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ABSTRACT The combination of non-orthogonal multiple access (NOMA) and reconfigurable intelligent
surface (RIS) technologies is proposed to meet the demands of data rate, latency, and connectivity in sixth-
generation (6G) networks. The two techniques can support each other to increase the performance of the
6G system. In a RIS-aided system, channel estimation is a challenging problem, especially when applying
passive RIS which has no signal processing. This paper proposes a deep learning (DL)-based channel
estimation method using a convolutional long-short term memory (CNN-LSTM) model for RIS-NOMA
wireless communication systems that integrate RIS and NOMA techniques. CNN-LSTM leverages both the
benefits of convolutional neural network (CNN) as well as long-short term memory (LSTM), in which CNN
can capture special features while LSTM can capture temporal features of time-series data. The simulation
results indicate that the proposed CNN-LSTM model shows its robustness toward the variation of the
RIS-NOMA system parameters, i.e., transmit signal-to-noise ratio (SNR), power allocation factor, and the
number of RIS elements. The impacts of the RIS-NOMA system parameters on the prediction accuracy of
the proposed DL-based channel estimation methods are evaluated via different performance metrics. The
results reveal that the performance accuracy in terms of normalized root mean square error (NRMSE),
coefficient of determination R-squared score (R2 score), mean absolute scaled error (MASE), and mean
absolute percentage error (MAPE) increases with an increased transmit SNR, power allocation factor of the
first user and the number of RIS elements. Additionally, the CNN-LSTM prediction performance shows its
superiority as compared to those of the four benchmark models including the CNN1D-LSTM model using
one-dimensional convolution layer (conv1D), CNN1D-BiLSTM model using bidirectional long-short term
memory, CNN model and LSTM model.

INDEX TERMS Channel estimation, CNN-LSTM, LSTM, NOMA, 6G network, reconfigurable intelligent
surface (RIS).

I. INTRODUCTION

THE upcoming next-generation sixth-generation (6G)
networks, with the explosion of up to trillions of intel-

ligent devices and massive connections between devices, put
forward requirements for fast speed, low power consumption,
low-latency, and energy efficiency. Reconfigurable intelligent
surface (RIS) emerges as one of the potential and innova-
tive techniques, apart from multiple-input multiple-output
(MIMO), millimeter-wave (mm-wave), and relays commu-
nications, for the future 6G networks. RIS can enhance the
spectrum efficiency, energy efficiency and throughput of

wireless communications by leveraging its ability to reflect
and redirect signals in a controlled manner [1], low hardware
footprint [2], and capability to expand the range of network
coverage [3]. RIS is composed of elements, in which each
element or group of elements independently adjust the ampli-
tude and phase responses of incident signals in real-time to
obtain energy toward an intended direction [4]. By appro-
priate adjustments and designs for phase shifts, RIS is able
to manipulate the communication environment, increase the
link quality, and improve environment coverage [5]. In addi-
tion, RIS can operate in a passive mode containing low-cost
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passive RIS elements with low energy consumption, con-
tributing to an increase in the energy efficiency for wireless
communication systems.

Although the next-generation multiple access (NGMA)
techniques are in the investigation, NOMA is recommended
for the 6G networks [6]. Regarding new requirements, the key
concept of NGMA is to enable massive devices to connect
efficiently and intelligently in a given radio resource under
extremely low latency, high-reliability communications, high
capacity, and high data rate. The existing orthogonal multi-
ple access (OMA) techniques might be infeasible for these
extreme demands. The reason lies behind the fact that the
current OMA access techniques only serve a single user in
each orthogonal radio resource block, and thus, limit the
system capacity and spectrum efficiency [7]. To provide a
higher spectrum efficiency compared to OMA, NOMA tech-
nique introduces a mechanism in which the given orthogonal
radio resource is attributed to multiple users simultaneously.
NOMA is a promising research trend for the evolution of criti-
cal and massive machine-type communications in 6G [8], [9].
Regarding new technologies, the integration of NOMA with
emerging techniques such as RIS, Terahertz communications,
index modulation, random access, and visible light com-
munications brings new research challenges in 6G. NOMA
is combined with Terahertz communications for vehicle-to-
vehicle and vehicle-to-infrastructure applications to improve
performance [10]. In [11], the integration of NOMA and RIS
is discussed as one of the potential scenarios for 6G and has
been proposed by the research community [12].

In multi-user 6G networks with massive devices, NOMA
is a potential technique integrated with RIS to meet the
demands of data rate, latency, and connectivity [13]. On the
one hand, NOMA systems are useful in tackling the prob-
lems of user (UE) explosion in future networks by allow-
ing massive devices to connect simultaneously. A NOMA
system serves multiple users (UEs) with different quality of
service (QoS) in the same orthogonal resource (e.g., time,
frequency, and code) block by exploiting a power domain.
The power-domain-based technique exploits the difference of
channels between UEs for multiplexing by using superposi-
tion combining (SC) at a transmitter and applying successive-
interference-cancellation (SIC) at a receiver to eliminate the
co-channel interference before decoding its own signal [14].
Additionally, a system using NOMA is superior to a conven-
tional OMA system in terms of average sum-rate and outage
probability [15]. On the other hand, with the aid of RIS,
a NOMA system increases its performance by additional sig-
nal diversity with no more time slot or energy. Compared to
a conventional NOMA system where channel conditions are
determined by the propagation environment, the counterpart
with the support of RIS is able to tune the channel quality
of each UE by changing the reflection coefficient or the
position of RIS. This flexibility of RIS toward channel quality
provides a smart NOMA design and the NOMA system turns
into a system based on QoS instead of on channel gains from

the environment [16], which is useful in 6G networks where
different QoS devices are connected. Due to the excellent
integration of RIS and NOMA, many studies recently have
been paying attention to reconfigurable-combined-NOMA
(RIS-NOMA) systems.

II. BACKGROUND
This section presents a review of RIS-NOMA wireless com-
munication systems and the use of DL methods for chan-
nel estimation in conventional RIS-aided systems without
NOMA. From this background, we outline the motivations
and contributions in this paper.

A. RIS-NOMA WIRELESS COMMUNICATION SYSTEMS
Recent studies on RIS-NOMA systems mainly focus on
system performance analysis by solving optimization prob-
lems. It was demonstrated that deploying RIS for a NOMA-
assisted system or applying NOMA for a RIS-aided system
can enhance the system performance compared to the con-
ventional NOMA (without RIS) or OMA-based RIS systems,
respectively. Specifically, by optimizing the rate performance
of the system, the study in [17] shows that the integration of
RIS and NOMA enables the system to achieve a higher rate
than an OMA-based RIS system and a conventional NOMA
system. In [18], in an effort to maximize the weighted sum
rate and propose an UE order scheme for NOMA system,
it is shown that an optimal deployment location of RIS can
enlarge the disparities among channels of UEs in a RIS-
NOMA system and increases channel gains of all UEs for
a RIS-OMA system. With an aim of transmit power opti-
mization, the study in [19] proves that the proposed a RIS-
NOMA system using a 32-elements-RIS obtains a higher
performance than a conventional MIMO system equipped
with 64 antennas. Similarly, the paper in [20] and [21] studied
maximizing the system throughput and energy efficiency
of RIS-NOMA systems. Of these, the RIS-NOMA systems
show their superiority in terms of system throughput and
energy efficiency, as compared to systems only utilizing RIS
or NOMA.

The aforementioned studies have highlighted the merits of
the integration of NOMAand RISwith an assumption that the
channel state information (CSI) of the network is available
at the transmitter but no consideration has been given to the
importance and challenge of estimating these channels. For
NOMA systems, an accurate estimation of channel gains is a
prerequisite to perform SIC at each receiver [17]. In practice,
the challenge of channel estimation in a passive RIS-assisted
network lies in that a RIS is composed of passive elements
without any receive or transmit processing chains, thus chan-
nel estimation is only implemented at the transmitter or the
receiver side. In addition, a large number of RIS elements
in reality leads to an increased number of unknown channel
parameters that needed to be estimated [22]. So far, channel
estimations for RIS-NOMAsystems have been still a research
gap on which existing works have rarely focused.
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B. DL APPROACHES FOR CHANNEL ESTIMATION IN A
CONVENTIONAL RIS-ASSISTED SYSTEM WITHOUT NOMA
Recently, channel estimation for conventional RIS-aided sys-
tems has been widely studied. However, channel estimation
methods, especially DL-based channel estimator, for pas-
sive RIS-assisted systems have been investigated in a few
recent works. As the challenges of channels estimation for
passive RIS-aided systems discussed above, our work only
considers channel estimation methods for passive RIS-aided
systems. A channel estimation-based DL algorithm, which
is a data-driven approach aids RIS to overcome challenges
caused by a conventional RIS-assisted channel estimation
algorithms, i.e., minimum mean square error (MMSE) or
least-square methods. Specifically, the pilot overhead when
applying conventional channel estimation methods is pro-
hibitively high [23], [24], resulting in a limitation of spec-
tral efficiency and a delay in channel estimation. Although
in [25] and [26], the authors proposed methods to tackle these
issues, these approaches still required a reduction in beam-
forming capacity and assume channel sparsity in the net-
work, respectively. DL-based channel estimators have shown
their potential by reducing the high pilot overhead which is
caused by an increased number of RIS elements in RIS-OMA
systems [27], [28].

The channel estimation algorithm based on DL approaches
for RIS-aided systems, particularly multi-users ones, has
been investigated in recent studies. Compared to the conven-
tional linear channel estimator, i.e. minimum-mean-square-
error or least square method, DL-based approaches exploit
non-linear inherent relationships between the input-output
signals to produce more reliable channel estimations for RIS-
assisted systems with a less computational cost [29]. A DL
model with an orthogonal matching pursuit algorithm fol-
lowed by the residual network is proposed for a RIS-aided
multi-users massive system [30]. This method is built on
the assumption of a quasi-sparse structure of the cascaded
angular channel, therefore is not suitable for the scenarios
of frequency-selective fading in a time-varying environment.
In particular, the author in [4] applied generative adversarial
networks based on convolutional blind denoising, a convolu-
tional blind denoising network, and multiple residual dense
networks to estimate cascaded uplink channels of a time
division duplex (TDD) passive RIS-aided communication
system. This study is under the assumption that the optimal
phase shift matrix is different for one or more UEs in each
time slot. In this paper, this assumption is unnecessary; as our
proposed RIS-NOMA wireless system serves multiple UEs
at the same time block, therefore the optimal phase shift is
considered for the overall system at a time instead of for each
UE. A CNN-based deep residual learning (CDReL) model
is proposed in [31] to estimate cascaded channels in a RIS-
assisted TDD multi-user system based on noisy pilot-based
observations. This study is based on an OMA technique,
therefore an optimal scheme for the matrix of pilot sequence
at all UEs is necessary to improve the received signal at base

station (BS) before applying channel estimation. However,
this optimal scheme can be ignored in our proposed downlink
NOMA-aid system in this study owing to the fact that a
NOMA system applies SC received signals at the transmitter
and SIC at UEs.

Several studies have focused on channel estimation-based
DL methods for RIS-assisted systems in time-varying envi-
ronments. A time-varying channel estimation using a recur-
rent neural network combined with ordinary differential
equations for a passive RIS-assisted single UE system is
investigated in [28]. Although the mobility speed at the
receiver side is taken into account, this study only observes
the system for a single UE. In addition, it applies a control
RIS in an on/off pattern during a pilot block to reduce the
length of the cascaded channel with an increased the number
of RIS elements. No benchmark channel estimation methods
have been applied to compare with the proposed method in
this study. A fast time-varying channel estimation approach
is studied in [32] by applying novel sparse-connected LSTM
along with a three-stages channel estimation approach for
a full-duplex RIS-assisted multi-user multiple-input single-
output (MU-MISO). The channel from BS to RIS is consid-
ered in a large-time scale, and the channels from RIS to each
UE is considered on a small-time scale only. Hence, the cas-
caded channel, which is the combination of channel from BS
to RIS and from RIS to each UE, disregards small time-scale
variation of the former as well as large-scale variation of
the latter. Most of the aforementioned studies on passive
RIS-aided systems applying OMA technique, in which all
devices are fixed or time-varying channels were derived from
geometric channel models.

Recently, channel estimation based on DL algorithms for
an integrated sensing and communication (ISAC) systems
that are assisted with RIS has been investigated. The authors
in [33] proposed a three-stage channel estimation using CNN
architecture for a RIS-assisted ISAC system. This approach
aims to overcome the inherent inference in a system contain-
ing both sensing and communications signals. The proposed
estimation DL method is applied for both direct channels,
includingUE-BS and target-BS and reflected ones, consisting
of UE-RIS-BS and BS-target-RIS-BS, and proved to outper-
form the baseline least squaremethod. This approach requires
turning on RIS components at second stage, which leads to
battery consumption. In addition, the proposed method is
specifically designed for uplink channels and is not easily
extended to downlink. The focus of this investigationwas on a
scenario where the devices within the system were stationary,
and more specifically, the link between the RIS and BS was
established over a very limited distance of 2 meters.

Although there are many papers working on channel esti-
mation for RIS-aided systems, most of the aforementioned
studies on passive RIS-aided systems apply OMA technique.
Furthermore, the fixed or time-varying channels have been
mostly obtained through the use of geometric channel mod-
els, specifically, the Saleh-Valenzuela model which assumes
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that the RIS has a negligible size in comparison to the distance
between the transmitter and receiver. This assumption could
be impractical when RIS is placed in close proximity to BS.

Accurate channel estimation is more crucial for the
NOMA-based SIC system than for the OMA system because
the SIC decoder at the receiving end heavily depends on the
CSI. Additionally, due to a large number of RIS elements
and the multiuser nature of NOMA, there are numerous
RIS-related channel coefficients that require estimation in a
RIS-NOMA system. In channel estimation, it is expected that
estimation may take a large number of time slots in a RIS-
NOMA systemwhich is usually directly related to the number
of reflecting elements and users, and it has the potential
to surpass the maximum duration of the channel coherence
time [34]. Different from the traditional RIS system, a RIS-
NOMA system differentiates between UEs using power allo-
cation factors. When a UE has lower power allocation, it may
receive a weaker signal as it moves farther away from the BS,
which can lead to difficulties in channel estimation.

C. MOTIVATION AND CONTRIBUTIONS
As discussed in the previous section, DL-based channel esti-
mation approaches for passive RIS-NOMA systems have not
been explored sufficiently in existing studies yet. This paper
is an early attempt to study a DL-based channel estimation
method for a downlink multi-user RIS-NOMAwireless com-
munication system. However, NOMA poses new challenges
for a RIS-aided system in terms of channel estimation. Firstly,
channel coefficient matrices become larger due to a huge
number of channels produced from the nature of multiple
users in NOMA combined with many RIS elements. This
challenge is more complicated when RIS is fully passive
which makes it difficult to estimate the direct channel from
BS or UE to RIS. In this case, the cascaded channels are
estimated alternatively [34]. However, the cascaded channels
have complicated statistics and high dimensions due to the
large number of channel coefficients in a RIS-NOMA system.
In this situation, applying conventional methods such as least
square (LS) or least minimum mean square errors (LMMSE)
leads to an expensive computation with the possibility to
cause more channel estimation errors [31]. DL-based channel
estimation may be a good solution to cope with the problem
of a large amount of channel dataset. In addition, when it
comes to the time-series set of channel coefficients of the
RIS-NOMA model system, none of the available time-series
models gives the best results in various situations because it is
not easy to identify the underlying data generation process of
time-series. Using individual models is generally insufficient
to exploit all the characteristics of time-series data [35]. This
demands a proper design of a DL-based channel estimation
method to adapt to an unfamiliar wireless system model as
well as propagation environment, like the proposed RIS-
NOMA model in the paper. The contributions of the paper
are summarized as follows:

• The paper proposes a potential RIS-NOMA wireless
system model for 6G networks, for which the channel

estimation is investigated. The proposed wireless system
model is different from those in previous studies that
also work on channel estimation for a RIS-aid wireless
system. (i) Firstly, NOMA is considered as a multiple
access technique of the proposed model; hence, the
system exploits the power domain of the system that
is defined by the power allocation factor assigned to
each UE, instead of applying pilot schemes or time
division schemes as in previous RIS-aided OMA sys-
tem. (ii) Secondly, different from [29] where only single
user mobility is observed, in this paper, all users slowly
move further from RIS to avoid the reduction of trans-
mission performance, e.g., outage probability, and the
transmission rate of each UE. (iii) Thirdly, unlike other
proposed system models that take control of RIS or use
active RIS, this article suggests the passive RIS for the
system, in which no signal processing is available at
RIS. In addition, in contrast to [32], all channels in the
proposed wireless system suffer from both large-scale
fading and small-scale fading.

• A data generation algorithm is developed to generate a
time-series dataset based on the parameters of the pro-
posed RIS-NOMA systemmodel. This dataset is utilized
for the study of channel estimation in the RIS-NOMA
system and can be further investigated to design and
test new approaches to improve end-to-end system-level
performance.

• A design of the CNN-LSTM algorithm is proposed
for channel estimation in the RIS-NOMA system by
exploiting all characteristics of the generated time-series
dataset including spatial features and temporal features.
The time-series dataset is very sensitive to the DL mod-
els; in other words, a small change in the dataset due to
variation of the parameters in the RIS-NOMA system
could lead to a failure of channel predictions. For this
reason, the CNN-LSTM channel estimation algorithm
is designed to work efficiently for a wide range of RIS-
NOMA system parameters, including power allocation
factor, signal-to-noise ratio (SNR), and the number of
RIS, rather than for a fixed set of parameters from opti-
mization problems.

• Extensive simulations are carried out to verify the per-
formance accuracy of the proposed DL-based chan-
nel estimator for the proposed RIS-NOMA systems.
The performance accuracy metrics of the proposed DL
model are evaluated under variation of RIS-NOMA
system parameters, i.e., a transmit SNR at BS, power
allocation factors for each UE, and the number of RIS
elements. Through this evaluation, the robustness of
CNN-LSTM against a large number of RIS-NOMA
systems is verified.

• The paper provides a comprehensive comparison
of the proposed CNN-LSTM using two-dimensional
convolution layer (conv2D) convolution layers over
the four benchmarks, including CNN1D-LSTM using
conv1D layer, LSTM model, CNN1D-BilSTM using
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FIGURE 1. A system of RIS-aided downlink communication.

bi-directional long-short term memory, conventional
CNN, and conventional LSTM to demonstrate its superi-
ority over other compared models in channel estimation
for the proposed downlink RIS-NOMA system.

The rest of the paper is organized as follows. The
RIS-NOMA system model and the problem formulation are
included in Section III. In Section IV, we propose a CNN-
LSTM architecture as a DL-based channel estimator for the
proposedwireless communication system. SectionV presents
the simulation setup and simulation results of the proposed
DL model. Finally, we conclude the paper in Section VI.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, a NOMA-RIS system model is presented at
first then a problem relating to channel estimation from this
system model is defined. Finally, we discuss about dataset
and data preparation in this section.

A. SYSTEM MODEL
We consider RIS-aided downlink communications in a
RIS-NOMA system as in Fig.1. As shown in Fig. 1, the
system composes of a BS equipped with Nt antennas, a RIS
equipped with L reflecting elements, andM UEs where each
UE is equipped with Nr antennas. Given RIS elements are
assumed to be far apart from each other, resulting in mutually
uncorrelated elements and avoiding mutual signal coupling
among them. We assume the direct link from BS to jth user
(UEj), denoted by BS → UEj where j ∈ {1, 2, . . . ,M},
is blocked due to signal attenuation in a harsh propagation
environment. Hence, the received signal at each UEj comes
from the cascaded channel BS → RIS → UEj. In practice,
a BS and RIS are fixed while UEj is mobile. In this paper,
it is assumed that UEj is slowly moving further away from
BS. We assume that all users move at the same speed v
meter per one time step t . The speed is slow enough to avoid
causing Doppler effects. This assumption is to ensure the
communication performance of the system, e.g., transmission
rate, and outage probability. A such RIS-NOMA wireless
system is proposed for several applications such as connected
autonomous vehicles [10], ultra-high-definition video, virtual
reality, and internet of things applications such as wearable
devices and smart homes [36]. Due to the blockage of the

direct channel, communication from a BS to UEj is only
defined by the cascaded channel BS → RIS → UEj.
The cascaded channel from BS to each UEj at time t is the
combination of the channel BS → RIS and RIS → UEj,
which is denoted as Gj [32] and is calculated as

Gj(t) = gHj (t)8(t)H(t). (1)

All channels in this paper are considered approximately con-
stant at each channel coherence block. We only focus on one
channel coherence block with a duration of T . Each time
step or time instant t = 1, 2, . . . ,T . Due to a slow-moving
scenario and perfect CSI knowledge at BS, the channel coher-
ence time in this paper is on the order of tens of milliseconds
(ms) [37], [38].

Next, we describe the signal model of the proposed
RIS-NOMA system. In a NOMA-based system, the tech-
nique is applied at the transmitter (BS), which means that
the BS transmits a superposed signal x(t) =

√
PS [c1x1(t) +

c2x2(t) + . . . + cMxM (t)] at a time t to all UEs [39]. In this
formula, the symbol Ps is the transmit power at BS, xj(t) ∈

CNt×1 is a signal for user UEj, and cj is power allocation
factor assigned to UEj which satisfies

∑M
j=1 c

2
j = 1 and

c1 < c2 < . . . < cM . We assume that the channel of
a UEj with a higher index has a weaker channel gain and
thus requires more power allocation. Based on the cascaded
channel from Eq.(1), The received signal at UEj at time t is
expressed as

yj(t) = PLj(t)gHj (t)8(t)H(t)γ
x(t)
√
Ps

+ nj(t), (2)

where PLj(t) is path loss parameter at UEj, gj(t) ∈ CL×Nr

and H(t) ∈ CL×Nt denotes the channel matrices of the links
RIS → UEj and BS → RIS, respectively. We assume
that all channels are Rayleigh fading channels. The symbol
nj(t) ∈ CNr×1 presents the noise at each UEj [19], [40].
In this RIS-NOMA network, the noise ni at UEj follows
Gaussian distribution CN ∼ (µn,N0). In Eq. (1), the factor
γ = Ps/N0 is the transmit SNR with E|[nj(t)|2] = N0.
We normalize the noise nj(t) by a standard normal Gaussian
distribution with µn = 0 and N0 = 1. Diagonal coefficient
matrix 8 of RIS has main diagonal including elements from
8 = [φ1, φ2, . . . , φL]T . Each element in the main diagonal
takes into account both phase shift and amplitude reflection
coefficient on the incident signal [19] as follows

φm = αmejθm, (3)

where θm ∈ [0, 2π ] is the phase shift and αm is the amplitude
reflection coefficient.

The path loss of each UE PLj, is determined according to
distances and path loss exponent (PLE) as follows

PLj(t) =

√
(
dsr
d0

)−αsr

√
(
drj(t)
d0

)−αrj , (4)

where symbol d0 presents the reference distance; αsr and dsr
are the PLE of the environment and the distance of the link
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BS → RIS; and αrj and drj(t) are the PLE of the environment
and the distance of the link RIS → UEj [41], [42]. It can
be seen from Eq. (2), Eq. (3), and Eq. (4) that the received
signal at each user is affected by the distance between devices
and the parameters of RIS. Different users are allocated dif-
ferent power factors according to their CSI. In this paper,
CSI of all cascaded channels of the proposed RIS-NOMA
system are assumed to be perfectly known at BS. Based
on the knowledge of the CSI, the NOMA system can sepa-
rate the signal of each user by applying SIC at the receiver
side.

At the receiver side, the SIC technique is applied to
decode the signal of a specific UE by leveraging the dif-
ference between channel gains from a transmitter to each
user UEj. After receiving the signal, each user will perform
SIC according to using the principle of NOMA. The prin-
ciple of NOMA allows every UE to receive signals of all
UEs in the RIS-NOMA system, then each user obtains
its desired signal by decoding unwanted signals. Because
UEM is allocated the highest power allocation, it will
directly decode its signal xM by treating the other sig-
nal xM−1, xM−2, . . . , x1 as interferences. The signal-to-
interference-plus-noise ratio (SINR) to detect signal xM at
user UEM is

SINRM =

∣∣̂hM ∣∣2 Ps(cM )2∑M−1
l=1

∣∣̂hl ∣∣2 Ps(cl)2 + N0

, (5)

where ĥj = PLjg
j
H8H with j = 1, 2, . . . ,M . When

decoding UE with index ρth where ρ ̸=M and ρ > 1,
all the previous signals, i.e., M th, (M − 1)th, . . . , (ρ +

1)th, should be cancelled, and the remaining signals, i.e.,
(ρ − 1)th, (ρ − 2)th, . . . , 2nd , 1st are considered as inter-user
interferences [43]. For simplicity of equations, we omit the
term t . Then, a perfect SIC at user UEρ , the SINR at UEρ to
decode signal xρ can be expressed as

SINRρ =

∣∣̂hρ

∣∣2 Ps(cρ)2∑ρ−1
l=1

∣∣̂hl ∣∣2 Ps(cl)2 + N0

. (6)

Finally, UE1 will decode its own signal after cancelling
all signals from previous users with index, i.e, M th,
(M−1)th, . . . , 2nd [44] and the SINR atUE1 to decode signal
x1 is described as

SINRρ =

∣∣̂h1∣∣2 Ps(c1)2
N0

. (7)

To determine the SINR in Eq. (5), Eq. (6), and Eq.
(7), it is required the knowledge of cascaded channel at
each UE.

B. PROBLEM FORMULATION
In this RIS-NOMA network, a channel between BS → RIS is
fixed, while channelsRIS → UEj are slow time-variant chan-
nels. To perform the SIC at the receiver side, it is necessary
to know the cascaded channel gains from BS → RIS → UEj

in advance. Being equipped with passive elements, the RIS
only plays a role as a signal reflector, thereby we estimate the
cascaded channels based on the received signals at UEj. Due
to the slow mobility of UEj, the cascaded channels slowly
change versus time, introducing a time-variant channel esti-
mation problem for the RIS-NOMA.

Algorithm 1 Generate Dataset for Two UEs
Input: x1(t), x2(t), djsr , drj(t), αsj, αsr , φm, αm, H(t)
Output: Y, G

Initialisation :
1: Y, G as empty matrices
LOOP Process
Dataset length or the number of time steps K

2: for t = 1 to K do
3: Generate x1(t), x2(t), H(t), n(t)
4: Initialize gt , Gt , 8t , yt as empty matrices

M = 2 the number of UEs
5: for j = 1 to M do
6: Generate gj(t), θi(t)
7: Using θj(t) and αm, calculate φj(t) from (3)
8: Using φj(t), calculate 8i(t)
9: Calculate dri(t) = dri(t) - v
10: Calculate received signal yj(t) at jth UE from (2)
11: Calculate cascaded channel at jth UE

Gj(t) = gHj (t)8j(t)H(t) from (1)
12: Concatenate yj(t), Gj(t) to yt , Gt
13: end for
14: Concatenate yt , Gt to Y, G
15: end for
16: return Y, G

C. DATA PREPARATION
We assume that the channel gains follow independent and
identically standard complex Gaussian (normal) distributions
CN ∼ (µ, σ 2) with the mean µ and variance σ 2 [23],
[45], [46]. The dataset is generated with K samples as in the
Algorithm 1. In a time-series problem, each sample presents
a time step t in the RIS-NOMA system. We assume that at
each time step, UEj slowly moves further away from the BS
with the same velocity. The dimension of matrices in the
Algorithm 1 are denoted as Y ∈ CK×NrNt×M , g ∈ CK×L×M ,
H ∈ CK×LNt×M , 8 ∈ CK×NrNt×M , n ∈ CK×NrNt×M , and
G ∈ CK×NrNt×M . It can be seen that all matrices include
dimensions which are the number of time steps K and the
number of UEsM . The remaining dimensions depend on the
number of antennas at the transmitters and the receivers and
the elements of RIS. It is noted that in this study, the transmit
signal at UEj which is denoted by xj follows the distribution
CN ∼ (µxj, σ 2

xj) with the mean and variance µxj and σxj,
where j = 1, 2, . . . ,M . The output of the Algorithm 1,
including received signal Y and the cascaded channel G, are
processed and used as the input and output of the data in the
proposed DL model.
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IV. PROPOSED DEEP LEARNING MODEL
In this section, we propose a CNN-LSTM based model
for addressing the channel estimation problem in the RIS-
NOMA system. We also provide a complexity analysis of
the proposed model and discuss the performance metrics to
evaluate the effectiveness of the proposed model.

A. CNN-LSTM MODEL
In this section, an architecture of the proposed CNN-LSTM
network is first briefly illustrated. Next, the flow of data in
the DL model is presented. Then, the training process of
the proposed DL-based channel estimation for the proposed
RIS-NOMA communication system in Fig. 1 is illustrated.

This paper proposes a variant of an encoder-decoder LSTM
model that composes of two modules, including CNN mod-
ule at the encoder side and LSTM module at the decoder
side [47] as in Fig. 2, which is called a CNN-LSTM model.
This kind of variant achieves the advantage of both CNN
model and LSTMmodel. Compared to a conventional LSTM
which merely contains LSTM layers, the proposed DLmodel
exploits the power of CNN in terms of feature extraction.
In this paper, the CNN has been utilized to learn spatial cor-
related features from an input sequence [48] of the received
signals at UEs. Then, the features from CNN are fed into
LSTM for decoding, and in turn extract the temporal corre-
lation to predict the output, the cascaded channels, at one or
many future time steps.

As shown in Fig. 2, the proposed DL model consists of an
input layer, a CNN module, a LSTM module, and an output
layer. Each component of the model is introduced as follows.

1) DATA PROCESSING FOR INPUT LAYER
We need to process the output data from Algorithm 1
in Section III-B before feeding them into the input
layer of the CNN-LSTM model. The first output of the
Algorithm 1 is a time-series sequence of the received sig-
nals at UEj of the RIS-NOMA network, which is Y =

{Y(1),Y(2), . . . ,Y(K )}. In particular, the sample at time step
t is Y(t) = [y1(t), y2(t), .., yM (t)] and yM (t) ∈ CNr×Nt ,
where t ∈ {1, 2, . . . ,K }. The received signal at UEj which
is denoted as yj(t) is a complex number, but a conventional
DL model is designed for real values. Thereby, we extract
two parts of a complex number including amplitude and
angle, and then concatenate them as a dimension; resulting
in yM (t) ∈ R2×Nr×Nt and Y ∈ RK×M×2NrNt . Likewise, the
second output of the Algorithm 1 is the cascaded channels
fromBS atUEj of the RIS-NOMA is aK time steps sequence,
which is denoted as G = {G(1),G(2), . . . ,G(K )}. At each
time step t with t ∈ {1, 2, ..,K }, the cascaded channels
of the RIS-NOMA system consist of individual cascaded
channels from BS to each UEj, and is presented by G(t) =

{G1(t),G2(t), . . . ,GM (t)}. The goal of the channel estima-
tion is to predict the cascaded channel gains, thus we extract
the amplitudes of cascaded channels as the target of the CNN-
LSTM model. In this paper, the training length or symbols

count of the channel estimation duration is considered as long
enough to estimate all channel coefficients of the RIS-NOMA
wireless system.

For a time-series problem, it is necessary to transform both
the input sequence and output sequence as an input-output
time-series sequence. The total K samples of input Y(t) and
target G(t) is transformed into a time-series sequence based
on the input time steps ti and future time steps to. After this
transformation, the length of the dataset will be changed and
is denoted by Sample. In turn, the time-series sequence is
divided into a training dataset and a testing dataset before
going to the input layer.

2) CNN MODULE
CNN is commonly used for image processing applications
such as feature extraction and classification, where an image
can be divided into three channels, including red, green,
and blue. In this paper, the matrix of the received signal
could be considered a three-dimensional (3D) image as the
matrix includes three dimensions including the time step,
the number of users, and the power values of the received
signal [49]. Plus, the matrix of the received signals becomes
larger when the number of RIS increases. Inspired by the
analogy between a 3D image and the matrix of received
signals, this paper uses CNN to extract the features of the
received signals from users. The first layer of CNN is the
input layer, and the last layer is the output layer, with a few
hidden layers in between. The input of the CNN model has
three dimensions height, width, and depth, which correspond
to the number of UEs, the received signals at UEs, and the
time steps in the proposed RIS-NOMA system. In most used
CNN models, hidden layers compose of several convolution
layers preceding pooling layers, through which feature space
at the input is matched with the output. Each convolution
layer contains several kernels (or filters) which define the
depth of the layer. Kernels are known as feature detectors
that connect the input and a set of weights by filters, and the
convolution layer calculates the dot product between them.
An activation function is applied at the output of each con-
volution layer to generate a feature map. This feature map
serves as the input of the next layer, for example, the next
convolution layer, or pooling layer. Following the convolution
layers, pooling (sub-sampling) layers are used to reduce the
number of CNN parameters by performing down-sampling
for each feature map. Finally, the output of the last pooling
layer is fed into a fully connected layer. The input of the
fully connected layer is flattened into the form of a vector.
The output of the fully connected layer is the final output of
CNN. The main benefit of using CNN is the weights sharing
feature, where weights and bias are the same for all neutrons
in each hidden layer, reducing the trainable parameters that
enhance the generalization and avoid overfitting. Another
advantage is the ability to extract the inference characteristics
of features, however, CNN needs huge training data to learn
all parameters [50], [51].
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FIGURE 2. CNN-LSTM model.

The architecture of the proposed model is described in
detail in Fig. 2. Firstly, the sequential input is fed into the
CNN module as in Fig. 2. The CNN module includes two
2-D convolutional (2D-conv) layers, one max-pooling layer
and one flatten layer. A convolutional layer is a feature map
that extracts the features of the input data by using a convolu-
tion operation with filters, which is a set of locally connected
kernels. Two 2D-conv layers apply the same hyperparameters
and the number of filters is equal to Nfilter . The extracted
feature dimensions after convolutional layers are very high,
thereby a max-pooling layer with a size (p×p) is added to
minimize the size of extracted features and further extract the
most important features as well as obtain more useful infor-
mation. In this way, CNN module can capture the features of
the data. Finally, a flatten layer is applied to flatten all features
into a single vector before feeding into the LSTM.

3) LSTM MODULE
LSTM is considered a useful approach to capture long tem-
poral features such as sequences like in natural language
processing. Motivated by this, it is feasible to apply the
LSTM module when coping with time-series sequences of
received signals and channel coefficients. However, LSTM
properly does not capture well other features such as spatial
features [51]. This is the reason for considering the combina-

FIGURE 3. LSTM cell.

tion of the LSTM with the CNN module to capture not only
time dependencies but also spatial features like the number
of UEs and the received signal at each UE, for the proposed
DL-based channel estimation method. To match the output
of CNN as the input layer of LSTM, a RepeatVector layer is
applied to repeat to times tomake sure that the output contains
the expected number of output time steps. The LSTMmodule
consists of one or several LSTM layers and each LSTM layer
is composed of LSTM cells. LSTM cell or LSTM internal
memory cell is a key element of the LSTM module that
establishes the temporal connections of a LSTM layer.

The topology of a LSTM cell is illustrated in Fig. 3 which
consists of two different recurrent features, including hidden
sate h and cell state cs. A LSTM unit uses a previous state,
including previous hidden state and previous cell state (h(t −
1), cs(t − 1)), and a current input x(t) to update the current
time step (h(t), cs(t)) which can be expressed as

(h(t), cs(t)) = L(h(t − 1), cs(t − 1), x(t)), (8)

where L is a function which is capable of mapping input
sequence and output sequence at any length. A basic LSTM
unit contains three gates, including input gate, forget gate, and
output gate to control the cell state. In particular, the input
sequence x(t) is fed into a LSTM cell at each time step t .
In each cell, the input x(t) and the hidden state of the current
time step h(t−1) are fed into the three gates (functions) before
going through a sigmoid activation function σ . The update of
a LSTM cell in terms of (h(t), cs(t)) at time step t is expressed
as follows:

f (t) = σ (x(t)wx,f + h(t − 1)wh,f + bf ),

i(t) = σ (x(t)wx,i + h(t − 1)wh,i + bi),

o(t) = σ (x(t)wx,o + h(t − 1)wh,o + bo), (9)

where wx,f , wx,i, wx,o, wh,f , wh,i, wh,o, wx,c and wx,c are
weight parameters; and bf , bi, bo and bc are bias parameters
in a LSTM cell. Both weights and biases are updated via
the training process. Three gates, including input, forget and
output, are presented by symbols i, f , and o. Forget gate f (t)
decides how much information in the previous state cell state
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FIGURE 4. A LSTM cell at any length.

cs(t − 1) should be retained. Input gate i(t) determines how
much new information is taken into account via cell update
csu(t). The computation for csu(t) is similar to the three gates
above, but uses Tanh activation function with a value range
(−1, 1) as

csu(t) = Tanh(x(t)wx,cs + wh,csh(t − 1) + bc). (10)

Output gate o(t) controls how much content in the cell state
cs(t) should leave the cell to arrive the hidden state h(t). The
cell state at time t is presented as

cs(t) = f (t) ⊙ cs(t − 1) + i(t) ⊙ csu(t). (11)

By using Tanh activation function, the hidden state of the
current step h(t) of a LSTM cell is always in interval (−1, 1)
and is expressed as

h(t) = o(t) ⊙ Tanh(cs(t)). (12)

The cell state in Eq. (11) and the hidden state in Eq. (12) is
determined based on the input gate, output gate, and forget
gate from Eq. (9), along with cell update from Eq. (10).
A LSTM cell is flexible because it can obtain an input
time-series sequence at any length, e.g., x(t− 1) and produce
an output sequence at any length, e.g., x(t + k) as in Fig. 4.

4) OUTPUT LAYER
The output of the last LSTM layer is fed into the input of a
TimeDistributed layer whichwraps the data for each time step
of the sequential data. The number of the output of the CNN-
LSTM isNfo. The output is amplitude of the cascaded channel
of the RIS-NOMA system at time step (ti + to). Based on the
predicted cascaded channel at the output layer and the target
cascaded channel in the RIS-NOMA system, the parameters
of the CNN-LSTMmodel will be updated via an optimization
algorithm. The objective of the optimization problem is to
minimize the mean square error (MSE) loss function which
is defined as

MSE =
1
N

N∑
t=1

[G(ti + to) − Ĝ(ti + to)]
2
, (13)

where N is the total number of samples and G(ti + to)
and Ĝ(ti + to) are the amplitude of target cascade channels
and predicted cascaded channels from BS to two UEs. The
flow of data through each layer of the CNN-LSTM model is
presented in Fig. 2.

B. COMPLEXITY ANALYSIS
Based on the proposed CNN-LSTM in Fig. 2, we determine
the computational complexity by calculating the number of
FLOPs (floating operations). The reason is the proposed
CNN-LSTM using a backpropagation algorithm during the
training stage, which normally works with matrices. To cal-
culate the complexity of CNN-LSTM model at each time
step, we are required to calculate the time complexity of CNN
module and LSTM module separately [52], [53]. In addition,
the computational complexity of each module comes from
those in each layer. The complexity of CNN module mainly
comes from those in convolutional layers. The max-pooling
layer contributes marginally to the total computational com-
plexity of CNN module. Flatten layer does not require
the computational complexity. Therefore, the complexity
of CNN module is calculated as O(

∑d
l=1 nl−1swshnlowoh),

where l is the index of a convolutional layer, d is the num-
ber of convolutional layers, nl is the number of filters or
the width in l th layer, sw and sh are the width and the
height of the filter respectively, and ow and oh are the width
and height of the output feature map correspondingly [54].
Regarding LSTM module, the complexity of LSTM per time
step comes from the computational complexity of input gate,
output gate, forget gate and cell update in Eq.9 and Eq.10
which is calculated as O(4(DiDo + D2

o + Do)) where Di
is the input dimension and Do is the output dimension. The
LSTM updates its complexity according to time step [55].
At last, the computational of the dense layer is determined
by O(Dond ) [56] where nd is the number of neurons in
dense layer. In sum, the computational complexity of the
CNN-LSTM will iterate via S time steps and I iterations is
calculated asO(SI ((

∑d
l=1 nl−1swshnlowoh)+(4(DiDo+D2

o+

Do) + O(Dond ))).

C. PERFORMANCE METRICS
The dataset of the paper is generated by Algorithm 1, and
divided into training and testing dataset. The performance of
the proposed CNN-LSTM model is evaluated using perfor-
mance metrics on test dataset such as normalized root mean
square error (NRMSE), mean absolute scaled error (MASE),
mean absolute percentage error (MAPE), and R-squared
score (R2 score). In this paper, we evaluate the DL model
on different datasets generated from different RIS-NOMA
system parameters, in which each dataset has its scale. Due
to independent scales between different datasets, scale-free
error metrics are applied instead of scale-dependent error
metrics [57]. The MSE and mean absolute error (MAE) is
good to compare the performance of different DL models on
a dataset or same scale datasets. TheMSE is defined as in (13)
and the MAE is defined as follows:

MAE =
1
N

N∑
t=1

∣∣yt − ŷt
∣∣ . (14)

However, two metrics MSE and MAE are no longer feasi-
ble when comparing performance accuracy of a model for
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different datasets [58]. To evaluate the performance of a
DL model against datasets with different scales, sale-free
metrics should be applied. Since the generated datasets in this
paper have different scales by adjusting the parameters of the
RIS-NOMA system, we apply scale-free metrics including
NRMSE and MASE instead of MSE in Eq. (13) and MAE in
Eq. (14). The metric NRMSE is defined as:

NRMSE =
RMSE

ymax − ymin
, (15)

where RMSE =

√
1
N

∑N
t=1

(
yt − ŷt

)2; ŷt and yt are the
predicted channel gain and target channel gain at a given
time t respectively; and ymax and ymin are maximum and
minimum values of the target channel gains, respectively. The
NRMSEmeasures the normalization of the deviation between
the observed value as well as the actual value [59]. The metric
MASE is defined as [57]:

MASE =
N − 1
N

n∑
t=1

∣∣yt − ŷt
∣∣

n∑
t=2

|yt − yt−1|

. (16)

The percentage error MAPE is defined as

MAPE =
100%
N

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣. (17)

Besides the metrics that evaluate the behavior of the differ-
ence between the predicted and the actual data, the decision
coefficient R2 score which is known as a goodness of fit to
evaluate the level of fit of a model [60]. The metric R2 score
is expressed as

R2 = 1 −
SSE
SST

, (18)

where

SSE =
1
N

n∑
t=1

(yt − ŷt )
2
,

SST =
1
N

t∑
t=1

(yt − µy)2,

in which µy is the standard deviation of y.
This study applies NRMSE and R2 score in Eq. (15)

and Eq. (18) to evaluate the cascaded channels prediction
accuracy and the goodness of fit of the proposed CNN-
LSTM respectively. This is because the root mean square
error (RMSE) is a standard error which is extremely sensitive
to extraordinarily large or small errors in the dataset [59]. Two
metrics MASE and MAPE in Eq. (16) and Eq. (17) are added
to evaluate the prediction performance of the proposed DL
model in several scenarios of the RIS-NOMA system.

V. SIMULATION SETUP AND RESULTS
This section provides simulation results to verify the effi-
ciency of the proposed CNN-LSTM model for different
RIS-NOMA systems.

TABLE 1. Parameters setup

A. SIMULATION SETUP
The definition of 6G is evolving, there is no standard for
system-level parameters in a specific setting or use-case in 6G
so far [61]. Therefore, in this paper, we introduce a possible
parameter setting for the potential RIS-NOMA systemmodel
in 6G. In this simulation, we model the RIS-NOMA system
for M = 2 UE, and each user is equipped with a single
antenna. We set the distance from BS → RIS, RIS → UE1,
and RIS → UE2 are 150m, 30m, and 40m, respectively.
The reference distance is d0 = 20m. Both UE move at
v = 0.1 meter per time step t to ensure the signal strength
of two UE are not too low after K time steps moving further
from BS the received signal at each user. It is assumed that
the distribution of x(t) follows CN ∼ (1, 0.1) and that of
BS → RIS channel follows CN ∼ (1, 0.1). The distribution
of links from RIS → UEj are CN ∼ (4, 1) and CN ∼ (3, 1),
correspondingly. In line with significant research progress on
the development of loss-less meta-surfaces [62], [63], this
paper uses an ideal phase shift model in which the reflecting
magnitude is considered as 1 without energy loss. We set
up value of αm = 1 in (3) and αsr = αri = 2.2 in
(4). This is a time-series problem, so it is very sensitive to
the change of the dataset, therefore, in this paper, we fix
phase shift by generating fixed phase shifts in [0.01π, 0.02π ].
We will observe the RIS-NOMA system versus the variation
of system parameters including transmit SNR, the power
allocation factor and the number of RIS elements. The details
are illustrated in Table 1. Figure 5 shows the normalized (with
respect to user 1) received signal power for both users over
time in the case γ = 20, L = 20, and c = 0.3.

The Sample data points of the input-output time-series
sequence will be divided into 0.3 : 0.7 for training data
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FIGURE 5. Magnitude of normalized received signals at two
users.

and testing data respectively. The input applies max-min
normalization and the target is scaled in the range of [0, 1]
before feeding into the DL model.

At the encoder side, we use the kernel size of convolution
2D (Conv2D) layer with (3, 1) and apply a same padding for
each Conv2D layer. A max-pooling layer with p = 2 and
the size is 2×2 is applied. The CNN-LSTM model is tuned
with Nfilter ∈ {4, 8, 16, 64}. At the decoder side, each LSTM
layer consists of Ncell = 16 unit and at least one of two
LSTM layers apply Tanh activation function. The output is
finally fed into TimeDistributed Dense layer with the number
of features at output layer Nfo = 2, which is for two cas-
caded channel gains of two users, before reaching the output
layer. Adam optimizer is used to optimize the loss function
in (13).

B. LOSS CURVE ON TRAINING DATA
The MSE loss function in (13) is used to train the proposed
CNN-LSTM model, which has been effective in calculating
the back-propagation of loss values. The advantage of MSE
is that it ensures the model has a few outliers prediction with
large errors. The MSE loss over 4000 epochs on the normal-
ized training dataset in case γ ∈ {10, 15, 20}, L = 20 and
c = 0.25 is illustrated in Fig. 6. In three scenarios, the MSE
loss curves perform the same curve behavior. As shown in
Fig. 6, the loss converges very well on the normalized training
data. It can be seen that the loss reduces to approximately
2E−4 for the first 200 epochs and reaches a factor of 1E−5 at
4000 epochs. A large number of training epochs is to ensure
that the proposed DL model provides a good fit to the dataset
which obtains a high R2 score.

C. CONVERGENCE OF CNN-LSTM
Fig. 7 depicts the NRMSE on at each UE and the aver-
age NRMSE against the number of training epochs on test
dataset in original scale in case γ = 20 dB, c = 0.25 and

FIGURE 6. Loss curve in case of the number of RIS elements
L = 20 and power allocation factor c = 0.25 with different values
of transmit SNR.

FIGURE 7. The NRMSE performance of the cascaded channels
against number of epochs with transmit SNR at 15 dB and
power allocation factor c = 0.15.

L = 20. We can find that NRMSE decrease when the number
of epochs increases. The NRMSE on the test dataset achieve
a steady state at 4000 epochs at observed scenarios, which
shows the robustness of the proposedDLmodel. TheR2 score
at each user and average R2 score gradually increase with
respect to the number of epochs. At epoch 4000, the three
values of R2 score are above 0.9.

D. TRANSMIT SNR
Fig. 9 and Fig. 10 study the average NRMSE performance
and the average R2 score of the cascaded channel against
the transmit SNR. In this simulation, we set the value of
power allocation factor c ∈ {0.1 : 0.05 : 0.4}. Fig. 9 shows
that the NRMSE decrease with the increase in transmit SNR
of the system as a larger SNR contributes to better channel
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FIGURE 8. The R2 score performance of the cascaded channels
against number of epochs with transmit SNR at 15 dB and
power allocation factor c = 0.15.

FIGURE 9. The average NRMSE performance of cascaded
channels according to transmit SNR in cases of the number of
RIS elements L = 20 and different values of power allocation (c).

environments for both UEs. An increase in a transmit SNR
can avoid a very low amplitude of the received signal at each
user, which can degrade the channel estimation performance.
A lower SNR leads to lower signal power or lower amplitude
at each user. A low amplitude signal at each user will become
a very low value after normalization at the input of the CNN-
LSTM model. If the normalized input of the CNN-LSTM
is too low, it can be treated as noise, which will degrade
the prediction performance of the CNN-LSTM. As shown in
Fig. 9 the NRMSE significantly reduces from γ = 10 dB
to γ = 22.5 dB and gradually drops in very high SNR
region from γ = 22.5 dB to γ = 30 dB. Especially, in the
case of very high transmit SNR from 25 dB to 30 dB, the
NRMSE slightly increases when c = 0.35. It could be due to

FIGURE 10. The average R2 score performance of the cascaded
channels of the system with respect to transmit SNR in cases of
the number of RIS elements L = 20 and different values of
power allocation factor (c).

differences in the received signal between two users which is
significant, resulting in a huge difference between the scales
of input features in the CNN-LSTM DL model. This is the
reason for a slight reduction of the performance of the DL
model in case c = 0.35 with a transmit SNR is 25 dB or
30 dB as in Fig. 9.

Fig. 10 plots the average R2 score curves vs. transmit
SNR to evaluate the degree of fit [59] of the DL model.
In the other words, the R2 score curve shows how well the
predicted cascaded channels catch up with the trend of the
target cascaded channels in the RIS-NOMA system. As can
be seen from Fig. 10, the prediction performance in terms
of average R2 score is over 0.9 overall. This means that the
level of a good fit of the proposed CNN-LSTM model is not
sensitive to the transmit SNR parameter of the RIS-NOMA
system.

E. POWER ALLOCATION COEFFICIENT
In Fig. 11, average NRMSE performance is observed accord-
ing to power allocation factors which are in {0.1 : 0.05 : 0.4}.
It can be seen that the NRMSE decreases with an increased
power allocation factor, which are in line with the results in
Fig. 9. In Fig. 12, we can find that the average R2 score perfor-
mance of the cascaded channel is higher than 0.9 overall with
different power allocation factors. The proposed DL model
shows its robustness to the change of the power allocation
factor, the most important parameter that defines NOMA
system. The results in Fig. 12 are in line with those in Fig. 10.
In this paper, the average NRMSE and average R2 score

are selected to evaluate the prediction accuracy and the good
fit of the proposed CNN-LSTM for cascaded channels of
the RIS-NOMA system. We also consider other two met-
rics, including the average MASE and average MAPE in
several cases to evaluate their behavior along with average
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FIGURE 11. The average NRMSE performance of the cascaded
channels of the system with respect to power allocation factor
in cases of the number of RIS elements L = 20 and different
values of transmit SNR.

FIGURE 12. The average R2 performance of cascaded channel
for the system against power allocation factor with the number
of RIS elements L = 20 and different values of transmit SNR (γ ).

TABLE 2. Four performance metrics of CNN-LSTM models

NRMSE and average R2 score. The detail of the average
MASE and average MAPE in several scenarios, in which
c ∈ {0.2, 0.25, 0.3}, transmit SNR γ ∈ {15, 20, 25} dB and
L = 20, are presented in Table 2. As shown in Table 2, the
behavior of average MASE and average MAPE are similar

FIGURE 13. The average NRMSE performance of the cascaded
channel for the system against the number of RIS elements in
cases of transmit SNR at 15 dB and different values of power
allocation factor (c).

to that of average NRMSE in the observed scenarios. This
means that average MASE and average MAPE decreases
when power allocation factor c increases or when transmit
SNR (γ ) increases.

F. NUMBER OF RIS ELEMENTS
Fig. 13 studies the impact of the number of RIS elements on
the average NRMSE performance. As seen in (3), the number
of RIS elements affects the angle of the received signal at
each UE, which in turn has an impact on the input features of
the CNN-LSTM model. Therefore, a change in the number
of RIS elements influences the prediction performance of
the proposed DL for the cascaded channels. Here, we set
c ∈ {0.1, 0.15, 0.2} and γ = 15. In Fig. 13, we can observe
that the prediction accuracy in terms of average NRMSE
improves with an increase in the number of RIS elements.
The higher the number of RIS elements, the stronger reflected
signals fromRIS can reach each user. It becomes evident from
Fig. 13 that the important role of increasing RIS elements in
increasing the prediction accuracy for RIS-NOMA by apply-
ing the proposed CNN-LSTM model. Observe from Fig. 14
that the average R2 scores versus the number of RIS elements
are above 0.92, which indicates that the CNN-LSTM is able
to follow the trend of the cascaded channel of the RIS-NOMA
system. We can see that the results in Fig. 13 and Fig. 14 are
aligned with those in Section V-D and Section V-E.

G. EVALUATION OF CNN-LSTM
Fig. 15 and Fig. 16 show the predicted cascaded channels
and the target (actual) cascaded channels on test dataset for
each UE of the RIS-NOMA by applying the proposed CNN-
LSTM. In this setting, we set γ = 20, L = 20 and c =

0.3. The figures prove that the proposed CNN-LSTM has a
good prediction performance at both UE; which means that
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FIGURE 14. The average R2 score performance of the cascaded
channel for two users against number of RIS elements of the
system in cases of transmit SNR at 15 dB and different values of
power allocation factor (c).

FIGURE 15. Prediction on test dataset at user 1 (near user).

the predicted cascaded channel at each UE catches up very
well with its target cascaded channel. The adopted channel
estimation based CNN-LSTM model in the case of Nfilter =

64 is illustrated in Fig. 17 in case the NOMA-RIS parameters
system includes γ = 10 dB, L = 20, and c = 0.3.

H. COMPARISON OF THE PROPOSED DL MODEL WITH
OTHER DL MODELS
To demonstrate the robustness of CNN-LSTM based channel
estimation for the NOMA-RIS system, they are compared
against previous study benchmarks, which are illustrated in
Table. 3. In Table 3, we describe scenarios, multiple access
techniques and theDL-based channel estimationmethods and
performance metrics. We select the benchmark channel esti-
mationmethod that is based on/modified fromCNNor LSTM
architecture, as it allows for easier comparisons with our

FIGURE 16. Prediction on test dataset at user 2 (far user).

FIGURE 17. The adopted channel estimator based on CNN-LSTM
model in the case of γ = 20, L = 20 and c = 0.3.

proposed CNN-LSTM architecture that we proposed. It can
be seen from Table 3 recent studies generally apply orthog-
onal frequency-division multiple access (OFDMA) method,
which is different from the NOMA approach as presented in
this paper. Essentially, there are many differences between an
OFDMA-based system and a NOMA-based system, such as
variations in system design and parameters. As a result, there
are different approaches to resource allocation among users,
as well as different strategies for utilizing the capabilities of
RIS to improve the signal quality.

Moreover, normalized mean square error (NMSE) is a
commonly used metric in prior studies. However, our paper
employs NRMSE, which is the square root of NMSE, for the
sake of easy visualization and consistency with the dataset’s
scale. Results in [64] and [65] indicate that certain studies on
channel estimation, including those using machine learning,
have employed NRMSE as a metric. Nonetheless, in cases
where the NRMSE values are very similar between two sce-
narios, i.e., two sets of parameters in RIS-NOMA system,
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TABLE 3. Benchmarks to compare with the proposed CNN-LSTM channel estimation methods

additional metrics are necessary to determine which scenario
performs better. Tomake the evaluationmore comprehensive,
our paper incorporates two other metrics, namely MASE and
MAPE. By using NRMSE, MASE, and MAPE, we only
examine the extent of prediction errors in each scenario.
On the other hand, the R2 score is a crucial metric that
evaluates how well the predicted channel aligns with the
pattern of the target channel.

To evaluate the effectiveness of the proposed CNN-LSTM
model, this paper compares the prediction performance of
four DL models with four other DL models including
CNN1D-LSTM, CNN1D-BiLSTM, CNN and LSTM. It is
noted that we use symbol CNN1D- and CNN2D- to dis-
tinguish between models using conv1D and conv2D while
making a comparison. Among them, CNN1D-LSTM uses
conv1D layer while the proposed CNN2D-LSTM applies
conv2D layer at their CNN modules. The difference between
conv1D layer and conv2D layer is the dimension of input
data. The input data of conv1D is two-dimensional data
while of conv2D is three-dimensional data. The conv1D
combines the last two features of the input data of conv2D
as one feature, in which the dimension of input sequence
of conv1D becomes [Sample, ti, 2 ∗M ∗ Nr ∗ Nt ]. For per-
formance comparison, we also use CNN1D-BiLSTM [67],
which combines CNN1D and Bi-LSTM. In [67], CNN1D-
BiLSTM is proposed for CSI estimation in an OFDMA
assisted wireless system without using RIS in a high-speed
mobile scenario. Furthermore, we apply the CNN model
which uses conv2D [33], [66] and LSTM model [68] for the
comparison. We use similar hyperparameters set up for CNN
model and LSTMmodel as those in the CNNmodule and the
LSTMmodule of the proposed CNN2D-LSTM, respectively.
To analyze the prediction performance of the four DLmodels,
we set the parameters of the RIS-NOMA with L = 20,
γ ∈ {10, 15, 20} dB, and c = 0.3.
In order to evaluate the behaviour of different models

on a dataset, we use four scale-dependent metrics which
consist of average RMSE, MAE, MAPE and R2 score as

TABLE 4. Performance metrics of different DL models

in Table 4. Table 4 shows the accuracy superiority in terms
of four metrics of the proposed CNN2D-LSTM model over
four remaining models. In case γ = 10 dB, the prediction
accuracy in terms of RMSE and MAE values are similar
for the CNN2D-LSTM model and CNN model. However,
CNN2D-LSTM model is superior in terms of MAPE and
R2 score compared to CNN model. Table 4 shows that
using the conv2D layer outperforms using the conv1D layer
regardless conv1D is combined with LSTM or Bi-LSTM. For
example, e.g, the RMSE = 0.0142, RMSE = 0.0391, and
RMSE = 0.2504 for CNN2D-LSTM, CNN1D-LSTM, and
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CNN1D-BiLSTM, respectively. CNN model shows a rela-
tively good performance in terms of four performancemetrics
in case of γ = 10 dB and γ = 15 dB. Although in these two
cases, its prediction accuracy is better than that of CNN1D-
LSTM, CNN model fails to follow the trend of the cascaded
channel of the RIS-NOMA system with R2 = −4.2541 in
the case of γ = 20 dB. Clearly, CNN is sensitive to the
change of the transmit SNR. Although CNN has the ability of
feature extraction, its performance for time-series sequences
of the cascaded channel is not robust to the change of the
transmit power parameter in the RIS-NOMA. Different from
the four remainingmodels, LSTMmodels failed to predict the
cascaded channels of the RIS-NOMA system for all observed
scenarios with very high values at average values of rootmean
square error (RMSE), MAE, and MAPE, especially with
minus values of average R2 score. The LSTM model cannot
exploit the feature extraction of CNN module as in CNN2D-
LSTM, therefore it fails to predict the cascaded channel of
the RIS-NOMA system. Through the comparative analysis,
the proposed CNN2D-LSTM proves its feasibility and effec-
tiveness over the four remaining models in the cascaded
channel estimation problem in the RIS-NOMA system. This
is because the proposed model takes advantage of the feature
extraction characteristic of CNN model and the time-series
prediction model LSTM model.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a CNN-LSTM model to predict
the cascaded channel of the RIS-NOMA network in which
both users are slowly moving further from the BS. The CNN-
LSTM shows its robustness to the variation of the RIS-
NOMA system parameters. In other words, the CNN-LSTM
provides a good channel prediction in terms of NRMSE,
R2 score, MASE and MAPE. To evaluate the efficiency of
the CNN-LSTM, we compare its performance accuracy with
that of a CNN-LSTM model using conv1D, CNN model and
LSTM model. The CNN-LSTM provides better prediction
accuracy in terms of RMSE, MAE, MAPE, and R2 score
compared to the other four models. In future work, we can
consider the Doppler shift effect on the RIS-NOMA system.
In order to deal with practical scenarios, a more general
fading channel model, such as Rician fading, can be applied
to all channels in the wireless system in future works. The
RIS-NOMA system could include the direct channels from
BS to each user to consider the effect of the proposed CNN-
LSTM model, however, required further investigation. Plus,
it is worth noting that an ideal phase shift is infeasible for
practical hardware because of unavoidable energy dissipa-
tion [69], our future research will consider a practical phase
shift model for the proposed RIS-NOMA system. In addition,
to reduce the complexity of channel estimation and improve
the performance of a system based on RIS, an optimization
for the channel estimation of training length or symbols
count can be taken into account as well where channel data
can be provided by proposed model [70]. The proposed
channel estimation technique can be further considered and

investigated in a scenario of integrated sensing and commu-
nication as in [33] in which RIS can potentially work for both
sensing and communications signals from UE.
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