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ABSTRACT Cell-free massive multiple-input multiple-output (MIMO) systems consist of geographically-
distributed multi-antenna access points (APs) that form a virtual massive MIMO array. To make the network
arbitrarily scalable in size, each user should be served by the best possible personalized user-centric cluster
of nearby APs. Unfortunately, determining that cluster is a combinatorially-complex problem made even
harder when the users are in motion. Therefore, in this work, we develop a multi-agent reinforcement
learning (MARL) algorithm for AP selection and clustering. Each AP is an agent in the MARL algorithm
and it is trained to near-optimally select for itself which users to serve. Conventional MARL algorithms
require a centralized reward system to train the agents, and the agents’ neural network weights tend to
strongly depend on their locations during training. To counteract these problems, we also consider a federated
MARL framework. Simulation results demonstrate both our conventional and federated MARL algorithms
outperform existing published AP selection algorithms, and also provide performance comparable to the
case of all APs serving all users. The results also show the conventional algorithm has somewhat superior
performance in the environment it was trained in, but the federated algorithm transfers its learning to changed
environments much better, with very little performance loss.

INDEX TERMS Access point clustering, cell-free massive MIMO, centralized critic, decentralized actors,
federated reinforcement learning, multi-agent reinforcement learning, user association

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO)
antenna systems are a key component of 5th genera-

tion (5G) and beyond cellular networks in order to achieve
high spectral efficiency (SE), data rate, and throughput
requirements [1]. Most typically, massive MIMO antenna
arrays are assumed to have all their elements co-located at
a base station (BS) [2], [3], [4]. However, in such cases, the
massive MIMO cellular network is normally limited by inter-
cell interference, resulting in poor cell-edge performance.
Therefore, for beyond-5G cellular networks, which put more
emphasis on equitable service for all pieces of user equipment
(UE) within the coverage area, modifications to the network

architecture are necessary. To overcome this shortcoming
of conventional massive MIMO, distributed massive MIMO
architectures have been studied. In the literature, the core
idea of distributed MIMO has been examined under various
names, including distributed antenna system (DAS) [5], [6],
network MIMO [7], [8], [9], coordinated multipoint (CoMP)
transmission [10], [11], [12], [13], [14], or cloud radio access
network (C-RAN) [15], [16], [17], [18], [19].

More recently, distributed architecture has again appeared
in the ‘‘massive’’-sized array regime with the name of
cell-free massive MIMO [20]. In cell-free massive MIMO,
the access points (APs), each with one or more antennas,
are distributed over a geographical area, and multiple APs
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FIGURE 1. Illustration of a cell-free massive MIMO network.
(AP: access point, CC: central controller, UE: user equipment.)

coordinate to form a virtual massive MIMO array to serve
UEs [21]. Cell-free massive MIMO conceptually removes
cell boundaries and therefore suppresses the inter-cell inter-
ference problem. This creates more uniformity of service and
fairness to UEs over the entire network area [21]. It has been
observed in [20] that in a cell-free massive MIMO network,
the APs are closer to the UEs than in conventional massive
MIMO, yielding higher diversity gain, lower path loss, and
better throughput. Reference [20] has also shown that cell-
free massiveMIMOhas significantly better performance than
small-cell systems where each UE is served by a single BS.

A. BACKGROUND AND MOTIVATION
We illustrate a typical cell-free massive MIMO network in
Fig. 1. In canonical cell-free massive MIMO, UEs are served
by all the APs [20], [22], which are connected to a central
controller (CC) using fronthaul connections. Therefore, the
number of fronthaul connections increases proportionally
with the number of APs in the network. Furthermore, as each
AP serves all UEs, the overall fronthaul capacity requirement
also increases, along with computing requirements for signal
processing. These factors give rise to scalability issues, and
thus the canonical form of cell-freemassiveMIMO is imprac-
tical for an arbitrarily large number of APs in the network.

In contrast, in scalable cell-free massive MIMO
systems, each UE is served by a subset of APs [23], [24], [25],
[26], [27]. Importantly, the cluster of serving APs should be
user-centric and individualized for each UE.1 This challenge
was initially addressed in [23], wherein the authors proposed
a user-centric AP cluster solution; other works since have
also examined the problem (see Section II). However, two
major issues still remain open: 1) How should the system
select which APs to serve a UE in real-time in an environment
where the UEs are in motion, where AP selection may need
to be updated often? 2) How should the system support
the significant fronthaul and computational load in such an

1This is an important and notable difference from earlier work on dis-
tributed architecture, where the clusters of BSs/APs/antennas were typically
centric to the serving nodes rather than the UEs.

environment? We focus mainly on the first question, and
address the second through the use of localized precoding.

To tackle these challenges, this paper focuses on develop-
ing machine learning (ML) methods for AP clustering such
that each AP can determine the UEs it serves mostly inde-
pendently of the others. To support the dynamic nature of a
mobile environment, reinforcement learning (RL) is a natural
choice. In a recent article [28], multi-agent RL (MARL)
techniques have been applied to a canonical cell-free massive
MIMO network to solve the power allocation problem in
a mobile environment, and the performance of the MARL
algorithm therein is promising. Those results suggest that
MARL algorithms would be suitable for cell-free massive
MIMO with mobile UEs, which served as one of our initial
motivations for applying MARL to AP clustering. In our
earlier work [29], we developed an actor-critic MARL frame-
work that trains theAPs to select whichUEs to serve; eachAP
is a distributed agent/actor in the system, and the centralized
critic that judges the agents’ performance is located at the
CC of the network. Because the agents are distributed, with
the use of localized precoding, the fronthaul load has been
reduced. However, during training, conventional MARL sys-
tems require regular information updates regarding rewards
from the CC, which can result in significant communication
overhead [30]. As an alternative, to train the agents with
limited interactions between the CC and agents, federated
learning (FL) [31] is a promising technique. Under FL, dis-
tributed agents train their neural networks (NNs) locally. The
CC periodically requests the NN weights from the agents
and uses those local weights to compute and distribute a
global NN weight update for all agents. FL was initially
developed and deployed by Google in their predictive key-
board feature [32]. Later, it has been observed that combining
features of FL with those of RL can help reduce the number
of interactions between the CC and agents [30], [33]. This
motivates us tomodify our previousMARL system to amulti-
agent federated reinforcement learning (MAFRL) system,
and study its performance. Among various distributed ML
methods, both MARL and FL have been deemed to be key
techniques for wireless communication problems [34].

B. CONTRIBUTIONS
The specific contributions of this paper are:

• We develop a MARL framework for AP clustering in
an environment with mobile (i.e., non-stationary) UEs.
We consider UE mobility at pedestrian speeds when
creating the simulation environment. We formulate the
problem as a Markov game and then solve it using the
‘‘decentralized actor, centralized critic’’ variant of rein-
forcement learning.We developmultiple reward policies
to incorporate fair performance.

• We extend the MARL system to a MAFRL system by
introducing FL features. We describe how implementing
aMAFRL-based solution can further reduce the commu-
nication overhead fronthaul load.
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• We examine the performance of the proposed actor-
criticMARL andMAFRL algorithms for UE association
and AP clustering via simulations. We also compare
the SE of the MARL and MAFRL algorithms with
those of greedy-based AP clustering, ML-based clus-
tering algorithms proposed in [25] and [35], and a
modified RL-based downlink (DL) power control algo-
rithm from [36]. As part of this examination, we illus-
trate the differences in the performance obtained by
extending our MARL algorithm to aMAFRL algorithm.
We demonstrate that the MAFRL performance is some-
what inferior to that of the MARL algorithm in the
trained environment, but the MAFRL algorithm also
transfers its learning to new environments more readily
and without a notable performance loss, in contrast to
the MARL algorithm.

C. ORGANIZATION
The rest of the paper is organized as follows. We briefly
provide an overview of related work in Section II.
In Section III, we describe the model of the cell-free massive
MIMO network, the precoding method, and the calculation
of SE. The framework and details of our MARL andMAFRL
techniques are discussed in Sections IV and V, respectively.
We evaluate and discuss the simulated performance of our
proposed algorithms in Section VI. Finally, we conclude the
paper in Section VII.
Notation: Italic variables like a or A denote scalars,

whereas boldface uppercase (A) and lowercase (a) variables
denote matrices and vectors, respectively. Calligraphic vari-
ables like A and A represent sets and families of sets,
respectively, with |A| being the cardinality. MH denotes the
Hermitian (conjugate) transpose of matrixM. IfM is square,
M−1 and tr(M) respectively denote its inverse and trace. In
is the n×n identity matrix, and 0m×n is an m × n matrix
containing all zeros.1(x) is an indicator function that equals 1
if condition x is true, and 0 otherwise.

II. RELATED WORK
To the best of our knowledge, distributed architecture
specifically in the context of massive MIMO was initially
investigated in [37], where a BS selection procedure was
developed; the selected BSs coordinated using either max-
imum ratio combining or minimum mean square error
(MMSE) combining to serve the UEs on the uplink (UL) of
hexagonal cells. The authors of [20], [38] first gave the name
‘‘cell-free massive MIMO’’ to the core idea of distributed
massive MIMO architecture.

The benefits of cell-free massive MIMO come at the
price of increased fronthaul capacity requirements [39].
Existing literature typically assumes infinite-capacity front-
haul links, e.g., [20], [23]. However, prior work in simi-
lar contexts has shown that limited fronthaul capacity has
a significant performance impact, e.g., for CoMP [40] or
C-RAN [41]. The performance of cell-free massive MIMO

with capacity-constrained fronthaul links has been studied for
some specific scenarios in [25], [39], and [42]. Distributed
precoding [21] also helps address the issue; we use this
approach herein.

Although there are relatively few works on AP cluster-
ing or selection, several works on the related problem of
antenna selection for massive MIMO are available in the
literature, e.g., [43], [44], [45], [46]. Antenna selection and
AP clustering are fundamentally the same type of problem.
However, solutions to the former are most typically centric to
the transmit nodes, whereas user-centric solutions are best for
the latter. In [44] and [45], the authors have proposed greedy
selection algorithms; [44] has maximized the incremental
sum rate with each selected antenna, whereas [45] has used
the technique of matching pursuits. The authors of [43] have
proposed a branch-and-bound selection algorithm based on
the largest minimum singular value of channel submatrices.
An ML method for joint antenna selection and user schedul-
ing to maximize the energy efficiency of a single-cell massive
MIMO system has been proposed in [46]. The authors of [47]
have investigated the related problem of antenna clustering
in distributed antenna systems, and [8] has considered cell
clustering for network MIMO. In the context of C-RANs,
the authors of [15] have considered joint user clustering and
sparse beamforming under the constraints of finite-capacity
backhaul links, and have obtained a solution by optimizing a
weighted MMSE problem. The authors of [19] have framed
the user clustering problem as one of a cooperative bargaining
game, whose Nash equilibrium has been found in part by a
Hungarian method to pair bargaining users.

In the context of cell-free massive MIMO, [25] has pro-
posed two strategies for AP clustering: 1) minimize the
number of UE-AP associations subject to the signal-to-
interference-plus-noise ratio (SINR) being greater than a
threshold, and 2) maximize the minimum SINR subject to
a maximum allowable number of APs associated with a
UE. More recently, an AP selection method using an ML
algorithm based on κ-means clustering has been proposed
in [35], a multiple user access scheme using deep RL has
been investigated in [48], and a distributed beamforming
technique using deep RL has been considered in [49]; [35]
has considered DL transmissions, whereas [48] and [49] have
considered data transmissions on the UL. Additionally, cell-
free massive MIMO DL power control/allocation schemes
using deep RL have been developed in [28] and [36].

None of the above antenna selection algorithms considers
an environment with UEs in motion. In such a dynamic envi-
ronment, the association problem needs to be re-solved peri-
odically. Typical deep neural networks (DNNs) face another
challenge in that the input or output state size may vary
with the number of nearby and/or active UEs. Therefore,
we consider the use of RL to solve the AP clustering problem,
as it is suited to handle dynamic environments. Recently, the
authors of [28] have developed RL-based power allocation
strategies for a mobile environment. In our MARL algo-
rithm, which we first investigated in [29], we take a more
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distributed approach with decentralized actors and a central-
ized critic, inspired by the work in [50]. In this approach, each
agent (actor) only has localized environmental information
for its AP, whereas the critic has global information. However,
a conventional MARL approach such as this has a couple of
shortcomings. First, the agents need frequent feedback from
the central critic to get their rewards and accordingly update
their NN weights. Thus, conventional MARL increases the
communication overhead, and to some degree contradicts the
basic philosophy of distributed operation in cell-free massive
MIMO. Second, the overall policy learned by each agent is
strongly contingent on the location of that agent. Therefore,
the learned policies are somewhat dependent on the environ-
ment, which makes transferring the agents and their policies
to a new environment problematic [33], [51].

To overcome these issues, we additionally consider a
MAFRL algorithm. A key consideration in the development
of FL was maintaining data privacy between different agents
in a system. Agents are only allowed to share learned infor-
mation (most typically their local NN weights), but not the
data with which they train [31]. In the context of communi-
cation systems, FL has been used in a variety of scenarios
ranging from resource allocation and optimization problems,
edge caching and computing, vehicular networks (whether
road-based or unmanned aerial vehicles), health care, and the
Internet of Things [52], [53], [54]. General frameworks for
using FL in beyond-5G networks have been proposed in [55]
and [56], while [34] has surveyed numerous distributed ML
techniques for wireless communications, including RL, FL,
and other methods that operate in a completely distributed
manner with no central coordination. In [57], the authors have
considered how best to use the APs of a cell-free massive
MIMO system to support and optimize training of an FL
framework, where the local NNs being trained are located
at the UEs. A related problem has been examined in [58],
where massive MIMO and compressive sensing have been
used to help reconstruct sparse gradient vectors used for the
FL updates. References [59] and [60] have considered FL
methods for channel estimation, whereas [61] has used a
mixture of deep FL and game theory for dynamic frequency
allocation in multicell massive MIMO networks. In [30], the
authors have used federated deep RL to tackle the problem of
user access control in open radio access networks. However,
to the best of our knowledge, our work is the first to combine
the advantages of both reinforcement learning and federated
learning in the context of optimizing AP clustering in a cell-
freemassiveMIMOnetwork, while also consideringmobility
of UEs.

III. CELL-FREE MASSIVE MIMO SYSTEM MODEL
Consider the DL of a cell-free massive MIMO system with L
APs that serve a total of K single-antenna UEs, where each
AP is equipped with N antennas. We assume that L×N ≫K ,
which is the typical operating regime for massive MIMO.
Each AP can serve any of the UEs, and theoretically can

serve any number of them. However, as mentioned earlier,
the more UEs served, the more significant the fronthaul load
will be. The APs are connected to a CC that forwards UE data
symbols to the APs and coordinates the training of ML.

Time-division duplex (TDD) mode is used to alternate
between UL and DL transmission. As such, DL channel state
information (CSI) may be obtained from the assumption of
UL/DL radio channel reciprocity. The UL channel hkℓ ∈

CN×1 between UE k and AP ℓ is distributed ∼ CN (0,Rkℓ),
which models correlated Rayleigh fading; Rkℓ ∈ CN×N is
the channel covariance matrix. βkℓ = tr(Rkℓ)/N is the large-
scale fading parameter of the channel, incorporating path loss
and shadow fading [21]. The APs make an estimate ĥkℓ of
the UL channels based on pilot sequences sent by the UEs,
as follows [21]:

ĥkℓ =
√

ρpτpRkℓ9
−1
kℓ y

p
kℓ, (1)

where

9kℓ = E
{
ypkℓ(y

p
kℓ)

H
}

= ρpτpRkℓ + σ 2IN (2)

is the N×N covariance matrix of the received pilot signal
ypkℓ ∈ CN×1 from UE k at AP ℓ. ρp and τp are respectively
the power and the length of the transmitted pilot sequence,
and σ 2 is the variance of the noise (assumed to be distributed
∼ CN (0, σ 2IN )). We also denote the covariance matrix of
the error between hkℓ and ĥkℓ as Ckℓ ∈ CN×N

= Rkℓ −

ρpτpRkℓ9
−1
kℓ Rkℓ [21]. Here, we assume for simplicity that

every UE has its own orthogonal pilot sequence, so interfer-
ence between pilots does not exist. We also assume the noise
variance is the same on the UL and DL and the same2 for all
UEs and APs.

Let us assume that UE k is served by the APs in set Lk .
We define an N×N binary diagonal matrix Dkℓ to represent
if UE k is associated with AP ℓ:

Dkℓ =

{
IN , ℓ ∈ Lk ;
0N×N , ℓ /∈ Lk .

(3)

The effective DL channel vector between AP ℓ and UE k can
then be considered to be hHkℓDkℓ. We assume that distributed
DL precoding is performed, i.e., precoding is done locally
at each AP. The data symbol for UE k is given by ζk (with
E{|ζk |

2
} = 1), which is sent from the CC to the serving APs

over the fronthaul. The received DL signal at UE k is given
by [21]

yk =

(
L∑

ℓ=1

hHkℓDkℓwkℓ

)
ζk +

K∑
i=1,
i̸=k

(
L∑

ℓ=1

hHkℓDiℓwiℓ

)
ζi + nk .

(4)

wkℓ ∈ CN×1 is the precoding vector that AP ℓ uses for UE k ,
and nk is the noise. The double summation in the second term
of (4) represents interference from signals for other UEs, sent
from both the serving APs for UE k and the other APs.

2Even if the noise variances are not the same, due to the network being
interference-limited, differences in the variances have a negligible impact on
the performance of the system.
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To reduce the fronthaul load, we consider localized precod-
ing, where each AP only has the knowledge of its own CSI for
the UEs it serves. Thus, no CSI from other APs needs to be
exchanged over the fronthaul; only data symbols need to be
forwarded. However, with only local CSI knowledge, an AP
can’t coordinate with any other to serve its UEs. Therefore,
it can only create at most N independent spatial streams for
its N antennas, meaning it can serve up to N UEs simul-
taneously.3 Specifically, we consider local partial MMSE
(LP-MMSE) precoding [21]. Let the set of UEs served by
AP ℓ be denoted by Dℓ. The (arbitrarily scaled) LP-MMSE
precoding vector for UE k at AP ℓ is given by

wkℓ = pkℓ

∑
i∈Dℓ

piℓ
(̂
hiℓĥHiℓ + Ciℓ

)
+ σ 2IN

−1

Dkℓĥkℓ. (5)

pkℓ (piℓ) is the transmit power assigned by AP ℓ for UE k (i).
To normalize the total transmit power, the AP uses the pre-
coding vector wkℓ = wkℓ

√
pkℓ/

√
E{∥wkℓ∥

2}. Typically,
the transmit power for each UE is determined by a power
allocation algorithm, such as in [28] and [36]. However, for
simplicity, in this work we have used equal power allocation,
i.e., piℓ = Pt/|Dℓ|, ∀i ∈ Dℓ, where Pt is the total transmit
power available at the AP (assumed to be the same for all
APs). LP-MMSE precoding is scalable to arbitrary network
sizes, since the maximum data volume transferred over the
fronthaul to AP ℓ is |Dℓ| ≤ N data symbols, which is
independent of both K and L.

The effective DL SINR of UE k is given by [21, Eq. (6.22)]

ϒk =

∣∣∣∣ L∑
ℓ=1

E
{
hHkℓDkℓwkℓ

}∣∣∣∣2
K∑
i=1

E

{∣∣∣∣ L∑
ℓ=1

hHiℓDkℓwiℓ

∣∣∣∣2
}

−

∣∣∣∣ L∑
ℓ=1

E
{
hHkℓDkℓwkℓ

}∣∣∣∣2+ σ 2

.

(6)

An achievable SE for UE k may then be defined as:

ηk = log2(1 + ϒk ). (7)

This SE of the UEs is used to define the reward functions in
our RL algorithms.

IV. REINFORCEMENT LEARNING FRAMEWORK
In this section, we develop the RL framework for solving
our AP clustering problem. RL is a very effective ML tech-
nique for dynamic environments such as real-time strategic
games and autonomous driving [62], [63], [64]. To imple-
ment the MARL algorithm, first we define the AP cluster-
ing problem as a Markov game [65], represented as a tuple
(L,S, A,P, r, γ ) [66]. L = {1, 2, . . . , |L|} is the set of
agents, which in our case are the APs. The state of the
environment or state space is represented by S. In our case,
the state is based on the received signal strength (RSS) of each

3This is in contrast to C×N UEs that can be jointly served if C APs
coordinate with centralized precoding.

UE at the APs. The RSS between AP ℓ and UE k is calculated
from the received pilot signal as follows:

RSSkℓ = ||ypkℓ||
2. (8)

We note that the RSS is directly proportional to βkℓ,
as E{||ypkℓ||

2
} = ρpτpNβkℓ + σ 2. Thus, the pilot signals

sent by the UEs are used by each AP both to calculate that
AP’s RSS values for all UEs, and to estimate the UL CSI for
the set of UEs that AP serves. The joint action space A is the
Cartesian product of the action spaces Aℓ for all agents. The
variable P : S×A×S → R represents the transition proba-
bility kernel of moving from one state to another. The reward
function is represented by r : S×A → R, and γ ∈ [0, 1)
is called the discount factor. In the MARL algorithm, each
agent ℓ has its own parameter vector θℓ (which is basically
its NN weights); concatenating θℓ of all agents forms a joint
parameter vector θ . In step t ∈ N, the environment is in state
s(t); agent ℓ takes an action aℓ,(t) ∈ Aℓ,(t) based on the policy
πθℓ

(
aℓ,(t)

∣∣s(t)), where Aℓ,(t) is the action space of agent ℓ at
step t . The joint policy of all the agents is

πθ

(
a1,(t), a2,(t), . . . , aL,(t)

∣∣s(t)) =

L∏
ℓ=1

πθℓ

(
aℓ,(t)

∣∣s(t)). (9)

Training the MARL algorithm consists of groups of steps
called ‘‘episodes’’; the weights of the NNs are updated after
each episode following a policy gradient approach [67]. The
agents (or actors, in an actor-critic framework) aim to find the
optimal policy that, on average, will maximize the cumulative
reward in step t , i.e., R(t) =

∑
∞

i=0 γ ir(t+i). The performance
of agent ℓ’s policy is evaluated using the centralized action-
value function Qπθ

ℓ = (x, a1, a2, · · · , aL), where x contains
the relevant information about the state of the environ-
ment. Qπθ

ℓ defines the algorithm’s critic; essentially, it deter-
mines the rewards given by the critic to agent ℓ depending
on the actions of all agents [50]. For a more detailed
description of these parameters, we refer the reader to [50],
[65], [66], [67], and [68].

In our considered system, the UEs are mobile, and there-
fore, the AP clustering should focus on long-term rewards for
optimal AP-UE association. The value of the discount factor
γ determines over how long of a period an agent’s actions
affect its rewards during training [28]. An exponentially-
decaying weight γ i is applied to future rewards; the larger
the value of γ , the more emphasis that is placed on long-term
rewards. Each AP needs to decide whether it is better to serve
a given UE now or wait until later, based on the movement of
all UEs. For example, the RSS and SE for a UE and thus the
reward for serving that UE will increase over time if said UE
is moving towards the AP, and decrease if it is moving away.
The emphasis of ‘‘waiting until later’’ on this decision (and
how long to wait) depends on the value of γ . Thus, in mobile
environments, the discount factor indirectly helps APs learn
about possible UE movement and whether serving a specific
UE at a given time is good for the cumulative reward.
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In this work, we have implemented an actor-critic policy
gradient MARL-assisted approach, which is efficient in deal-
ing with high-dimensional action spaces [67], [69]. In our
case, the size of the action space for each AP is 2K , as the
output state for each UE is either 1 or 0 (i.e., associated
with that AP or not). To improve the speed of convergence,
we reduce the size of the state space for each agent by first
selecting a pool of only 8 UEs with the highest RSS at that
AP from the available K . Use of the pool also ensures the
algorithm is scalable to arbitrarily large K . This furthermore
largely solves the problem of potentially inactive UEs, which
would cause the length of the input vector for the NNs to not
be constant. We vary the value of 8 to examine its effect on
the MARL algorithm’s performance.

However, this approach by itself does not guarantee service
to all UEs. For instance, a UE may not be associated with
any AP if that UE’s RSS is not within the top 8 RSSs for
any AP. To address this issue, at each AP, two additional UEs
that are not yet in the AP’s pool are chosen in a round-robin4

fashion and added to the pool; the AP then serves up toN UEs
from that enlarged pool. Additionally, we introduce a global
penalty to all APs if not all UEs are served. The penalty at
time step t is

PG(t)
(∣∣ ∪

∀ℓ
Dℓ

∣∣) =
(
ϱ + PG(t−1)

)
· 1
(∣∣ ∪

∀ℓ
Dℓ

∣∣ < K
)
. (10)

PG(0) is initialized to 0, and a value of ϱ is progressively added
to the penalty for each time step that allK UEs are not served.
The argument of the indicator function checks if all the UEs
in the coverage area have been served. If so, the indicator
function resets the penalty to 0. The CC applies the global
penalty to the reward of every AP, then forwards the result-
ing rewards to their corresponding APs over the fronthaul.
Enlarging each AP’s pool with unserved UEs, combined with
the penalty, helps the agents to learn within a few time steps
that all the UEs should be served. Overall, in the MARL
implementation, the additional overhead is the information
shared between the APs and the CC, i.e., the reward for each
AP in every time step. The interaction between the cell-free
massive MIMO network and the agents’ NNs in the MARL
algorithm is shown in Fig. 2.
The NN for each agent consists of an input layer

(8+2 nodes containing RSS values of 8+2 UEs), a hidden
layer (20 neurons), and an output layer (8+2 neurons that
determine the action aℓ,(t) of the agent). The NN weights
are initialized randomly with the distribution ∼ N (0, 0.032).
The activation function of the hidden layer neurons is tanh(·),
whereas for the output layer, it is the softmax(·) func-
tion5 [66]. The output of each output node n is the probability

4In our earlier work [29], we used uniformly random selection rather than
round-robin selection for the two additional UEs, which also worked well.
However, random selection does not completely guarantee that all UEs will
be considered, although the probability of some UE not being considered
eventually is quite low. The choice to consider specifically two additional
UEs was made heuristically.

5For z= [z1, z2, . . . , zN ]∈ RN , softmax(z)=
[ez1 , ez2 , . . . , ezN ]∑N

i=1 e
zi

.

FIGURE 2. Illustration of the decentralized actor, centralized
critic MARL algorithm’s interactions between the environment
and agents.

χn of serving the UE corresponding to input node n. At each
time step, using {χ1, χ2, . . . , χ8+2}, the agent calculates the
probability of each action from the set of the possible ones.
The UE for node n can either be served (with probability
χn) or not served (with probability 1−χn), making for 28+2

possible actions in total. The agent’s action (the set of UEs to
be served) is then chosen at random as weighted by the action
probabilities. This method of choosing an action by weighted
random sampling from the set of possible actions is known
as stochastic policy gradient-based action selection [50]; it
allows for exploration as well as exploitation of acquired
knowledge from earlier training.

The (non-convex) optimization problem of determining
which APs should serve which UEs in order to maximize the
achievable sum SE can be formulated as

max
D1,D2,...,DL

K∑
k=1

ηk (11a)

subject to:
∣∣ ∪

∀ℓ
Dℓ

∣∣ = K , (11b)∣∣Dℓ

∣∣ ≤ N , ∀ℓ . (11c)

Similarly, the optimization problem to maximize the mini-
mum UE SE would replace (11a) by

max
D1,D2,...,DL

min
k∈{1,2,...,K }

ηk (12)

with the same constraints as in (11b) and (11c). However,
finding the globally optimum solution for either optimization
problem would need to be done in a centralized manner.
Implementing such a solution in a cell-free scenario would
result in higher fronthaul loads because the CC would have
to transmit its resulting solution to each AP. Instead, a dis-
tributed solution can be found at each AP. Moreover, in a
mobile environment, the system should in general optimize
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the objective function over some interval (such as several
sequential time steps t in the set T ) in order to account for the
movement of the UEs. Therefore, the optimization problems
should be modified. We adjust the max sum SE problem as
follows:

max
Dℓ,(t),∀ℓ,∀t∈T

∑
t∈T

L∑
ℓ=1

∑
k∈Dℓ,(t)

ηk,(t) (13a)

subject to:
∣∣ ∪

∀ℓ
Dℓ,(t)

∣∣ = K , ∀t ∈ T , (13b)∣∣Dℓ,(t)
∣∣ ≤ N , ∀ℓ, ∀t ∈ T , (13c)

whereas for the modified max min SE problem, (13a) is
replaced by

max
Dℓ,(t),∀ℓ, ∀t∈T

min
k∈Dℓ,(t)

ηk,(t). (14)

It is important to note that solutions to these optimization
problems do not depend solely on the decisions taken by an
individual AP, but rather on the decisions made by the cluster
of APs that serve a given UE. Observation of the optimization
problem in (13) indicates that these decisions depend on the
state of the cellular network at the time steps in T . (If some
of these time steps are in the future, the actual state may be
replaced by the predicted or expected/average state at that
time.) Also, the objective function of the optimization prob-
lem exhibits an episodic nature, i.e., the objective function
depends on values obtained at multiple time steps. Thus, the
overall optimization problem can be extended to a Markov
game or Markov decision process (MDP). It has been known
for some time that RL can be an efficient methodology to
solve MDP problems [70]. This was one of our motivations
for using RL in the first place.

We consider four reward policies for our MARL algorithm
when evaluating its performance:

Policy 1—Max sum SE: In this case, the reward function
for agent ℓ at time t is defined as

rℓ,(t) =

∑
k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)
(∣∣ ∪

∀ℓ
Dℓ

∣∣), (15)

where ηk is given by (7). Pℓ,(t)(|Dℓ|) is a local penalty func-
tion that applies if AP ℓ attempts to serve more thanN UEs; if
so, a penalty of −10 is incurred. PG(t)(|∪∀ℓDℓ|) is the global
penalty described in (10); we use ϱ = −20. The purpose of
the penalties is to prevent illegal or undesirable actions by
the agents when creating their policies. The penalty values are
thus somewhat arbitrary; any large negative value that negates
the potential reward of such actions will suffice.

Understandably, since the goal of Policy 1 is to maximize
the sum SE of all UEs, the APs will be biased towards
associating with the highest RSS (i.e., nearest) UEs. This
reduces the system fairness and more distant UEs might not
obtain high quality service. Thus, we also consider another
reward function that incorporates fairness.

Policy 2 — Max min SE: In this policy, the agents try
to maximize the minimum SE of their served UEs, thus

providing fairness in the performance. The reward function
in this case is expressed as

rℓ,(t) = min
k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)
(∣∣ ∪

∀ℓ
Dℓ

∣∣). (16)

The penalties in (16) are the same as in (15). However, if the
reward function is expressed as above, without additional
constraints such as are typically seen in optimization prob-
lems (for example, a constraint that every UE be guaranteed
some minimum quality of service), then the agents generally
do not learn to each serve multiple UEs. (APs instead prefer
serving only one UE each if possible, since that maximizes
their minimum, i.e., only, UE SE, although the single UE
each AP serves is generally a different one.) To overcome the
shortfall of the traditional max min policy, we thirdly use a
modified max min SE policy.

Policy 3 — Modified max min SE: The reward function
is modified as follows:

rℓ,(t) = |Dℓ| × min
k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|) + PG(t)
(∣∣ ∪

∀ℓ
Dℓ

∣∣).
(17)

By weighting the minimum UE SE with the number |Dℓ|

of served UEs, the APs learn to serve multiple UEs while
still maximizing the minimum SE of the UEs they serve. The
penalties in (17) are the same as in (15).

Policy 4 — Hybrid policy6: For the sake of interest,
we also examine a policy that is a heuristic hybrid of the max
SE and max min SE policies. In this policy, the minimum UE
SE is weighted by the sum SE of all the agent’s served UEs.
Because of the presence of the sum SE, the agents still learn
to serve multiple UEs. The reward function is as follows:

rℓ,(t)= min
k∈Dℓ

ηk,(t)×
∑
k∈Dℓ

ηk,(t) + Pℓ,(t)(|Dℓ|)+PG(t)
(∣∣ ∪

∀ℓ
Dℓ

∣∣).
(18)

The penalties in (18) are the same as in (15). It is expected that
this reward function should yield a performance somewhere
between the performance of the max SE reward and the
performance of the max min SE reward by themselves.

At the completion of training, based upon the final proba-
bilities at the NN output nodes, there may remain a very small
but non-zero possibility of choosing an action that serves
more than N UEs. To ensure that an agent does not take such
an action, we force the probability of those actions to be zero.7

V. FEDERATED REINFORCEMENT
LEARNING FRAMEWORK
In this section, we develop the MAFRL framework to solve
the same AP clustering problem. Unlike in the conventional
MARL algorithm, in the MAFRL algorithm the interaction

6We called this policy the ‘‘maxmin SE’’ policy in our previous work [29].
We have renamed it to be a ‘‘hybrid’’ policy here, since, as we will show in
the simulation results, the reward function of Policy 3 does a much better job
of satisfying the max min SE criterion.

7We did not encounter any such actions in our simulations, even without
forcing the probabilities to be zero. The enforcement therefore mainly guar-
antees that such actions will not occur over the long-term timescale of the
network operation.
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FIGURE 3. Illustration of the MAFRL algorithm’s interactions between the central controller,
environment, and agents.

between the CC and the APs is now limited to a periodic
exchange of NN weights. Therefore, one can no longer use
a centralized critic type of reinforcement learning. Instead,
we consider a policy-gradient approach [69] to train the
agents. We assume that there is a set L of agents, with each
agent having a local state space and action space and using the
same reward function. Although the state and action spaces
may be different for each agent, the dimensions of the state
spaces are the same for every agent, as are the dimensions of
the action spaces. The structure of the NN of each agent is the
same as in the previous section. Similar to the conventional
MARL problem, we formulate the MAFRL problem as a
Markov game, represented as a tuple8 (S, A,P, r, γ ) [71].
The goal of the MAFRL algorithm is to have the |L| agents
jointly learn a policy function πθ that they all use and that
performs as close to optimally as possible and uniformly
well across the entire environment. This differs from the
MARL algorithm, in which each agent has its own (location-
dependent) policy. To reduce the communication overhead,
agents do not communicate between themselves; instead,
they share their parameter vector θℓ (i.e., their NN weights)
only with the CC.

Similar to the previous section, the agents update the
weights of their local NNs after each training episode. Each
agent aims to find the optimal policy to maximize its cumula-
tive reward in step t , i.e., rℓ,t =

∑
∞

t=0 γ irℓ,t+i. The state value

8L no longer appears in the tuple since every agent is playing a copy of
the same game.

function of agent ℓ is defined asVθℓ
(s) = EAℓ,sℓ

{
rℓ,0 | s0=s

}
.

Mathematically speaking, the goal of each agent is find the
policy π⋆

θℓ
that maximizes the expected state value function:

π⋆
θℓ

= argmax
πθℓ

E{Vθℓ
(s)}. (19)

Each AP forms a pool of 8+2 UEs as the input to its NN
in the same fashion as in the MARL algorithm. Furthermore,
each agent in the MAFRL algorithm receives information
about ϒk as feedback from the UEs it is serving. Thereafter,
it calculates the SE of each UE using (7). However, it is not
possible for the agents themselves to determine if all UEs
have been served or not. In the event one or more UEs have
not been served, the CC broadcasts a global penalty to all
the APs.

For theMAFRL algorithm, we consider an additional alter-
native max sum SE reward function, which has the local
penalty removed compared to Policy 1. Wemake the assump-
tion here that if an AP serves more than N UEs, then the
resulting inter-user interference will increase significantly,
resulting in smaller SEs for the UEs and thus a lower reward
for the AP. Formally, the alternative reward policy is defined
as follows:

Policy 5 — Max sum SE for MAFRL: The reward func-
tion for agent ℓ at time t is

rℓ,(t) =

∑
k∈Dℓ

ηk,(t) + PG(t)
(∣∣ ∪

∀ℓ
Dℓ

∣∣). (20)
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After TFL episodes, each agent shares its parameter vector
θℓ (NN weights) with the CC. The CC then aggregates the
agents’ parameter vectors and uses them to calculate updated
global NN weights. There are various possible methods of
doing this (see e.g., [52], [53], and [54]), but a common
way is simply to average θℓ over all agents; we use this
average in our work.9 The global NN weight update is trans-
mitted back to the APs via fronthaul links. The interaction
of different components of the MAFRL system is illustrated
in Fig. 3.

Even though our MARL and MAFRL algorithms have
many similarities, there are several significant differences
between them as well, mostly during training. Notably, APs
trained using our MAFRL algorithm will all end up with the
same NNweights, whereas each AP trained using our MARL
algorithm will end up with different localized NN weights.
DuringMARL training, the CC distributes individual rewards
(including possible penalties) to each AP. In contrast, during
MAFRL training, in every episode the CC broadcasts the
global penalty to all APs. Every TFL episodes, the agents sent
their NN weights to the CC, which aggregates them and then
broadcasts the updated weights to be used by all APs.

A. COMPLEXITY OF MARL AND MAFRL DECISIONS
Concerning the complexity of an AP making a decision on
which UEs to serve, we note again that the NN of each
agent has only three layers: the input and output layers and a
single hidden layer. The number of floating point operations
(FLOPs) for each AP to make a decision can be calculated
as follows. In the hidden layer, at each of the 20 neurons,
the 8+2 input values are multiplied by a weight, then the
weighted values are summed. The sum then passes through
the tanh(·) activation function, which requires a bit shift oper-
ation (which is simpler than a FLOP) and ce+3 FLOPs, where
ce is the complexity of calculating ex of a scalar x (an O(1)
operation). In the output layer, at each of the 8+2 neurons,
the 20 outputs of the hidden layer are again weighted and
summed. Then, the vector of those 8+2 sums is input into
the softmax(·) activation function, which uses (8+2)(ce + 2)
FLOPs. Thus, in total, 8(ce + 82) + 22ce + 224 FLOPs are
required tomake a decision. As this number of FLOPs is quite
low, the proposed MARL and MAFRL algorithms should
not be a challenge for practical implementation. Additionally,
with only three layers, the delay involved in computation
should be sufficiently small for real-time operation. There is
of course additional complexity that occurs during training,
but this would happen off-line and not during the regular
operation of the network.

9Averaging may not be the best choice in certain scenarios, such as
if there are significant differences in the distribution of data each agent
trains with or in the computing capabilities of each agent. In the case of
agents training very large DNNs, they may instead send only a portion
of their weights to the CC, e.g., for the last few layers. However, since
the NNs in our agents are quite small and the network architecture quite
homogeneous, we simply average the entire NNweight vectors for the agents
at the CC.

VI. PERFORMANCE EVALUATION
In this section, we examine the simulation results of our
MARL and MAFRL algorithms for a cell-free massive
MIMO network. We consider L = 40 10-m-tall APs with
N = 4 antennas each that are uniformly distributed over a
geographical area of 1 km× 1 km. K = 20 single-antenna
UEs have their locations initialized uniformly over the area.
Unless otherwise indicated, we assume that the UEs move
around the simulation area at a speed10 of v = 1 m/s. The
direction of each UE is initially selected at random isotropi-
cally within the range of angles [0, 2π ) radians; theUEsmove
in a straight line afterwards, with the movement wrapped
around the edges of the simulation area.

We consider a carrier frequency of 2 GHz and channel
bandwidth of 20 MHz. The elements of each AP’s antenna
array are spaced at half a wavelength at the carrier frequency.
We neglect any spatial correlation between the antenna ele-
ments, i.e., Rkℓ = βkℓIN , ∀k, ℓ. We set (in dB) βkℓ =

−30.5 − 36.7 log10(dkℓ) + �kℓ, where the distance dkℓ (in
m) accounts for the AP height of 10 m, and �kℓ ∼ N (0, 42)
is log-normal shadowing [22]. When UEs are initialized at
a distance δ from one another, and whenever a UE moves
a distance δ, �kℓ is created/updated with a correlation of
2−δ/(9 m) with the earlier value [22]. The transmitted power
of each AP is Pt = 38 dBm and the noise power is assumed
to be σ 2

= −94 dBm. K orthogonal pilot sequences are
available to the UEs, each with length τp = K and power
ρp = 100 mW. The discount factor for the MARL algo-
rithm is set to γ = 0.95, which is a typically-used value
(e.g., [68], [69]).

We consider a discrete-time system where for the pur-
pose of AP association, the UEs’ positions and channels are
updated and sampled11 every 63 ms. Thus, the sampling
interval is about the same as the channel coherence time
tc = 0.423λ/v [73, Eq. (5.40.c)], where λ is the carrier
wavelength. In RL terminology, these samples are the steps,
and we consider 80 steps during one episode of training. This
corresponds to a UE travel distance of 5.04 m at 1 m/s speed.
For this relatively small distance, the assumption of UEs
moving in a straight line is reasonable.12 After each episode,
the UEs’ locations and directions are reset randomly, but the
AP locations stay the same. The NN weights for each agent

10In this work, we limit the examination to pedestrian speeds, because
considering vehicular speeds would result in the channel estimates becoming
increasingly inaccurate. Depending on the carrier frequency and UE speed,
the channel coherence time could diminish sufficiently so that the channel
could no longer be considered constant within a TDD frame. As such,
channel prediction would be needed along with CSI estimation. We have
begun to investigate networks with UEs moving at vehicular speeds in some
of our other work, e.g., [72].

11With a sample period of 63 ms and a UE speed of 1 m/s, the UEs thus
move a distance δ = 63 mm when updating �kℓ between samples.

12If the distance traveled per UE per episode was longer, alternative
models for the UE movement could be more appropriate, such as along a
grid in an urban area, along some predefined paths, according to a random
walk model (see e.g., [74]), or by a machine-learned model [75]. However,
suchmore complicated UEmovement models are not necessary in this article
and are outside of its main focus.
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FIGURE 4. Average sum SE performance of MARL and MAFRL algorithms with several values of 8, compared against ‘‘All’’ and
‘‘Greedy’’ strategies, max min SINR strategy from [25], κ-means clustering ML algorithm from [35], and modified RL-based power
control algorithm from [36]. ‘‘P1’’: Max sum SE policy having local and global penalties, ‘‘P2’’: Max min SE policy, ‘‘P3’’: Modified max
min SE policy, ‘‘P4’’: Hybrid policy, ‘‘P5’’: Max sum SE policy having global penalty only.

are updated after each episode. For the MAFRL algorithm,
the global update of weights at the CC occurs every TFL =

20 episodes. Agents are trained for 4000 episodes and there-
after their performance is evaluated for 40 test cases (each
being a new episode with the NN weights fixed). We repeat
this procedure for 10 independent simulation runs.

The performance results averaged over the 40 × 10 =

400 total test cases are compared against five existing strate-
gies: 1) ‘‘All’’: UEs are served by all the APs, and coordi-
nated centralized precoding is done rather than distributed
precoding, thus representing the maximum possible perfor-
mance; 2) ‘‘Greedy’’: each AP serves the N highest-RSS
(nearest) UEs; 3) themaxmin SINRmethod proposed in [25];
4) the κ-means clusteringML algorithm proposed in [35]; 5) a
modified version of the RL-based power control method pro-
posed in [36]. In the case of [36], the authors had originally
consideredAPs equippedwith a single antenna each, andUEs
served by all APs with centralized precoding. For a fair per-
formance comparison with the other schemes, we modified
the method from [36] for multi-antenna APs with LP-MMSE
precoding first by adding the global penalty from our reward
policies to its reward function. The use of localized precoding
implies that each AP should serve no more than N UEs.
However, it does not by itself ensure that the APs learn to
serve a maximum of N UEs, because if the power allocated
to some UE is very small, the resulting effect on the sum
SE would be negligible. Hence, the algorithm would not be
able to learn properly whether that action is better or worse.
Therefore, we additionally defined a threshold such that if
the power allocated to a given UE is less than 1% of the AP’s
total transmit power, then it is considered that the given UE
and that AP are not associated. This threshold for the scheme
modified from [36] helps limit the number of served UEs to
be at most N .
The average sum SE performance of the MARL and

MAFRL algorithms with several values of 8 and the five
policies is illustrated in Fig. 4. As expected, if UEs are served

by all the APs with centralized precoding, then the sum SE
is maximum (21.8 bits/s/Hz), but so too is the fronthaul
load. Our MARL algorithm under Policy 1 with 8 = 10
and LP-MMSE precoding achieves about 18.2 bits/s/Hz,
or about 83.3% of the max SE; this increases to about 88.3%
(19.3 bits/s/Hz) using 8 = 15. As seen, increasing 8

improves the sum SE performance, but our algorithms require
more training episodes to converge properly. This can be seen
in the8 = 20 result; in this case, 4000 episodes is insufficient
for training because of the large action space for 8 = 20.
The results of the MAFRL algorithm are similar to, though

marginally less than, those provided by MARL algorithm.
We first observe that the MAFRL algorithm’s results using
Policy 1 and Policy 5 are nearly identical, confirming that
the MAFRL algorithm does not need the local penalty as
in Policy 1 when maximizing the sum SE. We also observe
that the MAFRL algorithm’s sum SE is about 90−95%
of (or about 0.95−1.5 bits/s/Hz less than) that of the
MARL algorithm. The main reason for the worse MAFRL
performance is because the NN weights of the MAFRL
agents are not optimized to their individual locations; rather,
the global average is optimized. Thus, the MAFRL algorithm
trades off some locally optimized higher performance in favor
of consistently good performance over the entire coverage
area.

Given the similarity inMAFRL performance between Poli-
cies 1 and 5, as an additional test, we also checked the perfor-
mance of Policy 5 when used with theMARL algorithm, even
though that policy was designed for the MAFRL algorithm.
We found the MARL algorithm performance is also virtually
identical for both Policies 1 and 5, which demonstrates that
with localized precoding, the sum SE reduces when an AP
serves more than N UEs. Thus, the agents can learn to serve
onlyN UEs even without the local penalty in the reward when
the goal is tomaximize the sumSE. Since the performances of
theMARL andMAFRL algorithms are nearly identical under
Policy 1 as they are under Policy 5, hereafter we will just
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FIGURE 5. CDFs of UEs’ instantaneous SEs for MARL and
MAFRL algorithms with 8 = 15 under five reward policies,
compared with schemes from [25], [35], and [36]. ‘‘P1’’: Max
sum SE policy having local and global penalties, ‘‘P2’’: Max min
SE policy, ‘‘P3’’: Modified max min SE policy, ‘‘P4’’: Hybrid
policy, ‘‘P5’’: Max sum SE policy having global penalty only.
(a) UE SEs per AP. (b) UE SEs summed over their serving APs.

depict results for MARL using Policy 1 and MAFRL using
Policy 5.

Considering the reference algorithms, we observe that the
modified RL-based power control algorithm from [36] per-
forms the best and achieves a sum SE of about 17.6 bits/s/Hz,
or about 81% of the ‘‘All’’ case. However, we note that
our MARL and MAFRL algorithms employ equal power
allocation to all the UEs, yet with 8 = 15 they outper-
form [36]. This is because the APs learn better to account for
UE mobility, whereas the method from [36] does not account
for mobility. If we were to incorporate power allocation along
with our MARL and MAFRL algorithms, it can be expected
that their performance would be further improved. We fur-
thermore note that the higher performance of our algorithms
comes via considerably less complex NNs than the NNs used
with the method from [36]. For instance, our agent NNs have
a single hidden layer with 20 neurons, whereas the (multiple)
layers in [36] are of size 400×300.

We next note that considering just the UEs with the highest
RSS values or serving the closest UEs together is far from
an optimal AP clustering solution to maximize the sum SE,

as observed from the performance for the schemes from [25]
and [35], and the 8 = 5 results for MARL under Policy 1
and MAFRL under Policy 5. These respectively achieve only
about 68.5%, 69.4%, 70.7%, and 63.8% of the sum SE of
the ‘‘All’’ case. ‘‘Greedy’’ selection performs the worst of the
reference schemes, as it is not optimized to maximize the SE
globally,13 though theMAFRL algorithm’s performance with
8 = 5 is the lowest overall among the algorithms intended
to maximize the sum SE. The lower the value of 8, the more
localized the selection of UEs is around a given AP, and thus
in some sense the whole performance is also based on more
localized conditions.

Interestingly, Policies 2 and 3 provide sum SEs not much
below that of Policies 1 and 5. They also provide a consid-
erably better sum SE than the scheme from [25], despite all
three nominally having a ‘‘max min’’ goal. With 8 = 15,
Policy 3 yields a sum SE of about 18.3 bits/s/Hz, while
Policy 2 yields a sum SE of about 17.3 bits/s/Hz. The sum
SE of Policy 4 is in between that of Policies 2 and 3, about
17.8 bits/s/Hz. It should be noted, though, that Policies 2–4
perform particularly poorly with low values of 8. For these
three policies, 8 must be large enough so that the APs can
find the UE with the minimum SE in a wider area around
their vicinity. 8 being too small (e.g., 8 = 5) results in the
APs considering too small of a neighborhood around their
respective locations for the algorithm to properly increase
the minimum UE SEs, and thus the sum SE by extension.
We lastly note that we also tested Policies 2, 3, and 4 with
the MAFRL algorithm, and they displayed a similar small
drop in performance relative to the MARL algorithm as was
seen with Policies 1 and 5. Therefore, we do not depict
the MAFRL results for Policies 2–4, since the drop in per-
formance with Policies 1 and 5 is representative of all the
policies.

Fig. 4 does not provide insight about the fairness of the
MARL and MAFRL algorithms. Therefore, in Fig. 5 we
examine the cumulative distribution functions (CDFs) of the
UEs’ instantaneous SEs for the five reward policies with
8 = 15, compared with the CDFs for the schemes from [25],
[35], and [36]. Fig. 5(a) shows the UE SEs per AP, whereas
Fig. 5(b) shows the UE SEs summed over their respective
serving APs. We differentiate between the two because our
RL reward policies apply separately at each individual AP,
as do the power allocations from [36], whereas [25] and [35]
apply more to the system as a whole. We observe that
Policies 1 and 5, which maximize the sum SE, provide the

13The ‘‘Greedy’’ algorithm selects UEs with the highest RSS values for a
given AP. This selection would be the optimal one in terms of maximizing the
sum SE if each AP only had one antenna and served a single UE each [76].
However, it is no longer optimal when each AP has multiple antennas and
serves multiple UEs, and each UE is served by multiple APs. Instead, other
factors such as the orthogonality between the channel vectors of UEs must be
considered, on account of the interference their signals cause on each other.
A greedy algorithm that maximizes the incremental SE provided by each UE
it selects in succession can still provide a near-maximal sum SE. However,
using only RSS values, serving the UEs with highest RSS often results in
higher multiuser interference, and correspondingly lower sum SE.
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highest median and 95th percentile total UE SEs in Fig. 5(b),
as expected. When each individual AP maximizes the SE
of the UEs it serves, that also maximizes the total SE they
receive from all their serving APs. The MAFRL algorithm’s
CDF is slightly to the left of the one for the MARL algo-
rithm, reflecting its slightly worse performance seen in Fig. 4.
The MARL algorithm under Policy 1 provides median and
95th percentile UE SEs per AP of about 0.22 bits/s/Hz and
0.45 bits/s/Hz, respectively; themedian and 95th percentile of
the UE total SEs are about 0.95 bits/s/Hz and 1.59 bits/s/Hz,
respectively. In comparison, the MAFRL algorithm under
Policy 5 yields median and 95th percentile UE SEs per AP of
about 0.20 bits/s/Hz and 0.42 bits/s/Hz, respectively; for UE
total SEs, they are about 0.89 bits/s/Hz and 1.48 bits/s/Hz,
respectively. We also note Policy 3 yields about the same
median SE as Policy 1.

The results for Policy 2 are rather unusual compared to
the other schemes. Fig. 5(a) indicates that this policy results
in the highest UE SEs per AP out of any of the schemes.
However, this is because under Policy 2, the APs only learn
to serve a single UE each at a time, and UEs are served by
only one or two APs in total. This behaviour is largely due
to the fact that, although the reward of Policy 2 is based
on the total SE a UE receives, each AP does not know the
specific actions taken at other APs, only the net result of all
those actions (including its own). It therefore cannot properly
differentiate whether or not the reward is solely due to its
own actions. This distinction is irrelevant when maximizing
the sum SE as in Policies 1 and 5, but is more important
when maximizing the minimum SE. Note that the policy
does indeed achieve its goal of each AP maximizing the
minimum SE provided to its served UEs (its 5th percentile
UE SE per AP is 0.14 bits/s/Hz), but it does so by allocating
all its resources to that single UE. This could potentially
be problematic with more UEs in the system. In examining
Fig. 5(b), it can be observed that Policy 2 generally yields
the lowest total UE SEs out of our five policies. However, the
CDF ofUE total SEs for Policy 2 is also one of the steepest out
of our five policies, meaning that it provides lower variation/
more uniformity in total SEs among the UEs.

In comparison, the modification made in Policy 3 allows
the agents to learn to serve multiple UEs, and also results
in the highest of the minimum total UE SEs out of all the
examined schemes. The 5th percentile total UE SE of Policy 3
is about 0.55 bits/s/Hz. This performance is achieved by
trading off the SE given to the higher SE UEs; the upper
percentiles are worse for Policy 3 than for Policies 1 and 5.
Like Policy 2, Policy 3 also has a steep CDF, meaning that
there again is lower variation/higher uniformity in total SEs
among the UEs.

The results for Policy 4 indicate that the hybrid reward
function does not end up working particularly well at either
the lower or the upper end of the CDFs. Neither the sum SE
nor the minimum SE ends up maximized. However, Policy 4
does in general perform better than Policy 2 in terms of
total UE SEs; their CDFs cross each other at about the 35th

percentile. Policy 4 provides better performance at the middle
and upper end of the CDFs, whereas Policy 2 provides better
performance at the lower end.We finally note that in regard to
our policies, much like for Policies 1 and 5, theMAFRL algo-
rithm provides slightly worse performance than the MARL
algorithm under Policies 2–4 as well. (We do not depict the
MAFRL algorithm’s performance with Policies 2–4 in Fig. 5
in order to avoid obscuring the other results.)

In terms of instantaneous SE performance, among the
reference algorithms, the modified RL-based algorithm
from [36] provides the highest SEs. Its performance for
instantaneous SE per AP in Fig. 5(a) is quite close to that
of MAFRL under Policy 5, but with a somewhat fairer (less
varied) distribution of SEs among UEs. This is likely an indi-
cation of the power allocation part of the scheme from [36]
diverting power from certain UEs and APs to other ones.
The results for SE summed over all APs in Fig. 5(b) show
more of a difference between the MAFRL algorithm and the
modified method from [36]; the summed SEs provided by
the former are larger than those of the latter, even for low-
SE UEs. This indicates that the modified scheme from [36]
likely allocates most power to a UE at a single ‘‘best’’ AP,
and significantly less at other APs. In both Figs. 5(a) and (b),
the SEs provided by the MARL algorithm under Policy 1 are
higher than those provided by the modified scheme from [36]
across almost the entire distribution. It can lastly be observed
from Fig. 5 that the CDFs for the schemes from [25] and [35]
lie mostly to the left of those of our MARL and MAFRL
algorithms. The exception is at the bottom-left of the UE total
SE CDFs; those two schemes provide better lower total UE
SEs than our Policies 2 and 4. Hence, the schemes from [25]
and [35] provide the lowest SEs to most of the UEs out of
any of the examined schemes. This reflects the fact that those
two schemes also provide the lowest sum SE for the system,
as seen in Fig. 4.

The convergence of the MARL algorithm can be proven
following steps similar to those in [67]. Similarly, [77] pro-
vides upper bounds on the convergence rate of FL when
global NN updates are calculated as the average of the local
NN weights. It is therefore unnecessary to duplicate such
proofs of convergence here. Instead, in Table 1, we compare
the MARL and MAFRL performance with 8 = 10 and their
max sum SE policies when varying the number of training
episodes, to investigate how many episodes are required for
the NNs to converge. From the results, we observe that the
MARL sum SE oscillates initially, but slowly it stabilizes
around 18.2−18.3 bits/s/Hz after about 4000 episodes. The
same oscillatory behaviour is seen with the MAFRL algo-
rthm, but it too stabilizes after roughly the same amount
of training, this time to around 17.2−17.3 bits/s/Hz. The
convergence with Policies 2–4 is similar for both algorithms.

We have also observed that a UE is served by a mean of
3.82 APs with a standard deviation of 0.52 by the MARL
algorithm under Policy 1; the results for the MAFRL algo-
rithm under Policy 5 are similar. Under Policy 3, UEs are
served by a mean of 3.8 APs with a standard deviation of
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TABLE 1. Sum SE for 8 = 10, max sum SE policies, and varying
number of training episodes

0.35 by the MARL algorithm, whereas under Policy 4, UEs
are served by a mean of 3.76 APs with a standard deviation
of 0.68 by the MARL algorithm. Hence, Policies 3 and 4 are
comparable in this regard to Policies 1 and 5, but with Policy 3
having a bit less variation, and Policy 4 a bit more. In sharp
contrast, under Policy 2, UEs are only served by a mean of
1.71 APs, with a standard deviation of 0.24, for the reasons
explained earlier. We have additionally confirmed that the
set of APs that serves each UE changes as the UEs move
through the coverage area. This further demonstrates that
the proposed MARL and MAFRL algorithms can indeed
properly handle UE mobility while ensuring near-optimal
performance, enabling UEs to be connected to 4 APs most
of the time (with the exception of Policy 2).

Up to now, the results have suggested that the MARL algo-
rithm outperforms the MAFRL algorithm. This is indeed true
when the algorithms are used in the exact same environment
they are trained in. However, we next consider a scenario
where, after training, the algorithms are transferred to a differ-
ent environment where the APs’ locations are different than
those during training. Specifically, both the APs’ and UEs’
initial locations are randomized, with the results averaged
over 400 test cases. This lets us examine how well the algo-
rithms transfer their learning. Fig. 6 shows the performance
of the MARL and MAFRL algorithms with max sum SE
policies, where it can be observed that the MAFRL algorithm
now has a significant advantage. The performance of the
MARL algorithm drops considerably in the new environment,
between about 1.9 to 4.2 bits/s/Hz, or by 10−27%, compared
to its performance in the training environment. In contrast,
there is almost no change in the MAFRL performance. Its
sum SE drops by at most about 0.2 bits/s/Hz, which is too
small for a clear depiction in the figure. Thus, the MARL
algorithm’s performance can be highly dependent on the
agents’ locations. The 8 = 5 case is particularly vulnerable,
because the chosen UEs in that case tend to be those closest
to the AP. As such, the agents do not get as broad a sense
of the overall UE conditions as they do with higher values
of 8. For the reference algorithms, the scheme from [25]
experiences no change in the different environment, which

FIGURE 6. Average sum SE performance of MARL and MAFRL
algorithms under max sum SE policies with several values of 8,
max min SINR strategy from [25], κ-means clustering ML
algorithm from [35], and modified RL-based power control
algorithm from [36], when the AP locations during testing differ
from those during training. Arrows show drop in MARL
performance compared to when the training and testing
environments match; performance of MAFRL algorithm is
mostly unaffected. Performance of ‘‘All’’ strategy also shown for
reference. ‘‘P1’’: Max sum SE policy having local and global
penalties, ‘‘P5’’: Max sum SE policy having global penalty only.

is understandable — its max min SINR metric considers the
global environment to begin with. There is also a very small
drop in the performance of the scheme from [35] in the new
environment, just sightly larger than for our MAFRL algo-
rithm. However, there is a significant dependency14 of the
modified deep RL-based algorithm from [36] on the training
environment similar to that of our MARL algorithm. Conse-
quently, that scheme also sees a similar loss in performance
in the new environment like our MARL algorithm does.

We next are interested in examining how fast the UEs can
move before the performance of our algorithms significantly
deteriorates. The sum SE performance for UE speeds of
v = {1, 1.5, 2, 2.5, 5} m/s is depicted in Fig. 7. The first
four values cover the range of walking to jogging, while
the highest speed that we considered corresponds to a fast
run or leisurely bicycle ride. Importantly, the results shown
are all for our algorithms having been trained using a UE
speed of 1 m/s, but tested on different speeds. We do not
show results for the other reference algorithms in this case,
because as they do not explicitly account for UE mobility,
their performance does not change significantly at the tested
speeds; there is just a slight degradation in performance as
v increases. From Fig. 7, it can be observed that there is no
significant change in the performance of our algorithms up to
v = 2.5 m/s. At 2.5 m/s, the drop in performance relative to
1 m/s is less than 1%. It is only at v = 5 m/s that a notable
deterioration in performance can be seen. In this case, the
sum SE drops by about 5−6% for all of the reward policies.
Even still, the performance of our MARL algorithm under
Policy 1 (18.2 bits/s/Hz at 5 m/s) remains higher than that of

14The authors of [36] have noted this dependency on the training environ-
ment in their paper. Their results have circumvented the issue by using data
from multiple environments when training.
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FIGURE 7. Average sum SE performance of MARL and MAFRL
algorithms with 8 = 15 and several values of UE speed v,
having been trained at 1 m/s. ‘‘P1’’: Max sum SE policy having
local and global penalties, ‘‘P2’’: Max min SE policy,
‘‘P3’’: Modified max min SE policy, ‘‘P4’’: Hybrid policy,
‘‘P5’’: Max sum SE policy having global penalty only.

the next-best algorithm from [36] (17.6 bits/s/Hz, as seen in
previous figures.) The MAFRL performance at 5 m/s under
Policy 5 (17.4 bits/s/Hz) is also only slightly worse. We have
additionally examined the case of our proposed algorithms
being both trained and tested at v = 5 m/s. In this event, the
algorithms’ performance returns to the same as if they were
both trained and tested at 1 m/s. Moreover, training at 5 m/s
and testing at 1 m/s again results in a decline in performance;
the MARL performance under P1 drops to 18.9 bits/s/Hz, for
example. This indicates that the degradation in performance
is a result of the mismatch between the training and testing
environments (much like what was seen in Fig. 6), rather than
an inability of the proposed algorithms to handle higher UE
speeds. It also suggests that training with a variety of UE
speeds ought to result in a bit better performance.

Next, we investigate the impact of varying the ratio of the
total number of antenna elements at the APs to the number
of UEs on the sum SE performance. For this, we examine the
sum SE performance for two different scenarios: a) varying
the number of antennas N per AP while keeping the number
ofUEs fixed, and b) varying the number ofUEsK while keep-
ing the number antennas per APfixed. The performancewhen
varying N is illustrated in Fig. 8(a). We vary N from 2 to 6,
and compare the performance of the MARL and MAFRL
algorithms with the five reward policies, both using 8 = 15,
against the same existing strategies as in Fig. 4. We observe
that the performance of both our proposed algorithms under
Policies 1 and 5 is very close to the maximum performance of
the ‘‘All’’ case when N = 2. This is understandable, because
for smaller antenna array sizes, the agents/APs serve fewer
UEs; thus, the likelihood of making an optimal UE selection
is considerably higher since the search space is much smaller.
For N = 2, the MAFRL and MARL algorithms obtain about
97−98% of the maximum possible SE of the ‘‘All’’ strategy,
whereas for N = 3, they obtain about 91−92%. For larger
values of N , the slopes of the curves stabilize, such that the
SE obtained by our algorithms is consistently about 83−89%
of the maximum.

FIGURE 8. Average sum SE performance of MARL and MAFRL
algorithms with 8 = 15 and varying ratios of total number of AP
antennas to number of UEs. Performance is compared against
‘‘All’’ and ‘‘Greedy’’ strategies, max min SINR strategy from [25],
κ-means clustering ML algorithm from [35], and modified
RL-based power control algorithm from [36]. ‘‘P1’’: Max sum SE
policy having local and global penalties, ‘‘P2’’: Max min SE
policy, ‘‘P3’’: Modified max min SE policy, ‘‘P4’’: Hybrid policy,
‘‘P5’’: Max sum SE policy having global penalty only. (a) K = 20
UEs, varying numbers of antennas per AP (N). (b) N = 4,
varying number of UEs (K ).

Compared to the modified algorithm from [36], the per-
formance of MARL algorithm with Policy 1 is about 7−9%
better for N ≥ 4. We again note that our better performance
is with equal power distribution among the UEs; the addi-
tion of power allocation should further enhance the MARL
(and MAFRL) performance. At the same time, for N ≥ 4,
the MARL algorithm’s SE under Policy 1 is at least about
21−23% larger than the other three reference algorithms,
while the MAFRL algorithm’s SE under Policy 5 is about
17−19% larger. Policies 3 and 4 provide about the same
sum SE as each other (Policy 3 is marginally better) and
their performance improves with N at about the same rate
as Policies 1 and 5. Policy 2 continues to have the worst
performance among our reward policies, though it remains
better than that of all the reference schemes other than the
modified one from [36]. Interestingly, although not shown in
the figure, we have observed that the performance of Policy 2
improves slower with N when 8 = 10 is used, such that the
scheme from [25] catches up at N = 6 in that case.

The performance when varying the number of UEs K is
illustrated in Fig. 8(b). In this case, we vary the number of
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UEs from 8 to 32 in steps of 8; we also include the previous
results for 20 UEs. The relative performance of all the com-
pared algorithms remains the same as in Fig. 8(a). Moreover,
the rate in increase of SE withK for the SE-maximizing algo-
rithms is roughly the same among that group, as is the rate of
increase among the max-min SE algorithms. Unsurprisingly,
the SE grows slower with K for the latter group than it does
for the former. This simply reflects that the SE-maximizing
algorithms can better exploit multiuser diversity. In contrast,
the max-min SE algorithms have to trade off some total SE
to improve the performance of additional UEs in the system
in relatively poorer channel conditions; hence, their sum SE
cannot increase as quickly with K .

VII. CONCLUSION
In this work, we have proposed MARL and MAFRL AP
clustering algorithms for cell-free massive MIMO systems.
We have described the mathematical details for obtaining
the CSI and precoding vectors for each AP. The proposed
algorithms’ performance has been examined for five reward
policies and compared with several existing strategies. It has
been demonstrated that ourMARL algorithm outperforms the
other AP clustering strategies, and achieves up to 88.3% of
the maximum possible sum SE achievable if all APs were
to serve all UEs using centralized precoding. Our MAFRL
algorithm performs slightly worse than our MARL algo-
rithm (about 5−10% lower SE) on account of trading off
some localized performance gains in favor of uniformly
good performance across the entire coverage area. However,
that tradeoff also means the MAFRL algorithm can transfer
its learning to different environments much better than the
MARL algorithm; the latter instead tends to develop depen-
dencies on the training environment. When the AP locations
are different during testing than they were during training, the
MARL algorithm performance drops significantly (up to 27%
lower SE in one case), whereas the MAFRL performance
is almost unchanged. A similar but much smaller drop in
performance (about 5−6%) occurs for both algorithms when
the UE speeds during testing differ significantly from those
used for training (e.g., 5 m/s vs. 1 m/s or vice versa). The
relative performances of all the examined algorithms also
remain about the same when the number of antennas per AP
is equal to or greater than 4 and when the number of UEs
varies between 8 and 32.

Several extensions of this work are possible, such as tweak-
ing the hyperparameters of the agents’ NNs for better perfor-
mance. The operation of the MARL and MAFRL algorithms
using measured channel data or a ray-traced environment
model could be examined. The performance of other types
of ML algorithms can also be studied. In our simulations, the
ability to adapt the UE SEs to maximize the rewards of the
RL policies is somewhat lessened by the use of equal power
allocation for the UEs. It would therefore be useful to exam-
ine implementing a power allocation method along with our
proposed AP clustering algorithms, possibly together within
the same type of MARL/MAFRL framework. We also plan

on investigating a higher-mobility environment, i.e., with
much higher UE speeds than the pedestrian speeds considered
herein.

ACKNOWLEDGMENT
The authors would like to thank Dr. Hamid Farmanbar, who
was their Huawei collaborator and coauthor of their earlier
conference paper [29] on this topic. They would also like to
thank Dr. Emil Björnson for the open-source code repository
for [21], which helped them to develop the channel model and
precoding calculations.

REFERENCES
[1] E. Björnson, J. Hoydis, and L. Sanguinetti, ‘‘Massive MIMO networks:

Spectral, energy, and hardware efficiency,’’ Found. Trends Signal Process.,
vol. 11, nos. 3–4, pp. 154–655, 2017.

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, ‘‘Massive
MIMO for next generation wireless systems,’’ IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
‘‘An overview of massive MIMO: Benefits and challenges,’’ IEEE J. Sel.
Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[4] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of
Massive MIMO. Cambridge, U.K.: Cambridge Univ. Press, 2016.

[5] W. Choi and J. Andrews, ‘‘Downlink performance and capacity of dis-
tributed antenna systems in amulticell environment,’’ IEEE Trans.Wireless
Commun., vol. 6, no. 1, pp. 69–73, Jan. 2007.

[6] X.-H. You, D.-M. Wang, B. Sheng, X.-Q. Gao, X.-S. Zhao, and M. Chen,
‘‘Cooperative distributed antenna systems for mobile communications,’’
IEEE Wireless Commun., vol. 17, no. 3, pp. 35–43, Jun. 2010.

[7] D. Gesbert, S. Hanly, H. Huang, S. Shamai (Shitz), O. Simeone, andW. Yu,
‘‘Multi-cell MIMO cooperative networks: A new look at interference,’’
IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

[8] J.-M. Moon and D.-H. Cho, ‘‘Efficient cell-clustering algorithm for inter-
cluster interference mitigation in network MIMO systems,’’ IEEE Com-
mun. Lett., vol. 15, no. 3, pp. 326–328, Mar. 2011.

[9] K. Hosseini, W. Yu, and R. S. Adve, ‘‘Large-scale MIMO versus network
MIMO for multicell interference mitigation,’’ IEEE J. Sel. Topics Signal
Process., vol. 8, no. 5, pp. 930–941, Oct. 2014.

[10] R. Irmer et al., ‘‘Coordinated multipoint: Concepts, performance, and field
trial results,’’ IEEE Commun. Mag., vol. 49, no. 2, pp. 102–111, Feb. 2011.

[11] D. Lee et al., ‘‘Coordinated multipoint transmission and reception in
LTE-advanced: Deployment scenarios and operational challenges,’’ IEEE
Commun. Mag., vol. 50, no. 2, pp. 148–155, Feb. 2012.

[12] J. Lee et al., ‘‘Coordinated multipoint transmission and reception in LTE-
advanced systems,’’ IEEE Commun. Mag., vol. 50, no. 11, pp. 44–50,
Nov. 2012.

[13] V. Jungnickel et al., ‘‘The role of small cells, coordinated multipoint, and
massive MIMO in 5G,’’ IEEE Commun. Mag., vol. 52, no. 5, pp. 44–51,
May 2014.

[14] D. Jaramillo-Ramírez, M. Kountouris, and E. Hardouin, ‘‘Coordinated
multi-point transmission with imperfect CSI and other-cell interference,’’
IEEE Trans. Wireless Commun., vol. 14, no. 4, pp. 1882–1896, Apr. 2015.

[15] B. Dai and W. Yu, ‘‘Sparse beamforming and user-centric cluster-
ing for downlink cloud radio access network,’’ IEEE Access, vol. 2,
pp. 1326–1339, 2014.

[16] J. Wu, Z. Zhang, Y. Hong, and Y. Wen, ‘‘Cloud radio access network
(C-RAN):A primer,’’ IEEENetw., vol. 29, no. 1, pp. 35–41, Jan./Feb. 2015.

[17] A. Checko et al., ‘‘Cloud RAN for mobile networks—A technology
overview,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,
1st Quart., 2015.

[18] C. Pan, M. Elkashlan, J. Wang, J. Yuan, and L. Hanzo, ‘‘User-centric C-
RAN architecture for ultra-dense 5G networks: Challenges and method-
ologies,’’ IEEE Commun. Mag., vol. 56, no. 6, pp. 14–20, Jun. 2018.

[19] M.M.Abdelhakam,M.M. Elmesalawy, K. R.Mahmoud, and I. I. Ibrahim,
‘‘A cooperation strategy based on bargaining game for fair user-
centric clustering in cloud-RAN,’’ IEEE Commun. Lett., vol. 22, no. 7,
pp. 1454–1457, Jul. 2018.

VOLUME 1, 2023 121



[20] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
‘‘Cell-free massiveMIMO versus small cells,’’ IEEE Trans. Wireless Com-
mun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[21] Ö. T. Demir, E. Björnson, and L. Sanguinetti, ‘‘Foundations of user-
centric cell-free massive MIMO,’’ Found. Trends Signal Process., vol. 14,
nos. 3–4, pp. 162–472, 2021.

[22] E. Björnson and L. Sanguinetti, ‘‘Making cell-free massive MIMO com-
petitive with MMSE processing and centralized implementation,’’ IEEE
Trans. Wireless Commun., vol. 19, no. 1, pp. 77–90, Jan. 2020.

[23] S. Buzzi and C. D’Andrea, ‘‘Cell-free massive MIMO: User-centric
approach,’’ IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,
Dec. 2017.

[24] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Larsson,
‘‘Ubiquitous cell-free massive MIMO communications,’’ EURASIP J.
Wireless Commun. Netw., vol. 2019, no. 197, pp. 1–13, Dec. 2019.

[25] C. F. Mendoza, S. Schwarz, and M. Rupp, ‘‘Cluster formation in scalable
cell-free massive MIMO networks,’’ in Proc. 16th Int. Conf. Wireless
Mobile Comput., Netw. Commun. (WiMob), Oct. 2020, pp. 62–67.

[26] E. Björnson and L. Sanguinetti, ‘‘Scalable cell-free massive MIMO sys-
tems,’’ IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261, Jul. 2020.

[27] H.A.Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, andK.V. Srinivas,
‘‘User-centric cell-free massive MIMO networks: A survey of opportu-
nities, challenges and solutions,’’ IEEE Commun. Surveys Tuts., vol. 24,
no. 1, pp. 611–652, 1st Quart., 2022.

[28] Y. Zhao, I. G. Niemegeers, and S.M.H. DeGroot, ‘‘Dynamic power alloca-
tion for cell-free massive MIMO: Deep reinforcement learning methods,’’
IEEE Access, vol. 9, pp. 102953–102965, 2021.

[29] B. Banerjee, R. C. Elliott, W. A. Krzymień, and H. Farmanbar, ‘‘Access
point clustering in cell-free massive MIMO using multi-agent reinforce-
ment learning,’’ in Proc. IEEE 33rd Annu. Int. Symp. Pers., Indoor Mobile
Radio Commun. (PIMRC), Sep. 2022, pp. 1086–1092.

[30] Y. Cao, S.-Y. Lien, Y.-C. Liang, K.-C. Chen, and X. Shen, ‘‘User access
control in open radio access networks: A federated deep reinforcement
learning approach,’’ IEEE Trans. Wireless Commun., vol. 21, no. 6,
pp. 3721–3736, Jun. 2022.

[31] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, ‘‘Federated learning: Strategies for improving communication
efficiency,’’ in Proc. NIPS Workshop Private Multi-Party Mach. Learn.,
Barcelona, Spain, Dec. 2016, pp. 1–10.

[32] A. Hard et al., ‘‘Federated learning for mobile keyboard prediction,’’
Feb. 2019, arXiv:1811.03604.

[33] X. Wang, R. Li, C. Wang, X. Li, T. Taleb, and V. C. M. Leung,
‘‘Attention-weighted federated deep reinforcement learning for device-to-
device assisted heterogeneous collaborative edge caching,’’ IEEE J. Sel.
Areas Commun., vol. 39, no. 1, pp. 154–169, Jan. 2021.

[34] M. Chen et al., ‘‘Distributed learning in wireless networks: Recent progress
and future challenges,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3579–3605, Dec. 2021.

[35] S. Biswas and P. Vijayakumar, ‘‘AP selection in cell-free massive MIMO
system using machine learning algorithm,’’ in Proc. 6th Int. Conf. Wireless
Commun., Signal Process. Netw. (WiSPNET), Mar. 2021, pp. 158–161.

[36] L. Luo, J. Zhang, S. Chen, X. Zhang, B. Ai, and D. W. K. Ng, ‘‘Downlink
power control for cell-free massive MIMO with deep reinforcement learn-
ing,’’ IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6772–6777, Jun. 2022.

[37] K. T. Truong and R. W. Heath Jr., ‘‘The viability of distributed antennas
for massive MIMO systems,’’ in Proc. 47th Asilomar Conf. Signals, Syst.
Comput., Nov. 2013, pp. 1318–1323.

[38] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
‘‘Cell-free massive MIMO: Uniformly great service for everyone,’’ in
Proc. IEEE 16th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), Jun. 2015, pp. 201–205.

[39] G. Femenias and F. Riera-Palou, ‘‘Cell-free millimeter-wave massive
MIMO systems with limited fronthaul capacity,’’ IEEE Access, vol. 7,
pp. 44596–44612, 2019.

[40] P. Marsch and G. Fettweis, ‘‘Uplink CoMP under a constrained back-
haul and imperfect channel knowledge,’’ IEEE Trans. Wireless Commun.,
vol. 10, no. 6, pp. 1730–1742, Jun. 2011.

[41] J. Kang, O. Simeone, J. Kang, and S. Shamai, ‘‘Layered downlink precod-
ing for C-RAN systems with full dimensional MIMO,’’ IEEE Trans. Veh.
Technol., vol. 66, no. 3, pp. 2170–2182, Mar. 2017.

[42] H. Masoumi and M. J. Emadi, ‘‘Performance analysis of cell-free massive
MIMO systemwith limited fronthaul capacity and hardware impairments,’’
IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1038–1053, Feb. 2020.

[43] Y. Gao, W. Jiang, and T. Kaiser, ‘‘Bidirectional branch and bound based
antenna selection in massive MIMO systems,’’ in Proc. IEEE 26th Annu.
Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), Aug. 2015,
pp. 563–568.

[44] R. Hamdi, E. Driouch, and W. Ajib, ‘‘Resource allocation in downlink
large-scale MIMO systems,’’ IEEE Access, vol. 4, pp. 8303–8316, 2016.

[45] M. O. K. Mendonça, P. S. R. Diniz, T. N. Ferreira, and L. Lovisolo,
‘‘Antenna selection in massive MIMO based on greedy algorithms,’’ IEEE
Trans. Wireless Commun., vol. 19, no. 3, pp. 1868–1881, Mar. 2020.

[46] M. Guo and M. C. Gursoy, ‘‘Statistical learning based joint antenna selec-
tion and user scheduling for single-cell massive MIMO systems,’’ IEEE
Trans. Green Commun. Netw., vol. 5, no. 1, pp. 471–483, Mar. 2021.

[47] Y. Xin, R. Zhang, D.Wang, J. Li, L. Yang, and X. You, ‘‘Antenna clustering
for bidirectional dynamic network with large-scale distributed antenna
systems,’’ IEEE Access, vol. 5, pp. 4037–4047, 2017.

[48] Y. Al-Eryani, M. Akrout, and E. Hossain, ‘‘Multiple access in cell-free
networks: Outage performance, dynamic clustering, and deep reinforce-
ment learning-based design,’’ IEEE J. Sel. Areas Commun., vol. 39, no. 4,
pp. 1028–1042, Apr. 2021.

[49] F. Fredj, Y. Al-Eryani, S. Maghsudi, M. Akrout, and E. Hossain, ‘‘Dis-
tributed beamforming techniques for cell-free wireless networks using
deep reinforcement learning,’’ IEEE Trans. Cognit. Commun. Netw., vol. 8,
no. 2, pp. 1186–1201, Jun. 2022.

[50] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. 31st Conf. Neural Inform. Process. Syst. (NeurIPS), Long Beach,
CA, USA, Dec. 2017, pp. 1–16.

[51] L. Canese et al., ‘‘Multi-agent reinforcement learning: A review of chal-
lenges and applications,’’ Appl. Sci., vol. 11, no. 11, pp. 1–25, 2021.

[52] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, ‘‘Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,’’ IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2nd Quart., 2021.

[53] S. Hu, X. Chen, W. Ni, E. Hossain, and X. Wang, ‘‘Distributed machine
learning for wireless communication networks: Techniques, architec-
tures, and applications,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 3,
pp. 1458–1493, 3rd Quart., 2021.

[54] L. U. Khan, W. Saad, Z. Han, E. Hossain, and C. S. Hong, ‘‘Federated
learning for Internet of Things: Recent advances, taxonomy, and open
challenges,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1759–1799,
3rd Quart., 2021.

[55] R. Ali, Y. B. Zikria, S. Garg, A. K. Bashir, M. S. Obaidat, and H. S. Kim,
‘‘A federated reinforcement learning framework for incumbent technolo-
gies in beyond 5G networks,’’ IEEE Netw., vol. 35, no. 4, pp. 152–159,
Jul./Aug. 2021.

[56] Y. Mu, N. Garg, and T. Ratnarajah, ‘‘Federated learning in massive MIMO
6G networks: Convergence analysis and communication-efficient design,’’
IEEE Trans. Netw. Sci. Eng., vol. 9, no. 6, pp. 4220–4234, Nov./Dec. 2022.

[57] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo,M.N.Dao, andR. H.Middleton,
‘‘Cell-free massive MIMO for wireless federated learning,’’ IEEE Trans.
Wireless Commun., vol. 19, no. 10, pp. 6377–6392, Oct. 2020.

[58] Y.-S. Jeon, M. M. Amiri, J. Li, and H. V. Poor, ‘‘A compressive sens-
ing approach for federated learning over massive MIMO communication
systems,’’ IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1990–2004,
Mar. 2021.

[59] A. M. Elbir and S. Coleri, ‘‘Federated learning for channel estimation
in conventional and RIS-assisted massive MIMO,’’ IEEE Trans. Wireless
Commun., vol. 21, no. 6, pp. 4255–4268, Jun. 2022.

[60] Y. Guo, Z. Qin, and O. A. Dobre, ‘‘Federated generative adversarial
networks based channel estimation,’’ in Proc. IEEE Int. Conf. Commun.
(ICC) Workshops, May 2022, pp. 61–66.

[61] K.-K. Wong, G. Liu, W. Cun, W. Zhang, M. Zhao, and Z. Zheng, ‘‘Truly
distributed multicell multi-band multiuser MIMO by synergizing game
theory and deep learning,’’ IEEE Access, vol. 9, pp. 30347–30358, 2021.

[62] D. Silver et al., ‘‘Mastering the game of Go without human knowledge,’’
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[63] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[64] S. Shalev-Shwartz, S. Shammah, and A. Shashua, ‘‘Safe, multi-agent,
reinforcement learning for autonomous driving,’’ 2016, arXiv:1610.03295.

[65] M. L. Littman, ‘‘Markov games as a framework for multi-agent reinforce-
ment learning,’’ in Proc. 11th Int. Conf. Mach. Learn., W. W. Cohen
and H. Hirsh, Eds. San Mateo, CA, USA: Morgan Kaufmann, 1994,
pp. 157–163.

122 VOLUME 1, 2023



Banerjee et al.: Access Point Clustering in Cell-Free Massive MIMO

[66] J. G. Kuba et al., ‘‘Settling the variance of multi-agent policy gradients,’’
2021, arXiv:2108.08612.

[67] A. Grosnit, D. Cai, and L. Wynter, ‘‘Decentralized deterministic multi-
agent reinforcement learning,’’ in Proc. 60th IEEE Conf. Decis. Control
(CDC), Dec. 2021, pp. 1548–1553.

[68] W. Zhang, X. Wang, J. Shen, and M. Zhou, ‘‘Model-based multi-
agent policy optimization with adaptive opponent-wise rollouts,’’ 2021,
arXiv:2105.03363.

[69] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, ‘‘Bridging the
gap between value and policy based reinforcement learning,’’ 2017,
arXiv:1702.08892.

[70] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement learn-
ing: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285, Jan. 1996.

[71] H. Jin, Y. Peng, W. Yang, S. Wang, and Z. Zhang, ‘‘Federated reinforce-
ment learning with environment heterogeneity,’’ in Proc. 25th Int. Conf.
Artif. Intell. Statist., vol. 151, G. Camps-Valls, F. J. R. Ruiz, and I. Valera,
Eds., Mar. 2022, pp. 18–37. [Online]. Available: https://proceedings.
mlr.press/v151/jin22a.html

[72] B. Banerjee, R. C. Elliott, W. A. Krzymień, and M. Medra, ‘‘Machine
learning assisted DL CSI estimation for high-mobility multi-antenna users
with partial UL CSI availability in TDDmassiveMIMO systems,’’ in Proc.
IEEE Globecom Workshops (GC Wkshps), Dec. 2022, pp. 1579–1585.

[73] T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[74] S. Hanna, ‘‘Random walks in urban graphs: A minimal model of move-
ment,’’ Environ. Planning B, Urban Analytics City Sci., vol. 48, no. 6,
pp. 1697–1711, Jul. 2021.

[75] R. Korbmacher and A. Tordeux, ‘‘Review of pedestrian trajectory
prediction methods: Comparing deep learning and knowledge-based
approaches,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 12,
pp. 24126–24144, Dec. 2022.

[76] R. Knopp and P. A. Humblet, ‘‘Information capacity and power control in
single-cell multiuser communications,’’ in Proc. IEEE Int. Conf. Commun.
(ICC), vol. 1, Jun. 1995, pp. 331–335.

[77] B. Woodworth et al., ‘‘Is local SGD better than minibatch SGD?’’ in Proc.
37th Int. Conf. Mach. Learn., Jul. 2020, pp. 10334–10343.

BITAN BANERJEE (Graduate Student Member,
IEEE) received the B.E. degree in electronics and
telecommunication engineering from Jadavpur
University, India, in 2015, and the M.Sc. degree
in electrical and computer engineering from the
University of Alberta, Edmonton, AB, Canada,
in 2017, where he is currently pursuing the Ph.D.
degree in communications with the Department of
Electrical and Computer Engineering.

He has published more than 20 papers in sev-
eral prestigious conferences and journals, including IEEE TRANSACTIONS

ON COMPUTERS, IEEE COMMUNICATIONS LETTERS, IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON MACHINE LEARNING IN

COMMUNICATIONS AND NETWORKING, IEEE WCNC, IEEE GLOBECOM, IEEE
PIMRC, and Computer Networks (Elsevier). His research interests include
heterogeneous cellular networks, massiveMIMO systems, machine learning,
reinforcement learning, information-centric networking, and radio resource
management. He won the Best Student Paper Award from IEEE PIMRC
2021.

ROBERT C. ELLIOTT (Senior Member, IEEE)
received the B.Sc. (cooperative) degree in electri-
cal engineering and the M.Sc. degree in electri-
cal and computer engineering from the University
of Alberta, Edmonton, AB, Canada, in 2000 and
2003, respectively, and the Ph.D. degree in com-
munications from the Department of Electrical
and Computer Engineering, University of Alberta,
in 2011.

During his B.Sc. studies, he held several coop-
erative work experience positions. In 1998, he was with Computing Devices
Canada (now General Dynamics Mission Systems–Canada), Calgary, AB,
Canada, and in 1999, he was with Nortel Networks, Ottawa, ON, Canada.

From 2001 to 2016, he was also affiliated with Telecommunications
Research Laboratories (TRTech), Edmonton. In 2005, he was a Visiting
Researcher with the German Aerospace Center (DLR), Oberpfaffenhofen,
Germany. He has also done collaborative research with Huawei Technologies
and TELUS Communications, in part as a Post-Doctoral Fellow. He is cur-
rently a Research Associate with the Department of Electrical and Computer
Engineering, University of Alberta. His research interests include heteroge-
neous cellular networks, coordinated transmission techniques in broadband
multiuser multiple-input multiple-output wireless systems, massive MIMO
systems, machine learning, and radio resource management.

Dr. Elliott received the Governor General’s Silver Academic Medal and
the APEGGA Medal in Electrical Engineering in 2000 for having the high-
est overall undergraduate academic standing at the University of Alberta.
He has also held numerous scholarships and fellowships during his academic
studies.

WITOLD A. KRZYMIEŃ (Fellow, IEEE)
received the M.Sc. (Eng.) and Ph.D. degrees in
electrical engineering from the Poznań University
of Technology, Poznań, Poland, in 1970 and 1978,
respectively. He received a Polish national award
of excellence for his Ph.D. thesis.

Since April 1986, he has been with the Depart-
ment of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB, Canada,
where he is currently the endowed Rohit Sharma

Professor in communications and signal processing. In 1986, he was one
of the key research program architects of the newly launched TRLabs,
which for a long time was Canada’s largest industry-university-government
pre-competitive research consortium in the area of information and com-
munication technology. Over the years, he has also done collaborative
research work with TELUS Communications, Huawei Technologies, Nortel
Networks, Ericsson, German Aerospace Centre (DLR—Oberpfaffenhofen),
and the University of Padova, Italy. His current research interests include
radio resource management and transceiver signal processing for broadband
heterogeneous cellular networks employing machine learning and massive
MIMO antenna techniques.

Dr. Krzymień is a fellow of the Engineering Institute of Canada and a
licensed Professional Engineer in the Province of Alberta, Canada. Since
2007, he has been an Editor of the IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY. From 1999 to 2005, he was the Chairman of Commission C
(Radio Communication Systems and Signal Processing) of the Canadian
National Committee of Union Radio Scientifique Internationale (URSI).
He has chaired or co-chaired technical program committees for numerous
IEEE conferences in wireless communication systems and communication
theory areas.

MOSTAFA MEDRA (Member, IEEE) received
the B.Sc. and M.Sc. degrees in electrical engi-
neering from Alexandria University, Alexandria,
Egypt, in 2009 and 2013, respectively, and
the Ph.D. degree in electrical engineering from
McMaster University, Hamilton, ON, Canada,
in 2017.

From 2017 to 2019, he was a Post-Doctoral
Researcher with The Edward S. Rogers Sr. Depart-
ment of Electrical and Computer Engineering,

University of Toronto, Toronto, ON, Canada. He is currently with Huawei
Technologies Canada Company Ltd., Ottawa, ON, Canada, working on 6G
radio access network technologies. His current research interests include
MIMO communications, optimization, wireless communications, and signal
processing.

VOLUME 1, 2023 123


