
Received 6 November 2022; revised 19 March 2023 and 24 May 2023; accepted 29 May 2023.
Date of publication 9 June 2023; date of current version 8 August 2023.

The associate editor coordinating the review of this article and approving it for publication was G. Yu.

Digital Object Identifier 10.1109/TMLCN.2023.3285171

Effective 3C Resource Utilization and Fair
Allocation Strategy for Multi-Task

Federated Learning

CHAOFENG ZHANG 1 (Member, IEEE), MIANXIONG DONG 2 (Member, IEEE),
AND KAORU OTA2 (Member, IEEE)

1School of Information and Electronic Engineering, Advanced Institute of Industrial Technology, Shinagawa, Tokyo 140-0011, Japan
2Department of Sciences and Informatics, Muroran Institute of Technology, Muroran 050-0071, Japan

CORRESPONDING AUTHOR: M. DONG (mxdong@mmm.muroran-it.ac.jp)

This work was supported in part by the JSPS KAKENHI under Grant JP22K17884, Grant JP20H04174, and Grant JP22K11989; in part by
the Leading Initiative for Excellent Young Researchers (LEADER), MEXT, Japan; and in part by the JST, PRESTO, Japan, under Grant

JPMJPR21P3.

ABSTRACT Nowadays, one of the main challenges in expanding AI applications is the effective use of
Computation, Communication, and Caching (3C) resources. The complexity of the cloud environment and the
diversity of resource usagemake it challenging to complete federated learning tasks in a cost-effective, timely,
and seamless manner. To address these issues, this paper proposes a comprehensive approach to optimize the
overall service efficiency of federated learning in time-varying and 3C-constrained environments. Firstly,
a utility function based on convergence efficiency is proposed to reflect the physical benefits of processing
AI tasks. Then, a fair allocation strategy consistent with the optimization goal is designed by modeling the
task allocation process through virtual queue Lyapunov drift. Next, a Federated Learning Long Short-Term
Memory (LSTM) based Queuing Optimization and Allocation Policy Calculation Algorithm (FL-QAPC)
is proposed for resource allocation policy calculation using multi-dimensional network state inputs with
time series. This algorithm implements predictive control based on historical records. Finally, a feasible
experimental test platform is conducted, which is extended to an actual wireless mobile scenario based on
5G. The superiority of the proposed solution is verified through comparison with other benchmarks.

INDEX TERMS Resource management, multitasking, learning systems, user centered design, mobile
communication.

I. INTRODUCTION

W ITH the explosive development of artificial intelli-
gence (AI) applications, decentralized deep learning

tasks are facing many new challenges. Federated learning
(FL) has emerged as an adaptive and intelligent solution [1]
to ensure the global effectiveness of the process through
distributed computing, allowing the neural network to be
updated through the collaboration of intelligent or edge
devices [2]. This approach eliminates the need to upload
security-sensitive data to the cloud. Instead, devices par-
ticipating in the computation upload the trained results to
the cloud and implement federated learning through data
fusion [3]. This framework disperses the computing pressure
of individual devices and protects users’ privacy. Specifically,
intelligent services using federated learning aim to address

issues such as privacy leakage and insufficient computing
power in distributed computing systems [4], achieving spe-
cific AI services, such as image recognition and behavior
prediction, through distributed computing and parameter col-
laboration. The original data containing sensitive user infor-
mation is not uploaded to the cloud; instead, local devices
upload the locally trained weights or gradients. However,
this also poses new challenges for communication, com-
putation, and caching (3C) resources in the entire network
system.

The enhancement of system capacity is typically achieved
by increasing the consumption of physical 3C resources.
However, in cloud-supported federated learning, the alloca-
tion policy may not be able to ensure that all local data
is properly updated due to physical constraints on service

VOLUME 1, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

153

https://orcid.org/0000-0002-1042-1541
https://orcid.org/0000-0002-2788-3451


FIGURE 1. The data forwarding framework and scheduling of
federated learning involves the distribution of tasks to each
device through local edge equipment by the cloud. The local
devices collect the original local training sets and update the
assigned neural network model. The new gradients are then
uploaded to the cloud for gradient fusion.

capacity. To address the issues, several studies have proposed
optimization techniques. For instance, Khan et al. [5] con-
sider the self-interest of local devices and introduce an incen-
tive mechanism based on the Stackelberg game theory model
to encourage their participation, which increases individ-
ual service capacity and overall utilization efficiency of the
remaining capacity. In general, cloud systems require com-
munication coordination among edges to optimize the learn-
ing process on each device. The edge devices act as buffers
for devices in different workplaces and enhance multi-task
processing efficiency.

The recent researches explore the integration of 3C
resource optimization with specific federated learning appli-
cations. For instance, Wang et al. [6] attempted to use fed-
erated learning tasks to adjust popular information in mem-
ory by utilizing delay and energy consumption, included
in the utility function, as reference indicators. Although
they did not consider further optimizing the actual train-
ing effect of each round of federated learning, they men-
tion that their reinforcement learning model was capable of
effectively handling the distribution of established benefits.
In a similar vein, Boura et al. [7] propose the efficient opti-
mization of 3C resources by introducing local data fusion,
particularly for updating local neural networks, which can
be achieved by edge computing to reduce communication
and energy consumption. The solutions proposed by early
adopters demonstrate outstanding performance in handling
single or one-time AI tasks. However, addressing multi-task
processing with precise individual performance using feder-
ated learning requires consideration of more unique issues.
Firstly, synchronous federated learning [8] involves multiple
local devices performing gradient updates within a specified
time, while the remaining idle resources can be used for
other AI tasks generated during the same period. A potential
challenge is how to make reasonable use of 3C resources
to minimize the waste of computing and communication
resources. Secondly, federated learning requires performing
multiple global updates in sequence. The benefits of global

updates are diminishing [9]. How to fairly and simultane-
ously process multiple AI tasks under resource constraints
has not been well addressed. Thirdly, the optimization algo-
rithm for multi-task federated learning [10] outputs an allo-
cation strategy based on the current network state. However,
demand surges or untransmitted information may cause the
optimization plan to fail. A predictive control scheme based
on historical states is needed to achieve a more stable control
policy.

To address the unique challenges of multi-task federated
learning in time-varying and 3C-constrained environments,
this paper investigates multi-task assignment strategies to
optimize the overall service efficiency of federated learn-
ing. First, by observing the actual physical meaning of the
convergence efficiency of a single global update, we design
a utility-based task processing benefit and set the overall
optimization goal accordingly. Then, for the task allocation
process, we model it through virtual queue Lyapunov drift
and design a more fair allocation strategy consistent with the
optimization goal. To achieve more reliable predictive con-
trol, we propose a FL Service oriented LSTM based Queuing
Optimization and Allocation Policy Calculation Algorithm,
which calculates optimized allocation strategies based on
time-series network states while maintaining stability and
maximizing the utility benefits of multiple tasks. Finally,
we conduct simulations in a time-varying scenario to compare
the convergence efficiency of multiple federated tasks using
the proposed algorithm. The results show that the proposed
solution not only maximizes task utility gains but also opti-
mizes overall resource utilization.

The main contributions of this paper are highlighted as
follows:

• Develop a utility function based on convergence effi-
ciency to reflect the physical benefits of AI task process-
ing and optimize the system accordingly.

• Design a fair allocation strategy consistent with the opti-
mization goal by analyzing the Lyapunov drift of the AI
task queue.

• Propose an algorithm for calculating resource allocation
policies using multi-dimensional network state inputs
with time series. This algorithm implements predictive
control based on historical records.

• Conduct experiments on a feasible test platform and
extend it to an actual wireless mobile scenario based on
5G. Verify the superiority of the proposed solution by
comparing it with other benchmarks.

II. RELATED WORK
Federated learning updates the networkmodel synchronously
using the local wireless network, and multiple chan-
nels can be used simultaneously. However, the unsta-
ble network environment can pose significant challenges.
Current research aims to develop novel solutions to opti-
mize various aspects of federated learning’s processing
performance.

154 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

A. MULTIPLE TASK PROCESSING SYSTEM AND UTILITY
QUANTIFICATION
As federated learning (FL) is increasingly used in various
applications, Khan et al. [5] propose a task incentive mech-
anism based on the Stackelberg game to allow users to
strategically set local iteration numbers to maximize their
accuracy-related utility.Meanwhile, the base station (BS) acts
as a leader and maximizes the utility of multiple tasks by
setting global iteration numbers and accuracy levels in the
global FL settings. Motivated by the goal of ensuring fairness
and robustness, Hu et al. [11] design a multi-objective opti-
mization federated learning algorithm, called FedMGDA+.
A new algorithm is proposed to ensure convergence to the
Pareto stationary solution. This method requires relatively
few hyperparameters to be adjusted and does not sacrifice the
performance of any participating users, making it well-suited
for use as a processing system for multiple federated learning
tasks. Zhang et al. [12] measure privacy loss and utility loss
from the perspective of unified information theory. They
emphasize that due to the inevitable trade-off between privacy
and utility, federated learning algorithms need to optimize
certain degraded utility to achieve sufficient privacy protec-
tion.

B. SYNCHRONOUS FEDERATED LEARNING
OPTIMIZATION
To enable synchronous federated learning over wireless net-
works, Vu et al. [13] adopt multiple-input multiple-output
(MIMO) and ensure stable operation during synchronous
communication periods for each federated learning task.
They minimize energy consumption by considering user
requirements, time allocation, transmit power, and computing
frequency, and use Fritz John and Karush-Kuhn-Tucker solu-
tions to achieve stable convergence. This method also demon-
strates that synchronous federated learning can achieve good
communication and stable convergence. Wang et al. [14]
propose the Favor algorithm, an experience-driven control
algorithm that intelligently selects client devices to partici-
pate in each round of federated learning, to counteract bias
introduced by non-IID data and accelerate convergence. They
also propose a mechanism based on deep Q-learning, which
learns to select a subset of devices in each communication
round to maximize rewards that encourage improved valida-
tion accuracy and penalize the use of more communication
rounds.

C. CLOUD-EDGE-DEVICE NETWORKING BASED
FEDERATED LEARNING
Wang et al. [14] propose model partitioning and task schedul-
ing to minimize time costs and avoid wasting computing
resources, in order to fully utilize computational resources on
terminal devices and edge servers. To address the NP-hard
networking problems, they develop the Federated Learning
Offloading Acceleration (FLOA) algorithm to obtain subop-
timal solutions. They also design a task offloading method

based on matching theory to achieve resource allocation for
collaboration among cloud, edge, and local devices.

D. MULTIPLE RESOURCE OPTIMIZATION
The optimization of multiple resources in federated learning
is a non-convex problem and is usually divided into sev-
eral sub-problems for optimization. Dinh et al. [15] address
the trade-off between model and energy consumption con-
vergence by formulating it as a non-convex problem with
three sub-problems. They investigate the impact of local
training rounds on global parameter updates and convert it
into a trade-off problem between energy consumption and
convergence rate. By optimizing the three sub-problems of
communication energy consumption and calculation energy
consumption, the proposed method outperforms benchmarks
in terms of convergence rate and accuracy.

III. SYSTEM FRAMEWORK AND FLOW CUTTING
In this section, we provide an overview of the local and
global updating procedures for a cloud-supported federated
learning (FL) system. At first, we describe the local and
global updating procedures in the mathematical model. Addi-
tionally, we propose a convergence-based utility function to
evaluate the learning performance and establish the optimiza-
tion goal for the overall task processing framework.

A. SYSTEM STRUCTURE
As shown in Fig. 1, the framework comprises three main
components: a cloud center for data fusion, edge devices for
task or model data forwarding [16], and local devices for
sample collection and local updating.

• Cloud: Cloud server is responsible for aggregating the
data uploaded by local devices, typically the weights
or gradients of the neural network model after local
training.

• Edge: Devices located at the edge layer are tasked with
monitoring and managing available network resources.
By observing and predicting channel conditions, com-
puting resources, and energy consumption, edge devices
forward new AI tasks and collect trained data.

• Local: Local devices are used for local updating. The
local updating process involves downloading global
weights, performing local training, and uploading newly
trained gradients.

1) CLOUD AND DEVICES
We consider a federated learning system consisting of a
cloud center for data collection and fusion at the top layer
and an edge layer comprised of M base stations (BS) that
connect with the cloud center, acting as edge nodes for for-
warding tasks and collecting data [17]. Correspondingly, |N |
local devices are managed by these edge nodes, denoted as
N = {1, 2, · · · , n, · · · }. During the predefined time frame
T = {1, 2, · · · , t, · · · }, there are |8| applications requir-
ing federated learning computing services denoted as 8 =

VOLUME 1, 2023 155



TABLE 1. List of Symbols

{1, 2, · · · , k, · · · }. The notations used in the following dis-
cussion are listed in Table 1.

2) TASK PROCESSING
Using the general setup, the raw data collected by local
devices may be different, which is considered as independent
and identically distributed (IID) data in the overall learning
process. To ensure fairness and convergence rate, the system
requires at least 8k devices for local training, corresponding
to a specific training task k ∈ 8. The k-th training model
has three common attributes: computation difficult q, model
size ϕ, and importance z. Firstly, we define the computation
difficult of task k as,

qk = F(w0)− F(w∗), (1)

where w0 represents the initial state of the training model
weights, and w∗ is the converged state of the weights. The
value F(w∗) is typically acquired from previous training
experiences with similar tasks, and is used to define the
training difficulty qk as a predefined constant. The physical
meaning of qk is the distance between the initial loss value
and the convergence loss value. The range of values is within
0 to 1, using binary cross-entropy. Generally, the difficulty of
convergence is closely related to the initial model. In extreme
cases, the loss value after convergence is 0. Therefore, in prac-
tical applications, F(w∗) is sufficiently small and F(w) is
randomly initialized, the more appropriate initial weights and
distribution of the training samples can effectively reduce the
computational difficulty.

The function F(w) is calculated by

F(w) =
1
φ′k

∑
n∈N

φn,k fn(w) (2)

where fn is the corresponding loss function produced by
device n, and φn,k is the number of datapoints for local
training. φ′k denotes the total number of datapoints. The
weights calculated by the local devices are partly contributed
to the final fusion process according to the number of local
datapoints.

Considering the reality, we assume the task importance,
denoted by

Z = {z1, z2, · · · , zk , · · · }, (3)

which indicates the inherent priority of the applications. Task
importance is a measure of the relative importance of each
task in a multi-task learning problem. It can guide how a
model allocates resources and weights to optimize overall
performance. Some tasks may require more resources and
effort to solve than others, and task importance can be used to
select the optimal combination of tasks and allocate resources
accordingly. For instance, tasks related to driving or rescue
operations may have an importance value of 4, while botan-
ical identification tasks may have an importance value of
1. If all tasks are assigned an importance value of 1, the
allocation of resources for all tasks is considered to be fair.
The procedure of how to estimate the task importance can
follow some practical operation manual, e.g. technical rescue
(K9 Search and Rescue: A Manual for Training the Natural
Way).

3) DOWNLOAD AND UPLOAD
To describe the output capacity of device n, its computation
ability is denoted as cn. For any time t ∈ T , the device’s
download bandwidth is recorded asµ1,n, and its upload band-
width is recorded as µ2,n.
Correspondingly, as shown in Fig. 2, when a task is sched-

uled to end device n, the time cost is calculated after com-
pleting the following three phases [18]: downloading phase
t1,n, local training phase tc,n, and uploading phase t2,n. The
download time t1,n is denoted as:

t1,n =
ϕk

u1,n
, (4)

where ϕk is the model size. Similarly, the upload time t2,n is
calculated as

t2,n =
ϕk

u2,n
. (5)

The time to complete a single loss function calculation and
back-propagation is denoted as,

tc,n =
φnϕk

cn
. (6)

Before uploading data for global data fusion, the local
device is required to perform Plk local rounds. For any end
device i, the total time required to complete one global train-
ing is given by:

tn = Plk tc,n + t1,n + t2,n. (7)

156 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

For a given task, the completion utilityUr,k in global round
r is defined as the metrics that reflect the quality of the
trained model, which discussed in the following subsection.
The average utility gain Ūr,n,k for an end device n completing
r-th global round is defined as follows.

Ūr,n,k =
φn,kUr,k

φ′k tn
. (8)

The specific definitions of local update round Plk is discussed
in the following subsection.

B. LOCAL COMPUTATION AND DATA FUSION
The primary objective of the allocation policy is to coordinate
the order of tasks 8 and the responding devices i to achieve
optimal task completion performance, including utility gain.
However, quantifying the benefit of each federated learning
(FL) round is a challenging task. In this subsection, we pro-
pose a utility function Ur,k as a common evaluation standard
to describe the received utility reward after completing the
r-th global round update. Accordingly, we analyze the rela-
tionship between the convergence rate and the utility gain
after each global updating round.

1) CONVERGENCE AND LEARNING EFFICIENCY
There is a trade-off between the number of global rounds and
local rounds in federated learning. In order to achieve the
final convergence threshold ϵ, each task needs to go through
a total of Pl · Pg local iterations, where Pg is the number
of global updating rounds. A global update occurs when
the cloud completes one round of data collection from the
local devices and merges the gradients uploaded by the local
devices.

The global update function for the weights are supposed to
be,

wt =
1
φ′k

N∑
n=1

φn,kwtn, (9)

where wn is the updated weights. Instead, the uploading uses
the fusion of gradients, which is formulated as,

∇F t =
1
φ′k

N∑
n=1

φn,k∇Fn(wtn), (10)

where ∇Fn is the gradient vector uploaded by device n. After
Pg global updates, the final convergence condition holds,

F(wt )− F(w∗) ≤ ϵ (11)

where w∗ is the final state of convergence. To explore the per-
formance bound of global update, using the similar assump-
tion of the previous paper [19], we assume the following two
assumptions:
Assumption 1: The loss function F(w) is β-strongly con-

vex.
In neural networks, β-strong convexity refers to a prop-

erty of the loss function f (w) that satisfies the following
inequality: F(w) − F(w∗) ≥ β

2 |w − w∗|2, where w and

w∗ are two points in the parameter space and | · | denotes
the Euclidean norm. This inequality implies that for any
w, the difference between its function value and the opti-
mal value is greater than or equal to a positive constant
β
2 |w − w∗|2, where the larger the constant, the stronger the
convexity.

In neural networks, strong convexity is a property
often used to prove the convergence rate of optimiza-
tion algorithms. When the loss function F(w) is β-
strongly convex, optimization algorithms such as gradi-
ent descent can converge faster towards the global optimal
solution.
Assumption 2: The loss function F(w) follows L-smooth.
In neural networks, L-smoothness refers to the prop-

erty that the derivative (gradient) of the loss function is
L-Lipschitz continuous, where L is a positive constant.
Specifically, for any two points x and y, the difference
between their gradients does not exceed L times their dis-
tance, i.e., |∇F(x) − ∇F(y)| ≤ L|x − y|. This is a very
useful property as it guarantees that the step size and direction
of each iteration in optimization algorithms such as gradient
descent are stable.

Then, for the specific loss function Fn(w) for device n, the
condition number of thematrix is considered as L/β. Because
of better stability, the curvature changes of the Hessian matrix
Hf (w) are usually smooth, which means that optimization
algorithms set appropriate step sizes to achieve stable con-
vergence boundaries. Therefore, we define the linear conver-
gence bound as,

F(wt )− F(w∗) ≤ (1− 0)t (F(w0)− F(w∗)), (12)

where the global convergence indicator 0 is

0 =
2ξ (2(γ − 1)2 − (γ + 1)γ (3ξ + 2)ρ2

− (γ + 1)ξρ2)
2ρ − 2(1+ γ )2ξ2ρ3 .

(13)

The efficiency 0 is usually considered as [0, 1]. The param-
eter γ is the preset approximation rate, which satisfies the
gradient descent of the surrogate function J tn, where we have

|∇J tn(w
t
n)| ≤ γ |∇J tn(w

t−1
n )|. (14)

In addition, the hyper-learning rate ξ is the learning rate
used for the cloud to perform global gradient updating. It is
used to adjust the update step size for each parameter. The
size of the hyper-learning rate usually affects the convergence
speed and stability of the network. If the learning rate is too
small, the training time will be longer, and if the learning rate
is too large, the network may experience unstable oscillations
during the training process.the parameter ξ is the global learn-
ing rate of federated learning. Generally, ξ = 0 means all the
changes of gradients are uploaded to the server accurately. For
example, ρ is the condition number calculated by the hessian
matrix in [20].

VOLUME 1, 2023 157



2) CALCULATION ROUND AND UTILITY DEFINITION
Correspondingly, the number of global updates Pg is denoted
as,

Pg =
1
0
log

F(w0)− F(w∗)
ϵ

. (15)

The necessary global ground is mainly related to the effi-
ciency of model learning 0, the initial weights w0, and the
convergence threshold ϵ. Pl is the training round completed
locally before each global update, denoted as

Pl =
2
ν1
log

ν2

γ
. (16)

The parameter ν1 ∈ (0, 1) is a weightage parameter used
to balance the influence of global model updates and local
model updates during the federated learning process. And
the condition related parameter ν2 ∈ (0, 1) is also constraint
by the J (zζ ) − J (z∗) ≤ β

L ν2 (1− ν1)
(
J (z0)− J (z∗)

)
, where

the J (z0) and J (zζ ) is the surrogate function at the local
updating of the initiate state and the ζ -th iteration. J (z∗) is the
optimal solution for the local training. The surrogate function
typically aims to preserve the main features and properties
of the original function as much as possible, and produce
similar computational results while reducing computational
complexity.

C. SYSTEM OPTIMIZATION GOAL
In this subsection, we will briefly discuss the challenges of
system optimization and how to set the optimization objec-
tives of the system in FL tasks. Generally, in FL tasks, it is
difficult to estimate the convergence rate after a round of
global updates, and it is challenging to find appropriate opti-
mization algorithms in multi-FL task environments due to the
following three reasons:
• Due to the stochastic nature of the convergence process,
it is difficult to precisely control the actual convergence
effect by setting the number of local training iterations
and learning rates to achieve the desired convergence
effect after a single global update.

• There is a tradeoff between global and local updates.
Excessive local learning may be counteracted by global
updates, while frequent global updates may result in
increased resource consumption and service latency.

• As the first challenge revealed, the benefits of training
updates are not linear. Initial global updates may bring
greater convergence benefits and accuracy improve-
ments.

Based on the aforementioned challenges, we redesign the
utility function to describe the benefits of a single global
update: the utility obtained by task k after the r-th global
round is,

Ur,k = [(1− 0)t−1 − (1− 0)t ]zkqk , (17)

where r represents the r-th global round, zk represents the
inherent importance, and qk is the calculation difficult. For
instance, in a disaster monitoring scenario, the importance

level is defined as the discrete safety level; in an autonomous
driving system, the importance level is the importance of
object recognition, including signal lights, pedestrians, and
railings.

Here, we assume that only synchronous training based on
IID data was used in this scenario. This is because asyn-
chronous federated learning results in unequal weighting of
gradients during fusion, leading to unpredictable convergence
results each round. The same issue exists with Non-IID data,
where the special nature of samples leads to significant differ-
ences in local training models, making the final loss function
not universally representative. As a result, the controllability
of convergence cannot be ensured through the rounds of local
training and global updates. In contrast, the f (w) of IID data
typically satisfies the conditions of L-smoothness and β-
strong convexity. In the case of IID data, the data distribution
is the same for each device, so the gradients update for each
device are also the same, and the gradients of the entire
dataset can better satisfy the requirements of smoothness and
convexity. Therefore, it is relatively easier to optimize when
performing data fusion.

1) MEANING OF UTILITY
To address the challenge that the convergence effect is dif-
ficult to control precisely, the [(1 − 0)t−1 − (1 − 0)t ] term
is referring to the actual convergence rate of 0 in Eq. (12).
The setting of 0 can follow Eq. (13), which can be obtained
by approximating ratio γ and global learning rate ξ . When
γ ∈ (0, 1) and ξ ∈ (0, 1) are small, then 0 ∈ (0, 1).
Therefore, it is possible to control the expected convergence
of a single global update (1− 0) ∈ (0, 1).
At the same time, we avoid the optimization complexity

problem caused by the trade-off between global and local
updates by setting a fixed 0. For a given 0, local devices
adaptively adjust the number of updates and learning param-
eters to calculate the combination with the lowest energy
consumption.

Obviously, the benefit of each global update are not lin-
ear. Eq. (17) describes the relationship between the training
benefits and the convergence effect.

Fig. 2(a) shows the accuracy curve tested using theMNIST
dataset. Here, 0 = 0.05, which means that the convergence
efficiency of each round of global update is above 0.05.
Correspondingly, the increase in accuracy is quite significant
in the first 10 rounds. Then, the gain in accuracy per round is
gradually decreasing.

Similarly, the y-axis in Fig. 2(b) represents the difference
in convergence rates, which is calculated using Eq. (17)
when zk = 1. It can be observed that the rate of return
on utility decreases as the number of calculation rounds
increases. It is evident that the relationship between conver-
gence rate and accuracy is not linear. Recent research has
demonstrated that as the loss function decreases, the accuracy
shows a certain upward trend, but different optimization algo-
rithms correspond to different curve shapes [21]. Therefore,

158 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

FIGURE 2. The relations of accuracy, convergence rate and
updating round.

we propose Eq. (17) to combine the mathematical meaning
of convergence rate with the physical meaning of prediction
accuracy.

2) SYSTEM OPTIMIZATION GOAL
During the time frame T , there are a total of |N | devices
located in |M | edges that jointly serve |8| federated learning
tasks to achieve weight convergence. However, in a time-
varying wireless scenario, various unexpected conditions,
such as device mobility, energy consumption problems, and
unstable fading channels, make it challenging to calculate an
optimal allocation policy within polynomial time. As a result,
some of the tasks may not be trained enough that converge to
the threshold ϵ.

Taking into account the constraints on communication,
computation, and caching resources, the optimization objec-
tive of the system is to achieve optimal global utility gains
within a limited time T , while simultaneously performing
global updates for as many AI tasks as possible,

max U =
∑
t∈T

∑
k∈8

∑
n∈N

Ūr,n,k · Xn,k,t , (18)

where Xn,k,t is the optimization variable whether device n
process the task k in time t . The optimization algorithm
is responsible for optimizing the device switching at time
slot t to achieve better utility gains. Here, Ūr,n,k denotes
the average utility gain of the r-th round of task k for
device n.

The optimization goal mentioned above is an NP problem.
Using brute force search for the algorithm leads to polyno-
mial time complexity [22]. For each time slot t , the algo-
rithm arranges the next task by complexity O(k) (k ≤ |8|).
Then, to determine the allocation policy among candidate
local devices, the complexity is greater than O(nm). At most,
(n/m) tasks are arranged for each t . Consequently, the overall
complexity of the algorithm is at least O(k (n/m)nm), mak-
ing it unsolvable in polynomial time. Therefore, instead of
using the unachievable brute force searching, we use the
Lyapunov drift theory to quantify the allocation plan and
train an LSTM-based deep learning allocation algorithm to
determine the allocation vector.

IV. OPTIMIZATION ANALYSIS BASED ON
STEADY-STATE MODEL
This section aims to analyze the impact of the one-step allo-
cation plan, and we introduce the virtual queuing theory to
describe the current state of the network. Then, we conduct
mathematical deductions and derive a universal allocation
policy based on the Lyapunov stability.

A. VIRTUAL QUEUE
Before discussing the real scenarios, we assume that the
storage of each device is infinite. The current state of all the
devices is described in an infinitely long virtual queue matrix
Q, denoted as Q(t) = {Qn(t), n ∈ N }. The dimension of Q is
|N |. If a task k is allocated to the queue of a specific device
n, the length of Qn increases by the length of the task. For
any time slot t , the length of tasks assigned to the queue is
denoted as A(t), and the length of tasks that are going to be
processed is denoted asW (t). Then, at time slot t+1, the new
queue backlog of device n is calculated as follows,

Qn(t + 1) = Qn(t)+ An(t)−Wn(t) where ∀n ∈ N .

(19)

After completing any task, the device outputs the task
utilityUr,k . We use the utility queueQun(t) instead of the cor-
responding task queueQn(t) to describe the dynamic changes
in the queue,

Qun(t + 1) = Qun(t)+ Aun(t)−Wun(t) (20)

where Aun(t) denotes the actual utility of tasks that are allo-
cated to device queue n at time t , while Wun(t) denotes the
utility of tasks that are processed by the device at time t . It is
important to note that if t is the minimum unit time (with the
same unit as in Eq. (4), then Wun can be calculated by the
average actual utility processing rate Ūr,n in Eq. (8).

B. VIRTUAL UTILITY QUEUE
Using Lyapunov stability to ensure fairness in all queues is
a common approach to improve queue efficiency. Typically,
the number of tasks or the length of the task stack in the
queue is used as a measure to optimize queue length and
throughput [23]. However, to optimize the throughput of task
value as described in Eq. (17), we adopt a utility queue instead
of a traditional queue based on the physical length of the task.
This prioritizes tasks with higher utility, meaning that urgent
tasks requiring performance improvement are processed first,
reflecting a better utility-cost ratio. Fig. 3 illustrates the
different performance of local devices in processing tasks
based on different queue metrics over a short period of time.
The blue curve represents utility-based allocation, orange is
processed in order, and green is averaged based on actual task
processing time. The horizontal axis represents time, and the
vertical axis represents the total utility obtained from process-
ing tasks. It is evident that using utility as a metric for task
allocation can effectively achieve better utility throughput.
Therefore, we innovatively adopt the utility queue instead of

VOLUME 1, 2023 159



FIGURE 3. The graph illustrates the cumulative task utility
gained after processing each task, where the blue line
represents the utility-based allocation, which outperforms the
classical queue length metric in terms of utility gain when
processing tasks from the candidate pool.

the task stack queue to achieve a better and fairer optimization
effect.

C. LYAPUNOV STABILITY
Similar to the virtual queue, the increase of length is influ-
enced by the allocation policy Au(t) in the utility domain.
To make sure that the queue matrixQu(t) is stable, the overall
allocation policy Au should satisfy

lim sup
T→∞

1
T

T−1∑
t=0

∑
i∈N

Qun(t) <∞. (21)

Finally, to determine if the system has completed all the
allocated federated learning tasks in 8, we need to ensure
that

lim
t→∞

Qu(t)
t
= 0 where ∀n ∈ N , (22)

where Qu(t) denotes the backlog in the virtual queue at time
t . If this condition is satisfied, we can say that the federated
learning task processing system is Lyapunov stable.

To estimate the overall network state and explore an opti-
mized solution, we can introduce the Lyapunov function
L(Qu(t)) to analyze the backlog’s influence in the virtual
queue [24]:

L(Q̃u(t)) =
∑
n∈N

Q̃u
2
n(t). (23)

Correspondingly, in the next time slot t + 1, the bound of
this drift function becomes

Q̃u(t + 1)2 ≤ (Q̃u(t)+ Au(t)−Wu(t))2

= Q̃u
2
(t)+ Au2(t)+Wu2(t)− 2Q̃u(t)Wu(t)

+ 2Q̃u(t)Au(t)− 2Wu(t)Au(t), (24)

where Au(t) ≥ 0 and Wu(t) ≥ 0. In arbitrary step t , the
conditional Lyapunov drift is

L(Q̃u(t + 1))− L(Q̃u(t)) = Au2(t)+Wu2(t)

+ 2Q̃u(t)Au(t)− 2Q̃u(t)Wu(t).

(25)

D. BOUND OF LYAPUNOV DRIFT
Considering apply an arbitrary allocation policy π ∈ 5,
we have the upper bound of the Lyapunov drift as

1π (t) = (L(Q̃u(t + 1))− L(Q̃u(t))|Q̃u(t))

≤ B+ 2
∑
n∈N

Q̃un(t)E(Auπ
n (t)|Q̃u(t))

− 2
∑
n∈N

Q̃un(t)E(Wuπ
n (t)|Q̃u(t)), (26)

where B is a constant, subject to

B =
∑
n∈N

(E(Auπ
n (t))

2
+ (E(Wuπ

n (t))
2) ≤ Au2max + d, (27)

and d is the bound of system processing ability.
Based on Eq. (26), and in order to compress the backlog,

the system optimizes each product E(Qun(t)Aun(t)) of each
queue separately. Therefore, one solution is to minimize the
allocation cost, denoted as:

argmin Cost =
∑
n∈N

Qun(t)Aun(t). (28)

Based on the above deduction, in order to obtain a smaller
Cost , the allocation policy should focus on assigning new
incoming tasks to shorter queues, resulting in relatively lower
allocation costs.

Then, the last part of Eq. (26) is to consume the backlogs
and resulting in to lower bound, which the system optimizes
the processing profit as,

argmax Profit =
∑
n∈N

Qun(t)Wun(t). (29)

E. COORDINATION CHALLENGE FOR INDIVIDUAL
ASSIGNMENT
Based on the above conclusion, it is recommended to assign
longer queues to devices with higher computation capacity,
which leads to higher profit outcomes. The utility process-
ing ability Wu(t) is roughly linearly related to the computa-
tion capacity. However, due to the philosophy of the Cost
function, new arriving tasks should be assigned to empty
queues rather than to queues with powerful processing abil-
ity. To resolve the potential conflicts between Eq. (28) and
Eq. (29), we define the revenue value as follows:

argmax Reve =
∑
t∈T

∑
n∈N

Prof n − Costn

=

∑
t∈T

∑
n∈N

Qun(t)Wun(t)− Qun(t)Aun(t)

(30)

which minimizes the upper bound of drift function in
Eq. (26). Lower bound results in higher throughput perfor-
mance, which directly influences the optimized value of the
overall utility in Eq. (18).

160 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

F. POTENTIAL TRADEOFF WITH THE FUTURE
Once a global update is completed, the task enters the assign-
ment pool again for the next round, creating a trade-off
between current revenue outcomes and longer-term benefits
when assigning candidate devices. The allocation policymust
intelligently decide whether to prioritize achieving more rev-
enue for individual devices based on the current queue state
Qu [25], or to coordinate devices to quickly complete a round
of global updates and renew the assignment pool. One classic
approach is to use the Stackelberg model, where the system
posts tasks in order of utility and assigns them to devices
that gain more processing profit based on the current network
state.

Calculating an optimal solution over the time frame T is
also a challenge due to the computational complexity, which
is not feasible for real-time online allocation using polyno-
mial time. Therefore, we propose an online deep learning
mechanism to optimize the allocation decision. However, the
learning process compresses the computational difficulty of
the NP hard problem by sacrificing accuracy. Thus, a deep
learning-based allocation policy calculation frame with flex-
ibility and forward-looking is required for this study.

V. LSTM BASED FEDERATED LEARNING ALLOCATION
ALGORITHM
This section discusses the application of neural networks to
output an optimized allocation policy. First, an LSTM-based
model is used to process the multi-dimensional input of net-
work states. Then, based on the conclusion in Section IV, the
recommended value for each allocation policy is designed as
the output of our proposed LSTM-based network framework.
Finally, to make it practical and applicable online, an online
allocation policy calculation algorithm is designed to handle
potential changes in network capacity.

In the context of practical FL task control and distribution,
control strategies based on current network states may be
adversely affected by network congestion, which can result
from various factors such as insufficient bandwidth, channel
interference, and insufficient storage and forwarding devices.
These factors may cause information loss or delay, which can
directly lead to a lack of critical information necessary for
control strategies to continue. To mitigate this issue, we pro-
pose using an LSTM-based predictive control solution.

A. LSTM FOR PREDICTIVE CONTROL
LSTM is a neural network that is well-suited for predic-
tive control. In comparison to traditional RNNs, LSTM has
better memory and information flow control capabilities,
which enables it to handle long sequence data more effec-
tively. Moreover, LSTM can mitigate issues such as gradient
explosion and vanishing that arise from processing long-term
sequence data. The predictive network based on LSTM,
as illustrated in Fig. 4, can achieve predictive control without
relying on the current network state. Even if information for
the current time slot is unavailable due to network congestion

FIGURE 4. LSTM-based predictive policy controller. The system
uses historical records to predict and calculate the allocation
plan, which compensates the potential calculation delays or
traffic congestion about current network states and local
resources.

or other reasons, the system can still utilize historical data
to predict and compute the allocation plan for the next time
slot. This greatly enhances the reliability and stability of the
system.

At the same time, the control scheme based on LSTM
has strong robustness and can effectively deal with network
fluctuations and partial information loss. For example, the
temporary surge in demand from a single device may cause
the immediate optimization algorithm to tilt most of the
resources towards that user in exchange for short-term gains.
Besides being unfair to other users, the short-term optimal
solution will have a negative impact on the overall optimality
and stability of the system. LSTM can appropriately reduce
the impact of abnormal fluctuations and calculate more stable
allocation plans.

B. MULTIDIMENSIONAL LSTM MODEL DEVELOPMENT
In order to maximize both queue stability and utility opti-
mization, a fully connected neural network can be employed
to input current network states and output evaluations for each
allocation plan, as described in Eq. (30). However, while gen-
eral neural networks can reduce computation difficult when
outputting an allocation policy, they are limited by single
dimensional data such as channels, storage, or computation
performance. This can sacrifice detailed analysis needed to
explore optimal solutions.

The proposed system faces two main challenges in out-
putting near-optimal solutions. Firstly, single dimensional
data is inefficient for predicting overall network states.
Although a hierarchical network model can coordinate all the
outputs of one dimension’s prediction network, it brings new
challenges on how to conclude all types of data to compute
an allocation policy. The spatial and temporal characteristics
of the devices must be considered as inputs to increase accu-
racy. Secondly, timeliness of the allocation policy influences
actual performance. Due to network congestion, equipment
abnormalities, and equipment mobility, the current optimal
solution may not be suitable for future trends. Therefore,
policies calculated based on the current state may not apply
for the next several slots. Hence, we propose speculating on
the allocation policy applicable to the current period based on
multi-dimensional historical data of the past.

VOLUME 1, 2023 161



FIGURE 5. An LSTM-based time sequence processing schedule
to calculate the allocation policy. The input data consists of a
variety of network states, including vectors of communication,
mobility, and computation capacity of local devices. The output
is the evaluation values of the allocation policy.

Therefore, in this paper, we introduce a multi-dimensional
LSTM neural network to overcome the above problems and
output an optimized allocation policy to maximize the overall
utility of Eq. (18).
Multi-dimensional LSTM is an effective neural network

model for processingmulti-dimensional time series data [26].
It gains popularity in various applications such as speech
recognition, video content analysis, traffic prediction, and
more. The model takes multi-dimensional input and calcu-
lates a combined prediction or evaluation result with respect
to time. For instance, multi-dimensional LSTM can be used
to predict hotel room reservations for the next period, thus
assisting the hotel in preparing enough service resources.
In this study, the states of the overall network devices are
transformed into a time series sequence and used as input
vectors for each time frame t , and the system outputs the
candidate allocation policy with scores.

As shown in Fig. 6, the time sequences are considered
as input data, and the system outputs the detailed scores
for each allocation plan. The input vector is processed
through the sequence folding layer, convolution layer, and
sequence expansion layer to be explored the potential spatial
correlation between devices [27], [28]. Then, it is restored
to the vector sequence through the flat layer and fed to the
classical LSTM layer for the analysis in the time dimension.
At last, as shown in Fig. 5, the corresponding estimating value
for each allocation plan is calculated through the final fully
connected layer. Usually, the system chooses the allocation
policy with the highest value to complete the resource man-
agement in the next period. We also design an online learning
mechanism to store and update neural network weights to
make the evaluation more precise and practical.

C. INPUT OF TIME SERIES VARIABLES
In this study, we consider a plane with coordinators where
the federated learning system operates. Multiple base stations
cover the entire plane, and mobile devices move along prede-

fined traces. When the server publishes a specific FL task,
the mobile device downloads the model data and completes
the local training of the neural network. Subsequently, the
devices immediately send the trained weights to the nearest
base station upon completion.

The fusion process of the network weights is typically
carried out synchronously or asynchronously.We assume that
the fusion process is completed synchronously, starting after
several devices have updated their training results. In addi-
tion to the unstable computational performance and energy
limitations of the mobile devices themselves [29], various
factors, such as signal-to-noise ratio, interference, multipath
propagation, and the Doppler effect, can cause delays in
task completion or failures. Therefore, our proposed system
should consider these factors when assigning tasks.

When designing the input sequence of the training sample,
we empirically consider the following factors as inputs.

• Computation ability: These factors are directly related
to the efficiency of processing tasks. For example,
we plan the available computing power of mobile
devices, taking into account factors such as the power
and frequency of device use, and assign a computation
ability Cn,t that changes over time.

• Communication ability: The two most important indi-
cators are upload bandwidth and download bandwidth.
In our scenario, we consider the impact of device move-
ment on communication capabilities. The transmission
of the general neural network model is completed within
1-10 seconds. We assume that the device’s movement
vector remains unchanged, and we take into account
the influence of distance on the signal-to-noise ratio,
converting all factors into actual bandwidth fluctuations.

• Caching and serviceability: These factors help deter-
mine the likelihood of a mobile device participating
in training, considering factors such as caching ability,
continuous access to the network time, signal strength,
and remaining power, and are used to assign a reputation
value to each device.

D. REWARD DESIGN BASED ON QUEUE DRIFT
The evaluation value represents the potential reward of an
allocation policy and is aligned with the optimization goal.
A higher reward value indicates that the current policy can
achieve a higher utility of Eq. (18) compared to lower reward
values.

However, the reward value of each policy only reflects
the utility gain for the current time and state. As the utility
processing ability of Wu in Eq. (20) changes with different
tasks, the current allocation policies can have a significant
impact on the future performance of the corresponding Wu.
To estimate the total utility of the current allocation plan for a
single task, we define the Lyapunov drift of the queue vector
in a period of τ , where task k is allocated at time κ ∈ [0, τ ].

162 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

FIGURE 6. Utilize LSTM model with convolutional layers. Multi-dimensional vectors are used to calculate the data relevance of time
and space through the pre-defined process of sequence expansion and convolution.

We have:

Qu(t + τ )2 − Qu(t)2 (31)

= Qu(t + τ )2 − Qu(t + τ − 1)2 + Qu(t + τ − 1)2

−Qu(t + τ − 2)2 + · · · + Qu(t + 1)2 − Qu(t)2 (32)

→ Qu(t)Au(t)−
∑

χ∈[κ,τ ]

Qu(t + χ )Wu(t + χ )

︸ ︷︷ ︸
F1

+

∑
χ∈[0,κ]

Qu(t + χ )Wu(t + χ )

︸ ︷︷ ︸
F2

. (33)

The utility benefit gain results in a certain delay since the
refunding is only confirmed when all devices complete the
task k , and it is difficult to estimate the processing ability per
time slot. To address this, we calculate the average utility gain
based on Eq. (8) that affects each time slot. Next, we extract
the allocation and processing operations part F1 of the equa-
tion, which is related to the current allocation policy and
future utility processing ability. Finally, we summarize the
reward function Rn of a specific allocation policy on device n
as follows:

Rn =
∑

χ∈[κ,τ ]

Qu(t + χ )Wu(t + χ )− Qu(t)Au(t) (34)

−V (L(Q̃(t + τ ))− L(Q̃(t))), (35)

where V is a non-negative control parameter used to penal-
ize deviation from the optimal average utility by at most
O(1/V ) [30]. When τ tends towards infinity, the reward func-
tion calculates the overall drift caused by the task k . A higher
value of Rn corresponds to a higher utility output, and it is
more efficient for the queues to remain in Lyapunov stability.

The output of the reward function is a vector of |N |
dimensions, where each dimension represents the reward of
assigning the task to a specific device n ∈ N . The system then
outputs the current allocation policy based on the order of the
utility value.

E. ALLOCATION POLICY UPDATING ALGORITHM
In this study, we utilize the proposed multi-dimensional
LSTM model to output a specific allocation plan. Specifi-
cally, the optimization algorithm aims to calculate the cor-
responding allocation strategy for each time slot based on the

utilization of network resources. The long-term algorithm is
not intended to solve the optimal solution for the entire time
frame T , but rather to solve the current optimal solution based
on recent historical data and network status. As an online
real-time updating algorithm, the methods we apply can solve
the optimal solution for the entire time frame; however, the
results obtained in this way may only have mathematical
significance and may lack practical significance in real-world
operations.

To generate the input data for the multi-dimensional
LSTM, we convert the various factors discussed in the pre-
vious section into time series vectors. We then calculate the
reward function of task assignment based on the current
network states. Additionally, in the initial phase, the system
attempts to assign tasks to all devices to obtain reward values,
which are considered the initial training data set.

Inspired by the deep Q-learning mechanism, we utilize an
online updating algorithm to adjust the output with changes
in the network trend. As shown in the pseudocode of Algo-
rithm 20, the LSTM learning model is updated effectively to
match the current system capacity through the output of the
new allocation policies.

Algorithm 20 is an online learning algorithm based on
Q-learning that requires updates at each time slot t . However,
since it still uses a convergence threshold ϵ to determine
whether the while loop at each time slot should terminate, it is
difficult to accurately determine the algorithm’s complexity.
To prevent long computation times that can result in slow con-
vergence [31], we also set a limit on the number of learning
rounds to help the algorithm stop in a reasonable time. The
overall computation time still depends on the model sizeW
and the states S that need to be updated.

If we only calculate the FLOPs (Floating Point Operations
per Second) of a single neural network training, we can
obtain an approximate computational complexity based on
the structure in Fig. 6. For the initial multi-dimensional con-
volution part, assuming the sample number is S, the single
sample input vector is Ci, the input sample type (computation
ability, communication ability, etc.) is F , and the input time
dimension is Tn, then the computational complexity of the
input isO(SCiFTn). To go through a three-layer convolutional
network, assuming the maximum kernel size of the three
convolutional layers is K , the kernel number is K ′, and the
final approximation computational complexity is O((2F +

VOLUME 1, 2023 163



Algorithm 1 FL Service Oriented LSTM Based Queuing
Optimization and Allocation Policy Calculation Algorithm
Require: 3: Current Neural Network Model,

W: Network Weight,
50: Current Allocation Policy,
S: Network State Field,
σ : Q-value Convergence Threshold,
υ: Learning Rate;

Ensure: 5: Allocation Policy 5 = {51, 52, · · · };
for each t = 1; t ≤ T ; t ++; do

Start current state St ← St−1;
Start new network 3+← 3 withW;
whileWk+1

−W ≥ σ do
Based on current network state Sk calculate next

move by 3(Sk );
Select the next state Sk+1;
Match continuous domain Sk ,Sk+1 to disc0rete

domain Ŝk , ˆSk+1;
Save the allocation policy as Ŝk , ˆSk+1, 3(Sk )→

5;
Update 3+(St ) = R(Sk ) + υ max3+(Sk+1);
Update new weightW;

end while
Update 3← 3+ usingW;
Follow the policy 5t calculated by 3(St );
t ++;

end for

1)K 2K ′CiTn) after flattening. The input data dimension for
LSTM is CiTn. Here we use a two-layer LSTM network,
assuming the number of neurons is L, and the input data size
at each time step is Tl , then the computational complexity
after LSTM isO(2Tn(4L2+4LCiTl)). Therefore, considering
the case of training with S samples, the final computational
complexity required for a single local update is O((2F +
1)K 2K ′CiTnS + 8(L2 + LCiTl)TnS).

VI. SIMULATION AND ANALYSIS
In this section, we evaluate the numerical performance of
the proposed algorithm. Firstly, we provide details of the
simulation platform used. Then, we compare our proposed
methodology with different environment variables and algo-
rithms to confirm its advantages.

A. SIMULATION PLATFORM
This section outlines the simulation experiments conducted to
validate our proposed approach. We simulate a virtual square
of dimensions 10, 000m× 10, 000m for the mobile federated
learning scenario. The distance between roads ranges from
50m to 200m, and mobile devices move along the streets at a
rate of approximately 3m/s to 15m/s [32]. Base stations (BSs)
are randomly distributed within the block separated by the
roads. The communication mode uses the common 30 - 300
GHz frequency band [33], and the communication distance
between mobile devices and the base station is maintained

between 40m - 200m. The remote cloud server sends and
receives FL tasks through the BS. Due to the instability of
computing power and communication capacity, the cloud
applies various algorithms to test the actual performance of
themobile-assisted FL system.We also preset 30 independent
tasks in the candidate pool to simulate how multiple inde-
pendent applications share public resources on cloud servers
more efficiently. Considering privacy and competition, we do
not consider the relation models that may exist between dif-
ferent learning tasks here. The introduction of the relationship
model will make the convergence more efficient and make
the cloud server achieve better resource utilization efficiency.
But it still takes more work to evaluate the performance under
strict convergence conditions.

In addition to the proposed algorithm (FL Service-
oriented LSTM based Queuing Optimization and Alloca-
tion Policy Calculation Algorithm (FL-QAPC)), we also
evaluate two other algorithms for comparison. The first
algorithm is based on the deep Q-learning framework [34]
and is denoted as Q-learning Edge Forwarding. Using the
same Lyapunov stability criterion in Eq. (34), this algo-
rithm analyzes the correlation of queue vectors through
multi-dimensional data input to achieve the optimized solu-
tion. It is based on the Deep Q-learning (DQL) algorithm and
implements fine-grained resource allocation and manage-
ment in Cloud Radio Access Network (C-RAN) based Net-
work Function Virtualization (NFV). It can dynamically learn
and optimize resource allocation to meet the needs of differ-
ent users and applications, and improve network performance
and efficiency. However, it does not have a predictive policy
controller like the proposed algorithm, which makes it less
efficient in terms of policy calculation. The second algorithm
is the classical Greedy Forwarding Policy, which focuses
on finding the optimal solution at each decision step based
on the current state information and task. The algorithm aims
to improve system performance and reliability by prioritizing
tasks based on their utility. It achieves good computation
efficiency and device reliability. However, it lacks the ability
to perform holistic planning to handle multiple tasks in this
scenario.

B. SYSTEM CAPACITY ANALYSIS
Firstly, we analyze the system’s performance in terms of com-
putation throughput and communication throughput when
considering different candidate local devices. Fig. 7(a) illus-
trates the changes in actual computation throughput gener-
ated by varying numbers of devices. The x-axis represents
time slots, which are considered in seconds. The y-axis repre-
sents the used computation throughput of the current time slot
corresponding to the time axis. Here, we assume that the total
global round of the tasks is the same. The faster the overall
computation is completed, the sooner the task is considered
complete. The blue line indicates that more devices partic-
ipate and can be selected for local updating. Initially, more
candidates participate in the early stage. The computation

164 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

FIGURE 7. FL system performance comparison using the different scenario settings and benchmarks.

throughput performs better than other stages during 0 - 505s.
Although the performance of 40 candidates is relatively lower
at first, it achieves computation queue stability faster than the
result of 30 candidates.

Next, we evaluate other metrics, such as communication,
completion rate, and utility gain. Fig. 7(b) illustrates the
performance of the communication capacity used with dif-
ferent numbers of devices. Since the updating model size of a
specific task is the same, earlier and higher communication
resource utilization means faster completion of tasks. The
proposed algorithm, represented by the blue line, quickly
completes all rounds of updates. Fig. 7(c) shows the number
of tasks completed in each time slot. Although the differ-
ence is not noticeable at first, more candidate devices help
improve the rate of completing all tasks. For example, blue’s
50 candidate solution manages more computing power and
communication throughput. Thus, the performance of com-
pleting all FL tasks is better than others. Fig. 7(d) shows
the utility gained after accomplishing the task update. From
a long-term perspective, a higher utility shows the system
keeps a more stable utility queue. However, the proposed
algorithmwithmore candidates performs better than the other
options. It completes the convergence rate faster, especially
when the number of participating devices increases, andmore
critical tasks and devices that performmore efficiently can be
intelligently selected.

C. ALGORITHM PERFORMANCE ANALYSIS
Next, we compare the computing performance of the three
algorithmsmentioned above. Fig. 7(e) shows the computation
throughput of the algorithms. Since the proposed algorithm
uses the LSTM model to predict possible future fluctuations
based on historical records, it utilizes computing resources

more efficiently. The second algorithm based on the deep
Q-learning framework is not predictive of the future and
focuses on the current state, resulting in a certain degree of
delay compared to the proposed one. However, in the end,
the performance of the two trends is the same due to the
optimization mechanism of Lyapunov, as the global update
is completed only after all the model’s local updating is
finished. According to the barrel principle, poorly perform-
ing devices eventually force the two algorithms to wait to
complete a single device before being integrated globally. The
greedy algorithm focuses on current utility gain and ignores
the influence of global updating, which results in poorer
performance compared to the other two algorithms.

Fig. 7(f) shows the performance of communication
throughput. Due to the prediction mechanism of the LSTM
model, the proposed algorithm infers the potential location
of mobile devices for some time in the future based on
their current locations, and predicts the actual communication
capacity according to the coverage of the local base stations.
As a result, the proposed algorithm outperforms the other
two in terms of communication throughput. The blue line
representing the second algorithm without real-time learning
cannot cope with more random changes, resulting in lower
communication throughput than the upper bound. The greedy
algorithm only achieves local optimality and cannot guaran-
tee performance in the long term.

Fig. 7(g) and Fig. 7(h) show the performance of the utility
gain. The proposed algorithm consistently performs well in
all stages of the y-axis. Our proposed algorithm outperforms
the other two throughout the entire period. Based on the
previous figures, we observe that the algorithmmaximizes the
utility gain of tasks by utilizing communication, computation,
and global updating speed as much as possible. The benefit
of the proposed Lyapunov stability control methodology is

VOLUME 1, 2023 165



that the algorithm achieves a better overall task completion
rate compared to the Q-learning-based algorithm alone. How-
ever, the utility gain per slot is unexpectedly inferior to the
greedy algorithm. We observe that the greedy algorithm can
maximize the utility of the current single task at the expense
of more available resources. In conclusion, in addition to
optimizing the utilization of potential resources, our pro-
posed algorithm performs better by considering an optimality
trade-off between global updating and local updating.

VII. CONCLUSION
Coordinating remote resources to process federated learn-
ing tasks is one of the main challenges in cloud-supported
multi-task distribution systems. To address the complexity of
resource utilization, this research combines communication
resources, computation ability, task convergence, and other
factors in the edge-cloud FL system and integrates them into
a single utility value as the optimization goal. To solve this
optimization problem, we introduce Lyapunov drift to com-
press caching usage and maximize the system’s task utility
throughput. We design an online updating algorithm using
the LSTM model to handle the calculation of the allocation
policy in a time-varying environment. Our practical simu-
lations demonstrate that our proposed algorithm performs
significantly better than other benchmarks.

REFERENCES
[1] Z. Yan, J. Wu, G. Li, S. Li, and M. Guizani, ‘‘Deep neural backdoor in

semi-supervised learning: Threats and countermeasures,’’ IEEE Trans. Inf.
Forensics Security, vol. 16, pp. 4827–4842, 2021.

[2] C. Zhang, M. Dong, and K. Ota, ‘‘Enabling computational intelligence for
green Internet of Things: Data-driven adaptation in LPWA networking,’’
IEEE Comput. Intell. Mag., vol. 15, no. 1, pp. 32–43, Feb. 2020.

[3] H. Li, K. Ota, and M. Dong, ‘‘Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,’’ IEEE Netw., vol. 32, no. 1,
pp. 96–101, Jan./Feb. 2018.

[4] C. Zhang, M. Dong, and K. Ota, ‘‘Heterogeneous mobile networking for
lightweight UAV assisted emergency communication,’’ IEEE Trans. Green
Commun. Netw., vol. 5, no. 3, pp. 1345–1356, Sep. 2021.

[5] L. U. Khan et al., ‘‘Federated learning for edge networks: Resource opti-
mization and incentive mechanism,’’ IEEE Commun. Mag., vol. 58, no. 10,
pp. 88–93, Oct. 2020.

[6] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, ‘‘In-edge AI:
Intelligentizing mobile edge computing, caching and communication by
federated learning,’’ IEEE Netw., vol. 33, no. 5, pp. 156–165, Sep. 2019.

[7] M. A. Bouras, F. Farha, and H. Ning, ‘‘Convergence of computing, com-
munication, and caching in Internet of Things,’’ Intell. Converged Netw.,
vol. 1, no. 1, pp. 18–36, Jun. 2020.

[8] W. Y. B. Lim et al., ‘‘Federated learning in mobile edge networks:
A comprehensive survey,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[9] S. Huang, K. Ota, M. Dong, and F. Li, ‘‘MultiSpectralNet:
Spectral clustering using deep neural network for multi-view data,’’
IEEE Trans. Computat. Social Syst., vol. 6, no. 4, pp. 749–760,
Aug. 2019.

[10] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, ‘‘Robust
and communication-efficient federated learning from non-IID data,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2020.

[11] Z. Hu, K. Shaloudegi, G. Zhang, and Y. Yu, ‘‘Federated learning meets
multi-objective optimization,’’ 2020, arXiv:2006.11489.

[12] X. Zhang, H. Gu, L. Fan, K. Chen, and Q. Yang, ‘‘No free lunch theorem
for security and utility in federated learning,’’ ACM Trans. Intell. Syst.
Technol., vol. 14, no. 1, pp. 1–35, Feb. 2023.

[13] T. T. Vu, H. Q. Ngo, M. N. Dao, D. T. Ngo, E. G. Larsson, and T. Le-Ngoc,
‘‘Energy-efficient massive MIMO for federated learning: Transmission
designs and resource allocations,’’ IEEE Open J. Commun. Soc., vol. 3,
pp. 2329–2346, 2022.

[14] H. Wang, Z. Kaplan, D. Niu, and B. Li, ‘‘Optimizing federated learning on
non-IID data with reinforcement learning,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jul. 2020, pp. 1698–1707.

[15] C. T. Dinh et al., ‘‘Federated learning over wireless networks: Convergence
analysis and resource allocation,’’ IEEE/ACM Trans. Netw., vol. 29, no. 1,
pp. 398–409, Feb. 2021.

[16] D. Verma, S. Adhikari, and S. Ray, ‘‘Forwarding strategy in SDN-based
content centric network,’’ in Proc. Int. Conf. Paradigms Commun., Com-
put. Data Sci., M. Dua, A. K. Jain, A. Yadav, N. Kumar, and P. Siarry, Eds.
Singapore: Springer, Jan. 2022, pp. 49–62.

[17] X. Lin, J. Wu, J. Li, X. Zheng, and G. Li, ‘‘Friend-as-learner:
Socially-driven trustworthy and efficient wireless federated edge learn-
ing,’’ IEEE Trans. Mobile Comput., vol. 22, no. 1, pp. 269–283,
Jan. 2023.

[18] B. Dab, N. Aitsaadi, and R. Langar, ‘‘Joint optimization of offloading and
resource allocation scheme for mobile edge computing,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–7.

[19] W. Liu, X. Zang, Y. Li, and B. Vucetic, ‘‘Over-the-air computation systems:
Optimization, analysis and scaling laws,’’ IEEE Trans. Wireless Commun.,
vol. 19, no. 8, pp. 5488–5502, Aug. 2020.

[20] V. Smith, S. Forte, M. Chenxin, M. Takáč, M. I. Jordan, and
M. Jaggi, ‘‘CoCoA: A general framework for communication-efficient
distributed optimization,’’ J. Mach. Learn. Res., vol. 18, pp. 1–49,
Jul. 2018.

[21] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, ‘‘Visualizing the loss
landscape of neural nets,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31,
2018, pp. 1–11.

[22] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, ‘‘Dynamic task
offloading and resource allocation for mobile-edge computing in dense
cloud RAN,’’ IEEE Internet Things J., vol. 7, no. 4, pp. 3282–3299,
Apr. 2020.

[23] Z. Jing, Q. Yang, Y. Wu, M. Qin, K. Sup Kwak, and X. Wang, ‘‘Adap-
tive cooperative task offloading for energy-efficient small cell MEC net-
works,’’ inProc. IEEEWireless Commun. Netw. Conf. (WCNC), Apr. 2022,
pp. 292–297.

[24] H. Liu, Z. Hu, andY. Song, ‘‘Lyapunov-based decentralized excitation con-
trol for global asymptotic stability and voltage regulation of multi-machine
power systems,’’ IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2262–2270,
Nov. 2012.

[25] Q. He et al., ‘‘A game-theoretical approach for user allocation in edge
computing environment,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 3, pp. 515–529, Mar. 2020.

[26] U. Yoshimura, T. Inoue, A. Tsuchiya, and K. Kishine, ‘‘Implementation
of low-energy LSTM with parallel and pipelined algorithm in small-scale
FPGA,’’ in Proc. Int. Conf. Electron., Inf., Commun. (ICEIC), Jan. 2021,
pp. 1–4.

[27] A. Azari, M. Ozger, and C. Cavdar, ‘‘Risk-aware resource allocation for
URLLC: Challenges and strategies with machine learning,’’ IEEE Com-
mun. Mag., vol. 57, no. 3, pp. 42–48, Mar. 2019.

[28] H. Shi and C. Wang, ‘‘LSTM-based traffic prediction in support of
periodically light path reconfiguration in hybrid data center network,’’
in Proc. IEEE 4th Int. Conf. Comput. Commun. (ICCC), Dec. 2018,
pp. 1124–1128.

[29] C. Chen, Y.-H. Chiang, H. Lin, J. C. S. Lui, and Y. Ji, ‘‘Joint client
selection and receive beamforming for over-the-air federated learning with
energy harvesting,’’ IEEE Open J. Commun. Soc., vol. 4, pp. 1127–1140,
2023.

[30] M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems (Synthesis Lectures on Learning, Net-
works, and Algorithms), vol. 3, no. 1. San Rafael, CA, USA: Morgan &
Claypool, Sep. 2010, pp. 1–211.

[31] C. Zhang, M. Dong, and K. Ota, ‘‘Employ AI to improve AI services:
Q-learning based holistic traffic control for distributed co-inference in
deep learning,’’ IEEE Trans. Serv. Comput., vol. 15, no. 2, pp. 627–639,
Mar. 2022.

[32] Y. Wang, Z. Su, T. H. Luan, R. Li, and K. Zhang, ‘‘Federated learn-
ing with fair incentives and robust aggregation for UAV-aided crowd-
sensing,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3179–3196,
Sep. 2022.

166 VOLUME 1, 2023



Zhang et al.: Effective 3C Resource Utilization and Fair Allocation Strategy

[33] D. Wang, B. Song, D. Chen, and X. Du, ‘‘Intelligent cognitive radio in
5G: AI-based hierarchical cognitive cellular networks,’’ IEEE Wireless
Commun., vol. 26, no. 3, pp. 54–61, Jun. 2019.

[34] C. Zhang, M. Dong, and K. Ota, ‘‘Fine-grained management in 5G: DQL
based intelligent resource allocation for network function virtualization in
C-RAN,’’ IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 2, pp. 428–435,
Jun. 2020.

CHAOFENG ZHANG (Member, IEEE) received
the B.Eng. degree from Soochow University,
China, in 2011, and the M.Eng. and Ph.D. degrees
from the Muroran Institute of Technology, Japan,
in 2016 and 2019, respectively. From March
2017 to April 2017, he was a Visiting Scholar with
Soochow University, China. He is currently an
Assistant Professor with the Advanced Institute of
Industrial Technology (AIIT), Tokyo, Japan. His
research interests include cloud computing, green

IoT, wireless communication, and wireless positioning technology. He was
a recipient of the IEEE VTS Tokyo Chapter 2016 Paper Award in 2016 and
the Best Presentation Award in A3 Annual Workshop on Next Generation
Internet and Network Security. He serves as an Associate Editor for IEEJ
Transactions on Electronics, Information and Systems andFrontiers in Space
Technologies.

MIANXIONG DONG (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in computer sci-
ence and engineering fromTheUniversity of Aizu,
Aizuwakamatsu, Japan. He was a JSPS Research
Fellow with the School of Computer Science and
Engineering, The University of Aizu, and a Visit-
ing Scholar with the Broadband Communications
Research (BBCR) Group, University of Waterloo,
Waterloo, ON, Canada, supported by the JSPS
Excellent Young Researcher Overseas Visit Pro-

gram from April 2010 to August 2011. He is currently the Vice President
and a Professor with the Muroran Institute of Technology, Muroran, Japan.
He was selected as a Foreigner Research Fellow (a total of three recipients
all over Japan) by Nippon Electric Company Computer and Communication
(NEC C&C) Foundation in 2011. He is a Foreign Fellow of EAJ. He was a
recipient of the 12th IEEE ComSoc Asia-Pacific Young Researcher Award
2017, the Funai Research Award 2018, the NISTEP Researcher 2018 (one
of only 11 people in Japan) in recognition of significant contributions in
science and technology, the Young Scientists’ Award from MEXT in 2021,
the SUEMATSU-Yasuharu Award from IEIEC in 2021, and the IEEE TCSC
Middle Career Award in 2021. He is Clarivate Analytics in 2019, 2021,
and 2022 Highly Cited Researcher (Web of Science).

KAORU OTA (Member, IEEE) was born in
Aizuwakamatsu, Japan. She received the B.S.
degree in computer science and engineering from
The University of Aizu, Aizuwakamatsu, in 2006,
the M.S. degree in computer science from Okla-
homa State University, Stillwater, OK, USA,
in 2008, and the Ph.D. degree in computer science
and engineering from The University of Aizu in
2012. FromMarch 2010 to March 2011, she was a
Visiting Scholar with the University of Waterloo,

Canada. From April 2012 to April 2013, she was a Japan Society of the
Promotion of Science (JSPS) Research Fellow at Tohoku University, Japan.
She is currently a Professor and a Ministry of Education, Culture, Sports,
Science and Technology (MEXT) Excellent Young Researcher with the
Department of Sciences and Informatics, Muroran Institute of Technology,
Japan, where she is also the founding Director of the Center for Computer
Science (CCS). She is selected as JST-PRESTO Researcher in 2021 and
a fellow of EAJ in 2022. She was a recipient of the IEEE TCSC Early
Career Award 2017, the 13th IEEE ComSoc Asia-Pacific Young Researcher
Award 2018, the 2020 N2Women: Rising Stars in Computer Networking and
Communications, the 2020 KDDI Foundation Encouragement Award, and
the 2021 IEEE Sapporo Young Professionals Best Researcher Award, and
the Young Scientists’ Award fromMEXT in 2023. She is Clarivate Analytics
in 2019, 2021, and 2022 Highly Cited Researcher (Web of Science).

VOLUME 1, 2023 167


