
Received 22 November 2022; revised 30 March 2023 and 6 June 2023; accepted 16 June 2023.
Date of publication 20 June 2023; date of current version 30 June 2023.

The associate editor coordinating the review of this article and approving it for publication was Y. Zhang.

Digital Object Identifier 10.1109/TMLCN.2023.3288090

A Three-Tier Deep Learning-Based Channel
Access Method for WiFi Networks

YIWEI HUANG AND KWAN-WU CHIN
School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia

CORRESPONDING AUTHOR: Y. HUANG (yh733@uowmail.edu.au)

ABSTRACT Future WiFi networks require a channel access method that provides users with high capacity.
Such a method must consider 1) channel bonding, which improves the transmission capacity of Access Points
(APs); and 2) spatial reuse, where APs tune their Clear Channel Assessment (CCA) threshold and transmit
power in order to transmit concurrently with neighboring APs. To date, there are no solutions that jointly
optimize the channels used by an AP, and the CCA threshold and transmit power of a bonded channel. To this
end, we outline a three-tier deep learning approach. Briefly, at Layer-1, it selects a set of transmitting channels.
At Layer-2 and Layer-3, it respectively determines the transmit power and CCA threshold for each selected
channel. An AP then employs deep reinforcement learning to learn the optimal policy for each layer given its
interference intensity and queue length. The simulation results show that when compared to three competing
solutions, an AP that uses our approach is able to reduce its queue length by up to 62.52% under realistic
traffic load.

INDEX TERMS Medium access, capacity, Markov decision process, interference, channel aggregation.

I. INTRODUCTION

IEEE 802.11 based Wireless Local Area Networks
(WLANs), aka WiFi networks, play an essential role in

people’s daily activities. Indeed, Access Points (APs) are
ubiquitous and densely deployed in places such as offices,
shopping malls, stadiums and airports [1]. These APs must
support a high number of users. As an example, in the
sports event studied in [2], WiFi networks need to provide
services to 12,000 users simultaneously with a maximum
aggregated data rate of 3.5 Gbps. However, with limited
spectrum resources, densely deployed APs may experi-
ence significant interference from neighboring cells if they
operate on the same channel [3]. Moreover, emerging Inter-
net applications such as online meetings/education, ultra
high definition streaming and virtual reality videos require
high throughput or capacity to ensure a high quality of
service [4].

There are two methods to improve network capacity. One
method is via channel bonding or aggregation [5], which
allows an AP to combine multiple channels together to form a
wide bandwidth. For example, an IEEE 802.11ax AP is able
to bond up to eight 20 MHz channels to form a 160 MHz
channel. As shown in [2], with increasing bandwidth, an AP

is able to transmit with a high data rate and thus, improves its
capacity.

Another method is to maximize spatial reuse, meaning
multiple nodes are able to transmit concurrently [6]. The
level of spatial reuse is determined by the adopted Medium
Access Control (MAC) scheme. Specifically, current WiFi
networks rely onCarrier SenseMultipleAccesswith collision
avoidance (CSMA/CA) for channel access. Each device uses
a Clear Channel Assessment (CCA) threshold to determine
the status of a channel. If the power level on a channel
falls below a given CCA threshold, a device is allowed to
transmit its packets. Otherwise, the channel is not available.
Hence, a key problem is to determine a suitable threshold
that allowsmultiple APs or/and users to transmit concurrently
without causing too much interference to one another [7].
In this respect, Transmit Power Control (TPC) is essential [1],
whereby an AP adjusts its transmit power to minimize inter-
ference caused to neighboringAPs [5] or/and avoid triggering
the CCA threshold of these APs, which causes them to defer
their transmission unnecessarily.

To illustrate the previous points, consider Fig. 1 where an
AP serves four users. The AP is able to bond up to three chan-
nels for transmissions, and all users and the AP experience

90
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, 2023

https://orcid.org/0000-0001-6556-346X
https://orcid.org/0000-0003-1547-9272

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

FIGURE 1. An example WLAN. The AP is able to bond up to three
channels and use different transmit power on each channel.
Both AP and user experience interference from neighboring
cells on each channel.

inter-cell interference on different channels. Assume the AP
has packets for User-1. Further, it experiences high interfer-
ence on Channel-2. In addition, assume User-1 experiences
low interference on Channel-1. In this regard, the AP can
choose to bond Channel-1 and Channel-3, and increase the
CCA threshold on these channels to gain more opportunities
to transmit. Moreover, the AP can allocate a higher transmit
power onChannel-3 as compared to Channel-1 if the Signal to
Interference plus Noise Ratio (SINR) on Channel-1 exceeds
a given threshold. This helps to ensure the SINR on both
channels exceeds a given value, and reduce the interference
to neighboring cells. Consequently, the AP is able to transmit
packets to User-1 with a high data rate.

The use of channel bonding, transmit power control and
CCA threshold adjustment creates several problems. In par-
ticular, an AP that bonds multiple channels may suffer
significant interference from neighboring cells [8].Moreover,
it leads to a lower power density, i.e., Watts/Hz [9] which may
lead to a low data rate. Secondly, although transmit power
control may reduce the interference to neighboring APs,
it may also result in a low signal strength. In this respect, if an
AP uses a low transmit power and transmits over a bonded
channel, neighboring devices may not hear its transmission
on some channels and thereby start to transmit [10]. This may
cause severe interference to ongoing transmissions or even
collisions. Moreover, if the CCA threshold is low, an AP may
transmit even when there is high interference, which degrades
its transmission capacity. Consequently, an AP needs to opti-
mize its channel bonding strategy, transmit power and CCA
threshold carefully. Otherwise, the AP may experience sig-
nificant delays or queue overflows.

There are three challenges to consider when jointly opti-
mizing channel bonding, CCA threshold and transmit power.
First, the channel conditions on each channel vary over time.
Next, an AP may bond different combination of channels for

each transmission over time. Lastly, the traffic arrival at an
AP is random.

Henceforth, this paper makes the following contributions:

• It addresses a novel problem that calls for a solution
to optimize an AP’s channel bonding policy, transmit
power and CCA threshold under random traffic and
channel conditions. Further, it considers both adjacent
and non-adjacent channel bonding. The AP’s aim is to
maximize its throughput and minimize its queue length.

• It presents the first formal model of the said problem.
Specifically, this paper formulates a three-layer Markov
Decision Process (MDP) for the said problem [11], and
outlines a three-tier learning approach based on Deep
Q-Network (DQN) [12] and Deep Deterministic Policy
Gradient (DDPG) [13] that runs on an AP to indepen-
dently solve the MDP. The proposed three-tier approach
only requires local information, such as an AP’s current
queue length and locally measured interference on each
channel, to learn the optimal policy. This means the
proposed approach scales with network size and it is
decentralized. Further, the proposed approach does not
require prior knowledge of an environment, meaning it
is model-free. We emphasize that our approach is run
by a single AP and does not require an AP to cooperate
with neighboring APs, which may be managed by dif-
ferent entities. Lastly, our work is significant because
the amount of traffic and interference vary over time,
which motivates the use of learning based solutions such
as DDPG.

• To the best of our knowledge, there are no prior works
that jointly and adaptively optimize channel bonding,
transmit power and CCA threshold for APs with random
traffic arrivals in order to improve network capacity, see
Section II for details. Hence, this paper is the first to
outline a solution for the said novel problem.

• This paper contains the first study on the aforementioned
problem and solution. The simulation results show that
an AP running the proposed three-tier learning approach
is able to reduce its queue length by 32.94%, 50.99%
and 62.52% as compared to algorithms that use fixed or
randomly strategies on channel bonding, transmit power
control and CCA threshold.

The rest of this paper is organized as follows. Section II
compares prior works that consider channel bonding, transmit
power control, CCA threshold and works that apply Rein-
forcement Learning (RL). Section III presents our system
model and problem, and Section IV outlines a brief back-
ground of MDP, DQN and DDPG. After that, Section V
details the proposed three-tier learning approach. Lastly,
Section VI presents simulation results, and Section VII con-
cludes the paper.

II. RELATED WORKS
A number of works have considered applying channel bond-
ing to wireless networks. For example, the work in [14], [15],

VOLUME 1, 2023 91

TABLE 1. Comparison of previous works.

[16], [17], [18], and [19] assigns non-overlapping channels
to each AP. The aim is to reduce interference and satisfy the
traffic demands of APs. The study in [20], [21], and [22] uses
game theory or integer nonlinear programming to determine a
channel bonding strategy for each AP. Their aim is to improve
overall network throughput. The work in [23] determines
channel bonding policies by jointly monitoring the traffic
load on secondary channels as well as the delay experienced
by all users. Its aim is to minimize the transmission delay for
each user.

Many works have applied machine learning techniques to
optimize channel bonding strategies. For example, the work
in [24] uses deep learning to optimize the probability of
selecting a set of channels. In [10], the authors use RL to
select a set of channels to bond taking into consideration the
interference on each channel. Their goal is to maximize the
throughput of each AP. The work in [25] uses multi-agent
RL and considers the traffic load of each AP. Agents learn to
select a primary channel and a number of secondary channels
to bond. The aim is to minimize the average transmis-
sion delay. The work in [26] aims to minimize interference
between APs and satisfy the time varying traffic demands
at each AP. The AP in [27] runs RL to learn the optimal
probability to sense and bond each secondary channel. Its
goal is to maximize the total network throughput given some
traffic load. The authors in [28] first use a Markov chain to
model the throughput for bonded channels before proposing
a multi-arm bandit algorithm to determine a set of channels
to bond and avoid collisions.

There are also works that consider combining channel
bonding with transmit power control. In [29], the authors use
RL to jointly optimize channel bonding and transmit power of
an AP. The goal is to maximize the energy efficiency of an AP
with random traffic arrivals. The work presented in [30] first
uses Q-learning on each femtocell to select a set of channels
to transmit. After that, the authors use convex optimization to
allocate transmit power on each selected channel, and they
aim to maximize the throughput of femtocells as well as
minimize the interference experienced by macrocell users.

Some other works focus on incorporating channel bond-
ing with CCA threshold adjustment. For example, the work
in [31] and [32] adjusts the CCA threshold of APs first.
In particular, the authors of [31] first determine the CCA

threshold on the primary channel of each AP by jointly
considering average interference, signal strength to associ-
ated users and channel occupancy time. After that, the CCA
threshold on each secondary channel is obtained by adding
a fixed value to the CCA threshold on the primary channel.
The work in [32] adjusts the CCA threshold for secondary
channels only. The CCA threshold on each secondary channel
is the same, and is calculated based on a SINR threshold
and the distance between an AP and users. Then, the work
in [31] and [32] bonds channels for each AP according to
CCA results. In addition, there are some other works that
jointly optimize the transmit power and CCA threshold over
a channel. For example, the work in [33] and [34] uses
reinforcement learning to assign a primary channel, transmit
power or CCA threshold to each AP. Their aim is to maximize
the throughput of each AP.

Our work is fundamentally different to prior works,
see Table 1 for a comparison. Firstly, although previous
works consider channel bonding, transmit power control or
CCA threshold adjustment, e.g., [14], [15], [19], [29], [30],
[31], [32], [33], and [34], they do not jointly optimize them
to improve spectrum efficiency. Secondly, works such as [14],
[15], [19], and [22] use a centralized method to optimize
channel bonding. These methods require global information
and cooperation between APs. In contrast, we consider a
decentralized solution, where an AP independently deter-
mines its policy. Further, our method is model-free and only
requires local information, i.e., the current queue length
and experienced interference. In addition, previous works,
e.g., [14], [15], [16], [17], and [18], only bond adjacent
channels. However, we consider bonding both adjacent and
non-adjacent channels; this provides more flexibility than
bonding adjacent channels and it is now supported in IEEE
802.11ax [5]. Moreover, although the work in [31] and [32]
adjusts CCA threshold, it considers assigning the same CCA
threshold to all channels. In contrast, we adapt the CCA
threshold on each channel. Lastly, research such as [33] does
not consider traffic at APs, and the work in [10] considers
a fixed channel gain. In contrast, we consider time-varying
channel gains and traffic arrivals.

III. SYSTEM MODEL
Time is divided into T time slots and indexed by t; each time
slot has length δ (in seconds). We consider an AP i with a
set of users U . Let diu denote the Euclidean distance between
AP i and a user u ∈ U . There are N channels in the set C;
each channel has a fixed bandwidth of B MHz. In each time
slot t , AP i transmits to a user u over a set of channels Cti ⊆
C. We assume the interference experienced by AP i and user
u is generated by a set of neighboring APs, denoted as Ni;
this set contains any APs that may degrade the SINR of AP i
and user u. Further, we denote by Ctj the set of channels used
by a neighboring AP j ∈ Ni in time slot t . Table 2 lists our
notations.

AP i uses CSMA/CA for channel access where the CCA
threshold of channel c at time t is denoted as γ tc . Moreover,

92 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

TABLE 2. Parameter values.

let N t
i ⊆ Ni be the set of transmitting neighboring APs at

the start of time slot t . Further, we denote transmitting APs
on channel c at time t as N t

c = {j|j ∈ N t
i ∧ c ∈ C

t
j }.

We consider block fading, meaning the channel gain is
fixed within one time slot and differs across time slots. The
channel power gain from AP i to user u in time slot t is
denoted as gtiu, and it is calculated using the Log-distance path
loss model (in dB) [35]:

PL(diu) = PL(d0)+ 10ω log10

(
diu
d0

)
+ Xg, (1)

where PL(d0) is the reference path loss (in dB) measured
at reference distance d0, and ω is the path loss exponent.
The term Xg (in dB) is a random variable drawn from
a zero-mean Gaussian distribution N (0, σ 2), representing
shadowing effect. Then, the channel power gain is gtiu =

1
10PL(diu)/10

.
We denote by β tuc the SINR of a transmission from AP i to

user u over channel c in time slot t . Formally,

β tuc =
Pticg

t
iu

I tuc + NbB
, (2)

where Nb is the ambient noise power density (in Watt/Hz),
and Ptic is the transmit power (in Watt) used by AP i on
channel c in time slot t . Note that the transmit power satisfies
0 ≤ Ptic ≤ Pmax and

∑
c∈Cti P

t
ic = Pmax . The term I tuc is the

aggregated interference experienced by user u on channel c
in time slot t , which is calculated as

I tuc =
∑
j∈N t

c

Ptjcg
t
ju. (3)

We denote by r tc the theoretical data rate of AP i on channel
c in time slot t . This data rate is calculated using the Shannon-
Hartley formula, which is given by

r tc = B log2(1+ β tuc). (4)

Then, the aggregated data rate r ti of AP i over C
t
i channels in

time slot t is given by

r ti =
∑
c∈Cti

r tc. (5)

Note that in this paper we consider the theoretical capacity
of a channel given its SINR. In practice, the data rate is
determined by the Modulation and Coding Scheme (MCS)
adopted by a sender. To this end, the value of r tc can be set to
the highest possible MCS or data rate for a given SINR.

We assume AP i has a queue of packets to transmit. The
length of the queue at the end of time slot t is qti , where
0 ≤ qti ≤ qmax . At the beginning of each time slot t , we use
λti to denote the number of packets arriving at AP i, where
the value of λti is sampled from a probability distribution.
Further, we assume each packet has a fixed size of L bits.
Define 0t

i ∈ {0, 1} to indicate whether AP i transmits in time
slot t (0t

i = 1); otherwise, we have 0t
i = 0. The queue length

at AP i evolves as per

qti = min
(
max

(
qt−1i + λti − 0t

i
r ti δ

L
, 0

)
, qmax

)
. (6)

Let π be a policy used by AP i that selects a set of channels
Cti , and assigns transmit power Ptic on each channel c ∈ Cti
at the beginning of time slot t . Moreover, the policy π also
adjusts the CCA threshold γ tc ∈ [γmin, γmax] on each channel
c ∈ Cti . Define by R(π) an objective function for policy π .
Formally, we have

R(π) = lim
T→∞

1
T

Eπ

[
T∑
t=1

(
η1r ti − η2qti

)]
, (7)

where η1 and η2 are two weights that balance the data rate
and queue length of AP i, and Eπ [.] refers to the expectation
over the objective value when using policy π . We note that
the weight η2 can be revised to be a non-linear function of
AP i’s queue length, whereby a high penalty is recorded if
the queue length is at maximum.

Let � be a collection of policy π . The problem at hand
is to find the optimal policy π∗ that maximizes the objective
function R(π) over time. Mathematically, we have

π∗ = argmax
π∈�

R(π). (8)

VOLUME 1, 2023 93

IV. A MARKOV DECISION PROCESS MODEL
We first discuss Markov Decision Process (MDP) [11].
After that, we introduce DQN [12] and DDPG [13]. Lastly,
we introduce the simplex sampling method [36], which is
used to sample possible transmit power allocations over one
or more channels.

A. MARKOV DECISION PROCESS
An MDP is defined as a tuple with four elements
(S,A,R(st , at),P(st+1|st , at)), where S and A denote the
set of states and actions, respectively. In each time slot t ,
an agent, i.e., AP i in our problem, observes a state st ∈ S
and selects an action at ∈ A. The environment then returns
a reward R(st , at), and moves from state st to st+1 ∈ S with
probability P(st+1|st , at). Let π (st) be a policy used by an
agent, where the policy outputs an action at given state st ,
i.e., at = π (st). Let V π (s) be a value function that measures
the expected long-term reward that starts from state s using
policy π thereafter. Mathematically, we have

V π (s) = Eπ

[
∞∑
k=0

γ t+kR(st+k , π(st+k))|st = s

]
, (9)

where γ ∈ (0, 1] is the discount factor.
The goal of an agent is to find the optimal policy π∗

that maximizes the value function for all states, denoted by
V ∗. This optimal value function V ∗ can be computed using
Bellman’s equation [11] as

V ∗(st) = max
at∈A

[
R(st , at)

+γ
∑

st+1∈S
P(st+1|st , at)V ∗(st+1)

]
, (10)

where γ is the discount factor. The optimal policy π∗ is then
given by

π∗(st) = argmax
at∈A

[
R(st , at)

+γ
∑

st+1∈S
P(st+1|st , at)V ∗(st+1)

]
. (11)

B. DEEP Q-NETWORK
DQN is a value based reinforcement learning algorithm [12].
It learns the optimal policy by approximating the optimal
Q-value for each state-action pair [12]. Therefore, DQN sup-
ports discrete actions, e.g., selecting a set of channels. DQN
consists of two neural networks, an evaluation network θ

and a target network θ ′. The two networks have the same
structure, where the evaluation network θ outputs a Q-value
for a given state-action pair, denoted as Q(st , at ; θ), and the
target network θ ′ outputs the corresponding target Q-value
Q(st , at ; θ ′).

DQN uses experience replay to update the weights of
its neural networks. Specifically, each combination of state,
action, reward and next state (st , at ,R(st , at), st+1) is called

an experience. DQN will store an experience in each time
slot into its memory buffer M, which stores up to |M|
experiences. For every K time slots, DQN uniformly samples
a batch of experiences from M to update the weights of its
evaluation network θ . The goal is to minimize a loss function
which is given by

L(θ) = E[(y−Q(st , at ; θ))2], (12)

where

y = R(st , at)+ γ max
a∈A

Q(st+1, a; θ ′). (13)

In addition, to ensure stability, for every K ′ time slots, the
weights of the target network θ ′ are replaced by the weights
of the evaluation network θ .

C. DEEP DETERMINISTIC POLICY GRADIENT
A drawback of DQN is that it is not able to learn the opti-
mal policy when the action space is continuous [13], e.g.,
the transmit power and CCA threshold of AP i. Therefore,
we employ DDPG, an actor-critic based algorithm, to address
the said issue [13]. DDPG has four neural networks, namely
an actor network θµ, a target actor network θµ′ , a critic
network θQ and a target critic network θQ

′

. The structure of
a target actor network and target critic network is the same
as the corresponding actor and critic network, respectively.
The actor network chooses a deterministic action at at each
state st , denoted as at = µ(st ; θµ), and the critic network
evaluates the Q-valueQ(st , at ; θQ) for each selected action at
at state st . Similarly, the target actor network selects a target
actionµ(st ; θµ′), and the target critic network outputs a target
Q-value Q(st , at ; θQ

′

).
DDPG also uses experience replay to update the weights

of its networks. In particular, for every K time slots, DDPG
first samples a batch of experiences from its memory buffer
M to update the weights of its critic network θQ. The update
follows a similar process as DQN, which aims to minimize
the loss function as per

L(θQ) = E[(yQ −Q(st , at ; θQ))2], (14)

where

yQ = R(st , at)+ γQ(st+1, µ(st+1; θµ′); θQ
′

). (15)

Next, the weights of the actor network are updated using
the Q-values evaluated by the critic network. Specifi-
cally, DDPG first calculates the gradient of Q-values
with respect to all actions in sampled batch, denoted as
∇aQ(s, a; θQ)|s=st ,a=µ(st ;θµ). Further, DDPG calculates the
gradient of all actions with respect to the weights of the actor
network θµ, denoted as ∇θµµ(s; θµ)|s=st . Then, by applying
the chain rule, the weights of the actor network are updated
using a policy gradient method [37] with the following
approximation

∇θµQ ≈ E
[
∇aQ(s, a; θQ)|s=st ,a=µ(st ;θµ)∇θµµ(s; θµ)|s=st

]
.

(16)

94 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

FIGURE 2. An example with 10,000 points that are sampled from
a 3D space using simplex [36].

Finally, DDPG applies a soft update on target networks.
For every K time slots, the weights of corresponding target
networks are updated as per

θQ
′

= τθQ + (1− τ)θQ′, (17)

θµ′
= τθµ

+ (1− τ)θµ′ , (18)

where τ is a small positive number, representing the target
network update rate.

D. SIMPLEX SAMPLING
A key issue for DDPG is that it needs to randomly select an
action to explore the action space. Recall that for the set of
channels Cti used by AP i in time slot t , its transmit power
allocation is obtained from a |Cti |-dimensional space. Further,
any transmit power allocation must satisfy 0 ≤ Ptic ≤ Pmax
and Pmax =

∑
c∈Cti P

t
ic. To this end, we apply the simplex

sampling method from [36] to determine a transmit power
allocation over the set of channels Cti .

Let Simplex(.) return a vector v with |Cti | elements, i.e.,
v = Simplex(|Cti |). Each element in v is in the range [0, 1],
representing a fraction of the maximum transmit power Pmax
that is used on a certain channel. The function Simplex(.) first
randomly generates a sequence of values, which it records
in the vector x = {x1, x2, . . . , x|Cti |−1}; each element in x is
uniformly sampled from the range [0, 1]. Then, it sorts the
elements in x in an increasing order, and adds x0 = 0 and
x|Cti | = 1 to the beginning and the end of x, respectively.
After that, the vector v is obtained based on x, where the
i-th value vi in vector v is calculated as vi = xi − xi−1.
As an example, assume there are three bonded channels. Then
the corresponding vector v = [v1, v2, v3] is sampled from a
three-dimensional simplex space, i.e., v = Simplex(3). Fig. 2
shows the results of 10,000 samples generated by Simplex(3),
where each red point (v1, v2) represents a sampled vector v.
Note that value v3 is not shown as it can be calculated via
v3 = 1− v1 − v2 [36].

V. A THREE-TIER LEARNING APPROACH
Our approach has three layers. This allows us to optimize
each system parameter independently whilst keeping the
other parameters fixed. For example, for a given set of chan-
nels and transmit power, we can then learn a policy to set the
CCA threshold for different system states that occur when an
AP uses the given number of channels and transmit power.
We note that an alternative solution is to jointly optimize
the number of channels, transmit power and CCA threshold
simultaneously. However, this approach results in a very large
action space that leads to low learning efficiency [38]. This
problem is further exacerbated by the fact that both transmit
power and CCA threshold have continuous values. To this
end, our approach decomposes the action space, where each
layer optimizes a specific system parameter, and advanta-
geously, it can be optimized using a learning method that is
suited to handle discrete or continuous action space.

Next, we first formulate our problem as a three-layer MDP.
After that, we show how an AP or agent uses a three-tier
learning approach to determine its policy.

A. THREE-LAYER MDP
AP i runs as an agent, operating in an environment with three
layers as shown in Fig. 3; each layer corresponds to a task for
AP i, and is modeled as an MDP. Briefly, AP i first selects
a set of channels Cti in Layer-1. Then, it assigns a transmit
power Ptic for each channel c ∈ Cti in Layer-2. After that,
in Layer-3, AP i selects a CCA threshold γ tc for each channel
c ∈ Cti . We note that the AP runs each layer sequentially; i.e.,
each layer is run after receiving an input from a higher layer
or a reward from a lower layer.

Referring to Fig. 3, AP i interacts with its environment
as follows. In each time slot t , AP i observes a state in
each layer. Specifically, the state of Layer-1 is observed from
the environment, and the state of Layer-2 and Layer-3 is
obtained from Layer-1 and Layer-2, respectively. Based on its
observed state, the agent at each layer outputs an action. The
AP executes the action of each layer, which yields a reward
and a new state for Layer-1.

1) DEFINITIONS
Here, we define the state, action and reward of each layer.
Formally, they are as follows:

• Channel Selection (Layer-1):

– State s1t : The Layer-1 state s
1
t consists of the current

queue length qt−1i , and the interference experienced
by AP i on each channel {I tic|c ∈ C}. Formally,
s1t = {I

t
ic|c ∈ C} ∪ {q

t−1
i }. Note that AP i can use

IEEE 802.11k to collect interference information
from associated clients/stations.

– Action a1t : The action for Layer-1 is to select a set
of channels for AP i to transmit, i.e., a1t = Cti , where
Cti ⊆ C. For simplicity, we use a1t to represent the
set of selected channels Cti in the rest of this section.

VOLUME 1, 2023 95

FIGURE 3. A flowchart of our three-layer MDP model. An agent observes state s1t , s
2
t and s3t for

layer-1, layer-2 and layer-3, respectively. For each state, the agent outputs an action a1t , a
2
t and a3t

for Layer-1, Layer-2 and Layer-3, respectively. The three actions a1t , a
2
t and a3t are then executed

by the agent or AP, which yields the reward and a new state.

– Reward R1t : The reward for Layer-1 is calculated
based on the data rate r ti and queue length q

t
i of AP

i, and is defined as R1t = η1r ti − η2qti , where η1 and
η2 are two weights.

• Transmit Power Allocation (Layer-2):
– State s2t : The state for Layer-2 includes the inter-

ference on each channel and the set of channels
Cti selected by Layer-1. Here, we define a binary
indicator function bct ∈ {0, 1} to track whether
channel c is selected in time slot t . That is, the
binary indicator function bct returns a value of one
if channel c is selected by Layer-1; otherwise it
returns zero. Formally, it is defined as

bct =

{
1, if c ∈ a1t ,
0, Otherwise.

(19)

The state for Layer-2 is thus defined as s2t =
{(I tic, b

c
t) | c ∈ C}.

– Action a2t : The action for Layer-2 is to assign a
transmit power on each selected channel. Formally,
a2t = {P

t
ic|c ∈ a1t }. Note that the transmit power

Ptic on each channel satisfies 0 ≤ Ptic ≤ Pmax and
Pmax =

∑
c∈a1t

Ptic.
– Reward R2t : The reward for Layer-2 is the same as

Layer-1. Formally, we have R2t = η1r ti − η2.qti .
• CCA Threshold (Layer-3):

– State s3t : The state for Layer-3 is the transmit power
assigned on each channel c ∈ a1t . Formally, we have
s3t = a2t .

– Action a3t : The corresponding action for Layer-
3 is to select a CCA threshold for each channel.
Formally, we have a3t = {γ

t
c |c ∈ a

1
t }.

– Reward R3t : The reward for Layer-3 is the achieved
data rate of AP i, i.e., R3t = r ti .

We emphasize that as we propose a model-free approach
for practical reason, meaning the transition probability
P(.) in each layer is unknown. Advantageously, our
approaches/algorithms allow an AP to learn the optimal pol-
icy for different environments upon deployment. Specifically,
the AP is only required to observe the states, e.g., varying
traffic or interference level, of its environment, and optimize
its policy as per our algorithms to determine an action that
maximizes its average reward.

B. ALGORITHM DETAILS
We now outline the algorithms used in each tier or layer; these
algorithms are run on the same AP. Note that our approach is
designed to be run by a single AP. It does not require nor
assume other APs run our approach. Briefly, an AP, say i,
uses DQN to select a set of channels in Layer-1, and uses
DDPG to assign a transmit power over each selected channel
in Layer-2. For Layer-3, we assume each channel is managed
by an agent using DDPG, where the agent on channel c
assigns a CCA threshold for the channel. We emphasize that
these agents do not cooperate with each other, as channels are
orthogonal and hence the data rate on a given channel is not
a function of other channels.

Algorithm-1 shows the steps of our approach. Initially,
in Layer-1, AP i observes the state s1t from its environment,

96 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

Algorithm 1 Three-tier learning approach.

Initialize: θ1, θ
′

1,M1, ϵ1 for DQN in Layer-1.
Initialize: θ

µ
2 , θ

µ′

2 , θ
Q
2 , θ

Q′

2 ,M2, ϵ2 for DDPG in
Layer-2.

Initialize: {θµ
c , θ

µ′

c , θ
Q
c , θ

Q′
c ,Mc, ϵc|c ∈ C} for

DDPG in Layer-3.
1 while t = 1,2,. . . ,T do
2 Observe s1t
3 [a1t , s

2
t] = Layer1SelectChannels(s1t , θ1, ϵ1)

4 [a2t , s
3
t] = Layer2AssignPower(s2t , θ

µ
2 , ϵ2)

5 for each c ∈ a1t do
6 Get transmit power Ptic on channel c
7 act = Layer3AdjustCCA(Ptic, θ

µ
c , ϵc)

8 end for
9 a3t = {a

c
t | c ∈ a

1
t }

10 Execute a1t , a
2
t , a

3
t and observe R1t ,R

2
t ,R

3
t

11 if t ≥ 2 then
12 Store (s1t−1, a

1
t−1,R

1
t−1, s

1
t) intoM1

13 Store (s2t−1, a
2
t−1,R

2
t−1, s

2
t) intoM2

14 for c ∈ a1t−1 do
15 Store (Pt−1ic , act−1,R

c
t−1,P

t
ic) intoMc

16 end for
17 end if
18 if t mod K == 0 then
19 Update θ1 as per Eq. (12)
20 Update θ

Q
2 , θ

µ
2 and θ

Q
c , θ

µ
c , ∀c ∈ C as per

Eq. (14) and (16)
21 Update θ

Q′

2 , θµ′

2 and θ
Q′
c , θµ′

c , ∀c ∈ C as per
Eq. (17) and (18)

22 Decrease ϵ1, ϵ2 and ϵc, ∀c ∈ C
23 end if
24 if t mod K ′ == 0 then
25 θ ′1← θ1
26 end if
27 end while

and calls Layer1SelectChannels() to select an action a1t ; see
line 3. The function Layer1SelectChannels() selects an action
a1t using the function ϵ-greedy(.), where it randomly selects
an action with probability ϵ1. Otherwise, it selects the action
with the highest Q-value; see line 1 in Algorithm-2. The
value of ϵ1 is reduced over time until a minimum value of
ϵmin. This is to ensure convergence. In addition, the function
Layer1SelectChannels() also outputs the Layer-2 state s2t .

Next, AP i enters Layer-2 with state s2t , and calls
Layer2AssignPower(); see line 4 in Algorithm-1. It first
calls ϵ-greedy() to output a vector v, where each element
in vector v represents a certain fraction of the maximum
transmit power Pmax . Specifically, the function ϵ-greedy(.)
in Layer-2 will use Simplex(|a1t |) to sample a random vector
v with probability ϵ2, where |a1t | is the number of selected
channels. Otherwise, it uses the output of µ(s2t , θ

µ
2) as vector

v. Note that we use the Softmax function as the activation

Algorithm 2 Layer1SelectChannels.

Input: s1t , θ1, ϵ1
Output: a1t , s

2
t

1 a1t = ϵ-greedy(s1t , θ1, ϵ1)
2 s2t = {(I

t
ic, b

c
t) | c ∈ C}

3 Return a1t , s
2
t

Algorithm 3 Layer2AssignPower.

Input: s2t , θ
µ
2 , ϵ2

Output: a2t , s
3
t

1 v = ϵ-greedy(s2t , θ
µ
2 , ϵ2)

2 a2t = Pmaxv
3 s3t = a2t
4 Return a2t , s

3
t

function for the output layer of DDPG. This ensures the
constraints for Layer-2 actions hold, i.e., 0 ≤ Ptic ≤ Pmax
and Pmax =

∑
c∈Cti P

t
ic. Then, Layer2AssignPower() scales

the output vector vwith the maximum transmit power Pmax to
obtain a Layer-2 action a2t , see line 2 in Algorithm-3. Lastly,
the function Layer2AssignPower() outputs the state s3t for
Layer-3.

In Layer-3, for each channel c ∈ a1t , the agent on channel
c observes a state, i.e., transmit power Ptic ∈ s3t and calls
Layer3AdjustCCA(); see line 5 to 8 in Algorithm-1. The
algorithm first calls ϵ-greedy(), where it uniformly samples a
value v from the range [0, 1] with probability ϵc. Otherwise,
it uses the output of µ(Ptic; θ

µ
c) as value v. Note that each

DDPG agent in Layer-3 uses the Sigmoid function as the
activation function in the output layer as the CCA threshold
on each channel c is a one-dimensional parameter. The value
v is then scaled into the range of [γmin, γmax] to obtain the
action act on channel c; see line 2 in Algorithm-4. Finally, the
action of Layer-3 is obtained as a3t = {a

c
t | c ∈ a

1
t }.

Lastly, the three actions a1t , a
2
t and a

3
t are executed by AP i

to obtain reward R1t , R
2
t and R

3
t . Then, the agent at each layer

stores its experience into its memory buffer starting from the
second time slot; see line 11 to 16 in Algorithm-1. This is
because the state for Layer-2 and Layer-3 depends on the
action from their respective upper layer. Therefore, Layer-2
and Layer-3 obtain their respective next state s2t+1 and s3t+1
only after Layer-1 and Layer-2 select the action a1t+1 and a

2
t+1

in the following time slot. The stored experiences are then
used by AP i to update the neural networks in each layer as
shown in line 18 to 21 in Algorithm-1.

VI. EVALUATION
We conducted our simulations using Python 3.7 on a com-
puter with i7-8700 CPU operating at 4.3 GHz and 16 GB
RAM.1 We used TensorFlow 1.14 [45] and Keras 2.2.5 [46]

1Note that our agents can also be run on a System-on-Chip (SoC) solution
such as Qualcomm QCS605 SoC.

VOLUME 1, 2023 97

Algorithm 4 Layer3AdjustCCA.

Input: Ptic, θ
µ
c , ϵc

Output: act
1 v = ϵ-greedy(Ptic, θ

µ
c , ϵc)

2 act = v(γmax − γmin)+ γmin
3 Return act

TABLE 3. Parameter values.

to build neural networks for our learning agents. These agents
ran on an AP, denoted as i, that experienced interference from
a set of neighboring APs inNi; each AP is placed 20 m away
fromAP i, acting as the interference source to induce different
interference states at AP i. There is at least one interfering
AP operating on each channel. Each AP had four users that
are uniformly placed within 5 m distance. Unless otherwise
stated, our simulations used the parameter values listed in
Table 3 and 4.

We implemented and compared the following algorithms/
rules:

• DDPG: AP i uses DQN to select a set of channels, and
uses DDPG for both transmit power distribution and
CCA threshold adjustment on each channel.

• Mixed DDPG and DQN (MixDD): AP i uses DQN
to select channels, and uses DDPG for transmit power
allocation. It uses DQN for CCA threshold adjustment
on each channel with eleven discrete CCA threshold
values, ranging from -80 to -30 dBm.

• DQN: AP i uses DQN to select channels, and uses
DQN for both transmit power distribution and CCA
threshold adjustment on each channel. We discretized

TABLE 4. Parameter values used by learning
agents [12], [43], [44].

the AP’s transmit power into eight levels, ranging from
zero to 100Watts. The CCA threshold is discretized into
11 levels, ranging from -80 to -30 dBm.

• All Channels Bonded (ACB): AP i will always use all
channels for transmissions. The transmit power on each
channel is evenly distributed. AP i uses a CCA threshold
of -82 dBm.2

• Random: AP i randomly selects a set of channels for
transmissions. The transmit power on each selected
channel is distributed evenly. The CCA threshold for
each channel is set to -82 dBm.

• Primary Channel Only (PCO): AP i randomly selects
a channel as its primary channel, and only uses the
primary channel for transmissions with the maximum
transmit power. The CCA threshold for the primary
channel is set to -82 dBm.

Note thatMixDD and DQN are two variations ofDDPG. The
motivation for studying them is to investigate the case where
DDPG uses a different reinforcement learning algorithm in
each layer.

Our simulations used episodes that comprised of 500 time
slots. For each episode, we collected the following metrics:

• Average number of transmitted packets: This is the
average number of packets transmitted per time slot by
AP i in an episode.

2This value is set as per the IEEE WiFi standard [41].

98 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

FIGURE 4. Elapsed time versus value of Epsilon.

• Average queue length of an AP: This is the average
queue length of AP i collected at the end of each time
slot in each episode.

Our simulations had three stages: Training, Test and Sup-
plementary. In the Training stage, AP i had three available
channels, and on each channel, there was an interfering AP
located 20 m away. AP i always have packets to transmit.
The packet size is fixed to 2304 Bytes [41]. In this stage,
we also conducted simulations to study the impact of ϵ decay
rules and values of η1 and η2. To train our agents, for the
first 5000 time slots, we programmed agents to randomly
select actions to ensure they collected sufficient data. Next,
we trained our agents for 40000 time slots. After that, we set
the value of ϵ to zero and ran the simulation for another
5000 time slots to analyze their convergence performance.

In the Test stage, we used the same network model as the
Training stage, and studied two traffic models, number of
interfering APs and channel gain variance.We used a Poisson
traffic model to control the number of packets that arrived
at AP i in each time slot; its arrival rate ranged from 30 to
240 packets per time slot. We have also constructed a traffic
model using the trace data in [47]. After that, we studied
the impact of interfering APs on each channel, which ranged
from one to six on each channel, meaning the number of inter-
fering APs increased from three to 18. Next, we evaluated the
impact of channel gain variance or the shadowing term σ 2,
which ranged from zero to 80 dB.

Next, in the Supplementary stage, we outline our perfor-
mance study of DDPG, MixDD and DQN when there are
different numbers of channels, which ranged from two to
eight; each channel had one interfering AP. Lastly, we inves-
tigated the topology and channel model provided by the IEEE
802.11ax task group [48].

A. TRAINING STAGE
1) ϵ DECAY RULES
We evaluated three ϵ decay rules. The value of ϵ at each time
slot t was calculated as follows:
• Exponential: ϵt = max(ϵt/Kd , ϵmin).

FIGURE 5. Converged throughput versus Epsilon decay
patterns.

FIGURE 6. Average throughput versus Epsilon decay patterns.

• Linear: ϵt = max(1− (1−ϵmin)t
NL/K , ϵmin).

• Quartic: ϵt = max(1− (t
NL/K)

4, ϵmin).

In our discussion to follow, the term K and NL , refer respec-
tively to the learning frequency, and number of time slots
for learning. Fig. 4 shows the evolution of ϵ over time. Our
simulations showed that for the Exponential rule, the value of
ϵ reduced at the fastest rate before 15000 time slots, and then
it reduced at a slower rate than the Quartic and Linear rule.
By contrast, the value of ϵ for the Quartic rule decreased
at the lowest rate at the beginning and started to decrease
faster after 10000 time slots. Note that the value of ϵ will not
decrease below the minimum value of ϵmin.
Referring to Fig. 5, DDPG, MixDD and DQN converged

to around 190 packets per time slot. In addition, Fig. 5 shows
that different ϵ decay rules have no significant impact on the
converged throughput for all tested algorithms. We recorded
the largest difference of 4.5 packets per time slot between
DDPG with the Linear rule and DQN with the Quartic rule,
which only differed by 2.39%. Fig. 6 shows the average
throughput for different ϵ decay rules. The Exponential rule

VOLUME 1, 2023 99

FIGURE 7. Converged throughput versus values of η1 and η2.

had the highest average throughput for all three learning
algorithms. The average number of transmitted packets per
time slots for DDPG,MixDD and DQNwas 165.5, 156.1 and
153.2, respectively, meaning the Exponential rule outper-
formed the Linear rule by 11.18% and the Quartic rule by
24.32%, on average. This is because when ϵ reduced to a
low value, an agent will exploit its learned policy with a high
probability. The Exponential rule reduced ϵ to the minimum
value ϵmin at the fastest rate. In addition, as per Fig. 5, all
three ϵ decay rules converged to 190 packets per time slot.
Consequently, the Exponential rule had the highest average
throughput among all ϵ decay rules. Hence, in all subsequent
simulations, we will use the Exponential rule as the ϵ decay
rule when training agents.

2) IMPACT OF η1 AND η2

We have also evaluated the impact of different values for
η1 and η2. We trained DDPG with an η1 and η2 value
drawn respectively from the range [0.1, 0.5, 0.9], and
[0.01, 0.05, 0.09].
Fig. 7 shows the converged throughput for different combi-

nation of η1 and η2 values.We see that when η1 equals 0.1, the
converged throughput for η2 = 0.05 and η2 = 0.09 is respec-
tively 66.7 and 67.2 packets per time slot. DDPG achieved
an average number of transmitted packets that exceeded
190 packets per time slot for all other combinations of η1 and
η2. Recall that η1 and η2 weigh the importance of data rate
and queue length, respectively. The results in Fig. 7 suggest
that the value of η1 should be sufficiently larger than η2 to
balance the impact of data rate and queue length on the reward
received by an AP. Otherwise, a minor change in queue length
could have a significant impact on the AP’s reward, which
may potentially cause an agent to learn an incorrect action or
policy. Hence, in all subsequent simulations, we set the value
of η1 to 0.9 and η2 to 0.01.

3) CONVERGENCE
Fig. 8 shows that the average number of packets transmit-
ted by DDPG, MixDD and DQN increased over time. This

FIGURE 8. Elapsed time versus the number of transmitted
packets.

average value for DDPG, MixDD and DQN respectively
increased from 102.9, 97.8 and 88.8, and converged to 190.2,
189.6 and 186.0 packets per time slot. This is because they
were able to learn the optimal policies for channel selection,
transmit power distribution and CCA threshold adjustment
over time. Fig. 8 also shows that the performance for DDPG
is better than the other two learning algorithms. For example,
the number of transmitted packets per time slot for DDPG
is 4.43% and 6.84% higher than that of MixDD and DQN
on average. This is because DDPG used a continuous action
space for its transmit power distribution and CCA threshold.
By contrast, MixDD employed discrete CCA thresholds on
each channel whereas DQN learned over both discrete power
distribution and CCA threshold action space. Thus, MixDD
and DQN failed to learn the optimal action when their action
space is not discretized. Therefore, DDPG outperformed the
other two learning algorithms. We also see that ACB, Ran-
dom and PCO had the same average number of transmitted
packets over time; i.e., 118.6, 70.6 and 42.8 packets per time
slot, respectively. This is because these three algorithms had
no learning mechanism to optimize channel usage, transmit
power and CCA threshold.

B. TEST STAGE
1) POISSON TRAFFIC
To study the impact of Poisson traffic, we assumed three
channels. We varied the traffic arrival rate from 30 to
240 packets per time slot. Simulations ran for 5000 time slots
for each traffic arrival rate. Fig. 9 and 10 show the impact
of arrival rates. From Fig. 9, DDPG, MixDD and DQN had
an increasing throughput trend. They were able to transmit
31.56 packets per time slot when the traffic arrival rate was
set to 30 packets per time slot. This number then increased
to 190.8 for DDPG, 188.8 for MixDD and 186.6 for DQN
when the traffic arrival rate was set to 240 packet per time
slot. This is because these three learning algorithms were
able to transmit more than 186 packets per time slot after
training as shown in Fig. 8. When the traffic arrival rate was

100 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

FIGURE 9. Impact of traffic arrival rate on throughput.

FIGURE 10. Impact of traffic arrival rate on average queue length.

lower than 180 packets per time slot, DDPG, MixDD and
DQN were able to empty the queue of AP i. As a result, its
throughput was limited by a low traffic arrival rate. Fig. 10
shows that the average queue length of DDPG, MixDD and
DQN is lower than 1100 packets when AP i experienced a
traffic arrival rate no larger than 180 packets per time slot.
However, when the traffic arrival rate exceeded 180 pack-
ets per time slots, DDPG, MixDD and DQN did not have
sufficient throughput to deliver all arriving packets, which
increased the queue length of AP i. From Fig. 10, the average
queue length of these three learning algorithms increased
significantly from 1500 to 15968 packets when the traffic
arrival rate increased from 180 to 210 packets per time slot.
We observed similar trends for ACB, Random and PCO,
where they had an average throughput of 117.2, 71.8 and
42.4 packets per time slot as shown in Fig. 8. This means
they were only able to reduce the queue length of AP i when
its traffic arrival rate is lower than the average throughput.

2) INTERFERING APs
Here, APs have Poisson traffic with an arrival rate of
180 packets per time slot. There were three channels, and one

FIGURE 11. Impact of number of Interfering APs on throughput.

FIGURE 12. Impact of number of Interfering APs on average
queue length.

to six interfering APs on each channel. We uniformly placed
all interfering APs within the range of 40 m around AP i. For
each number of interfering APs, we ran the simulation ten
times, with 5000 time slots in each run.

Fig. 11 shows that the throughput of AP i decreased
when there are more interfering APs. DDPG, MixDD and
DQN were able to transmit 181 packets per time slot when
there were three interfering APs. This number decreased to
160.6 for DDPG, 158.6 for MixDD and 156.2 for DQNwhen
the number of interfering APs increased to 18. As a compar-
ison, the average number of transmitted packets per time slot
for ACB, Random and PCO decreased from 136.7, 81.7 and
49.4 to 38.8, 23.3 and 14.3, respectively. This is because
the level of interference on each channel increased as the
number of interfering APs increased, which led to through-
put degradation for all algorithms/rules. However, DDPG,
MixDD and DQN continued to have better performance
against higher interference levels as compared to ACB, Ran-
dom and PCO. The throughput of DDPG, MixDD and DQN
reduced by 12.74% on average as the number of interfering
APs increased from three to 18. In contrast, the performance

VOLUME 1, 2023 101

FIGURE 13. Impact of channel gain variance on throughput.

of ACB, Random and PCO dropped by 71.37% on average
under the same circumstance. From Fig. 11, DDPG, MixDD
and DQN always had the highest throughput. In particular,
these three learning algorithms achieved 137.72%, 296.67%
and 548.5% higher throughput than ACB, Random and PCO
on average, respectively. This is because these three learning
algorithms were able to learn the optimal channel selection,
transmit power distribution and CCA threshold adjustment
for varying interference levels. From Fig. 11, DDPG had
a higher throughput as compared to MixDD by 1.21% and
DQN by 2.65% for six interfering APs scenario. The differ-
ence in throughput led to different average queue lengths.
Referring to Fig. 12, DDPG had a queue length that was
5.88% and 10.51% shorter than MixDD and DQN. Hence,
using a continuous action space for transmit power and CCA
threshold led to better performance than a discrete action
space. In contrast, the average queue length for ACB, Ran-
dom and PCOwas always around 16000 packets. These three
rules were not able to transmit more than 180 packets per time
slot. Therefore, they were not able to reduce the queue length
of AP i, resulting in queue overflow.

3) CHANNEL GAIN VARIANCE
To study the impact of channel gain variance, we have used
the following settings: Poisson traffic with an arrival rate of
180 packets per time slot, and three channels. The channel
gain variance σ 2 was increased from zero to 80 dB. Referring
to Fig. 13 and 14, the performance of DDPG, MixDD and
DQNwas not affected by the changing channel gain variance.
Fig. 13 shows that DDPG, MixDD and DQN were able
to transmit 181 packets per time slots for all channel gain
variance values. The average queue length of these three algo-
rithms was less than 2000 packets. This is because DDPG,
MixDD and DQN were able to learn the optimal transmit
power and CCA threshold for each channel that resulted in a
high throughput against various levels of interference. In con-
trast, the throughput of ACB, Random and PCO increased
with higher channel gain variance. The average number of
transmitted packets per time slot for ACB, Random and PCO

FIGURE 14. Impact of channel gain variance on the average
queue length of APs.

FIGURE 15. Arriving traffic for AP i throughout eight days. The
x-axis represents the time across a day, and y-axis represents
the number of packets arriving in each time slot, respectively.

increased from 117.8 to 127.0, 70.2 to 75.7 and 42.8 to 46.8,
respectively. Their throughput improved by 8.25%on average
as the channel gain variance increased from zero to 80. This is
because as the variance increased, the corresponding Cumu-
lative Distribution Function (CDF) changed, which increased
the probability that the interference on each channel to be
less than the CCA threshold used by AP i, i.e., -82 dBm.
Therefore, for high channel gain variance, ACB, Random and
PCO had more opportunities to transmit than when channel
gain variance was low. Consequently, the average number
of transmitted packets increased. However, the increased in
throughput was lower than the traffic arrival rate. Hence,
ACB, Random and PCO were not able to reduce the queue
length of AP i, and suffered from queue overflow. Referring
to Fig. 14, the average queue length for ACB, Random and
PCO stayed at the maximum queue length of 16000 packets
for all channel gain variances.

4) TRACE-BASED STUDY
The next simulation evaluated the performance of all algo-
rithms/rules using the traffic trace file provided in [47].
We extracted eight days of traffic, from 19 October

102 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

FIGURE 16. Average throughput with difference trace data.

FIGURE 17. Average queue length with difference trace data. Note that we have taken the logarithmic value of the original queue
length (in packets).

2014 to 26 October 2014, see Fig. 15, and used it as the
arriving traffic for AP i. Fig 16 and 17 show the average
number of transmitted packets and queue length for each
dated traffic trace.

From Fig 16 and 17, DDPG, MixDD and DQN had the
highest throughput and lowest queue length. In Fig 16, the
average number of transmitted packets per time slot for
DDPG,MixDD and DQNwas around 39.4. As a comparison,
ACB, Random and PCO were able to transmit 38.8, 37.5 and
32.8 packets per time slot. The average throughput of DDPG,
MixDD and DQN was only 1.4%, 4.87% and 20.13% higher
than ACB, Random and PCO, respectively. The reason was
because the arriving traffic rate was low throughout a day.
From Fig. 15, the average number of arriving packets in each
time slot was around 30.6 across the eight days. Therefore,
DDPG, MixDD and DQN were able to empty the queue
of APs quickly. This can also be seen from Fig. 17, where
DDPG, MixDD and DQN had the smallest average queue
length of 3.05 packets. As a result, DDPG, MixDD and DQN
did not have a large number of packets to transmit in each time
slot, which resulted in a low average number of transmitted
packets per time slot. In contrast, ACB, Random and PCO

had an average queue length of 4.64, 6.52 and 8.24, meaning
the average queue length of DDPG, MixDD and DQN was
32.94%, 50.99% and 62.52% shorter than ACB, Random and
PCO.

C. SUPPLEMENTARY STAGE
1) NUMBER OF CHANNELS
We now present the simulation that studied different number
of channels. Each channel had one interferingAP placed 20m
away from AP i. As the number of channels differs, agents
used a different action space. Therefore, for each channel
number, we re-built our learning agents, and trained them
until convergence. Fig. 18 shows the converged throughput
for different number of channels. The performance of DDPG,
MixDD and DQN had no difference when the number of
channels was no larger than four. The average number of
transmitted packets per time slot for DDPG, MixDD and
DQN increased from 130 to 245when the number of channels
increased from two to four. This means all three learning
agents were able to learn the optimal policy when the number
of channels was low. However, as the number of channels

VOLUME 1, 2023 103

FIGURE 18. Converged throughput verses number of channels.

FIGURE 19. The topology of IEEE simulation scenario for
apartment [48], where each apartment has a dimension of
10 m × 10 m. Each AP is placed in the center of an apartment.
The target AP i (red triangle) is located at the center bottom
apartment and all other APs (black triangles) act as the
interference sources. The penetration loss of each wall is set to
5 dB [49].

increased, DDPG achieved the highest throughput. The aver-
age number of transmitted packets per time slot for DDPG
increased from 351 to 451 when the number of channels
increased from six to eight, which was 14.67% and 65.51%
higher than MixDD and DQN on average, respectively. This
meansDDPGwas able to learn the optimal policy in scenarios
with different number of channels. In contrast, the throughput
of DQN showed no improvement when the simulation used
four channels. The converged throughput remained around
243 packets per time slot as the number of channels increased
from four to eight. This is because the action space for DQN
increased significantly with more channels. For example, the
number of actions for the action space related to transmit
power over six and eight channels was 1287 and 6435. As a
result, agents were not able to explore and learn each action
efficiently during training. Therefore, agents were not able to
learn the optimal policy, which resulted in poor performance.

2) IEEE SCENARIOS
We have also conducted simulations using the IEEE scenario
and channel model proposed in [48] and [49]. Referring to
Fig. 19, we simulated an apartment with ten cells; each cell
had a dimension of 10 m × 10 m. We placed an AP at the
center of each cell, and selected the AP in the center bottom
cell as AP i that ran our learning agents. Each AP had four

FIGURE 20. Elapsed time versus average number of transmitted
packets with IEEE simulation scenario.

associated users that are uniformly placed within its cell.
We adopted the indoor channel model provided in [49], where
the wall penetration loss was set to 5 dB.

Fig. 20 shows the average number of transmitted packets
for different algorithms/rules. We see that DDPG, MixDD
and DQN were able to achieve the highest throughput over
time. The average number of transmitted packets per time slot
for DDPG, MixDD and DQN increased from 61.2, 59.3 and
56.8 to 135.0, 133.0 and 130.6, respectively. These three
learning algorithms were able to learn the optimal policy for
the stated IEEE scenario and channel model. DDPG achieved
the highest throughput among all three learning algorithms,
where its average number of transmitted packets per time
slot was 4.01% and 5.83% higher than that of MixDD and
DQN. In contrast, the throughput for ACB, Random and
PCO remained the same over time. ACB, Random and PCO
achieved an average number of transmitted packets of 58.5,
36.6 and 23.5 per time slot.

VII. CONCLUSION
This paper has outlined and studied a novel three-tier learning
approach that aims to improve multi-channel utilization and
minimize the queue length of an AP operating in a WiFi net-
work. Specifically, the AP uses our approach to learn a policy
that governs when and how it uses one or more channels,
allocate its transmit power and set the CCA threshold for each
selected channel given varying environmental conditions.
Advantageously, the proposed approach requires an AP to use
only local information, such as its queue length and observed
interference level. The simulation results showed that the pro-
posed learning approach was able to learn the optimal policy,
and achieved the best performance under multiple scenarios.
Numerical results showed that the proposed three-tier learn-
ing approach was able to reduce the average queue length of
an AP by up to 62.52% when compared to an AP that used a
fixed strategy over realistic traffic trace data. An interesting
future work is to consider time-varying number of users with
different quality of service requirements such as data rate or

104 VOLUME 1, 2023

Huang and Chin: Three-Tier Deep Learning-Based Channel Access Method for WiFi Networks

transmission frequency. In this respect, the agent will have
to incorporate into its state the number of users, and their
requirements. Its goal is then to learn a policy that ensures
users meet their respective requirements. Another possibility
is to leverage generative artificial intelligence or diffusion
models to speed up training or to improve an AP’s policy.
Specifically, an AP can be first trained offline using data
generated from such models to obtain a preliminary policy
for a given environment. After that, the AP/agent uses actual
system states to refine its policy.

REFERENCES
[1] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, ‘‘A tutorial on IEEE

802.11ax high efficiencyWLANs,’’ IEEE Commun. Surveys Tuts., vol. 21,
no. 1, pp. 197–216, 1st Quart., 2019.

[2] S. Barrachina-Muñoz, B. Bellalta, and E. W. Knightly, ‘‘Wi-Fi chan-
nel bonding: An all-channel system and experimental study from urban
hotspots to a sold-out stadium,’’ IEEE/ACM Trans. Netw., vol. 29, no. 5,
pp. 2101–2114, Oct. 2021.

[3] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, ‘‘Understanding
and mitigating the impact of RF interference on 802.11 networks,’’ ACM
SIGCOMMComput. Commun. Rev., vol. 37, no. 4, pp. 385–396, Oct. 2007.

[4] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and M. Gabbouj,
‘‘Viewport-adaptive encoding and streaming of 360-degree video for vir-
tual reality applications,’’ in Proc. IEEE Int. Symp. Multimedia (ISM), San
Jose, CA, USA, Dec. 2016, pp. 583–586.

[5] B. Bellalta, ‘‘IEEE 802.11ax: High-efficiency WLANS,’’ IEEE Wireless
Commun., vol. 23, no. 1, pp. 38–46, Feb. 2016.

[6] B. Alawieh, Y. Zhang, C. Assi, and H. Mouftah, ‘‘Improving spatial reuse
in multihop wireless networks—A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 11, no. 3, pp. 71–91, Aug. 2009.

[7] C. Thorpe and L. Murphy, ‘‘A survey of adaptive carrier sensing mecha-
nisms for IEEE 802.11 wireless networks,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1266–1293, 3rd Quart., 2014.

[8] L. Deek, E. Garcia-Villegas, E. Belding, S.-J. Lee, and K. Almeroth, ‘‘The
impact of channel bonding on 802.11n network management,’’ in Proc. 7th
Conf. Emerg. Netw. Experiments Technol., Japan, Dec. 2011, pp. 1–12.

[9] S. Barrachina-Muñoz, F. Wilhelmi, and B. Bellalta, ‘‘To overlap or not
to overlap: Enabling channel bonding in high-density WLANs,’’ Comput.
Netw., vol. 152, pp. 40–53, Apr. 2019.

[10] S. Jang, K. G. Shin, and S. Bahk, ‘‘Post-CCA and reinforcement learning
based bandwidth adaptation in 802.11ac networks,’’ IEEE Trans. Mobile
Comput., vol. 17, no. 2, pp. 419–432, Feb. 2018.

[11] M. L. Puterman,MarkovDecision Processes: Discrete Stochastic Dynamic
Programming. New York, NY, USA: Wiley, 1994.

[12] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[13] T. P. Lillicrap et al., ‘‘Continuous control with deep reinforcement learn-
ing,’’ in Proc. ICLR, San Juan, Puerto Rico, May 2016, pp. 1–14.

[14] A. Nabil, M. J. Abdel-Rahman, and A. B. MacKenzie, ‘‘Adaptive channel
bonding in wireless LANs under demand uncertainty,’’ in Proc. IEEE
PIMRC Conf., Montreal, QC, Canada, Oct. 2017, pp. 1–7.

[15] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan,
‘‘Load-aware spectrum distribution in wireless LANs,’’ in Proc. IEEE Int.
Conf. Netw. Protocols, Orlando, FL, USA, Oct. 2008, pp. 137–146.

[16] S. Lee, T. Kim, S. Lee, K. Kim, Y. H. Kim, and N. Golmie, ‘‘Dynamic
channel bonding algorithm for densely deployed 802.11ac networks,’’
IEEE Trans. Commun., vol. 67, no. 12, pp. 8517–8531, Dec. 2019.

[17] Y. Chen, D. Wu, T. Sung, and K. Shih, ‘‘DBS: A dynamic bandwidth
selection MAC protocol for channel bonding in IEEE 802.11ac WLANs,’’
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Barcelona, Spain,
Apr. 2018, pp. 1–6.

[18] X. Wang, P. Huang, J. Xie, and M. Li, ‘‘OFDMA-based channel-width
adaptation in wireless mesh networks,’’ IEEE Trans. Veh. Technol., vol. 63,
no. 8, pp. 4039–4052, Oct. 2014.

[19] S. Rayanchu, V. Shrivastava, S. Banerjee, and R. Chandra, ‘‘FLUID:
Improving throughputs in enterprise wireless LANs through flexible chan-
nelization,’’ IEEE Trans. Mobile Comput., vol. 11, no. 9, pp. 1455–1469,
Sep. 2012.

[20] T. Song, T. Kim, W. Kim, and S. Pack, ‘‘Channel bonding algorithm for
densely deployed wireless LAN,’’ in Proc. Int. Conf. Inf. Netw. (ICOIN),
Kota Kinabalu, Malaysia, Jan. 2016, pp. 395–397.

[21] T. Song, T. Kim, W. Kim, and S. Pack, ‘‘Adaptive and distributed radio
resource allocation in densely deployed wireless LANs: A game-theoretic
approach,’’ IEEE Trans. Veh. Technol., vol. 67, no. 5, pp. 4466–4475,
May 2018.

[22] C. Kai, Y. Liang, T. Huang, and X. Chen, ‘‘To bond or not to bond: An
optimal channel allocation algorithm for flexible dynamic channel bonding
in WLANs,’’ in Proc. IEEE 86th Veh. Technol. Conf. (VTC-Fall), Toronto,
ON, Canada, Sep. 2017, pp. 1–6.

[23] M. Han, S. Khairy, L. X. Cai, Y. Cheng, and F. Hou, ‘‘Capacity analy-
sis of opportunistic channel bonding over multi-channel WLANs under
unsaturated traffic,’’ IEEE Trans. Commun., vol. 68, no. 3, pp. 1552–1566,
Mar. 2020.

[24] R. Karmakar, S. Chattopadhyay, and S. Chakraborty, ‘‘SmartBond: A deep
probabilistic machinery for smart channel bonding in IEEE 802.11ac,’’ in
Proc. IEEE Conf. Comput. Commun., Toronto, ON, Canada, Jul. 2020,
pp. 2599–2608.

[25] H. Qi, H. Huang, Z. Hu, X. Wen, and Z. Lu, ‘‘On-demand channel bonding
in heterogeneous WLANs: A multi-agent deep reinforcement learning
approach,’’ Sensors, vol. 20, no. 10, pp. 1–16, May 2020.

[26] Y. Luo and K. Chin, ‘‘Learning to bond in dense WLANs with ran-
dom traffic demands,’’ IEEE Trans. Veh. Technol., vol. 69, no. 10,
pp. 11868–11879, Oct. 2020.

[27] M. Han, Z. Chen, L. X. Cai, T. H. Luan, and F. Hou, ‘‘A deep reinforcement
learning based approach for channel aggregation in IEEE 802.11 ax,’’ in
Proc. IEEE Global Commun. Conf., Dec. 2020, pp. 1–6.

[28] R. Karmakar and G. Kaddoum, ‘‘IBAC: An intelligent dynamic
bandwidth channel access avoiding outside warning range problem,’’
IEEE Trans. Mobile Comput., vol. 22, no. 6, pp. 3350–3364,
Jun. 2023.

[29] Y. Luo and K. Chin, ‘‘An energy efficient channel bonding and transmit
power control approach for WiFi networks,’’ IEEE Trans. Veh. Technol.,
vol. 70, no. 8, pp. 8251–8263, Aug. 2021.

[30] M. Bennis and D. Niyato, ‘‘A Q-learning based approach to interference
avoidance in self-organized femtocell networks,’’ in Proc. IEEE Globecom
Workshops, Miami, FL, USA, Dec. 2010, pp. 706–710.

[31] W. Wang, F. Zhang, and Q. Zhang, ‘‘Managing channel bonding
with clear channel assessment in 802.11 networks,’’ in Proc. IEEE
Int. Conf. Commun. (ICC), Kuala Lumpur, Malaysia, May 2016,
pp. 1–6.

[32] L. Lanante and S. Roy, ‘‘Analysis and optimization of channel bonding
in dense IEEE 802.11 WLANs,’’ IEEE Trans. Wireless Commun., vol. 20,
no. 3, pp. 2150–2160, Mar. 2021.

[33] F. Wilhelmi, S. Barrachina-Muñoz, B. Bellalta, C. Cano, A. Jonsson, and
G. Neu, ‘‘Potential and pitfalls of multi-armed bandits for decentralized
spatial reuse in WLANs,’’ J. Netw. Comput. Appl., vol. 127, pp. 26–42,
Feb. 2019.

[34] Y. Huang and K. Chin, ‘‘A deep Q-network approach to optimize spatial
reuse in WiFi networks,’’ IEEE Trans. Veh. Technol., vol. 71, no. 6,
pp. 6636–6646, Jun. 2022.

[35] T. S. Rappaport, Wireless Communications: Principles and Practice.
Upper Saddle River, NJ, USA: Prentice-Hall, Sep. 2002.

[36] N. A. Smith and R. W. Tromble, ‘‘Sampling uniformly from the unit
simplex,’’ Johns Hopkins Univ., Baltimore, MD, USA, Tech. Rep., vol. 29,
2004.

[37] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
‘‘Deterministic policy gradient algorithms,’’ in Proc. Int. Conf. Mach.
Learn., Beijing, China, Jan. 2014, pp. 387–395.

[38] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor,
‘‘Learn what not to learn: Action elimination with deep reinforce-
ment learning,’’ in Proc. NeurIPS, Montréal, QC, Canada, Dec. 2018,
pp. 3562–3573.

[39] B. Bellalta, L. Bononi, R. Bruno, and A. Kassler, ‘‘Next genera-
tion IEEE 802.11 wireless local area networks: Current status, future
directions and open challenges,’’ Comp. Commun., vol. 75, pp. 1–25,
Feb. 2016.

[40] M. Viswanathan. (Sep. 2013). Log Distance Path Loss or Log Normal
Shadowing Model. Accessed: Apr. 12, 2022. [Online]. Available: https://
www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-normal-
shadowing-model/

VOLUME 1, 2023 105

[41] IEEE Standard for Information Technology–Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks–Specific Requirements Part 11: Wireless Lan Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, IEEE Stan-
dard 802.11-2016, Dec. 2016, p. 3534.

[42] B. Yin, K. Yamamoto, T. Nishio, M. Morikura, and H. Abeysekera,
‘‘Learning-based spatial reuse for WLANs with early identification of
interfering transmitters,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6,
no. 1, pp. 151–164, Mar. 2020.

[43] Y. Li, W. Zhang, C. Wang, J. Sun, and Y. Liu, ‘‘Deep reinforcement
learning for dynamic spectrum sensing and aggregation in multi-channel
wireless networks,’’ IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 2,
pp. 464–475, Jun. 2020.

[44] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015, pp. 1–15.

[45] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2016, arXiv:1603.04467.

[46] F. Chollet et al., (2015).Keras. Accessed: Feb. 2, 2019. [Online]. Available:
https://keras.io/

[47] J. Liu, B. Krishnamachari, S. Zhou, and Z. Niu, ‘‘DeepNap: Data-driven
base station sleeping operations through deep reinforcement learning,’’
IEEE Internet Things J., vol. 5, no. 6, pp. 4273–4282, Dec. 2018.

[48] S. Merlin et al., (Jul. 2015). TGax Simulation Scenarios Document
IEEE 802.11-14/0980r16. Accessed: Apr. 12, 2022. [Online]. Available:
https://mentor.ieee.org/802.11/dcn/14/11-14-0980-16-00ax-simulation-
scenarios.docx

[49] J. Liu et al., (Sep. 2014). IEEE 802.11ax Channel Model Document.
Accessed: Apr. 12, 2022. [Online]. Available: https://mentor.ieee.org/
802.11/dcn/14/11-14-0882-04-00ax-tgax-channel-model-document.docx

YIWEI HUANG received the bachelor’s degree
(Hons.) in telecommunications engineering from
the University of Wollongong, Australia, in 2016,
and the master’s degree in data science from The
University of Sydney, Australia, in 2017. He is
currently pursuing the Ph.D. degree with the Uni-
versity of Wollongong. His current research inter-
ests include performance optimization in wireless
networks and reinforcement learning.

KWAN-WU CHIN received the B.Sc. degree
(Hons.) and the Ph.D. degree (with the vice-
chancellor commendation) from Curtin Univer-
sity, Australia, in 1997 and 2000, respectively.
From 2000 to 2003, he was a Senior Research
Engineer with Motorola. In 2004, he joined the
University of Wollongong, Australia, as a Senior
Lecturer, and was promoted to an Associate Pro-
fessor in 2011, where he is currently an Associate
Professor. To date, he holds four United States

(U.S.) patents, and has published more than 190 conference and journal
papers. His current research interests include medium access control pro-
tocols for wireless networks, and resource allocation algorithms/policies for
communications networks.

106 VOLUME 1, 2023

