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ABSTRACT As the number of satellite networks increases, the radio spectrum is becomingmore congested,
prompting the need to explore higher frequencies. However, it is more difficult to operate at higher frequencies
due to severe impairments caused by varying atmospheric conditions. Hence, radio channel forecasting is
crucial for operators to adjust and maintain the link’s quality. This paper presents a practical approach for
Q/V-band modeling for low Earth orbit satellite channels based on tools frommachine learning and statistical
modeling. The developed Q/V-band LEO satellite channel model is composed of: 1) forecastingmethod using
model-based deep learning, intended for real-time operation of satellite terminals; and 2) statistical channel
simulator that generates a time-series path-loss random process, intended for system design and research.
Both approaches capitalize on real-measurements obtained fromAlphaSat’s Q/V-band transmitter at different
geographic latitudes. The results show that model-based deep learning can outperform simple statistical and
deep learning methods by at least 50%. Moreover, the model is capable of incorporating varying rain and
elevation angle profiles.

INDEX TERMS LEO satellites, time-series prediction, machine learning, artificial intelligence, LSTM, rain
fading, radio channel modeling, Q/V-band.

I. INTRODUCTION

THE rise of the new commercial space-age has pro-
claimed the evolution of communication systems

through the emergence of next-generation dense low Earth
orbit (LEO) constellations. The deployment of these con-
stellations strive to fulfill the global connectivity promise,
ultimately striding towards access equality [1]. Service
providers are therefore required to upgrade their capaci-
ties to provide adequate bandwidth that accommodates the
anticipated increase in user traffic. However, the radio spec-
trum is becoming increasingly congested, where the C-, and

Ku-bands are currently near their limit and the Ka-band
is rapidly being occupied [2]. New spectral regions in the
Q/V-band are seen as the new frontier for LEO networks [3],
[4], offering multifaceted advantages over lower frequencies
with a wider usable bandwidth for supporting higher data
rates, a precise satellite footprint leading to lower co-channel
interference, and reduction in components size resulting in
lower installation and deployment costs.

Despite the improved spectrum availability and the
increased bandwidth offered by higher frequency bands,
maintaining the quality of service (QoS) becomes more
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challenging. This is primarily because of the increased tro-
pospheric propagation impairments in both the attenuation
magnitude and fading variability compared to lower frequen-
cies [5]. As such, simply increasing the equivalent isotropic
radiated power (EIRP) does not solve the problem, mainly
because of the rapid changes in propagation conditions in
the troposphere. As a result, it is very challenging, and in
some cases impossible tomaintain the link connectivity under
severe weather conditions [6]. Hence, it is essential for the
service provider to be able to predict and adjust the different
network parameters to maintain seamless service. Adjust-
ments can be in the form of reverting to lower frequencies,
changing the modulation and coding scheme, or handover to
terrestrial or alternative non-terrestrial routes such that the
link is restored.

The need for proactive networks is even more critical in
LEO constellations because, contrary to geostationary (GEO)
links, they are characterized by rapid relative movement with
respect to ground terminals. As such, the elevation angle is
continuously varying resulting in signal envelope variations
due to interaction with both the clutter and the atmospheric
effects. While the satellite passes are predictable in the
short-term and thus are approximated using methods such as
the two-line element, the channel variations are challenging
to predict and require more complex techniques [7].

A. RELATED WORK
In any satellite communication link, the vast majority of
signal propagation occurs under free-space conditions and
only interacts with the clutter near the ground [8]. These
interactions entail multi-path fading, signal shadowing, air
absorption, and rain fading [9]. The extent of these inter-
actions vary depending on the operating frequency band.
A plethora of channel models that capture those differ-
ent interactions are well-established for lower frequencies
(L/S/C/Ku)-bands. As the frequency of operation increases
beyond the Ka-band, the effect of fading on the signal due to
atmospheric and rain absorption significantly increases [5].
To understand the effects of different weather conditions
in high frequencies, researchers conduct measurement cam-
paigns for different high frequency links. The authors in [10]
derive empirical models based on collected measurements
for a 38 GHz terrestrial link under different weather con-
ditions. In addition, Q/V-band measurements collected for
AlphaSat [11] and ItalSat [12], are similarly utilized to
develop empirical models that capture the effect of rain
fading [13]. However, the majority of these models are
geography-specific, i.e., they depend on empirical fitting and
cannot be projected onto other geographical locations. In
order to overcome this limitation, researchers resort to fit
measurements that are obtained in different locations [14] at
the cost of increased prediction error.

Conventionally, statistical modeling is utilized to model
rain attenuation. Such models utilize weather statistics over
extended periods of time, capturing the channel long-term
variations. Details of such models are provided in [15]
and references therein. Moreover, statistical models are the

TABLE 1. List of symbols.

default method adopted in the recommendations by the Inter-
national Telecommunication Union (ITU). They specifically
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TABLE 1. (Continued.) List of symbols.

capture link attenuation due to atmospheric gases, cloud, and
fog for frequencies higher than 10 GHz [16], [17], [18].
Moreover, the third generation partnership (3GPP) follows
a similar approach to model the rain attenuation statisti-
cally [19]. In [20], several statistical rain attenuation models
are assessed for the Ka-band. While the analysis shows that
the ITU-R P.618 model provides the most adequate predic-
tion, it is still limited due to possible shifts in rain patterns,
especially in tropical regions. To enhance the model, the ITU-
R channel model is modified in [21] to tailor for LEO links
where a novel model that utilizes exponential rain cell pro-
files and rain rate adjustment factors in introduced. However,
statistical models can only provide long-term predictions and
do not feature the temporal correlation present in the channel,
rendering short-term, i.e., duration of tens of milliseconds to
a few seconds only, prediction inadequate.

The lack of short-term prediction capabilities has prompted
researchers to investigate stochastic dynamic models (SDM)
for rain attenuation prediction. SDMs are mainly deployed
to solve dynamic decision-making problems, where they rely
on time-varying stimulus information to generate a stochas-
tic process. SDMs incorporate rain fading correlation with
respect to time [22]. Unlike statistical methods, SDMs pro-
vide an inherent compatibility with LEO satellites, whereby
the time-varying elevation angle can be easily incorporated
in the model [23]. Through their ability to derive both
first- and second-order statistics, SDMs provide a predic-
tion model with higher robustness to channel fluctuations,
detailed in [24] and references therein. While SDMs can
depict the time correlation, they fundamentally generate a
stochastic process, which cannot be used in active links that
rely on real-time prediction. Hence, SDMs rely on synthetic
rain data which is typically generated by using an uncorre-
lated random variable generator, e.g., log-normal model. As
a result, the rain data used as an input is not correlated in time,
however, rain is a highly correlated event with respect to time,
whereby the rain probability is much higher at certain months
of the year.

Another statistical approach that is widely adopted for
time-series prediction is the auto-regressive integrated mov-
ing average (ARIMA). ARIMA combines auto-regressive
models that provide data time correlation and the moving
average information to provide an approximated time-series
prediction [25]. An ARIMA channel model for predicting the
rain attenuation recorded for 28 GHz in Surabaya is discussed
in [26]. Although the model provides accurate prediction, it is
location specific. Nevertheless, it provides a generic frame-
work for ARIMA-based rain fading modeling for satellite

channels. Regressionmethods, however, are not very accurate
since they are not well-equipped to predict rapid variations
since they are based on averages.

Another approach to short-term forecasting is using
machine learning-based algorithms [27]. Using machine
learning techniques, the predictor network can, in real-time,
forecast the channel and allow the network to adjust its
parameters accordingly and provide its users with a seamless
service. In [28], a back-propagation neural network has been
used to predict the rain rate and corresponding attenuation,
however it has not been tested for higher frequency bands
where channel fluctuations are significantly higher. In [29],
synthetic rain data is generated and utilized to train a long
short-term memory (LSTM) neural network. The model used
provided promising results in terms of rain attenuation predic-
tion. The authors in [30] utilize an artificial neural networks
(ANN) to classify the effects of the weather on a Q/V-band
channel using real measurements from ItalSat. This is further
enhanced by the same authors by adding an LSTM layer
post-classification to provide more accurate forecasting [31].
Nevertheless, these models do not depict the effect of eleva-
tion angle and the accuracy of the models start to degrade as
the prediction window increases.

B. CONTRIBUTIONS AND OUTCOMES
This article presents a Q/V-band LEO satellite channel
model as follows; (i) a real-time forecasting method using
model-based deep learning and (ii) a statistical channel
simulator for channel modeling and system development.
The main contributions of this work are summarized as
follows.

• We present a statistical modeling approach that captures
the impact of rain fading incorporating the time-varying
element of LEO satellites and rain rate.
– Contrary to existing satellite channel models that

address GEO satellite links [15], we develop a
model that is suitable for the dynamic nature of
LEO satellite links. Namely, the model takes into
account the varying elevation angle characteristic
of LEO satellite links which directly impacts the
amount and variability of attenuation caused by the
rain.

– Contrary to the commonly used models provided
by the ITU [17], [32] which captures the fading
using the average only, we depict the fading as
a normal-distributed random process characterized
not only by its time-varying average but also by a
time-varying standard deviation.

• We develop a model-based deep learning LSTM net-
work that is capable of real-time forecasting for Q/V-
band LEO satellite channels. The proposed model-based
deep learning LSTM network capitalizes on the statis-
tical rain attenuation model to achieve more adequate
long-term prediction.
– Contrary to existing works [30], [31], which also

proposed the concept of using AI for time-series
forecasting of Q/V-band channels, our proposed
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modeling approach does not require a weather clas-
sification network prior to the LSTM layer.

– In comparison to existing works [31], [33], [34],
which present the use of LSTM networks for
time-series forecasting, our proposed architecture
providesmore accurate forecasting as the prediction
window increases.

– Contrary to existing satellite channel prediction
works [15], [31], which heavily feature geostation-
ary links, the proposed model-based deep learn-
ing approach extends its modeling to links with
time-varying elevation angle profiles making it an
ideal candidate for real-time prediction for LEO
satellite channels.

• We devise a time-correlated statistical channel model for
the generation of time-series for Q/V-band LEO satellite
channels. The proposed model relies on the statistical
modeling of the rain fading and a correlation filter that
introduces correlation in the time-series.

The rest of this paper is organized as follows. Section II
presents the LEO satellite channel path loss modeling
approach and details the statistical rain fading model pro-
posed. Section III proposes the real-time deep learning LSTM
model and the different layers it incorporates. Section IV
details the time-correlated satellite channel model. Section V
outlines the measurements used to validate the models and
the prediction results, while Section VI provides concluding
remarks.

II. SATELLITE PATH LOSS MODEL
We consider the downlink between a LEO satellite trans-
mitting with a constant EIRP, denoted as Pt, to a ground
stationwith a receiver antenna gain, denoted asGr, we assume
that the ground station can always track the satellite with
an accuracy such that the gain is always maintained at its
maximum. Accordingly, the received power at the ground
station is obtained as follows

Pr[dBm] = Pt[dBm] + Gr[dB] − l[dB] − η[dB], (1)

where l is the free-space path loss (FSPL) and η is the excess
path loss (EPL).

Since LEO satellites are continuously orbiting Earth, the
elevation angle is constantly changing with respect to a user
terminal on the ground. Accordingly, the FSPL is a function
of the elevation angle as follows

l(θ )[dB] = 20 log10 d(θ ) + 20 log10 fc − 147.55, (2)

where fc is the carrier frequency and d is the instantaneous
distance. By approximating Earth to an ideal sphere (i.e.
without oblateness), the distance can be approximated as
follows

d(θ ) =

√
R2⊕ + a2 − 2R⊕a sin

(
θ + asin

[
R⊕

a
cos θ

])
,

(3)

where θ represents the elevation angle, R⊕ is the Earth’s
average radius, a = R⊕ + h, and h is the satellite altitude

FIGURE 1. An example of the measured EPL time-series for
Q-band showcasing the effect of rain. Measurements are for
AlphaSat recorded at the ground station in Vigo with an
elevation of 30.6◦ on 6th of July 2017.

above the sea mean level. The derivation of (3) is presented
in Appendix A.

The EPL is the additional power loss due to impairments
such as gas absorption, rain fading, and shadowed multi-
path fading [35]. In practice, for high frequencies such as
the Q/V-band, the link is only established under line-of-
sight (LoS) conditions and thus impairments due to clutter
shadowing and multi-path fading can be ignored because of
the high directivity of the antenna. Hence, the total EPL is
composed of multiple parts as follows

η(θ ) = ηa(θ ) + ηc(θ ) + ηr(θ ), (4)

where ηa, ηc, and ηr are the excess power loss due to air
absorption, cloud attenuation, and rain fading respectively.
Depending on the weather conditions, the EPL can reach very
high levels (exceeding 20 dB) as illustrated by measurements
shown in Fig. 1.

A. ATMOSPHERIC ABSORPTION
Losses due to atmospheric absorption refers to the losses
generated when atmospheric gases absorb the energy of the
signals that interact with the gas molecules. Losses due to
atmospheric absorption vary with both the frequency and the
length of propagation path, i.e., varies for different elevation
angles. A detailed model that utilizes the layered estimation
of the atmosphere is defined in ITU-R P.676 [16] providing a
geometric calculation methodology to obtain the air absorp-
tion for different frequencies under various elevation angles.
Fig. 2 illustrates the atmospheric absorption path loss for
frequencies ranging from 0-100 GHz for selected elevation
angles.

B. CLOUD ATTENUATION
Another type of attenuation that becomes significant at high
frequencies is the cloud attenuation. Similar to the atmo-
spheric absorption, the cloud attenuation is highly dependent
on the elevation angle of the link. Moreover, other parameters
contribute such as the temperature and specific attenuation
coefficient which is typically between 1-3 (dB/km)/(g/m3) in
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FIGURE 2. Atmospheric absorption as a function of frequency
and for different elevation angles calculated from the model
derived in [36]. The approximate water vapor density is
calculated according to Eq. 6 in ITU-R P.835-2 model with
standard ground vapor density 7.5 g/m3 and altitude of
2 km [37].

FIGURE 3. Rain geometric model, for a typical LEO satellite
(400 - 2000 km), showing a non-homogeneous rain, height, and
cloud thickness. Rain color shade represents the rain rate level
(darker corresponds to heavier rain).

the Q/V-band [18]. We address the effect of cloud distribu-
tion and incorporate their effect within the rain attenuation
variance in (5).

C. RAIN ATTENUATION
Rain attenuation is very severe in transmissions that utilize
the V-band, as illustrated in Fig. 1, where the attenuation due
to rain can exceed 20 dB in some cases. In the case of LEO
links, rain attenuation is contingent on both the amount of rain
(rain rate) and the signal path length (elevation angle), both of
which are time dependent. Moreover, rain is an event that is
probabilistic in nature and depends on several interconnected
factors such as the cloud thickness and size, temperature and
precipitation levels in the atmosphere. Modeling the attenua-
tion of the signal power due to rain is extensively studied in
the literature whereby many models that rely on empirical,
statistical, and learning approaches are available [15].

The attenuation caused by the rain is also not determin-
istic for a given rain rate, denoted by R and measured in
mm/hr, and thus ideal geometric models that are usually
featured in the literature are not very accurate. This is due
to over-simplifications such as, the rain height is assumed to
be constant, the cloud thickness as identical, and the rain rate
as uniform across the different clouds. On the other hand, the
variance in the fading is due to the spatial inhomogeneity of
the rain rate along the link and the impact of the drop size
distribution. A more realistic scenario is illustrated in Fig. 3,
however is very difficult to model since the rain height, cloud
thickness, and rain rate are stochastic in nature. To overcome
some of these simplifications, we propose to capture the
rain attenuation as a random process that follows a normal
distribution as follows

ηr(θ ) ∼ N (µ(R, θ), σ (R, θ)), (5)

where µ and σ are the rain attenuation average and standard
deviation parameters, measured in decibels. Both parameters
are a function of the rain intensity, illustrated in Fig. 4, where
both increase as the rain rate increases for a fixed elevation
angle, the rain attenuation EPL is typically depicted in the
literature with its average only. In this case the standard
deviation can compensate for the non-homogeneous nature
of the system.

Unlike in terrestrial links, only a small portion of a satellite
communication link is impacted by rain which depends on
the path length through atmosphere and consequently the
elevation angle. As a result, in order to model the rain fading
mean, we need to account for the slant distance, denoted with
Ls, which corresponds to the actual path-length impacted by
the rain as illustrated in Fig. 3. Accordingly, the average rain
attenuation is the rain rate multiplied by the effective rain
distance [17] as follows

µ(r, θ) = c1kRα(hr − hs) csc θ, (6)

where k and α are empirical parameters obtained for different
frequencies, elevation, and tilt angles [32], hr and hs are the
rain and receiver heights with reference to the mean sea level
respectively, and c1 is the reduction factor. In practice, the
reduction factor is empirically obtained due to its dependence
on many incorporated factors such as the receiver geographic
location [15].

In our proposed approach, we model the variability in rain
attenuation for a given rain rate using both the mean and the
standard deviation parameters. Contrary to typical methods
which only consider the mean, we also capture the standard
deviation as a function of the horizontal rain distance, LG,
as illustrated in Fig. 3. This is because the smaller the hori-
zontal distance, the less likely that the signal will fall under
another rain cell and thus will have more homogeneous rain
behaviour. With the aid of empirical fitting, we model the
standard deviation as follows

σ (r, θ) = c2Rc3 (hr − hs) cot θ, (7)

where c2 and c3 are constants obtained using fitting and
are dependant on the local climate. Note that as the rain
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FIGURE 4. Realization of the proposed long-term statistical rain
attenuation modeling using both the EPL average and standard
deviation compared to AlphaSat Q/V-band measurements
collected at Chilbolton, detailed in Sec. V.

rate increases, the standard deviation increases as well,
this can be accounted due to the presence of larger and
nonuniform clouds, the increase in dispersion of rain droplet
sizes, and the increase of rain height [15]. In addition,
higher elevation angles result in a shorter horizontal distance
thus reducing the standard deviation of the power fading.
The reasoning for both (6) and (7) are further explained
in Appendix B.

III. SATELLITE CHANNEL TIME-SERIES FORECASTING
In this section, we present a real-time predictor using model-
based deep learning that combines both long- and short-term
characteristics of the channel to obtain more accurate fore-
casting. This is achieved by guiding a deep learning LSTM
network with the statistical modeling presented in Sec. II. The
accuracy of the forecasting can be significantly enhanced by
incorporating long-term statistics of the rain rate along with
the neural network, as illustrated in Fig. 5. This is particularly
helpful for practical links where a LEO ground terminal is
expected to have access to real-time measurements of the
following parameters,

1) Satellite ephemeris (historic and future): LEO satellites
move in a dynamic motion with respect to the ground
terminal and are therefore have a rapidly changing
elevation angle. Ground terminals can accurately esti-
mate the satellite pass using methods such as two-line
elements, or satellite ephemeris.

2) Varying rain rate (historic): Rain rate affects the
long-term aspect of the channel whereby higher rates
lead to higher EPL and higher EPL variation. The
ground terminal can have access to real-time measure-
ments of the rain rate if a rain sensor is installed, or can
have less-frequent rain data obtained from weather
monitoring services.

3) Path loss measurements (current): The current mea-
sured EPL of the communication link, where the
ground terminal has access to real-time measurements
of the channel.

A. MODEL-BASED LSTM ARCHITECTURE
Due to their inherent sequence detection ability, LSTM
networks can provide accurate prediction especially for
short-term forecasting which is highly correlated in time. To
enhance the LSTM network capabilities for longer prediction
windows, we utilize a novel model-based LSTM architecture
that takes into account the rain statistics. The model-based
LSTM network architecture consists of four main layers;
(i) an input layer, (ii) LSTM layer, (iii) regression layer,
and (iv) the output layer.

1) INPUT LAYER
The input layer is responsible for injecting the different input
features represented by the input state vector, denoted withXn
where n is the sample index. The input state vector consists of
three main entries; the current EPL, the predicted statistical
average, and the predicted standard deviation. The input vec-
tor is first scaled (standardized) with respect to the average
and standard deviation of the training input, denoted with
X̄tr and sXtr respectively. Note that the training procedure is
detailed in Sec. III-B. Assuming that the measurements are
sampled at a sampling rate of Ts, then the input array to the
model-based LSTM is constructed as follows

Xn =

 η̃n
µn+1
σn+1

− X̄tr

sXtr
, (8)

where η̃ is the measured EPL.

2) LSTM LAYER
This portion of the network holds the different LSTM units.
Each unit is composed of a cell and three gates; input, forget,
and output gates. The cell is the memory component and the
gates are responsible for regulating the flow of information
into the cell. The equations to calculate the input (i), forget
(f ), and output (o) gates are formulated as follows [38] it

ft
ot

 = σg

 Wi
Wf
Wo

 xt +

 Ui
Uf
Uo

 yt−1 +

 bi,
bf ,
bo,

 (9)

where x and y are the input and output vectors at a time instant
t , σg(·) is the gate activation function defined as a sigmoid
given as σg(x) = (1 + e−x)−1, and Wi,Wf , Wo and Ui, Uf ,
Uo and bi, bf , bo are the input, recurrent, and bias weights
for the input, forget, and output gates respectively. Moreover,
the cell input activation equation responsible for the feature
extraction is calculated similarly as follows [38]

c̃t = σc(Wgxt + Ugyt−1 + bg), (10)

where σc(·) is the hyperbolic tangent function σc(x) =

tanh(x), and Wg, Ug and bg are the input, recurrent, and bias
weights for the cell activation. Accordingly, the cell state is
calculated as follows [38]

ct = ft ⊙ ct−1 + it ⊙ c̃t , (11)
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FIGURE 5. A high-level abstract of the proposed real-time forecasting using model-based
deep learning LSTM for Q/V-band LEO links.

where ⊙ denotes the Hadamard product or element-wise
product. Finally, the output of the unit is obtained as
follows [38]

yt = ot ⊙ σc(ct ). (12)

The LSTM layer utilized in this model consists of a deep
learning LSTM with three layers, 64 forward LSTM units in
the first layer, followed by another 64 forward LSTM units in
the second layer. A zoomed illustration of each LSTM unit is
shown in Fig. 6.

3) REGRESSION LAYER
The layer is responsible for calculating the regression loss
function. Since the application of this layer is for sequence
regression, then the loss function is the mean square error
(MSE) and is calculated as follows

loss =
1
M

M∑
i=1

(ti − yi)2, (13)

where yi is the predicted output and ti is the target output and
M is the total number of responses.

4) OUTPUT LAYER
This layer is responsible for de-standardizing the output vec-
tor, denoted by Yn. Accordingly, the model-based LSTM
predicted EPL is obtained from the output as follows

η̂n+1 = sYtrYn + Ȳtr, (14)

where Ȳtr and sYtr are the target vector mean and standard
deviation respectively.

FIGURE 6. An illustration of the different components and
hidden layers within a typical LSTM cell. LSTM cells take into
account the previous cell state and output, and incorporate
their values in the calculation of the new state and output.

B. MODEL-BASED LSTM TRAINING AND TESTING
The dataset required to train the model-based LSTM network
is composed of three time-series; (i) EPL measurements,
(ii) rain rate, and (iii) the elevation angle between the satel-
lite and ground station. The rain rate and elevation angle
time-series are used to obtain the average and standard devi-
ation time-series from (6) and (7) respectively. The training
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FIGURE 7. Block diagram of the channel predictor (simulator) for the modeling scenario. The filter utilizes an
exponentially determined by means of curve fitting correlation time factor τcor.

data is split into 90% training samples and 10% for testing
samples.

1) TRAINING
It is more convenient to do the training in an offline mode
after the measurements were being collected. Assuming that
the training data has a length of M samples, then the input
training matrix is generated as follows

Xtr =

 η1, . . . , ηM−1
µ2, . . . , µM
σ2, . . . , σM

 (15)

where µ and σ are always a sample ahead because they
are used to predict the EPL. On the other hand, the target
vector is generated as Ytr = {η2, . . . , ηM }. Prior to training
the network, both the input matrix and target vectors are
standardized in order to enhance the efficiency. The input
matrix is standardized by subtracting its mean, X̄tr, and then
dividing by its standard deviation, sXtr . Similarly, the target
vector is standardized by subtracting its mean Ȳtr, followed
by dividing it by its standard deviation, sYtr . The network is
trained using a total of 100 epochs using the Adam optimiza-
tion algorithm [39].

2) TESTING
The testing is achieved by passing the testing proportion of
the measurements that are still blind to the network. These
measurements should range in fading severity, rain rate varia-
tions, and elevation profile in order to determine the accuracy
of the network. Similar to the training dataset, the testing
measurements need to be standardized using the mean and
standard deviation of the training set as discussed in the
training procedure above.

C. IMPLEMENTATION DETAILS
The proposed machine learning prediction algorithm was
developed using MATLAB scripting, whereby both the deep
learning [40], parallel computing [41], and statistics and
machine learning [42] toolboxes were utilized. The system
used for the experimentation has a 16-logical core Intel Xeon
CPU at 3.2GHz and anNvidia Quadro 4000GPU. The source
code for the trained machine learning model is also provided
on GitHub [43].

IV. SATELLITE CHANNEL TIME-SERIES GENERATION
For cases where there is no access to real-time measure-
ments, synthetic data emulating radio channel characteristics
can provide a viable route for scenario simulation and net-
work modeling. In order to incorporate realistic temporal
correlation in the EPL, we develop a Q/V-band LEO satel-
lite statistical channel model that modifies an uncorrelated
time-series by passing it through a correlation filter as illus-
trated in Fig. 7.

Unlike the real-time predictor presented in Sec. III, the
statistical time-series generator only requires two inputs;
(i) the elevation angle and (ii) the rain rate data. The gen-
erator follows the statistical model detailed in Sec. II where
both the time-varying elevation angle and rain rate are uti-
lized to derive the distribution parameters; the mean and
standard deviation obtained from (6) and (7) respectively.
Both parameters are then fed into a pseudo-random variable
(RV) generator (e.g., Mersenne Twister [44]) to generate an
independent and uncorrelated normally distributed random
process, denoted by Xηr (t, τ ) where τ corresponds to the ran-
dom variable index. Then, the RV samples are passed through
the correlation filter that incorporates temporal correlation in
the generated EPL time-series.

In typical scenarios, the correlation of the EPL time-series
decreases with time, resulting in a decaying autocorrelation
function. We follow the assumption established in [22] where
the decay is modeled using an exponential fit as follows

R̂(τ ) = exp
(

−
τ

τcor

)
, (16)

where τ is the delay and τcor is the correlation time fac-
tor of the channel. The correlation time factor captures the
effect of the holding time of the channel, i.e., for larger
correlation constant the fading exhibits longer temporal cor-
relation. In the case of rain attenuation EPL, the correlation
time magnitude is assumed to be solely dependent on the
rain rate, whereby the correlation time is expected to be
inversely related to the variations in the signal strength.
This is similar to channel coherent time in multi-path fading
where higher signal variations lead to a reduced coherent
time. Note that as the elevation angle decreases, the more
the link starts to behave like a terrestrial link whereby the
horizontal elements becomesmore dominant. Thismeans that
the transmission passes through more rain and thus the time-
correlation increases. However, due to lack of measurements
for LEO satellites in the Q/V-band, we restrict the correlation
to be a function of the rain.
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FIGURE 8. Photos of the Q/V-band ground stations used in each
of the three sites; (a) Chilbolton, (b) Vigo, and (c) Budapest.

The uncorrelated RV samples are passed through a corre-
lation filter in order to introduce the appropriate correlation
in the time-series. The chosen filter model depends on the
nature of correlation that the channel has (e.g., Jakes filter is
used to model the correlation for multi-path fading for land
mobile satellite channels in ITU-R P.681 [45]). The resulting
filter impulse response is obtained for an exponential auto-
correlation model as follows

hcor(t, τ ) =

(
2
π

) 3
4 1

√
τcor(t)

I0

(
τ

τcor(t)

)
(17)

where I0(·) is the modified Bessel function of the first kind.
Note that the correlation time is not constant since the rain
profile is time-varying. While the output Yη(t, τ ) is now
correlated, the filter does not preserve its mean and standard
deviation. Hence, a scaling operation is required to retain the
statistics of the RV as follows

η̂(t, τ ) = µ(t) + σ (t)

(
Yη(t, τ ) − µYη (t)

σYη (t)

)
, (18)

where µYη (t) and σYη (t) are the time-varying mean and stan-
dard deviation of the correlated output Yη(t, τ ) respectively.
Since we are interested in the EPL in the time-domain only,
a sampler is added to sample the random process as shown in
Fig. 7.

V. CHANNEL MEASUREMENTS AND RESULTS
Since there are currently no LEO satellites with Q/V-band
payload that is publicly available, we have utilized GEO
measurement campaigns with ground stations at several geo-
graphical locations to capture the varying elevation angle
effect. In this work, we exploit the Q/V-band (at frequency
39.04 GHz) by utilizing measurements collected via the
experimental payload on-board AlphaSat from three different
sites (Chilbolton, Vigo, and Budapest). Photos of the ground
stations at the three different sites are shown in Fig. 8. The
different campaign parameters are summarized in Table. 2 for
each site including the corresponding elevation angles.

A. MEASUREMENT DATA-SETS
The collected measurements represent the EPL measured by
the ground station as a function of time. This is achieved by

FIGURE 9. Comparison between the measured and the
forecasted time-series EPL. The forecasted EPL is obtained
using the model-based LSTM with a prediction window
of 100ms.

calculating the difference between the measured signal power
and the reference signal power (measured with clear sky con-
ditions), similar to the approach utilized by [14]. Moreover,
the atmospheric gas absorption is calculated using ITU-R
P.676 [16] and is also subtracted from the difference. Since
the link is to a GEO satellite, the EPL due to atmospheric
absorption is relatively stable over time. Accordingly, the
recorded data in each site uses the EPL time vector which
corresponds to purely the rain attenuation effect.

To compare the EPL against different rain conditions, the
corresponding rain rate data was also collected at each of
the sites. Hence, the sites are also equipped with rain sen-
sors capable of measuring the rain rate. Note that in order
to maintain the accuracy of the model, the rain data needs
to be measured in harmony with the power measurements,
i.e., the rain sensor is synchronized with the receiver. Thus,
the measurement data-sets include both time vectors of the
EPL and rain rate measurements sampled with the same
sampling intervals.

TABLE 2. AlphaSat site measurement information.

B. REAL-TIME PREDICTION PERFORMANCE RESULTS
We follow the methodology detailed in Sec. III-B to train the
real-time prediction network using the data obtained from the
measurements of the three different sites. After the network is
trained, the testing data is then injected to the neural network
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FIGURE 10. Comparison between the measured and forecasted
time-series EPL using both the open-loop (0-300s) and
closed-loop (300-600s) prediction. The forecasted EPL is
obtained using the model-based LSTM.

to verify its performance. Fig. 9 illustrates the prediction
accuracy of the model-based deep learning method (black)
compared to the measured values (blue). The prediction win-
dow is 100 ms (equal to the sampling time) or one sample,
where the network is constantly being updated with the mea-
sured value in its next prediction iteration, i.e., open-loop
prediction.

Moreover, we assess the accuracy of the proposed method
for higher prediction windows to examine the model per-
formance as it transitions from short- to medium-term
prediction. This is achieved through closed-loop prediction,
where the network is not updated with any real measure-
ments to adjust until the prediction window elapses. Fig. 10
illustrates an example for both the open- and closed-loop pre-
dictions using the model-based LSTMmodel using Q/V-band
measurements collected at Chilbolton. The accuracy of the
real-time prediction model is assessed by examining the error
function, i.e. the difference between the predicted and the
measured rain fading EPL. A good tool that measures the
prediction accuracy is the Root Square Mean Error (RMSE)
obtained for a prescribed prediction window τ as follows

RMSE(τ ) =

√√√√ 1
W

W∑
n=1

|η̂n − η̃n|2, (19)

where W is the total number of samples in a prediction win-
dow of τ seconds. The RMSE changes with the forecasting
window and deteriorates as the window size increases. To
obtain a more statistically indicative measure, we average
the RMSE obtained over different measurements for the
same prediction window. The average RMSE as a function
of the window duration is illustrated in Fig. 11 for (i) the
proposed deep learning model-based LSTM, (ii) one layer
LSTM proposed in the literature [31], and the (iii) mov-
ing average which relies on regression models [26]. The
proposed model-based deep learning LSTM method demon-
strates enhanced prediction accuracy of 0.025 dB even with
larger prediction windows in comparison to traditional LSTM
networks.

FIGURE 11. Comparison of the RMSE with respect to the real
measurements obtained from the different models for a variable
prediction window. The proposed model-based DL LSTM
demonstrates better prediction accuracy than the conventional
model-free LSTM and moving mean as the prediction time
window increases.

C. STATISTICAL CHANNEL MODEL RESULTS
To assess the validity of the time-series generated from the
statistical channel simulator, we utilize the GEO measure-
ments and infer them on a simulated LEO satellite pass. First,
to obtain the correlation time curve, the measured EPL is
divided into smaller segments (e.g., 1 hour intervals) with
equal sample size and the autocorrelation for each segment
is calculated as follows

r̂k =

∑T−k
i=1 (si − s̄)(si+k − s̄)∑T

i=1(si − s̄)2
, (20)

where s = {η̃1, η̃2, . . . , η̃T } represents a segment of measure-
ments, T is the total number of samples in a measurement
segment, s̄ is the EPL mean per segment, and k is the lag
number. The obtained autocorrelation is exponential in nature
and can be fitted using the model in (16) to obtain each
segment’s corresponding correlation time.

The correlation time vector obtained is then binned into dif-
ferent categories depending on its associated segment average
rain rate. The correlation times per bin are then averaged to
obtain the correlation time as function of the rain rate. For
our measurements, we found that the relationship between
the rain rate and the correlation time can be represented by
a linear fit function as follows

τcor(t) = c4R(t) + c5, (21)

where c4 and c5 represent the fitting constants of the rela-
tionship as a function of r , since the rain rate is time-varying,
then the corresponding channel correlation time is also time-
variant. The correlation time curve provides the filter with the
required correlation time as a function of the LEO satellite
pass. Note that all the fitting constants in this paper for the
three different sites are listed in Appendix C.
In parallel, the uncorrelated EPL random process is gener-

ated based on the LEO elevation angle andmeasured rain rate.
Then, the uncorrelated random process is time-correlated
using the correlation filter to obtain the projected GEO mea-
surements on a LEO satellite pass. Fig. 12 illustrates an
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FIGURE 12. An example channel prediction using the channel
statistical simulator for one LEO satellite pass with a maximum
elevation angle of 50◦ and altitude of 1,200 km. The predicted
EPL is plotted in blue whereas the elevation angle is plotted in
red.

FIGURE 13. Validation of the generated EPL from the channel
generator, parameters of which are in Fig. 12, showcasing the
close fit of the (a) time-varying statistics and (b) correlation of
the generated and model.

example of the time-series generated using the statistical
channel simulator for a simulated LEO satellite pass with a
maximum elevation angle of 50◦ and an altitude of 1,200 km.
Note that the resulting path loss increases in variability as the
elevation angle decreases. The resulting time-series preserves
the statistics while maintaining the induced time-correlation
as validated in Fig. 13.

VI. CONCLUSION
With the current accelerating rate of satellite network deploy-
ments, radio spectrum is becoming more congested with
different communication services. New spectral regions in
the Q/V-bands are expected to offer superior bandwidth for
next generation satellite networks. Despite the availability
of this band, both the magnitude and the variability of the
channel losses are increased in high frequency bands. In this
work, we provided two approaches to capture the effect of
weather fading in the Q/V-band for LEO satellite links. The
first approach is a forecasting method using model-based
deep learning, intended for real-time operation of satellite

terminals providing an enhancement of 50% in comparison
to traditional deep learning prediction methods. The sec-
ond approach relies on a statistical channel simulator that
generates the path loss as a time-series random process,
intended for system design and research. We validated both
approaches by capitalizing on real satellite measurements
that are obtained from AlphaSat’s Q/V-band transmitter at
different geographic latitudes. Furthermore, we advocate for
a public Q/V-band LEO satellite platform to be developed in
the near future to provide measurements at wider elevation
angles.

APPENDIX A
PROOF OF (3)
The distance is typically expressed as a function of the global
zenith angle by using the cosine rule as follows

d(ϕ) =

√
R2⊕ + a2 − 2R⊕a cosϕ, (22)

where ϕ is the global zenith angle. Using both the sine rule
and the total sum of a triangle’s angles, we can equate the
global zenith angle to the elevation angle with the following
relationship [8]

ϕ =
π

2
− θ − asin

(
R⊕

a
cos θ

)
. (23)

By invoking the trigonometric relationship of the shifted
cosine function, we obtain the simplified version present
in (3).

APPENDIX B
PROOF OF (6) AND (7)
The mean rain fading is modeled as follows

µ(θ ) = γµLs(θ ), (24)

where γµ = akrα is the attenuation rate in dB/km [32] and
Ls is measured in km. Using the geometric relationship, the
slant distance that is submerged in rain is obtained as follows

Ls(θ ) =
hr − hs
sin θ

. (25)

By substituting Ls, we obtain the simplified relationship pre-
sented in (6). On the other hand, the fading standard deviation
is modeled as follows

σ (θ ) = γσLG(θ ), (26)

where γσ = brc is the attenuation rate in dB/km and LG is
measured in km. Using the geometric relationship between
the slant distance and the elevation angle, the horizontal
distance is calculated

LG = Ls cos θ. (27)

By substituting Ls and LG, we obtain the simplified relation-
ship presented in (7).

APPENDIX C
EMPIRICAL MODEL PARAMETERS
Here, we list the values of the empirical model parameters
used for the three different sites.
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TABLE 3. Empirical model parameters.
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