-coded over-the-air compu-
tation method and the natural gradient-based FL method.

A. EXPERIMENTAL SETUP
Data sets: We use the following data sets:

• MNIST data set [54] contains gray-scale images of
handwritten digits, where each image has 28×28 pixels.
There are 60, 000 training images and 10, 000 testing
images. Both are evenly split into 10 classes.

• CIFAR-10 data set [55] contains 60, 000 color images in
10 classes, where each image has size 32×32×3. There
are 50, 000 training images and 10, 000 testing images.
Both are evenly split among the 10 classes.

The training data sets are split evenly and stored locally
among clients. Our experiments are executed on twoNVIDIA
Quadro RTX 5000 GPUs, and each has 16 GB of memory.
We use PyTorch to implement neural networks.

Performance metrics: We consider the following perfor-
mance metrics:

1) Compression ratio: the ratio between the size of the
original network and that of a low-rank tensor-based
network;

2) Convergence: the loss value versus the communication
round during the training process;

3) Test accuracy: the percentage of correctly estimated
labels for samples in the testing data set.

Remark:We adopt the FedAvg framework [9] as described
in Sec. II-B. Although our experimental study focuses on
the i.i.d. data, a recent work [56] explains that the FedAvg
framework is actually effective with data heterogeneity.

B. FL WITH LOW-RANK TENSOR MODELS AND IDEAL
COMMUNICATION
In this subsection, we assume that the communication chan-
nels are noiseless and ideal, and evaluate the three FL perfor-
mance metrics under different rank values of tensor models
described in Sec. III, corresponding to different compression
ratios. Note that a higher compression ratio leads to a smaller
network parameter size S, and therefore smaller communica-
tion overhead.

Federated learning settings: We adopt the FedAvg frame-
work [9] as described in Sec. II-B. We take the conventional
FedAvg as the baseline, e.g. the red lines in Fig. 4 and Fig. 5.
There are 10 clients with equal weight. Each client uploads
its local model to the central server every 10 epochs of local
updates. During the training process, we use 120 communi-
cation rounds for fully connected networks and 350 commu-
nication rounds for convolutional neural networks.

1) FC NETWORKS
We compare the performances of a conventional FC network
and the TT decomposition-based FC networks on the MNIST
data set [54].

FC network structure: There are three hidden layers
and one output layer, where each hidden layer has width
Nℓ = 1024, ℓ = 1, 2, 3, and the output layer has size
10, i.e., N4 = 10. The activation function is ReLU and the
loss function is cross-entropy. The batch size is 128 and the
learning rate is 0.01. We used the Adadelta optimizer [57].
The dimensions of the FC model parameters in (2), and those
of the corresponding TT model in (25) are shown in Table 2.
There are in total 2, 913, 290 parameters for the conventional
FC network.

For the TT decomposition-based FC network described
in (26), we set the TT-rank as R1 = R2 = R3 = R.
The output layer has the same size as that of the original
FC network. There are in total 795, 402 parameters when
R = 64. Similarly, there are 211, 850 parameters if the TT-
rank R = 32, and 64, 458 parameters if the TT-rank R = 16.

CNN network structure (VGG-like [58]): There are six
convolutional layers with kernel size W ′ℓ × H

′

ℓ = 3× 3, ℓ =
1, · · · , 6, and C1 = 32, C2 = 64, C3 = 64, C4 =

128, C5 = 128, C6 = 256, followed by one hidden FC
layer with layer width N7 = 256. The activation function is
ReLU and the loss function is cross-entropy. The batch size
is 128 and the learning rate is 0.005. We used BatchNormal-
ization [59] in each layer, the RMSprop optimizer [60], and a

VOLUME 1, 2023 219

TABLE 2. Parameters of FC network structures

TABLE 3. Test accuracies and compression ratios of FC networks on MNIST data set

FIGURE 4. Training losses of FC networks on MNIST data set.

max pooling operation in the second, fourth, fifth, and sixth
layers. The dimensions of the FC model parameters in (8),
and those of the corresponding TT model in (27) are shown
in Table 4. Therefore, the conventional CNN network has in
total 837, 898 parameters.

We decompose the six convolutional layers using the CP
tensor decomposition and the FC layer using the TT tensor
decomposition as described in (28). In the first case (CP/TT-
1), CP ranks are 8, 16, 16, 32, 32, 64 for the six convolutional
layers, respectively, and the TT-rank is 16 for the FC layer.
The output layer has the same size as that of the origi-
nal CNN. Therefore, there are 60, 338 parameters in total
as shown in Table 4. Similarly, the second case (CP/TT-
2) with CP ranks 6, 12, 12, 25, 25, 51 and TT-rank 16 has
in total 51, 022 parameters, while the third case (CP/TT-3)
with CP ranks 3, 6, 6, 12, 12, 25 and TT-rank 16 has in total
33, 363 parameters.
We summarize the compression ratios and test accuracies

in Table 5. For CP/TT-1, the test accuracy only drops 1.53%,
while the compression ratio is nearly 14 times. The test

FIGURE 5. Training loss of CNN networks on CIFAR-10 data set.

accuracy drops as the tensor rank decreases, but in return,
we can achieve much higher compression ratios and therefore
much lower communication overhead. As shown in Fig. 5, the
training loss increases as the tensor rank decreases. Although
CP/TT-3 achieves the 25-time compression ratio, it is beyond
the compression ability within an acceptable accuracy. All
neural networks converge after 200 communication rounds.

C. FL WITH LOW-RANK TENSOR MODELS AND
LATTICE-CODED TRANSMISSION
For uplink transmission, we compare our lattice-coded over-
the-air computation method with the traditional repetition
scheme on the MNIST data set. The FC network and the
FL system follow the same settings as those in Sec. VI-
B. The TT decomposition-based FC network with TT-rank
R = 32 is used in our simulations, with the total parameter
size S = 211, 850 and 13.75 compression ratio. The lattice
dimension is s = 8 and the lattice type is E8. The signal-to-
noise ratio is defined as SNR = P

σ 2 .

220 VOLUME 1, 2023

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

TABLE 4. Parameters of CNN structures

TABLE 5. Test accuracies and compression ratios of CNN networks on CIFAR-10 data set

TABLE 6. Test accuracy (in percentage %) of the repetition scheme and the lattice-coded scheme on MNIST data set

FIGURE 6. Training loss of the repetition scheme and the lattice-coded scheme on MNIST data set.

TABLE 7. Test accuracy (in percentage %) of the natural gradient method

In Table 6, we summarize test accuracy performances with
different repeat times M under several SNRs. In Fig. 6,
we show the training performances with different repeat times
M under several SNRs. Both the test accuracy and the training
loss of the lattice-coded scheme are always better than that
of the repetition scheme with certain repeat times for any
given M , and the improvement increases substantially as
M increases. This is due to the fact that for the repetition

scheme, the distortion is inversely proportional toM , whereas
for the lattice-coded scheme, the distortion drops exponen-
tially with M . Moreover, it is seen that the lattice-coded
scheme is especially effective in very noisy channels, i.e.,
low SNR, in the sense that it requires a moderate number
of transmissions to reach satisfactory learning performance,
whereas the repetition scheme needs a huge number of trans-
missions. Therefore, the proposed lattice-coded transmission

VOLUME 1, 2023 221

FIGURE 7. Training loss of the natural gradient method. (a) The MNIST data set with 20 dB noise. (b) The MNIST data set
with 25 dB noise. (c) The CIFAR-10 data set with 20 dB noise. (d) The CIFAR-10 data set with 25 dB noise.

will play a key role for efficient FL in a noisy wireless
environment.

D. FL WITH LOW-RANK TENSOR MODELS AND NATURAL
GRADIENT
We evaluate the performance of the natural gradi-
ent approach. For the MNIST data set, we use TT
decomposition-based FC networks with TT-rank R = 32 fol-
lowing the same settings as those in Sec. VI-B. Themodel has
parameter size S = 211, 850 and 13.75 compression ratio.
For the CIFAR-10 data set, we use CP/TT-1 in Sec. VI-B.2.
The learning rate is 0.02. The model has parameter size S =
60, 338 and 13.894 compression ratio. For the perturbation
in (46), we set the standard deviation ν = 0.01.
Federated learning settings: There are 10 clients with

equal weight. Each client k uploads its loss value Lk to
the central server using the orthogonal channels described
in Sec. II-C.

In Table 7, we summarize test accuracy performances with
different repeat times M under several SNRs. In Fig. 6, the
training performances under different repetition times M are
shown for different SNR values. It is seen that at high SNR,

it takes a small number of transmissions M to reach the
learning performance close to that under the ideal channel.
Recall that the natural gradient-based FL is designed for edge
devices with very limited computing and communication
capabilities. As a result, its performance is also limited in the
sense that it should operate in channels with high SNR, and
its training takes a large number of communication rounds,
but much less bandwidth in each round.

VII. CONCLUSION
We have proposed communication-efficient techniques for
federated learning over wireless channels. We employ low-
rank tensor models to represent neural networks and both
forward and backward passes are performed with respect to
the tensor parameters, which leads to a significant reduc-
tion in both computational complexity and communica-
tion overhead. Moreover, for the case where edge clients
have barely sufficient computing and communication power,
we have proposed a lattice-coded over-the-air computation
scheme for the uplink transmission of model parameters,
that can achieve substantial distortion reduction compared
with the conventional repetition transmission. Finally, for
the case of extremely resource-constrained edge clients,

222 VOLUME 1, 2023

Lan et al.: Communication-Efficient FL for Resource-Constrained Edge Devices

ŵ(m) = w+ βm

(
(α −
√
K)

K∑
k=1

xk (m)+ αz(m)− γme(m− 1)

)
+ e(m− 1)︸ ︷︷ ︸

e(m)

, (55)

we have proposed natural gradient-based FL that involves
forward pass only and single-scalar uplink transmission.
Our numerical experiments on the MNIST data set and
CIFAR-10 data set have demonstrated the effectiveness of
these proposed techniques for communication-efficient FL in
resource-limited edge environments.

APPENDIX: DERIVATION OF (43)
Substituting (36), (38) and (39) into (40), and using the iden-
tity

(
(a mod 3)+ b

)
mod 3 =

(
a+ b

)
mod 3, ∀ a, b ∈ Rs,

we have

r =
(

α

K∑
k=1

xk (m)+ αz(m)−
K∑
k=1

((
dk (m)+ γmρkwk

)
mod 3

)
− γme(m− 1)

)
mod 3

=

(
(α −
√
K)

K∑
k=1

xk (m)+ αz(m)− γme(m− 1)
)
mod 3,

(52)

where the last equality follows from (37). Recall that the sec-
ond moment per dimension of lattice 3 is scaled to G(3) =
KP. Assume wk consists of i.i.d. zero-mean Gaussian sam-
ples. It is known that for when the dimension s is large, both
Gaussian and uniform distributions are close to the uniform
distribution on the sphere of radius

√
KP. Therefore, by (37),

the second moment per dimension of xk (m) is not greater
than 1

K · KP = P. As {xk (m)}Kk=1, z(m), and e(m − 1) are
independent, the second moment per dimension inside the
mod operation in (52) is no greater than

(α −
√
K)2KP+ α2σ 2

+ γ 2
mηm−1 = KP, (53)

which is the second moment per dimension of the lattice 3.
If s is large enough, the samples inside the mod operation
fall within the fundamental Voronoi region V0 of the lattice3

with high probability [61]. Thus, we can write (52) as follows

r = (α −
√
K)

K∑
k=1

xk (m)+ αz(m)− γme(m− 1). (54)

Substituting (54) into (41), we have (55), as shown at the top
of the page, where the MSE is

ηm = β2
m

(
(α −
√
K)2KP+ α2σ 2

)
+ (1− βmγm)2ηm−1

= ηm−1
Kσ 2

σ 2 + KP
. (56)

REFERENCES
[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, ‘‘Federated machine learning:

Concept and applications,’’ACMTrans. Intell. Syst. Technol., vol. 10, no. 2,
pp. 1–19, 2019.

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[3] K. Bonawitz et al., ‘‘Towards federated learning at scale: System design,’’
Proc. Mach. Learn. Syst., vol. 1, pp. 374–388, Apr. 2019.

[4] Federated Learning White Paper, V1.0., WeBank AI Group, Shenzhen,
China, 2018.

[5] A. Hard et al., ‘‘Federated learning for mobile keyboard prediction,’’ 2018,
arXiv:1811.03604.

[6] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, ‘‘UVeQFed:
Universal vector quantization for federated learning,’’ IEEE Trans. Signal
Process., vol. 69, pp. 500–514, 2021.

[7] P. Kairouz et al., ‘‘Advances and open problems in federated learning,’’
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2019.

[8] Speedtest.net. (2022). Speedtest United States Market Report. [Online].
Available: http://www.speedtest.net/reports/united-states/

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54. PMLR, 2017,
pp. 1273–1282.

[10] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, ‘‘Federated learning: Strategies for improving communication
efficiency,’’ 2016, arXiv:1610.05492.

[11] A. F. Aji and K. Heafield, ‘‘Sparse communication for distributed gradi-
ent descent,’’ in Proc. Conf. Empirical Methods Natural Lang. Process.,
Sep. 2017, pp. 440–445. [Online]. Available: https://aclanthology.org/D17-
1045

[12] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, ‘‘Deep gradient com-
pression: Reducing the communication bandwidth for distributed train-
ing,’’ in Proc. Int. Conf. Learn. Represent., 2018. [Online]. Available:
https://openreview.net/forum?id=SkhQHMW0W

[13] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, ‘‘Robust and
communication-efficient federated learning from non-i.i.d. data,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413, Sep. 2020.

[14] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
‘‘signSGD: Compressed optimisation for non-convex problems,’’ in Proc.
35th Int. Conf. Mach. Learn., vol. 80. Stockholm, Sweden: PMLR, 2018,
pp. 560–569.

[15] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, ‘‘QSGD:
Communication-efficient SGD via gradient quantization and encod-
ing,’’ in Proc. 31st Conf. Neural Inf. Process. Syst. (NIPS), Long
Beach, CA, USA, 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/hash/6c340f25839e6acdc73414517203f5f0-Abstract.html

[16] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
‘‘FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,’’ in Proc. 23rd Int. Conf. Artif. Intell.
Statist., vol. 108. PMLR, 2020, pp. 2021–2031.

[17] Y. Du, S. Yang, and K. Huang, ‘‘High-dimensional stochastic gradient
quantization for communication-efficient edge learning,’’ IEEE Trans.
Signal Process., vol. 68, pp. 2128–2142, 2020.

[18] M. M. Amiri and D. Gündüz, ‘‘Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,’’ IEEE Trans. Signal
Process., vol. 68, pp. 2155–2169, 2020.

[19] M. M. Amiri and D. Gündüz, ‘‘Federated learning over wireless fading
channels,’’ IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–3557,
May 2020.

[20] G. Zhu, Y. Wang, and K. Huang, ‘‘Broadband analog aggregation for low-
latency federated edge learning,’’ IEEE Trans. Wireless Commun., vol. 19,
no. 1, pp. 491–506, Jan. 2020.

[21] K. Yang, T. Jiang, Y. Shi, and Z. Ding, ‘‘Federated learning via over-
the-air computation,’’ IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

VOLUME 1, 2023 223

[22] M. Ashraphijuo and X. Wang, ‘‘Characterization of sampling patterns for
low-TT-rank tensor retrieval,’’ Ann. Math. Artif. Intell., vol. 88, no. 8,
pp. 859–886, Aug. 2020.

[23] M. Ashraphijuo and X. Wang, ‘‘Fundamental conditions for low-CP-rank
tensor completion,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 2116–2145,
2017.

[24] X.-Y. Liu, S. Aeron, V. Aggarwal, and X. Wang, ‘‘Low-tubal-rank tensor
completion using alternating minimization,’’ IEEE Trans. Inf. Theory,
vol. 66, no. 3, pp. 1714–1737, Mar. 2020.

[25] H. Huang, X.-Y. Liu, W. Tong, T. Zhang, A. Walid, and X. Wang, ‘‘High
performance hierarchical Tucker tensor learning using GPU tensor cores,’’
IEEE Trans. Comput., vol. 72, no. 2, pp. 452–465, Feb. 2023.

[26] M. Yin, S. Liao, X.-Y. Liu, X. Wang, and B. Yuan, ‘‘Towards extremely
compact RNNs for video recognition with fully decomposed hierarchical
Tucker structure,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2021, pp. 12080–12089.

[27] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, ‘‘Tensoriz-
ing neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
vol. 28, 2015. [Online]. Available: https://papers.nips.cc/paper_files/paper/
2015/hash/6855456e2fe46a9d49d3d3af4f57443d-Abstract.html

[28] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky,
‘‘Speeding-up convolutional neural networks using fine-tuned CP-
decomposition,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2015.
[Online]. Available: https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:
accepted-main.html and https://arxiv.org/abs/1412.6553

[29] V. Aggarwal, W. Wang, B. Eriksson, Y. Sun, and W. Wang, ‘‘Wide com-
pression: Tensor ring nets,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 9329–9338.

[30] N. Hyeon-Woo, M. Ye-Bin, and T.-H. Oh, ‘‘FedPara: Low-rank
Hadamard product for communication-efficient federated learning,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), 2022. [Online]. Available:
https://openreview.net/forum?id=d71n4ftoCBy

[31] B. Nazer and M. Gastpar, ‘‘Compute-and-forward: Harnessing interfer-
ence through structured codes,’’ IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6463–6486, Oct. 2011.

[32] B. Nazer and M. Gastpar, ‘‘Computation over multiple-access channels,’’
IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516, Oct. 2007.

[33] X. Zhang, J. Clune, and K. O. Stanley, ‘‘On the relationship between
the OpenAI evolution strategy and stochastic gradient descent,’’ 2017,
arXiv:1712.06564.

[34] P. Vicol, L. Metz, and J. Sohl-Dickstein, ‘‘Unbiased gradient estimation in
unrolled computation graphs with persistent evolution strategies,’’ in Proc.
38th Int. Conf. Mach. Learn., vol. 139. PMLR, 2021, pp. 10553–10563.

[35] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, C.-S. Foo, and R. Yokota, ‘‘Scal-
able and practical natural gradient for large-scale deep learning,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 44, no. 1, pp. 404–415, Jan. 2022.

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[37] X. Wang and H. V. Poor, Wireless Communication Systems: Advanced
Techniques for Signal Reception. London, U.K.: Pearson, 2003.

[38] P. Springer and P. Bientinesi, ‘‘Design of a high-performance GEMM-like
tensor–tensor multiplication,’’ ACM Trans. Math. Softw., vol. 44, no. 3,
pp. 1–29, Sep. 2018.

[39] D. A. Matthews, ‘‘High-performance tensor contraction without transpo-
sition,’’ SIAM J. Sci. Comput., vol. 40, no. 1, pp. 1–24, 2018.

[40] PyTorch 1.11.0. (2022). A Gentle Introduction to Torch.Autograd.
[Online]. Available: https://pytorch.org/tutorials/beginner/blitz/autograd_
tutorial.html

[41] T. Eriksson and E. Agrell, ‘‘Lattice-based quantization, Part II,’’
Chalmers Univ. Technol., Göteborg, Sweden, Tech. Rep. 18,
1996.

[42] R. Urbanke and B. Rimoldi, ‘‘Lattice codes can achieve capacity on the
AWGN channel,’’ IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 273–278,
Jan. 1998.

[43] U. Erez and R. Zamir, ‘‘Achieving 1/2 log (1+SNR) on the AWGN channel
with lattice encoding and decoding,’’ IEEE Trans. Inf. Theory, vol. 50,
no. 10, pp. 2293–2314, Oct. 2004.

[44] R. Zamir, S. Shamai (Shitz), and U. Erez, ‘‘Nested linear/lattice codes for
structured multiterminal binning,’’ IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1250–1276, Jun. 2002.

[45] S. D. Servetto, ‘‘Lattice quantization with side information,’’ in Proc. Data
Compress. Conf., Mar. 2000, pp. 510–519.

[46] J. Conway and N. Sloane, ‘‘Voronoi regions of lattices, second moments
of polytopes, and quantization,’’ IEEE Trans. Inf. Theory, vol. IT-28, no. 2,
pp. 211–226, Mar. 1982.

[47] J. Conway and N. Sloane, ‘‘Fast quantizing and decoding and algorithms
for lattice quantizers and codes,’’ IEEE Trans. Inf. Theory, vol. IT-28, no. 2,
pp. 227–232, Mar. 1982.

[48] M. T. Wells, G. Casella, and C. P. Robert, ‘‘Generalized accept-reject
sampling schemes,’’ in A Festschrift for Herman Rubin (Lecture Notes-
Monograph Series), vol. 45. Institute of Mathematical Statistics, 2004,
pp. 342–347.

[49] F. Pfender and G. M. Ziegler, ‘‘Kissing numbers, sphere packings, and
some unexpected proofs,’’ Notices-Amer. Math. Soc., vol. 51, no. 8,
pp. 873–883, Sep. 2004.

[50] S.-I. Amari, ‘‘Natural gradient works efficiently in learning,’’Neural Com-
put., vol. 10, no. 2, pp. 251–276, Feb. 1998.

[51] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmid-
huber, ‘‘Natural evolution strategies,’’ J. Mach. Learn. Res., vol. 15,
pp. 949–980, Mar. 2014.

[52] A. B. Owen,Monte Carlo Theory, Methods and Examples. Redwood City,
CA, USA: Stanford Press, 2013.

[53] Y. Tang, K. Choromanski, and A. Kucukelbir, ‘‘Variance reduction for
evolution strategies via structured control variates,’’ inProc. 23rd Int. Conf.
Artif. Intell. Statist. (AISTATS), vol. 108. Palermo, Italy: PMLR, 2020,
pp. 646–656.

[54] Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[55] A. Krizhevsky, V. Nair, and G. Hinton. (2009). The CIFAR-10 Dataset.
[Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html

[56] J. Wang, R. Das, G. Joshi, S. Kale, Z. Xu, and T. Zhang, ‘‘On the unreason-
able effectiveness of federated averaging with heterogeneous data,’’ 2022,
arXiv:2206.04723.

[57] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2012,
arXiv:1212.5701.

[58] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[59] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. 32nd Int. Conf.
Mach. Learn., vol. 37. PMLR, 2015, pp. 448–456.

[60] T. Tieleman and G. Hinton, ‘‘Lecture 6.5-RMSprop: Divide the gradient by
a running average of its recent magnitude,’’ Coursera, Neural Netw. Mach.
Learn., vol. 4, no. 2, pp. 26–31, Oct. 2012.

[61] U. Erez, S. Litsyn, and R. Zamir, ‘‘Lattices which are good for (almost)
everything,’’ IEEE Trans. Inf. Theory, vol. 51, no. 10, pp. 3401–3416,
Oct. 2005.

224 VOLUME 1, 2023

