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ABSTRACT Currently, the data collected by the Internet of Things (IoT) still relies on the cloud-centric data
aggregation and processing approach for preparing machine learning models. This approach puts the privacy
of the participants at risk. In this paper, federated learning (FL) is proposed for privacy-preserving collabo-
rative model training on data distributed across IoT users. To motivate participants, we must incentivize the
whole process by rewarding each participant for their contribution to the training process of the federated
learning model. The process of collective training takes place over a long duration of time and multiple
iterations. However, participants in the training process may have varying levels of willingness to participate
(WTP) and may contribute duplicate or poor-quality data. Therefore, in each iteration, participants must be
rewarded based on their contribution in that specific iteration. In this paper, a methodology to reward each
participant based on their contribution and a model aggregation technique are proposed. The aggregation
technique uses Polyak-averaging to aggregate weights of local models, with the weightage assigned to
each local model being proportional to its accuracy on the test dataset. Performance evaluation shows that
the federated learning model formed using our aggregation approach achieves the performance level of
machine learning as we perform more iterations and performs slightly better than the model formed using the
FedAvg algorithm.Additionally, our incentivizationmethodology provides better performance-based rewards
compared to other profit-sharing schemes.

INDEX TERMS Federated learning (FL), Internet of Things (IoT), participation-based earning, ensemble
learning.

I. INTRODUCTION

W ITH recent developments in the applications of the
Internet of Things (IoT) combined with Artificial

Intelligence (AI), numerous opportunities for innovation and
rejuvenation have opened up for traditional industries. Using
data from a relatively small number of volunteers spread
across a vast region, we can create a generalized model
accessible across the devices of a large number of users.
Conventionally, to harness the benefits of IoT, the data col-
lected through volunteers’ smart IoT devices is transmit-
ted to the cloud to create a centralized machine learning
model [1], [2], [3]. This centralized model is then made

available as an endpoint for performing inferencing tasks,
thereby generating revenue for the model owner. Sending raw
data to the remote cloud exposes the data to attacks and incurs
larger bandwidth costs and transmission latency. Moreover,
sending data to the cloud fails to provide quality of service
(QoS) and a satisfactory user experience due to network con-
gestion and traffic [4]. Additionally, since the transmitted data
inevitably contains private information, it can be misused for
targeted advertisements and other malicious activities such as
burglary [5], [6], [7].
To address data privacy concerns, it is preferable to keep

raw data on the local device. However, for an effective AI
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model, a large amount of data must be available. Federated
Learning (FL), proposed by Google in 2016 [8], provides an
alternative to the cloud-centric approach by allowing models
to be trained on local devices, with only the model weights
needing to be updated on the cloud. This approach involves
the existence of two types of models: a global model and
multiple local models. Local models are prepared by training
on local data, and their weights are transmitted to the cloud
where they are aggregated to form the global model [9]. In the
next iteration, the global model’s weights are sent back to
each local device, where they are recalculated using the local
data, thus creating a new local model. To prevent battery
issues, local devices may perform model training during idle
periods, and users’ devices can contribute to training and
sharing the model while being charged [10]. This collab-
orative approach allows many users to contribute data for
creating a global model while keeping the raw data on the
local device [11], [12], [13].

The focus of this paper is on the FL solution, where
user participation is a significant concern. Different users
may have varying willingness to participate (WTP) at differ-
ent times. Therefore, an incentivization scheme needs to be
developed to ensure sustainable participation with a dynamic
WTP, rewarding participants based on their contributions.
Furthermore, existing solutions are vulnerable to malicious
behavior by local devices [14], [15]. Malicious devices can
undermine the accuracy of the global model by providing
fake data and altering the weights during the training process,
potentially rendering the global model unusable [16], [17].
The lightweight nature of the training devices, not primar-
ily designed for deep learning, makes perpetual training
detrimental to their sustainability [18]. Moreover, current
solutions do not fully prevent privacy breaches. Although
the training phase is decoupled from centralized data man-
agement, model inversion attacks can be performed against
gradients or uploaded model parameters to gain access to
private raw data [19]. Additionally, divergent data supplied by
different IoT devices can slow down the aggregation process
even with well-defined initial parameters [20], [21], [22]. The
data provided by local devices also depends on communica-
tion latency and computational ability, leading to imbalanced
data distribution [14]. Therefore, a central server should dis-
card the local straggler’s model during the training process,
ensuring that its weights are not considered in altering the
weights of the global model.

In this paper, we propose a scheme for intelligent aggre-
gation of local models and incentivization for participants
with a variable WTP, ensuring robustness to dynamic partic-
ipant behavior, including participant dropouts. We design a
contract-theoretic incentive mechanism that tracks the contri-
butions of participants, allowing the model owner to reward
them based on their level of contribution towards creating a
global model. The major contributions of this paper can be
listed as follows:

1) The proposed incentivization model can be applied
to any FL application that aims to incentivize

participation in the process, thereby addressing the pri-
vacy concerns of the cloud-centric approach.

2) The proposed incentivization model quantifies the
willingness to participate by considering the quantity
of data contributed, taking into account the system
resources of the device and the impact of the contri-
bution on the global model.

3) The proposed incentivization model offers improved
performance-based rewards compared to other profit-
sharing schemes while also encouraging long-term par-
ticipation.

4) The proposed aggregation model prevents the weights
contributed by underperforming participants from
aggregating with the global model.

II. RELATED WORK
Notable contributions have previously been made in the
field of edge computing and FL. Initially, edge-computing-
based solutions were proposed [23] to alleviate the burden
on networks and cloud servers due to the increasing number
of devices and to enhance privacy. To leverage the high
bandwidth and low latency between the edge server and the
client, computation offloading [24] was proposed to divide
and offload complex computing tasks execution from mobile
devices to the edge server.

FL has been proposed as a means to preserve user privacy
while collaboratively forming a model on distributed devices.
The authors in [18] proposed optimization algorithms for FL
based on edge computing. Islam et al. [25] proposed differ-
ential privacy techniques to prevent model inversion attacks.

Several incentive-based mechanisms have been proposed
in order to encourage user participation. The authors
in [26], [27] made the optimistic assumption that all devices
would unconditionally comply when asked to participate,
which is impractical due to the resource costs incurred by
participants in training a model. Irfan et al. in [28] explored
the leader-follower approach, where the leader auctions for
followers to form coalitions. The authors in [29] proposed a
contract theory thatmaps contributed resources to appropriate
rewards. In [30], the interaction between devices and the
owner was modeled as a Stackelberg game, where the model
owner purchases the services provided by the devices. ADeep
Reinforcement Learning (DRL) based approach that learns
system states from historical training records was proposed
in [31].

Previous works on developing a robust incentivization
model did not take variable WTP into consideration and
mostly relied on the assumption that participants would
exhibit the same behavior in the future as they did histori-
cally. However, in a highly dynamic world, this is practically
impossible. The proposed incentivization and aggregation
models consider each contribution as a standalone entity and
reward participants based on their individual contributions.
Furthermore, Table 1 lists the major contributions, strengths,
weaknesses, and recent works related to devising incentiviza-
tion models.
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TABLE 1. Related work

III. SYSTEM MODEL
In this section we explain the proposed model in detail. The
model is divided into two parts, namely, the incentivization
model and the aggregation model. The incentivization model
focuses on rewarding each participant based on their con-
tribution, while the aggregation model presents a method to
combine local models into a new global model.

A. INCENTIVIZATION METHOD
The proposed incentivization model in this paper involves
two main entities: the model owner and the participant.

Participants can be categorized into two types based on their
incentive to participate in the process, referred to as Type I
and Type II participants.

Type I participants contribute their data to create a model
and seek monetary incentives from the process, while Type II
participants utilize the preparedmodel in their daily activities,
gaining non-monetary benefits. Since Type II participants
only use the model without contributing their data, they
are not provided with monetary benefits. The focus of the
incentivization scheme proposed in this paper is on Type I
participants.
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Existing solutions using Federated Learning (FL) assume
that Type I participants have the same willingness to partic-
ipate (WTP) throughout the model creation process. There-
fore, they are rewarded equally for all their contributions,
regardless of the quantity and quality of the data they provide.

The proposed scheme utilizes a contract to record every
contribution made by participants during the process. The
contract is updated by evaluating the impact of each partic-
ipant’s local model’s weights on the accuracy of the global
model after aggregation. Initially, Type I participants will be
contacted by the model owner, and upon agreeing to the terms
and conditions, they will need to provide their device’s IMEI
or equivalent identification number, which will be used for
their contributions. If a participant changes their device, they
will need to register again with the new device.

It is assumed that the model owner will contact participants
in a way that ensures there is no class imbalance in the clas-
sification problem. The system resources of the contributing
device can be determined using the identification number and
measured relative to a standard device. The entire process
is divided into two phases. The first phase concludes with
the preparation of the initial global model, while the second
phase encompasses all future requests for updating the global
model. Figure 1 illustrates the practical working procedure
of the proposed methodology. The diagram consists of three
parts: the first part includes the global model and its owner,
the second part represents the cloud, and the third part repre-
sents the devices of Type I participants. The cloud maintains
two crucial components of the proposed methodology: the
test dataset and the contract. The test dataset is a pre-prepared
dataset for a similar problem, stored in the cloud to calculate
rewards based on the quality of data contributed in each
iteration. Upon receiving the weights of the local model and
the amount of contributed data from all the participants, the
contract calculates the rewards, and the aggregation process
begins in the cloud. The global model is updated after each
iteration, benefiting from a larger amount of data compared
to the previous iteration, which enhances its robustness. Since
the test dataset and the contract stored in the cloud do not con-
tain any sensitive participant data, the proposed methodology
does not pose a risk to participant privacy. The three types of
devices shown on the rightmost part of the figure indicate that
participants are evaluated based on the quantity and quality
of their contributions, without bias, irrespective of the size
and system resources of their devices. Once selected by the
model owner, each participant starts collecting data on their
device. Upon the model owner’s request to update the global
model, the participant initiates local model formation using
the collected data, and the weights of the local model are sent
to the cloud. The data used for forming a local model in any
participant’s device is kept separate and not used for future
local model formations. Additionally, Table 2 provides a list
of symbols used in the mathematical model along with their
respective meanings.

In the first phase, participants are rewarded solely based
on the quantity of data they contribute, taking into account

TABLE 2. Symbols and their meanings

their system resources. In the second phase, when an update
request is made by the model owner, all participants receive
the current weights of the existing global model, which are
then updated by training on their local data to create new
local models. The accuracies of the existing global model
and the contributed new local models on the test dataset are
calculated.
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FIGURE 1. Workflow diagram for proposed methodology in practical environments.

The incentivization model considers that participants
should respond to the model owner’s request within a spec-
ified time limit. Contributions made after the deadline will
not be rewarded. The incentivization scheme takes various
parameters into account, including the amount of data con-
tributed, the system resources of the device, the consistency
in responding to requests, and the impact of the participant’s
contribution on the global model. The final reward after any
iteration can be calculated as follows:

ιij = λ1α1ij + λ2α2ij + λ3α3ij. (1)

where for participant i in iteration j, ιij represents the reward
and α1ij represents data contributed relative to other partici-
pants, α2ij represents data contributed given system resources
relative to other participants, and α3ij represents the impact
the local model had on the global model. λ1 is the reward
received per unit of α1ij, λ2 is the reward received per unit of
α2ij, and λ3 is the reward received per unit of α3ij.

Let us consider that we have n different devices with sys-
tem resources, η1, η2, . . . , ηn, and participant i contributed βij
amount of data in iteration j. We can calculate the total data
contributed and total data contributed given system resources
as,

β1j + β2j + . . .+ βnj =

n∑
i=1

βij , (2)

(
β1j/η1

)
+

(
β2j/η2

)
+ . . .+

(
βnj/ηn

)
=

n∑
i=1

(
βij/ηi

)
. (3)

Let φi be the number of times participant i responded to the
request made by the model owner for an update. Let χi andψi
be the number of times the contribution made by participant i
had a positive impact and a negative impact on the global
model, respectively.

Assuming βij is not equal to zero we have,

φi = φi + 1. (4)
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At j = 0 we are in the first phase, otherwise, we are in the
second phase.

In the first phase, we do not have a global model prepared.
Therefore, we cannot calculate1ϵij, which is the impact that
local model’s weights of participant i had on the global model
in iteration j, hence α3ij = 1 at j = 0.
In the first phase, the reward of every participant can be

calculated using Equation (1) where,

α1ij =
βij∑n
i=1 βij

, (5)

α2ij =
(βij/ηi)∑n
i=1(βij/ηi)

, (6)

α3ij = 1. (7)

For the second phase, the global model’s weights are sent
to all the participants with the request to update them on their
local data.

The impact of the local training on the global model is
calculated as,

1ϵij = ω(µj−1νij)− ω(µj−1), ∀j > 0. (8)

where ω(µj−1νij) is the accuracy of the model, formed by
fitting the local training data on the global model’s weights,
on the test dataset, andω(µj−1) is the accuracy of the previous
global model on the test dataset. Note that

1ϵij ∈ [−1, 1]. (9)

The participant’s contribution to the formation of a new
global model can be classified into a positive contribution and
a negative contribution based on the value of1ϵij. A positive
contribution should be rewarded, while a negative contribu-
tion should be penalized. Erratic participants are those whose
contributions negatively impact the global model. However,
since negative contributions can sometimes be unintentional,
it is important to consider human error and not be too harsh
on the participants. To address this, participants who make
a negative contribution more than a threshold κ times will
not receive any reward for another negative contribution, and
the weights contributed by that participant will be discarded
in the aggregation process. The threshold ensures that par-
ticipants are not discouraged by the fear of failure, while
also preventing participants from taking the model owner’s
rewards for granted. For positive contributions, participants
are rewarded in a similar way as any other participant with a
positive contribution. This approach ensures that participants
are appropriately rewarded for their positive contributions
while considering the impact of negative contributions and
encouraging improvement.

Given βij is not equal to 0, if 1ϵij >= 0, we increment χi
as,

χi = χi + 1. (10)

Otherwise we increment ψi as,

ψi = ψi + 1. (11)

We must choose the function such that the amount of
reward and penalty increases for higher values of1ϵij. There-
fore, we calculate tan(1ϵij) due to its property of tending to
∞ and −∞ when 1ϵij tends to 1 and −1 respectively.

In the second phase, the reward of each participant can be
calculated using (1), where

α1ij =
βij∑n
i=1 βij

×
√
φi , (12)

α2ij =
(βij/ηi)∑n
i=1(βij/ηi)

×
√
φi , (13)

α3ij =
χi
√
φi
× tan(1ϵij). (14)

Here, the term tan(1ϵij) is the reward for improving the
accuracy of the global model.

Givenψi < κ , we calculate the reward by adding tan(1ϵij).
In case of a negative contribution 1ϵij < 0, a negative value
will be added to the reward. Hence, a penalty will be added
which reduces the reward of the participant which he received
for contributing data and spending system resources. The
value of α1ij and α2ij will be calculated similarly as given in
equations (12) and (13), and the value of α3ij will be given
by:

α3ij =
ψi
√
φi
× tan(1ϵij). (15)

In case 1ϵij = 0, tan(1ϵij) will be equal to 0. In our
equation α3ij will be equal to 0, hence, the reward will depend
on the values of α1ij and α2ij.

In case ψi >= κ and 1ϵij < 0, ιij = 0.
Algorithm 1 outlines the process of creating a local model.

In the beginning, a local model for participant i in itera-
tion j, denoted as localModelij, is initialized using the baseline
model configuration referred to as baselineModel in the
algorithm. If we are in the first phase, the local model is
trained on the participant’s local data using the default initial
weights. These default initial weights are determined through
Xavier Glorot Initialization. Once trained, the local model is
sent to the cloud. If we are in the second phase, the initial
weights of the local model are set equal to the weights of
the existing global model. The local model is then trained
on the participant’s local data using these initial weights.
The updated local model is sent to the cloud. The algorithm
provides a step-by-step guide for initializing and training the
local model, ensuring that each participant’s contribution is
based on their own data while maintaining consistency with
the global model.

Algorithm 2 shows the process of rewarding each partici-
pant. The meaning of all the symbols used in this algorithm
are explained in Table 2.

B. AGGREGATION OF LOCAL MODEL
To create a robust global model, we need to aggregate the
local models received from participants. In the first phase,
the global model is selected as the best-performing local
model based on its performance on the test dataset. In the
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Algorithm 1 Local Model Generation Algorithm.
1: localModelij← baselineModel
2: if j = 0 then
3: νij← defaultlWeights
4: localModelij with weights νij fits local training data

and we get updated νij
5: else
6: νij← µj−1
7: localModelij with weights µj−1νij fits local training

data and we get updated µj−1νij
8: end if
9: Weights µj−1νij are sent to the cloud along with the

amount of data trained upon in bytes and system
resources of the participant’s device

Algorithm 2 Reward Calculation Algorithm for Each Partic-
ipant.
1: λ1,λ2,λ3← constants
2: We have the system resources ηi of the device and the

amount of data in bytes βij contributed by participant i
in iteration j. Using these we calculate βij/

∑n
i=1 βij and

(βij/ηi)/
∑n

i=1(βij/ηi).
3: if j = 0 then
4: φi← 0
5: χi← 0
6: ψi← 0
7: if βij ̸= 0 then
8: φi← φi + 1
9: end if

10: ιij =
√
φi ∗ (λ1 ∗ βij/

∑n
i=1 βij + λ2 ∗

(βij/ηi)/
∑n

i=1(βij/ηi)+ λ3)
11: else
12: if βij ̸= 0 then
13: φi← φi + 1
14: 1ϵij← ω(µj−1νij)− ω(µj−1)
15: if 1ϵij > 0 then
16: χi← χi + 1
17: ιij =

√
φi ∗ (λ1 ∗ βij/

∑n
i=1 βij + λ2 ∗

(βij/ηi)/
∑n

i=1(βij/ηi)+ λ3 ∗ χi/φi ∗ tan (1ϵij))
18: else
19: ψi← ψi + 1
20: if ψi < κ then
21: ιij =

√
φi ∗ (λ1 ∗ βij/

∑n
i=1 βij + λ2 ∗

(βij/ηi)/
∑n

i=1(βij/ηi)+ λ3 ∗ ψi/φi ∗ tan (1ϵij))
22: else
23: ιij← 0
24: end if
25: end if
26: end if
27: end if

second phase, Polyak averaging is applied to aggregate the
weights ofmultiple local models. Polyak averaging calculates
a weighted average of these local models, with different

weightage given to each model in each phase. In the first
phase, the weight of the best-performing local model is set
to 1, while the weights of other local models are set to 0. Thus,
at j = 0,

µj =

n∑
i=1

(νij ∗ ξij) , (16)

where νij represents the weights of the model contributed by
participant i in iteration j, and ξij is the weightage applied to
this model. The value of ξij is given by:

ξij = 1 , (17)

for the best-performing local model, and

ξij = 0 , (18)

for other local models. In the second phase, the weightage of
each local model is proportional to the accuracy of the local
model formed by training the global model’s weights on the
participant’s local data. Thus, the global model in the second
phase is determined as:

µj =

n∑
i=1

(µj−1νij ∗ ξij) , (19)

where ξij represents the weightage applied to µj−1νij, the
weights of the model formed by training the global model on
the participant’s local data. The weightage assigned to each
local model is calculated as:

ξij =
τij∑n
k=1 τij

, (20)

where τij is a linear transformation of ω(µj−1νij), and is given
by:

τi =
1+ ω(µj−1νij)

2
. (21)

Algorithm 3 demonstrates the process of aggregating local
models into a global model. It starts by initializing the
global model globalModelj in iteration j with the baseline
model configuration denoted as baselineModel, where all the
weights are set to 0. The weights of the global model are then
aggregated based on the proposed aggregation model. Once
theweights are finalized, the global model is sent to themodel
owner.

IV. RESULTS
In this section, we describe the experiments conducted to
evaluate the performance of the proposed incentivization and
aggregation methodologies.

A. EXPERIMENTAL SETUP
A simulation of the proposed methodologies was performed
using the MNIST handwritten digits and Extended MNIST
(EMNIST) letters datasets. Both datasets are derived from
the NIST Special Database 19 [33] and converted to a 28 ×
28 pixel image format. MNIST, which stands for Modified
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Algorithm 3 Algorithm for Aggregation of Local Models.
1: globalModelj← baselineModel
2: µj← [0, 0, . . . , 0]
3: for i = 0, . . . , n do
4: if ψi < κ then
5: if j = 0 then
6: µj← µj + νij ∗ ξij
7: else
8: µj← µj + µj−1νij ∗ ξij
9: end if

10: end if
11: end for
12: The weights of the globalModelj are set to µj and it is

sent to the model owner

National Institute of Standards and Technology, is consid-
ered one of the standardized datasets used for learning,
classification, and computer vision systems [34]. It has also
been used for performance analysis of recently proposed
FL techniques [35], [36]. The MNIST handwritten digits
dataset consists of 60,000 images in the training dataset, with
10 classes covering digits from 0 to 9, and 10,000 images in
the test dataset. The EMNIST letters dataset merges all the
uppercase and lowercase classes of the English alphabet to
form a balanced 26-class classification task. The EMNIST
letters dataset has 145,600 images in the training dataset and
20,800 images in the test dataset [37]. The FL process was
conducted with four hypothetical Type I participants who
contributed a random amount of data across 10 iterations.
The images and their labels from the aforementioned datasets
were distributed randomly to ensure that the setup reflects a
practical environment. The baseline model used consists of a
simple neural network with one hidden layer, with the same
number of neurons as the total number of pixels in each image
of the dataset. The Rectified Linear Unit (ReLU) is used as
the activation function for neurons in the hidden layer. The
softmax activation function is used for the neurons in the
output layer to obtain a probability for each of the 10 classes
for each input. The Adam gradient descent algorithm and
logarithmic loss function are used for learning the weights.
The number of epochs was fixed at 10, and the batch size was
set to 200. Default values were used for the learning rate and
other important hyperparameters to keep the baseline model
as simple as possible. The purpose here is not to increase the
performance of the classification algorithm, but to compare
the performance of the Machine Learning and FL models
and to reward each participant based on the quality of their
contribution and their WTP.

In the incentivization model, the hyperparameters are set
as λ1 = 1, λ2 = 2, and λ3 = 4. These values indicate
that, for the hypothetical model owner, the impact created by
any local model on the global model is twice as important
as the quantity of data contributed by any participant, given
their system resources, and four times as important as the

FIGURE 2. Comparing accuracies of federated learning and
machine learning across iterations on the test dataset for
MNIST handwritten and EMNIST letters dataset.

quantity of data contributed by any participant. The value of κ
is set to 2, which means that the model owner will not reward
participants solely based on the quantity of data contributed
if the participant has contributed poor quality data more than
twice. It’s important to note that these values may vary from
one model owner to another.

B. PERFORMANCE EVALUATION
Figure 2 shows the accuracy of the model prepared by apply-
ing FL and the baseline Artificial Neural Network (ANN)
model to the total number of images contributed in each
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iteration. The x-axis represents the iteration number, and
the y-axis shows the percentage accuracy achieved. In the
early iterations, the performance of FL is worse compared to
Machine Learning, as in the latter, all the images are trained
as a whole, whereas in FL, only the weights are aggregated.
The comparison shows that our proposed FL model as any
other existing FL model follows the trend of performing
comparable to the ML model as we increase the number of
iterations.

In the MNIST handwritten letters dataset, the difference
between the accuracies of Machine Learning and FL tech-
niques on the test dataset reduced to 0.36%, making the per-
formance of both approaches almost similar. In the EMNIST
Letters dataset, after 10 iterations, the difference in perfor-
mance was around 2.62%, which makes the performance of
both approaches moderately comparable. The baseline model
in both datasets can be altered to enhance the performance of
Machine Learning and FL.

Figure 3 compares the performance of the FedAvg
algorithm with the proposed aggregation model. The FedAvg
algorithm [38] is the most commonly used aggregation
scheme for Federated Learning. Our aggregation scheme
takes inspiration from the FedAvg algorithm and performs
Polyak averaging of the local models’ weights, with more
weightage given to higher accuracy models. The FedAvg
algorithm serves as an important benchmark for comparing
our aggregation scheme with existing FL aggregation algo-
rithms. From the figure, we can see that the proposed model
shows greater accuracy on the test dataset for the first iteration
compared to the FedAvg algorithm for both datasets. As we
progress in the number of iterations, both schemes become
comparable. The reason for the comparable performance
of FedAvg and our proposed aggregation model is the use
of high-quality standard datasets for the experiments. Even
when dividing the data randomly among participants, each
participant’s local model is trained on unbiased high-caliber
data, resulting in almost equal weightage being applied to
every contributed local model’s weights for aggregation using
Polyak averaging. In a practical environment, we cannot
expect such a scenario since we cannot assume good quality
data from every participant. In the real-world scenario, our
proposed aggregation model is expected to have an edge,
as more accurate models will have a higher contribution to
make a global model.

Figure 4 compares each attribute mentioned earlier for
each contribution across iterations of two participants, along
with the reward they earned relative to other participants.
The x-axis denotes the iterations, and the y-axis denotes the
normalized reward received and the normalized value of the
attributes. Since both the reward and attributes are normal-
ized, their values range from 0 to 1. In the performed sim-
ulations, Participant A contributed good quality data across
all the iterations, while Participant B was an erratic contrib-
utor, as it did not contribute in iteration number 5 and 10.
Therefore, no reward was provided to Participant B in those
iterations. We can observe that the reward is a function of

FIGURE 3. Comparing accuracies of proposed Federated
learning aggregation model with FedAvg algorithm across
iterations on the test dataset for MNIST handwritten and
EMNIST letters dataset.

all the attributes combined and does not depend solely on a
single attribute.

Figure 5 compares our incentivization model with simpler
profit-sharing schemes, namely, Egalitarian and Marginal
Gain Profit Sharing Schemes. The Egalitarian Profit Sharing
Scheme [39] distributes the total reward equally to each
participant in each iteration, regardless of their contribution.
The Marginal Gain Profit Sharing scheme [39] rewards a
participant based on the value added when that participant
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FIGURE 4. Comparing normalized rewards earned by
2 participants with different normalized attributes of their
contributions.

FIGURE 5. Comparing normalized rewards received provided by
different incentivization models.

joins the process. We plot the normalized reward received by
a participant using our proposed model and the reward they
would have received in other schemes against the iteration
number. The Consistent Participant symbolizes a participant
who regularly contributed good quality data, whereas the
Erratic Participant depicts a participant who did not respond
to each request made by the model owner and contributed
inferior quality data. Since we considered 4 participants in
this simulation, each participant should receive 25% of the
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total reward allocated according to the Egalitarian scheme.
For theMarginal Gain scheme, we considered that the relative
reward received by the participant is equal to the change in
accuracy of the global model with andwithout that participant
in a particular iteration. We can observe that for a Consistent
Participant, the proposed incentivization model rewards more
than both the traditional schemes. In the case of an Erratic
Participant who did not contribute in iteration number 5 and
10, the Egalitarian Scheme gives undue rewards in case of
no contribution, whereas the rewards from the Marginal Gain
scheme hardly change after the first few iterations. The rea-
son is that as the number of iterations increases, the global
model’s accuracy tends to stabilize, hence the marginal gain
of the whole process does not change much. We could have
included the amount of data contributed by a participant in
a particular iteration along with the change in accuracy as a
part of the gain in the Marginal Gain scheme, but that would
have made this scheme highly dependent on the data con-
tributed as the number of iterations increased. Our proposed
incentivization methodology improves upon these existing
methodologies by rewarding participants according to the
quality and quantity of their contributions.

V. CONCLUSION
In this paper, we proposed an incentivization and aggrega-
tion methodology that is robust against the variable WTP of
participants in a practical environment. The proposed incen-
tivization model utilizes the data contributed by each par-
ticipant and system resources for each participant’s device,
as well as the impact that any local model’s weights have on
the global model. The impact on the global model can be cal-
culated by measuring the change in accuracy of the existing
global model on the test dataset before and after training the
existing global model’s weights on the local data. This change
in accuracy is also utilized as the weightage assigned to each
local model during the Polyak averaging in the proposed
aggregation model. We conducted simulations on theMNIST
and EMNIST datasets to demonstrate the applicability of our
proposed model. We can apply our proposed incentivization
and aggregation methodologies to any specific use-case by
using a targeted test dataset and a carefully tuned baseline
model. Having a test dataset tailored to the particular use-case
is crucial for evaluating the quality of each contribution and
determining appropriate rewards. The test dataset is consid-
erably smaller than the training dataset, therefore it can be
prepared using the model owner’s resources based on the
given problem statement. This way, we can effectively utilize
the proposed federated learning incentivization and aggrega-
tion methodologies. Our performance evaluation shows that
FL with the proposed aggregation model performs similarly
to machine learning and slightly better than the FedAvg
algorithm as the number of iterations increases. Moreover,
the proposed incentivization model provides more rewards
to consistent participants compared to the Egalitarian and
Marginal Gain Profit Sharing schemes.
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