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ABSTRACT In reinforcement learning, the objective is almost always defined as a cumulative function
over the rewards along the process. However, there are many optimal control and reinforcement learning
problems in various application fields, especially in communications and networking, where the objectives
are not naturally expressed as summations of the rewards. In this paper, we recognize the prevalence of
non-cumulative objectives in various problems, and propose a modification to existing algorithms for opti-
mizing such objectives. Specifically, we dive into the fundamental building block for many optimal control
and reinforcement learning algorithms: the Bellman optimality equation. To optimize a non-cumulative
objective, we replace the original summation operation in the Bellman update rule with a generalized
operation corresponding to the objective. Furthermore, we provide sufficient conditions on the form of the
generalized operation as well as assumptions on the Markov decision process under which the globally
optimal convergence of the generalized Bellman updates can be guaranteed. We demonstrate the idea
experimentally with the bottleneck objective, i.e., the objectives determined by the minimum reward along
the process, on classical optimal control and reinforcement learning tasks, as well as on two network routing
problems on maximizing the flow rates.

INDEX TERMS Reinforcement learning, optimal control, Markov decision process, wireless network,
routing.

I. INTRODUCTION

IN REINFORCEMENT learning (RL), an agent performs
a sequence of actions to optimize a certain objective,

over an environment modeled as a Markov decision process
(MDP) [1]. The objective value is determined by the collec-
tion of intermediate rewards the agent receives until the MDP
is terminated (or an absorbing state is reached). In most of the
literature, the objective is defined as the summation of these
intermediate rewards, which corresponds to the summation
operation in the Bellman optimality equation [2] when com-
puting the value function. Such cumulative objectives indeed
capture the ultimate goals for many problems, such as Atari
games [3], stock trading [4], advertisement placements [5],
and so on. Nonetheless, there are many problems with objec-
tives that do not translate to summations of rewards.

Specifically, in the field of wireless communications,
there are many system optimization problems that can be
formulated and decomposed into sequences of optimization
decisions, whose global objectives cannot be readily
expressed as summations of rewards from individual

optimization decisions. Examples of such problems include
but are not limited to max-min optimizations in routing and
resources allocation [6], [7], [8], [9], harmonic mean max-
imization for traffic engineering [10] and for transmission
system optimization [11], [12], the proportional fairness opti-
mizations for wireless communications [13], [14], [15], and
so on. In this paper, we recognize the prevalence of problems
with non-cumulative objectives, and propose modifications
to many existing optimal control and RL algorithms for
optimizing such objectives1.
In the optimal control or reinforcement learning litera-

ture, one class of problems with non-cumulative objectives
are the problems where only terminal states matter, such
as the game of Go [16], [17] or Chess [18]. Researchers
managed to cast the objectives into summations of rewards,
by assigning every reward a zero value except for the
terminal reward. Problems seeking fast task completions form

1The code for this paper is available at: https://github.com/
willtop/Reinforcement_Learning_With_Non-Cumulative_Objective
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another class of examples, such as maze navigation or the
mountain-car control task [19]. Researchers cast the objec-
tives as cumulative rewards by assigning a penalty for each
action the agent takes before reaching the destination [20].
There are also researches on objectives that are not easily
cast into summations, such as the objectives as the average
reward [21], [22], [23], [24], [25], [26], [27]. To optimize
the average reward, besides computing the summation of
rewards, the number of steps is either tracked explicitly [22],
or taken to the limit at infinity (for cyclic non-terminating
MDPs) [23], [24]. Regardless, the summation operation in
the Bellman optimality equation remains in these proposed
algorithms. There have been two works [28], [29] exploring
maximum-reward objectives, with applications on financial
derivatives and medicine design. These works recognize the
possibility of modifying the Bellman optimality equation,
however their scopes are restricted to the maximum-reward
objective formulation, instead of generalizing to a larger class
of objective functions or proposing universal conditions for
convergence. Furthermore, for MDPs whose state transition
is a stochastic function of the input, the convergence to the
global optimal policy cannot be guaranteed for the approach
in [28] and [29].

In this paper, we generalize the optimal control and
reinforcement learning objectives to a variety of functions
over the intermediate rewards. To optimize the generalized
objectives, we exploit the flexibility in the Bellman optimal-
ity equation and modify it accordingly to the generalized
objective functions. Specifically, we replace the summation
operation in the Bellman optimality equation by new oper-
ations catering to the non-cumulative objective functions.
Through this approach, we can readily adapt the exist-
ing optimal control or reinforcement learning algorithms
to optimizing non-cumulative objectives, without needing
to re-engineer a new set of artificial rewards just to cast
the objectives into a summation of rewards. Furthermore,
we provide the theoretical analysis on the generalized Bell-
man updates, and propose sufficient conditions on the form
of the new operation as well as the assumptions on the
MDP under which the global optimality of the converged
value function and the corresponding greedy policy can be
guaranteed.

By expanding the possibilities of the objective functions,
we are now able to solve problems with objectives that
are intrinsically non-cumulative. For experiments, we focus
on the bottleneck objective: the objective as the minimum
reward of all intermediate rewards. To optimize bottleneck
objectives, we replace the summation operation in the Bell-
man optimality equation by the minimization operation, and
apply the generalized Bellman update rule to learn the value
function. In numerical simulations, we first re-formulate
two classical reinforcement learning problems: the CartPole
problem [30] and the Atari game Breakout, with bottleneck
objectives. Through optimizing these problems with the pro-
posed generalized Bellman updates, we obtain competitive

performances by policies with different strategies from the
classical solutions.

We further experiment on two network communication
applications with bottleneck objectives: the problem of find-
ing the single-path maximum flow on a directed graph as an
optimal control task, as well as joint routing and spectrum
access over a wireless ad hoc network as a reinforcement
learning problem. The proposed approach achieves excellent
performances on both problems that are otherwise difficult to
solve using the conventional formulation and learning algo-
rithms. Specifically, for the wireless ad hoc network problem,
a prior work [6] has explored the Monte-Carlo estimation
approach for learning the value function. In contrast, the pro-
posed generalized update rule allows for the adaptation of the
highly efficient temporal difference learning technique [31]
to the generalized objective formulation, which results in
noticeably faster and more stable learning progress. Further-
more, as the wireless ad hoc network problem is essentially
a multi-agent reinforcement learning (MARL) problem, the
results obtained also suggest that the proposed approach is
readily compatible and effective under the multi-agent rein-
forcement learning setting.

The rest of the paper is organized as follows. In Section II,
we introduce the general problem description on optimizing
non-cumulative objectives, as well as several examples where
non-cumulative objectives are applicable. In Section III,
we formally propose the method of the generalized Bell-
man update rules, and provide theoretical convergence and
optimality analysis. We provide the detailed problem formu-
lations on several example applications, and elaborate on how
the proposed generalizations can be applied to optimizing
such specific applications in Section IV, followed by the
numerical simulations and analysis of the results in SectionV.
Lastly, we draw conclusions in Section VI.

II. GENERALIZED OPTIMAL CONTROL &
REINFORCEMENT LEARNING FORMULATION
A. CONVENTIONAL FORMULATION
Let S and A denote the state space and the action space of
an MDP. At time step t , the agent observes a state st ∈ S,
executes an action at ∈ A, and receives a reward rt ∈
R while transiting to the next state st+1 ∈ S. We use
{pRt |St ,At (rt |st , at )}t=1,2... and {pSt+1|St ,At (st+1|st , at )}t=1,2...
to denote the reward distribution and the state transition
distribution of the MDP, but often omit the subscripts
for notational simplicity, e.g., as in {p(rt |st , at )}t=1,2... and
{p(st+1|st , at )}t=1,2.... In most of the literature, the objective
is defined as the summation of all intermediate rewards the
agent received along the process:

u = r1 + γ r2 + γ 2r3 + . . . , (1)

where γ ∈ (0, 1) is the discount factor to encourage the
agent focuses more on rewards closer in time. The study
of control (when both the reward distribution p(rt |st , at )
and the state transition distribution p(st+1|st , at ) are known)
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or reinforcement learning (when neither p(rt |st , at ) nor
p(st+1|st , at ) is known) is to find a policy π for the agent to
select actions based on states as at ∼ π (st ),∀t , such that u in
Eq. (1) is optimized.

Corresponding to Eq. (1), the value function is defined
as the future cumulative rewards the agent expect to receive
under a specific policy. Let V = {(s, a) |s ∈ S, a ∈ A} denote
the set of all possible state-action pairs. The value function
Qπ
∈ R|V | is a vector containing the future cumulative

rewards expected starting from each (s, a) tuple, with:

Qπ (st , at )

= E {p(rt′ |st′ ,at′ )}t′=t,t+1...
{p(st′+1|st′ ,at′ )}t′=t,t+1...
{at′+1∼π (st′+1)}t′=t,t+1...

[
rt + γ rt+1 + γ 2rt+2 + . . . |st , at

]
(2)

= E p(rt |st ,at )
p(st+1|st ,at )
at+1∼π (st+1)

[rt + γQπ (st+1, at+1)|st , at ]. (3)

As shown in [32], for stationary single-agent fully-observable
MDPs, there exists a deterministic global-optimal policy π∗,
with its value function denoted as Q∗, with the following
relationship:

π∗(st ) = argmaxaQ(st , a) (4)

Essentially, π∗(st ) is a deterministic distribution with all
its probability density on the single action that maximizes
Q(st , at ). Therefore, π∗ is commonly referred to as a greedy
policy.

For optimal control, Q∗ can be computed by Eq. (3) with
π being the global optimal greedy policy π∗, leading to the
Bellman optimality equation:

Q∗(st , at )

= E p(rt |st ,at )
p(st+1|st ,at )

[rt + γ max
at+1

Q∗(st+1, at+1)|st , at ]. (5)

Meanwhile, for reinforcement learning, Q∗ is learned
through iterative updates of sample-based approximations to
Eq. (5), known as the Bellman update:

Q(st , at )← rt + γ max
at+1

Q(st+1, at+1), (6)

where the superscript on Q is dropped, since during these
updates, Q does not necessarily correspond to the value
function of any policy. We note that in Bellman updates,
as shown by Eq. (6), the updated estimations for Q are
obtained through bootstrapping from the current estimations.
This learning technique is commonly known as tempo-
ral difference learning [31], which enjoys low estimation
variance and high learning efficiency. Eq. (6) is used
directly in the value-based algorithms such as SARSA [33],
Q-learning [34], with the process commonly referred to as
value iteration; and policy-based algorithms such as the class
of Actor-Critic methods [35].

B. GENERALIZED NON-CUMULATIVE OBJECTIVES
While it is proper to express the objective as Eq. (1) in
many scenarios, there exist applications where the objective
u is intrinsically some other function over the intermediate
rewards. In this paper, to generalize the class of objectives
that can be optimized, we formulate the objectives as general
functions over intermediate rewards:

u = f (r1, r2, r3, . . . ). (7)

Examples for such objectives can be seen from a wide
variety of problems, which include, but are not limited to, the
following classes of problems:
• The bottleneck of the intermediate rewards along the
process, which fits into the large class of max-min
optimization problems [6], [7], [8], [9]. Among these
max-min optimizations, the network routing problems
are perhaps the most standout examples.

• The largest reward among the intermediate rewards
along the process [28], [29].

• The harmonic mean of the intermediate rewards along
the process, such as the average traveling velocity, elec-
trical resistance in circuits, density of mixture. It has also
been used in wireless communications as a measure of
fairness among users [10].

Among various non-cumulative objectives, the objective of
the bottleneck reward is particularly prevalent. An important
class of problems with bottleneck objectives are the network
routing problems. Consider a data flow in a communication
network consisting of multiple links, the highest rate the flow
supports is the rate of the bottleneck link (i.e. the link with
the lowest rate). Correspondingly, network routing problems
are best formulated by the bottleneck objective. We describe
such problems in detail in Section IV.

III. LEARNING ALGORITHMS WITH GENERALIZED
BELLMAN UPDATES
This section aims to generalize optimal control and rein-
forcement learning to MDPs with non-cumulative objectives
as Eq. (7) by modifying the operation within the Bellman
updates in Eq. (6). We present sufficient conditions on the
modified operation as well as assumptions on the underly-
ing MDPs such that the Bellman updates still maintain the
global optimal convergence property. Furthermore, we pro-
vide examples of frequently-encountered non-cumulative
objectives with corresponding operations that satisfy the con-
ditions for convergence.

A. BELLMAN UPDATE WITH GENERALIZED OPERATIONS
Observing Eq. (6), the update target of the new iteration
consists of three fundamental elements:
(a) Intermediate reward rt ,
(b) Value function at next state-action pair Q(st+1, at+1),
(c) Summation operation to combine a and b.
In this paper, we explore substitutions of c in the Bellman

optimality equation and its update rule by an alternative

126 VOLUME 1, 2023



Cui and Yu: Reinforcement Learning With Non-Cumulative Objective

computational operation, which we refer to as the generalized
Bellman update operation, denote by g(·, ·). The operation
takes a and b as the two arguments. As the result, we gener-
alize Eq. (6) to the following form:

Q(st , at )← g
(
rt , γ max

at+1
Q(st+1, at+1)

)
. (8)

Through this generalized Bellman update operation, we are
able to adapt the highly efficient temporal difference learning
technique, as well as many popular reinforcement learning
algorithms that based on it (e.g. SARSA, Q-learning, Actor-
Critic), to optimizing the non-cumulative objectives, with
minimal changes to these algorithms.

To determine which generalized objective functions f (· · · )
as per Eq. (7) can be optimized with such generalized Bell-
man updates, the first criterion is that the objective function
needs to have optimal substructure [36], as a fundamen-
tal requirement of dynamic programming. Furthermore, for
learning based algorithms with value function approximators
(such as neural networks), it is desirable to have the value
function Q with fixed-dimension outputs from state to state
(under most scenarios, the value function is a scalar func-
tion). This corresponds to the requirement that the objective
function should be computable by iteratively updating a fixed
number of statistics over its arguments (i.e. the intermediate
rewards). When the two requirements are satisfied, we can
deduce the proper operation g(·, ·) from the objective function
f (· · · ) on a case-by-case basis.

B. CONDITIONS FOR CONVERGENCE
To facilitate the theoretical analysis, we denote each step of
the value iteration by the function mapping Fπ

: R|V | →
R|V |. The superscript π indicates that the policy π is used
for action selection in the one-step look ahead target compu-
tation. Correspondingly, we have:

(FπQ)(st , at ) = E p(rt |st ,at )
p(st+1|st ,at )
at+1∼π (st+1)

g
(
rt , γQ(st+1, at+1)

)
, (9)

where the expectation is understood as conditioned under
(st , at ). When the deterministic greedy policy as derived from
the current Q is used, the value iteration is denoted by F∗ as
follows:

(F∗Q)(st , at ) = E p(rt |st ,at )
p(st+1|st ,at )

g
(
rt , γ max

at+1
Q(st+1, at+1)

)
.

(10)

The original Bellman updates in Eq. (6) enjoy conver-
gence to the global optimal value function, as shown in [37]
and [38]. To generalize this convergence property for the gen-
eralized updates as Eq. (10), we present a sufficient condition
on g(·, ·) for ensuring convergence to a unique value function
in the following theorem.
Theorem 1: On a single-agent fully observable MDP, the

series of value functions obtained from iteratively applying
the generalized Bellman update rule Q← F∗Q as in Eq. (10)

is guaranteed to converge to a unique convergence point in
R|V | from any arbitrary starting point, if g(·, ·) : R ×R→
R satisfies the following condition:

|g(a, b)− g(a, c)| ≤ |b− c| ∀a, b, c ∈ R (11)

The mathematical proof of this theorem is presented in
Appendix A.
Note that in Theorem 1, we do not claim that the greedy

policy resulted from the converged value function is the
global optimal policy. Besides an additional condition we
need on the operation g(·, ·) (to be introduced in the next
subsection), the main reason is that after generalizing the
Bellman update operation to g(·, ·), the value function learned
through the value iteration process is no longer guaranteed
to be the true expectation of the objective value as defined
in Eq. (7), when the state transition functions and reward
functions are stochastic. We elaborate on this observation in
the following subsection.

C. SUBOPTIMALITY WITH STOCHASTIC TRANSITIONS
AND REWARDS
With the generalized operation g(·, ·), we express the objec-
tive in (7) with g(·, ·) as:

u = f (r1, r2, r3, . . . ) = g
(
r1, γ g

(
r2, γ g(r3, . . . )

))
. (12)

We have shown a condition on g(·, ·) for convergence in
Theorem 1 for obtaining Q∗. Nonetheless, we observe that
Q∗ does not necessarily recover the true expectation of u
when stochastic state transitions and rewards are considered.
To illustrate this, consider an episode starting from the state
s1. Under the greedy policy π∗ derived from Q∗, we take
the expectation over p(rt |st , at ) and p(st+1|st , at ) on Eq. (12),
which leads to:

E {at=π∗(st )}t=1,2...
{p(rt |st ,at )}t=1,2...
{p(st+1|st ,at )}t=1,2...

[u(r1, r2, r3, . . . )]

= E {at=π∗(st )}t=1,2...
{p(rt |st ,at )}t=1,2...
{p(st+1|st ,at )}t=1,2...

[
g
(
r1, γ g

(
r2, γ g(r3, . . . )

))]
. (13)

Meanwhile, starting from t = 1, with the converged Q∗

obtained from the generalized Bellman updates, we have:

Ea1=π∗(s1)
[
Q∗(s1, a1)

]
= Ea1=π∗(s1)

p(r1|s1,a1)
p(s2|s1,a1)
a2=π∗(s2)

[
g
(
r1, γQ∗(s2, a2)

)]
(14)

= Ea1=π∗(s1)
p(r1|s1,a1)
p(s2|s1,a1)
a2=π∗(s2)

[
g
(
r1, γ Ep(r2|s2,a2)

p(s3|s2,a2)
a3=π∗(s3)

[
g
(
r2, γQ∗(s3, a3)

)])]
.

(15)

Comparing Eq. (13) and Eq. (15), for Ea1=π∗(s1)
[
Q∗(s1, a1)

]
to be equal to the expectation of u under π∗, p(rt |st , at ),
and p(st+1|st , at ), we require g(·, ·) to be exchangeable
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with Eπ∗ [·], Ep(rt |st ,at )[·], and Ep(st+1|st ,at )[·]. With π∗ being
the deterministic greedy policy as in Eq. (4), the opera-
tion Eπ∗ [·] can always be exchanged with g(·, ·). However,
if p(rt |st , at ) or p(st+1|st , at ) is stochastic, Ep(rt |st ,at )[·] or
Ep(st+1|st ,at )[·] is not necessarily exchangeable with g(·, ·).
In this case, Eq. (13) and Eq. (15) can potentially evaluate
to different values, and therefore π∗ derived from Q∗ may be
suboptimal.

Under this observation, in order to obtain a global opti-
mality guarantee on the greedy policy π∗, we constrain the
scope to deterministic MDPs. Furthermore, we introduce an
additional condition on the generalized operation g(·, ·) in
order to establish global optimality, as formally stated in the
following theorem:
Theorem 2: Given a non-cumulative objective function u

and its corresponding generalized Bellman update operation
g(·, ·) : R × R → R satisfying the condition Eq. (11)
from Theorem 1, let Q∗ denote the convergence point of
the value iteration (from iteratively applying the general-
ized Bellman update rule as in Eq. (10)). For an MDP
with deterministic p(rt |st , at ) and p(st+1|st , at ), the greedy
policy π∗ derived from Q∗ is guaranteed to be the global
optimal policy, if g(·, ·) satisfies the following additional
condition:

b ≥ c implies g(a, b) ≥ g(a, c) ∀a, b, c ∈ R (16)

The mathematical proof of this theorem is provided in
Appendix B.

We note that the assumptions on MDPs in Theorem 2 are
satisfied by a large class of optimal control and reinforce-
ment learning problems: e.g., board games including Go and
Chess, a subset of Atari games, the class of network routing
problems (such as the problems to be studied in Section IV),
and so on.

To summarize, given any general MDP, we may generalize
its objective function and apply the generalized Bellman
update as in Eq. (10) to try to learn its value function. If the
generalized update operation satisfies the condition as in
Eq. (11) in Theorem 1, the value iteration is guaranteed to
converge to a unique convergence point. Furthermore, if the
underlying MPD satisfies the assumptions in Theorem 2, and
the update operation satisfies the condition Eq. (16), the con-
vergence point is the optimal value function and the greedy
policy π∗ derived from the value function is guaranteed to be
the global optimal policy.

D. EXAMPLES OF GENERALIZED OBJECTIVES AND
BELLMAN UPDATE OPERATIONS
We introduce several widely applicable non-cumulative
objectives, and present the corresponding modified Bellman
update operations. In Appendix B, we provide the proofs
that these operations satisfy the conditions in Theorem 1 and
Theorem 2.

1) BOTTLENECK REWARD OBJECTIVE
The objective u is the minimum (i.e. bottleneck) intermediate
reward in the process:

u(r1, r2, r3, . . . ) = min(r1, r2, r3, . . . ). (17)

The corresponding modified Bellman update operation is:

g(rt , γ max
at+1

Q(st+1, at+1))

= min(rt , γ max
at+1

Q(st+1, at+1)), (18)

where the discount factor γ is useful for encouraging the
agent to postpone the occurrences of negative rewards that
often correspond to undesired or failure outcomes.

The proof that the bottleneck update operation satisfies
both conditions in Theorem 1 and Theorem 2 is presented
in Appendix C.

2) MAXIMUM REWARD OBJECTIVE
The objective u is the maximum intermediate rewards within
the process:

u(r1, r2, r3, . . . ) = max(r1, r2, r3, . . . ). (19)

The corresponding modified Bellman update operation is:

g(rt , γ max
at+1

Q(st+1, at+1))

= max(rt , γ max
at+1

Q(st+1, at+1)). (20)

The proof that the maximum update operation Eq. (20)
satisfies both conditions in Theorem 1 and Theorem 2 follows
the same logic as the proof for the bottleneck update operation
shown in Appendix C.

3) HARMONIC MEAN REWARD OBJECTIVE
Assuming rt > 0,∀t , and the process is always terminated
after a fixed number of steps, the objective u is the harmonic
mean of all intermediate rewards within the process:

U (r1, r2, . . . , rT ) =
1

1
r1
+

1
r2
+

1
r3
+ · · · +

1
rT

, (21)

where we omit the constant reward count. Examples of such
applications with harmonic mean objectives include:
• Optimize average traveling speed over a trip consisting
of a fixed number of intervals.

• Minimize resistance in a circuit with a fixed number of
resistors in parallel connection.

• Optimize mixture density (e.g. alloys) with a fixed num-
ber of selections on equal-weight components.

Although technically maximizing Eq. (21) is equally valid as
minimizing the summation of inverse of rewards, we present
it as an example of a non-cumulative objective function with
a modified Bellman update operation (as shown below) that
satisfies the proposed convergence conditions.
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The corresponding modified Bellman update operation is:

g(rt , γ max
at+1

Q(st+1, at+1))

=
1

1
rt
+

1
γ maxat+1 Q(st+1,at+1))

. (22)

The proof that the harmonic mean update operation sat-
isfies both conditions in Theorem 1 and in Theorem 2 is
presented in Appendix D.

IV. APPLICATIONS OF GENERALIZED
REINFORCEMENT LEARNING
A. CLASSICAL REINFORCEMENT LEARNING PROBLEMS
WITH BOTTLENECK OBJECTIVES
We first re-examine classical reinforcement learning prob-
lems, formulated with the bottleneck objectives as introduced
in Section III-D.1. In many classical optimal control and rein-
forcement learning applications, the agent’s success is largely
based on its ability to avoid failure or defeat. This is partic-
ularly the case when the MDPs lack significant intermediate
milestones or checkpoints, such as the CartPole problem and
the Atari game Breakout. Instead of regarding such tasks as
collecting asmany rewards as possible, the agent can interpret
the tasks with the equally valid strategy of avoiding the worst
outcome (corresponding to the lowest reward) as much as
possible.

Conventionally, both tasks are formulated with the cumu-
lative objective, each with an incremental rewarding scheme.
In the CartPole task, a positive reward is assigned to the agent
for every timestep it maintains the pole in the upright position;
while in Atari, a positive reward is assigned each time the
agent breaks a brick with the bouncing ball.

To formulate the task with the bottleneck objective for
such classical tasks, we assign a negative reward to the agent
when an undesired or failure event occurs after executing a
certain action. For the other actions that do not directly lead
to the failure events, we simply assign a zero intermediate
reward. In the CartPole task, the agent aims to control the
cart to vertically balance the pole. When the pole falls outside
a pre-defined angle range, a negative reward is assigned to
the agent. Similarly, for the Atari game Breakout, the agent
controls the movement of a paddle to catch and reflect a
bouncing ball upwards to destroy layers of bricks located
above. Each time the agent fails to catch the falling ball with
the paddle, it is assigned a negative reward. With the discount
factor γ applied on rewards over time steps, the later the
negative rewards occur, the higher the bottleneck objective
is.

By optimizing the bottleneck objective, the agent is able
to learn alternative strategies to these classical problems: For
CartPole, the strategy is to prevent the pole from falling for as
long as possible. For Breakout, the strategy is to keep the ball
in play for a maximized duration through controlling the pad-
dle to constantly catch and reflect the ball, which translates to,
although not always most efficiently, maximizing the bricks
destroyed and thus achieving competitive game scores.

B. SINGLE-PATH MAXIMUM-FLOW ROUTING WITH
BOTTLENECK OBJECTIVE ON A GRAPH
1) PROBLEM SETUP
Consider a communication network modeled as a directed
graph G = (N , E), where the set of nodes N corresponds
to the transmission nodes, and the set of edges E corresponds
to the communication links between the nodes.

A single-path data flow is routed through the network, from
a fixed source node ns ∈ N towards a fixed destination node
nt ∈ N . Each directed edge eni→nj ∈ E from ni ∈ N to
nj ∈ N represents the transmission link from ni to nj, and is
assigned with a link rate capacity r(eni→nj ) = rni→nj . We set
rni→nj = 0 when there is no link from ni to nj in the network.
The optimal routing problem is that of finding an ordered
sequence of relay nodes as transmission hops, to form the
route such that the bottleneck rate is maximized:

maximize
n1,n2,...,nm

min
(
rns→n1 , rn1→n2 ,

. . . , rnm−1→nm , rnm→nt
)
, (23)

where {ni}i∈{1...m} denote the m relay nodes (with the number
m adjustable) forming the route of the flow.

2) GENERALIZED OPTIMAL CONTROL SOLUTION
To find the single-path maximum flow within a given net-
work represented by a directed graph as described above,
we formulate the routing process as anMDP: the agent moves
along the frontier node of the route, and makes sequential
decisions on the selection of the node for each hop, until the
destination node is reached. For the state space S, each state
is uniquely identified by the frontier node the agent resides
on. Specifically, we use sni ∈ S to denote the state that the
current frontier node of the partially established route is node
ni. For the action space A, we use ani→nj ∈ A to denote the
action to move from node ni to node nj. Lastly, as specified
in the problem setup, rni→nj corresponds to the reward for the
action ani→nj , which is the link rate capacity of the link from
ni to nj.
To optimize the objective (23), for each state and action

pair (sni , ani→nj ), the generalized update is as follows:

Q(sni , ani→nj )

← min
(
rni→nj , γ max

nk
Q(snk , anj→nk )

)
. (24)

From the converged Q∗, we obtain the global optimal
greedy policy π∗ (guaranteed by the results in Section III-B
and III-C), following which produces the flow route support-
ing the global maximal flow rate.

C. WIRELESS AD HOC NETWORK ROUTING AND
SPECTRUM ACCESS WITH BOTTLENECK OBJECTIVE
1) PROBLEM SETUP
Consider the physical-layer routing problem as discussed
in [6]. In a wireless ad hoc network with a set of transmission
nodes N , a set of data flows K is to be established, each
consisted of multiple hops with their own pairs of source and
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destination nodes. A set of frequency bands B is available
for transmission, each with a bandwidth of W Hz. We focus
on two optimization tasks for these data flows: routing and
spectrum access. The task of routing is to select an ordered
list of intermediary relay nodes from N to form the route
for each data flow. The task of spectrum access is to select
a frequency band from B for the transmission of each hop in
the route of each flow. We represent the route for flow k ∈ K
as an ordered list denoted by n(k):

n(k) = (n(k)0 , n(k)1 , n(k)2 . . . n(k)m , n(k)m+1), (25)

where n(k)0 and n(k)m+1 represent the fixed source and destina-
tion node for flow k , and {n(k)i }i∈{1...m} represent the m relay
nodes (with the number m adjustable) forming the route of
flow k . We represent the spectrum access solution for flow
k as an ordered list denoted by b(k), containing the selected
frequency band of each hop:

b(k) = (b(k)1 , b(k)2 , b(k)3 . . . b(k)m+1), (26)

where b(k)i ∈ B denotes the frequency band selected for the
i-th hop in the route of flow k , with i ∈ {1 . . .m+ 1}. As the
global topology of the ad hoc network is not available as
inputs, the agents need to learn to infer the network topology
during the routing process.

Consider a link from node ni to node nj over frequency
band b. Let h(ni→nj,b) ∈ C denote its channel coefficient. The
maximum transmission rate of this link is based on the signal
to interference plus noise ratio (SINR) as follows:

SINR(ni→nj,b) =
xni,b|h(ni→nj,b)|

2p∑
nl ̸=ni,nj
nl∈N

xnl ,b|h(nl→nj,b)|
2p+ σ 2 , (27a)

r(ni→nj,b) =W log
(
1+ SINR(ni→nj,b)

)
. (27b)

where p and σ 2 denote the transmit power of each node and
the background noise power on each frequency band. The
binary control variable xni,b indicates whether the node ni is
transmitting on the band b or idle. The objective for each
flow u(k) is the transmission rate it supports, which is the
bottleneck link rate:

u(k) = r (k)min = min
i=0,1,2,...,m

r(
n(k)i →n(k)i+1,b

(k)
i+1

). (28)

The global objective u over all data flows is then defined
as the average of the bottleneck rates over all data flows:

u =

∑
k∈K u

(k)

|K|
(29)

2) GENERALIZED REINFORCEMENT LEARNING
SOLUTION
For the physical layer routing and spectrum access problem,
we assign one agent per data flow, with each agent moving
along the frontier node of its flow and making hop-by-hop
decisions. With multiple data flows to be jointly optimized,
this problem is essentially a multi-agent reinforcement learn-
ing problem, with higher complexity than the maximum flow

routing problem on a graph as in Section IV-B. By optimizing
this problem with the bottleneck objective formulation and
the generalized Bellman updates, we demonstrate that the
proposed approach is competitive and highly effective in the
setting of multi-agent reinforcement learning.

For better parameter efficiency, we only train one set of
parameters shared among all agents. We assume the wire-
less network is only partially observable to each agent,
meaning Q∗ is no longer guaranteed to be global opti-
mal. Nonetheless, as shown in later simulations, the cor-
responding π∗ is still competitive. We adopt the MDP
formulation as in [6]. At each step, each agent gathers
4 pieces of information on frequency band b for each
of its c closest neighboring nodes: the agent-to-neighbor
distance; the neighbor-to-destination distance; the angle
between agent-to-neighbor and agent-to-destination direc-
tions; and the signal interference on the neighbor on band b.
With this information, the agent forms the state s on band b
with s ∈ R4c,∀s ∈ S. For the action space A, the agent has
c+ 1 actions on band b: one action for connecting with each
of the c nodes via b, and one action for reprobing on b (if none
of the c nodes is suitable). We use s(ni,b) to denote the state
that the frontier node of the partially established flow is node
ni and that the transmission to the next hop uses the band b.
We use a(ni→nj,b) to denote the agent’s action to establish the
link from node ni to node nj using band b, which is assigned
the reward as the rate of this link r(ni→nj,b). During training,
these rewards as link rates are computed after the routes are
formed.

As the bottleneck rate is not expressible as summations, [6]
uses the Monte-Carlo method [39] for estimating the value
function. The key improvement we propose over [6] is to uti-
lize the modified Bellman update rule for training the agents
in the off-policy fashion, providing higher data efficiency,
faster convergence, and better performances. Using Eq. (18),
the generalized updates for training each agent are:

Q(s(ni,b), a(ni→nj,b))

← min
(
r(ni→nj,b), γ max

nk ,b′
Q(s(nj,b

′), a(nj→nk ,b′))
)
.

(30)

After predictingQ values for all frequency bands, the agent
selects the action with the single highest Q value among all
bands to establish the new link, which specifies not only the
optimal node as the next hop, but also the optimal frequency
band for transmission to that node.

V. SIMULATIONS
We experiment on the optimal control and reinforcement
learning problems and compare solutions from the conven-
tional Bellman updates and from our proposed generalized
Bellman updates. We use following terms to refer to each
algorithm:
• Q-Min: Optimal control solution or RL policy based
on the value function obtained from the generalized
Bellman update rule as Eq. (8) and Eq. (18).
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FIGURE 1. Learning progress on CartPole: From 6 full training
trails under 6 random seeds, we plot the mean as the line and
the standard deviation as the shadow.

• Q-Sum: Optimal control solution or RL policy based
on the value function obtained from the conventional
Bellman update rule as Eq. (6).

A. CLASSICAL REINFORCEMENT LEARNING PROBLEMS
We use the double-DQN architecture [40] to model the
agents. During training, the ϵ-greedy policy with decaying
ϵ is used for collecting experiences, along with prioritized
experience replay [41] for sampling training batches in each
update step.

1) CARTPOLE TASK
To solve the CartPole task with the Q-Min algorithm, when
the pole falls outside of the pre-defined angle range (±12◦

from the up-right position), we assign a negative reward of
−1 to the agent. To encourage the agent to postpone negative
reward occurrence, we use a discount factor γ = 0.95 in
Eq. (18). For learning with the Q-Sum algorithm, we follow
the conventional incremental rewarding scheme that has been
long used in this task.

We illustrate the agent learning progress under both algo-
rithms in Fig. 1, wherewe evaluate each agent’s performance,
averaged over 25 new episodes, after each 12500 update
steps of training. We note that we stick with the conventional
cumulative objective for CartPole as the performance metric
when visualizing the learning progresses of both algorithms
as shown in Fig. 1, which allows us to compare both algo-
rithms directly. A competitive performance by the Q-Min
algorithm on the cumulative objective would indicate that our
alternative bottleneck objective is also a viable for formulat-
ing the task.

As shown by the numerical results, besides the oscillations
in both learning curves (as DQN is known for unstable learn-
ing), the Q-Min agent and the Q-Sum agent learn to balance
the pole at a similar pace throughout training. The close
results between the two algorithms validate that the bottle-
neck objective is indeed a suitable alternative to the CartPole
objective formulation.

FIGURE 2. Learning progress on Breakout: From 3 full training
trails under 3 random seeds, we plot the mean as the line and
the standard deviation as the shadow.

2) ATARI BREAKOUT GAME
To solve Atari with the proposed Q-Min algorithm, we utilize
a simple reward scheme under Q-Min: we assign a negative
reward of -1 to the agent each time it fails to catch the ball
with the paddle, and set γ = 0.98 in Eq. (18) to encourage the
agent to postpone such failure events. For learning with the
Q-Sum algorithm, we follow the conventional incremental
rewarding scheme originally built into the Atari game engine.

We present the learning progress of Q-Min and Q-Sum in
Fig. 2, with each agent’s performance evaluated and averaged
over 5 new game runs, after each 50 thousand update steps
of training. Similar to the learning progress visualization for
CartPole, we also use the conventional cumulative objective
for the original Breakout game as the performance metric
when plotting the learning curves of both algorithms.

Unlike in CartPole, the Q-Min agent shows a slightly
slower learning progress and lower performance for Break-
out. This is likely due to the Q-Min agent not learning the
strictly optimal trajectories of redirecting the ball for hitting
the most bricks, as its sole objective is to keep the ball in play.
Nonetheless, even with simpler and more sparse rewards than
the rewards used by Q-Sum, the Q-Min agent still manages
to achieve relatively close performances to the Q-Sum agent,
especially at the late training stage. The results illustrate the
viability of interpreting Breakout with the bottleneck objec-
tive formulation.

We emphasize again that, specifically for these two classi-
cal problems, our goal is not to show that the proposed Q-Min
algorithm is strictly superior to the conventional Q-Sum
algorithm. After all, these two problems have long served
as the canonical examples for the conventional reinforcement
learning problems formulated with the cumulative objectives.
Instead, we have shown that it is also valid to interpret
and optimize these classical problems with the bottleneck
objective formulation. Through learning with the proposed
generalized Bellman update rule, the agent is capable of
achieving the performances comparable with the results from
the convention reinforcement learning approach as presented
above. Essentially, When optimizing the agent under the
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FIGURE 3. The maximum network flow problem as modeled by a
directed graph.

bottleneck objective formulation, the agent learns an alterna-
tive game playing strategy for both CartPole and Breakout: to
avoid or delay the failure event for as long as possible.

B. SINGLE-PATH MAXIMUM-FLOW ROUTING ON GRAPH
We consider the directed graph network shown in Fig. 3,
and perform the Q-Min algorithm with Eq. (24) until con-
vergence. With the MDP in this problem being finite, we set
γ = 1, which simplifies the numerical results with Q values
precisely equal to the future bottleneck rates.

In Table 1, we present the iterations of both the Q-Min
algorithm and the Q-Sum algorithm. In the first row of the
table, we adopt the simplified notations for Q values: we
use Qni→nj to uniquely denote the state-action value function
Q(sni , a(ni,nj)) in Eq. (24). We adopt synchronized iterations,
where in each new iteration, theQ value in the right-hand-side
of Eq. (24) comes from the previous iteration. All the itera-
tions of value function updates are shown until convergence.

For the Q-Min algorithm, it takes 4 iterations of the gener-
alized Bellman updates to converge. From the resulted Q∗,
we deduce the optimal policy π∗ producing the following
optimal flow route:

s→ b→ a→ d → t. (31)

This route obtained supports a flow rate of 5, which is indeed
the global optimal flow rate.

On the other hand, for the Q-Sum algorithm, the conver-
gence speed is lower than Q-Min, as it takes 5 iterations of
the regular Bellman updates to converge. Furthermore, the
deduced optimal policy results in the following flow route:

s→ b→ a→ c→ d → t. (32)

This route supports a flow rate of 4, which is sub-optimal and
inferior to the route obtained by the Q-Min algorithm.

C. WIRELESS AD HOC NETWORK ROUTING AND
SPECTRUM ACCESS
1) EXPERIMENT SETTINGS
We simulate wireless ad hoc networks in a 1000m × 1000m
region with |K| = 3 data flows and |B| = 8 frequency bands.
We adopt the same specifications as in [6] as we aim to com-
pare results and illustrate the effectiveness of the proposed

Q-Min algorithm. Specifically, we consider the short-range
outdoor model ITU-1411 with a distance-dependent path-
loss to model all wireless channels, over all frequency bands
at 2.4GHz carrier frequency. Shadowing and fast-fading are
not considered in the simulation setting. This corresponds
to an outdoor environment (e.g., a rural or remote area),
where the strengths of the wireless links are mostly functions
of the distances between the transmitters and the receivers.
We assume each of the |B| = 8 frequency bands has a 5MHz
bandwidth for signal transmission. All antennas equipped at
the transmission nodes have a height of 1.5m and 2.5dBi
antenna gain. We assume a transmit power of 30dBm for all
nodes and background noise at −130dBm/Hz.

To generate realistic wireless network layouts, the node
locations are randomly generated with varying node densities
over the region. Specifically, we divide the 1000m × 1000m
network region into nine equal sub-regions, and randomly
locate (6, 8, 7, 6, 5, 10, 8, 9, 6) nodes within each of the nine
sub-regions correspondingly.

2) TRAINING CONVERGENCE SPEED COMPARISON
We train each set of |K| = 3 agents with three algorithms:
Q-Min, Q-Sum, and the algorithm by [6]:

• Q-MC : RL policy based on the value function obtained
from the Monte-Carlo episodic estimations of future
bottleneck rewards, computed at the end of episodes.

We generate 380,000 wireless ad hoc network layouts for
training the agents under each algorithm, under the following
training schedule:

• Initial 30,000 layouts are used for random routing on
collecting initial experience.

• The middle 300,000 layouts are used for the ϵ-greedy
policy based routing, with the ϵ value follows linear
annealing from 1.0 to 0.1 throughout the training over
these layouts.

• The final 50,000 layouts are used with ϵ = 0 for the final
convergence stage.

We use the Dueling-DQN architecture [42] to model all
the agents, with the neural network specifications listed in
Table 2, same as in [6]. Since the rewards as link rates are
dense throughout theMDP, uniform sampling is sufficient for
experience replay. We use c = 10 as the number of neighbors
the agent explores each time. The state inputs to the DQNs
are therefore 40-component vectors, i.e. s ∈ R40,∀s ∈ S.

For the same reasons as in Section V-B, we set γ = 1 in
Eq. (30). During training, we track both the mean-squared-
errors for predictions on Q, and the routing performances
over 100 newly generated network layouts at each update step
of training. The training curves for all three algorithms are
displayed in Fig. 4.

Shown by the learning curves, the conventional Q-Sum
agents collectively achieve the worst learning progress and
simply fail to convergence on the Q value estimations. While
both the Q-Min agents and the Q-MC agents converge to
comparable performances, the Q-Min agents enjoy a much
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TABLE 1. Q-min value iterations on graph network routing (shaded entries depict the routing selection under π∗).

FIGURE 4. Learning progress of various algorithms on the physical layer routing problem: The dotted lines are the
performance values of all update steps; the solid lines are the smoothed curves, with each point being the average over the
last 10 update steps.

TABLE 2. Dueling-DQN neural network specifications.

faster convergence speed. This illustrates the advantage of the
temporal difference learning over the Monte-Carlo method,
which is made possible for non-cumulative objectives with
the proposed generalized update rules.

To better understand whyQ-Min achieves noticeably faster
convergence than Q-MC, we emphasize that theMonte-Carlo
estimations used by Q-MC are highly affected by the random
explorations especially at the early stage of training. Certain
random explorations might lead to an extremely low bottle-
neck rate for the newly established route. This bottleneck
rate is then used as the Monte-Carlo estimation on the value
function during training the Q-MC agent. Thus, the value

estimations learned by the Q-MC agents suffer from low
qualities significantly at the beginning of training.

On the other hand, with the proposed generalized update
operation, the bottleneck objective can be estimated by the
temporal difference learning technique as in the Q-Min
algorithm. As an off-policy1 learning algorithm, the temporal
difference learning estimations are much more resilient to the
random explorations, since the estimation target is obtained
through one-step bootstrapping on the already learned value
function. Therefore, it is not a surprise to see the significant
improvements on the training efficiency and convergence
speed by the Q-Min agents.

3) PERFORMANCES ON BOTTLENECK RATES
Wepresent in Table 3 test results on the number of links estab-
lished on each flow, as well as the achieved bottleneck flow
rates for these data flows, over 1000 newly generated testing
wireless ad hoc networks. Furthermore, for each method,
we collect the bottleneck rates of all data flows over all testing
wireless networks, and present the cumulative distribution

1An off-policy algorithm separates the policy that the value estimation
is based on from the sampling policy, which is desired when the sampling
policy is highly noisy (e.g. with many random explorations).
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FIGURE 5. Cumulative distribution function of flow bottleneck
rates in 1000 testing wireless ad hoc networks.

FIGURE 6. Routes for data flows (data flows differentiated by colors; frequency bands differentiated by linestyles).

TABLE 3. Average bottleneck flow rate performances.

function (CDF) of these bottleneck rates in Fig. 5. As shown
by both the statistics and the distributions of the flow rates,
the Q-Min agents achieve the best routing results, whereas
the Q-Sum agents perform the worst by a large margin, while
having much higher numbers of links over the established
data flows.

We visualize the optimized routes by each RL algorithm
over a random wireless ad hoc network in Fig. 6. The Q-Min
agents learn to establish links with medium lengths. This
policy ensures a certain level of channel strength for the
bottleneck links, without constructing toomany links to avoid
excessive interference which is detrimental to the bottleneck
link rates. Furthermore, the Q-Min agents also learn to spa-
tially spread out data flows as well as the frequency bands
used among links for effective interference mitigation.

On the other hand, the Q-Sum agents learn the policy
that connects unnecessarily many short links to form routes,
neglecting the importance of the bottleneck link within each
flow. Evidently, the conventional reinforcement learning for-
mulation is unsuitable for solving such routing problems. For
this reason, in application fields such as network communica-
tions, generalizing the objective function and its learning rule
through our proposed approach is an essential optimization
technique.

VI. CONCLUSION
This paper recognizes the possibilities of formulating
optimal control or reinforcement learning objectives as
non-cumulative functions over rewards, and generalizes
existing algorithms to optimizing such objectives. Specifi-
cally, we explore the generalized operations in the Bellman
update rule, for which we provide the global convergence
conditions with mathematical proofs. We also recognize the
assumptions required on theMDP state transitions and reward
functions for ensuring the global optimality on the obtained
policies. With the generalized objectives and learning algo-
rithms, we are able to unveil alternative strategies to classical
optimal control or reinforcement learning problems, and
more importantly, realize the possibilities for solving new
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problems with intrinsically non-cumulative objectives, which
are frequently encountered in the fields such as network com-
munications. This opens up directions for a broader range of
applications for optimal control and reinforcement learning
techniques.

APPENDIX A
PROOF OF THEOREM 1
Lemma 1: If g(·, ·) satisfies the condition Eq. (11) in The-

orem 1, then the generalized value function update F∗ as in
Eq. (10) is a contraction mapping.

Proof: In the following mathematical expressions,
for the simplicity of notations, we use p(rt , st+1|st , at )
as the shorthand notation for the joint distribution of
pRt |St ,At (rt |st , at ) and pSt+1|St ,At (st+1|st , at ). We also assume
p(rt , st+1|st , at ) is a discrete distribution. For continuous dis-
tribution, the proof still holds with summations substituted by
integrations when computing the expectations.

For any pair of value functions ∀Q1,Q2
∈ R|V |, we have:

∥F∗Q1
− F∗Q2

∥∞

=max
st ,at

∣∣∣(F∗Q1)(st , at )− (F∗Q2)(st , at )
∣∣∣ (33)

=max
st ,at

∣∣∣ ∑
rt ,st+1

p(rt , st+1|st , at )g(rt , γ max
at+1

Q1(st+1, at+1))

−

∑
rt ,st+1

p(rt , st+1|st , at )g(rt , γ max
at+1

Q2(st+1, at+1))
∣∣∣

(34)

=max
st ,at

∣∣∣ ∑
rt ,st+1

p(rt , st+1|st , at )
[
g(rt , γ max

at+1
Q1(st+1, at+1))

− g(rt , γ max
at+1

Q2(st+1, at+1))
]∣∣∣ (35)

≤max
st ,at

∑
rt ,st+1

p(rt , st+1|st , at )
∣∣∣g(rt , γ max

at+1
Q1(st+1, at+1))

− g(rt , γ max
at+1

Q2(st+1, at+1))
∣∣∣ (36)

≤ max
st ,at

∑
rt ,st+1

p(rt , st+1|st , at )
∣∣γ max

at+1
Q1(st+1, at+1)

− γ max
at+1

Q2(st+1, at+1)
∣∣ (37)

≤ γ max
st ,at

∑
rt ,st+1

p(rt , st+1|st , at ) max
at+1

∣∣Q1(st+1, at+1)

− Q2(st+1, at+1)
∣∣ (38)

≤ γ max
st ,at

∑
rt ,st+1

p(rt , st+1|st , at )∥Q1
− Q2
∥∞ (39)

≤ γ ∥Q1
− Q2
∥∞, (40)

where (37) follows from the condition Eq. (11) in Theorem 1;
(38) follows from the fact that for any two functions f1 and f2,
we have | supx f1(x)− supx f2(x)| ≤ supx |f1(x)− f2(x)|; and
lastly, (40) follows from the normalization of the probability
distribution p(rt , st+1|st , at ). □

With Lemma 1 established, we can readily prove the main
theorem of the global convergence of the value function
updates.

Starting from any arbitrary value function initialization
point Q0

∈ R|V |, consider the value iteration process of iter-
atively applying the mapping F∗. With R|V | being a Banach
space and F∗ being a contraction mapping (by Lemma 1),
according to the Banach’s fixed-point theorem [43], the pro-
cess is guaranteed to converge to a unique convergence point
Q∗.

APPENDIX B
PROOF OF THEOREM 2
Lemma 2: If g(·, ·) satisfies the condition Eq. (16) in The-

orem 2, then the generalized value function update F∗ as in
Eq. (10) is monotonic, i.e., ∀ Q1,Q2

∈ R|V |, if Q1
≥ Q2,

then F∗Q1
≥ F∗Q2 always holds.2

Proof:

Q1
≥ Q2

H⇒ Q1(s, a) ≥ Q2(s, a), ∀s, a (41)

H⇒ max
a
Q1(s, a) ≥ max

a
Q2(s, a), ∀s (42)

H⇒ g(r, γ max
a
Q1(s, a)) ≥ g(r, γ max

a
Q2(s, a)), ∀s, r

(43)

where Eq. (43) follows from the condition Eq. (16) in
Theorem 2.
Now we introduce the time step into the equations, and

consider any given state and action pair at time t: st and at . Let
s = st+1 in Eq. (43) be the state the agent is in after executing
at on st ; and let r = rt be the reward from executing at on st .
We then have:

Q1
≥ Q2

H⇒ g(rt , γ max
a
Q1(st+1, a))≥g(rt , γ max

a
Q2(st+1, a)),

∀rt , st+1 (44)

H⇒ (F∗Q1)(st , at ) ≥ (F∗Q2)(st , at ), ∀st , at (45)

H⇒ F∗Q1
≥ F∗Q2 (46)

□
To show that Q∗ is the optimal point, let π0 be an arbitrary

initial policy and Q0
∈ R|V | be the corresponding value

function (therefore Q0
= Fπ0Q0). we have:

Q0
= Fπ0Q0

≤ F∗Q0 (47)

where the inequality follows from the maximization over the
actions by the greedy policy mapping F∗. Applying F∗ again
on both sides of the inequality, and by the monotonicity from
Lemma 2 we have:

Q0
≤ F∗Q0

≤ F∗2Q0 (48)

where F2 denotes iteratively applying the mapping F twice.
After iteratively applying F∗ until convergence, we arrive at

2The notation Q1
≥ Q2 implies Q1(s, a) ≥ Q2(s, a),∀s, a.
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a chain of inequalities ending with the unique convergence
point:

Q0
≤ F∗Q0

≤ F∗2Q0
≤ F∗3Q0

≤ · · · ≤ lim
n→∞

F∗nQ∗ = Q∗

(49)

Since Q0 is an arbitrary value function, we have shown that
the unique point of convergence Q∗ is indeed the global
maximum value function.

Furthermore, given the assumptions that p(rt |st , at ) and
p(st+1|st , at ) are deterministic as required by Theorem 2,
we have g(·, ·) being exchangeable with Ep(rt |st ,at )[·] and
Ep(st+1|st ,at )[·]. By bringing the expectations inside the oper-
ation g(·, ·), we can see that Eq. (13) and Eq. (15) are
equivalent. Correspondingly, the converged point of the value
iteration is truly the expectation value of the objective func-
tion as defined in Eq. (7). Therefore, the greedy policy π∗

derived from the value functionQ∗ is truly the global optimal
policy.

APPENDIX C
PROOF OF CONVERGENCE PROPERTIES ON THE
BOTTLENECK UPDATE OPERATION
To show that the bottleneck update operation Eq. (18) satisfies
the condition by Eq. (11) in Theorem 1:

Proof: Without loss of generality, we assume b ≥ c,
then we have:

• If c ≤ b ≤ a, then:

|g(a, b)− g(a, c)| = |min(a, b)−min(a, c)| = |b− c|.

(50)

• If c ≤ a < b, then:

|g(a, b)− g(a, c)| =|min(a, b)−min(a, c)| (51)

= a− c (52)

< |b− c|. (53)

• If a < c ≤ b, then:

|g(a, b)− g(a, c)| =|min(a, b)−min(a, c)| (54)

= 0 (55)

< |b− c|. (56)

□
To show that the bottleneck operation Eq. (18) satisfies the

condition by Eq. (16) in Theorem 2:
Proof: Given b ≥ c, we have:

• If a ≤ c, then:

g(a, b) = min(a, b) = a = min(a, c) = g(a, c). (57)

• If c < a ≤ b, then:

g(a, b) = min(a, b) = a > c = min(a, c) = g(a, c).

(58)

• If a > b, then:

g(a, b) = min(a, b) = b ≥ c = min(a, c) = g(a, c).

(59)

□

APPENDIX D
PROOF OF CONVERGENCE PROPERTIES ON THE
HARMONIC MEAN UPDATE OPERATION
To show that the harmonic mean operation Eq. (22) satisfies
the condition by Eq. (11) in Theorem 1:

Proof: With our assumption of positive rewards,
we have:

|g(a, b)− g(a, c)| =

∣∣∣∣∣ 1
1
a +

1
b

−
1

1
a +

1
c

∣∣∣∣∣ (60)

=
|b− c|

( 1a +
1
b )(

1
a +

1
c )bc

(61)

≤
|b− c|

( 1b )(
1
c )bc

(62)

=|b− c| (63)

□
To show that the harmonic mean operation Eq. (22) satis-

fies the condition by Eq. (16) in Theorem 2:
Proof: Given b ≥ c. With our assumption of positive

rewards, we have:

g(a, b)− g(a, c) =
1

1
a +

1
b

−
1

1
a +

1
c

(64)

=
b− c

( 1a +
1
b )(

1
a +

1
c )bc

(65)

≥0 (66)

□
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