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ABSTRACT Random access schemes are widely used in IoT wireless access networks. They enable a
reduced complexity and overcome power consumption constraints. Nevertheless, random access results in
high packet losses which are caused by overlapping transmissions. Signal detection methods for digital
modulation techniques are typically based on the well-established matched filter, which is proven as the
optimal filter under additive white Gaussian noise for minimizing error probability. However, with the
colored interference arising from the overlapping IoT transmissions, deep learning approaches are being
considered a suitable alternative. In this paper, we present a hybrid framework, dubbed as HybNet, that
alternates between deep learning and match filter pathways based on the perceived interference level. This
helps the detector to work in a broader range of conditions, optimally leveraging both the matched filter and
deep learning advantages. We compare the performance of several possible data modalities and detection
architectures concerning the interference-to-noise ratio, demonstrating that leveraging domain knowledge
by pre-processing the input data in conjunction with the proposed HybNet surpasses the complex conjugate
matched filter performance under interference-limited scenarios.

INDEX TERMS Internet of Things, LoRa, deep learning, chirp spread spectrum, convolutional neural
network, matched filter, signal detection, interference.

I. INTRODUCTION

INTERNET-OF-THINGS (IoT) wireless technologies play
a significant role by facilitating the connectivity between

sensor devices and Internet cloud services. According to a
report from Ericsson, over 5 billion cellular IoT connections
are anticipated by 2025 [1]. For wireless IoT devices, this
increase would further congest the scarce radio spectrum and
increase the level of interference. This is already evident
in the license-free industrial, scientific, and medical (ISM)
band [2] since this band is available to the public and does
not require paid licensing.

In centrally-controlled networks, the base station, e.g.,
gNB in 5G, orchestrates the access to the spectral
resources by employing a multiple-access technique such as
time-division multiple access (TDMA), frequency-division
multiple access (FDMA), code-division multiple access
(CDMA), and orthogonal frequency-division multiple access
(OFDMA). These access techniques are required to alleviate

co-channel interference. Nevertheless, such techniques man-
date significant overhead, adding complexity to the proto-
col stack. Thus, typical license-free IoT networks employ
random access techniques to simplify the protocol stack,
thereby lowering energy consumption as well as device
cost. Furthermore, a complex access technique would not
be efficient in the first place given that the interference
is originating from other co-existing systems in the same
band.

Efficient signal detection is crucial for Low power wide
area networks (LPWAN) technologies, which are receiving
increasing attention due to the increasing use of IoT appli-
cations. LPWANs can achieve long-distance communication
while maintaining low-power consumption at the cost of a
reduced bit rate. In a license-free spectrum, LPWAN network
performance is typically an interference-limited system in
urban environments, while it becomes noise-limited in rural
and remote locations. A prominent LPWAN technology is
LoRaWAN, adopted by the LoRa Alliance [3]. LoRaWAN
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typically uses an ALOHA-based protocol, allowing multiple
IoT devices to transmit without coordination or prior signal-
ing. However, the transmitted signals are prone to packet col-
lisions which significantly reduces the throughput and in turn,
the network performance [4], [5], [6], [7], [8]. LoRaWAN
utilizes the LoRa modulation scheme, which is based on
chirp spread spectrum (CSS) modulation spreading the signal
energy over a wider bandwidth to combat narrowband inter-
ference [7]. Furthermore, the time-spreading of the transmis-
sion can be controlled using a parameter called spreading fac-
tor (SF), which increases the energy at the receiver without
the need to transmit at a higher RF power. Aside from poten-
tial narrowband interference, LoRa-to-LoRa-induced inter-
ference significantly degrades the performance, especially
when the interfering LoRa signal uses the same SF.

To achieve signal (frame) detection, receivers typically
employ the matched filter architecture, where the signal is
compared, or matched, to a known template(s). This method
is proven to be optimal under additive white Gaussian noise
(AWGN) conditions [9]. However, the rapid evolution of neu-
ral networks (NN), particularly deep learning (DL) methods,
has shown great potential for signal detection [10], [11], [12],
[13], [14], [15]. The main appeal of DL signal detection is its
strength against non-linearities [16]. Notably, the Convolu-
tional Neural Network (CNN) has been utilized to classify
stochastic signals such as in image classification [17], which
is not practically possible using deterministic methods such
as the matched filter.

There seems to be little previous research work focusing
on mitigating the issue of LoRa modulation with the same
technology interference by utilizingDL-based detection. This
paper presents a new framework, HybNet, that alternates
between a (i) matched filter detector and (ii) a proposed
DL detector, where the switching is automatically decided
based on the interference level. Consequently, Our framework
harnesses the benefits of both (i) the matched filter’s ideal
performance under noise-limited scenarios from one side, and
(ii) the improved performance of the proposed DL detector
in LoRa-to-LoRa interference on the other side. Addition-
ally, we explore three different input data modalities for the
DL-based detection and compare their performance; (i) time-
domain (I/Q samples), (ii) time-frequency domain (spectro-
gram), and (iii) frequency domain (spectrum). Results show
that the proposed DL-detector outperforms traditional nonco-
herent detection in non-Gaussian interference scenarios and
without perfect phase synchronization. Also, the frequency
domain DL detector shows a greater performance with a
lower network complexity compared to the time-domain and
time-frequency domain DL detectors. The lower complexity
is due to the smaller input frame size compared to the I/Q
frame and the 2D spectrogram. To evaluate the proposed
framework at different interference-to-noise levels, we vary
the interference-to-noise ratio (INR) and obtain the corre-
sponding bit-error rate (BER). Accordingly, the overall BER
performance results indicate that the proposed DL-based
detectors can significantly improve LoRa detection perfor-

mance for LoRa symbols under high interference. The con-
tribution of this work is summarized as follows.

• It presents a novel LoRa symbol detector, HybNet,
which combines both matched filter detection and
DL-enabled detection via an automatic switching mech-
anism. Through this combination, HybNet can capi-
talize on matched filter detection capabilities in noisy
mediums while benefiting from DL detection under co-
channel interference.

• It demonstrates the compatibility of the proposed neural
network with conventionally deployed energy detectors
to switch between DL andmatched filter detection based
on the measured interference level. This provides a
trade-off in terms of complexity and detection perfor-
mance.

• It assesses the performance of various data modalities
and their corresponding neural network architectures.
The data modalities assessed are time, frequency, and
time-frequency.

• It proposes an experimental framework for systemati-
cally evaluating symbol detection efficiency using var-
ious input data modalities, AWGN impairments, and
co-channel interference levels.

The rest of this paper is organized as follows. A litera-
ture review is presented in Section II. An overview of the
systems model which utilizes LoRa modulation along with
LoRa emulation and dataset creation is covered in Section III.
Section IV discusses the detection architectures utilized in
this paper. Section V discusses the results obtained from the
experiments. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK
This section summarizes some of the previous research
works. This includes those that addressed various ways to
mitigate colored interference, which occurs due to the over-
lapping of the transmitted signals in time and frequency.
Moreover, it includes works on various machine learning
(ML) and DL techniques that have been applied to wireless
communication for signal detection.

A. INTERFERENCE AND LORA
The next generation of wireless networks is bringing forth
the necessity to support massive connectivity of devices.
One such paradigm that requires massive connectivity is IoT.
Apart from massive connectivity, this new generation of IoT
devices will put a demand on low-power usage and wide cov-
erage. However, massive connectivity promotes co-channel
interference, which is a significant challenge that hinders ade-
quate packet reception, particularly in shared radio frequency
bands. In these bands, different users and systems are allowed
to access the spectrum without prior resource coordination
to simplify their operation, ultimately decreasing Spectral
efficiency. To allow for efficient transmissions a traditional
multiple-access technique could be incorporated. However,
the massive connectivity would cause sizable scheduling
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delays as well as typically short packet lengths to reduce
access latency and receiver complexity, which would make
the conventional access method difficult to implement [18].
Thus, we introduce a receiver that can alleviate the co-channel
interference effect without the need for coordinating multiple
access schemes between different users.

Extensive research work has been conducted on how to
efficiently and dynamically utilize the available spectrum
by relying on techniques such as cognitive radio (CR).
CR relies on being able to sense the spectrum occupancy
and devise a spectrum access plan to mitigate co-channel
interference [19]. However, the efficiency of CR is subject
to accuracy in estimating the occupancy in the spectrum.
As such, random access networks severely reduce such capac-
ity. Also, CR requires additional computational resources
(and hence power) for spectrum sensing and prediction,
which is not ideal for battery-operated devices [20]. Hence,
CR has not been adopted in IoT networks due to these
limitations.

Another technique to increase the capacity of a systemwith
interference from another signal is to utilize successive inter-
ference cancellation (SIC) [21]. In SIC, signals coming from
different users are successively decoded, with each decoded
signal being subtracted from the total received signal. SIC is
also utilized in NOMA methods for next-generation wireless
communications. However, the channel gain and time syn-
chronization information of all users should be known by
the base station (BS) to achieve an accurate decomposition
of the superimposed signals, which entails additional over-
head and is often impossible to achieve in shared frequency
bands [22].

As one of the widely adopted technologies, LoRa modu-
lation is claimed to be robust to interference, whereby LoRa
modulation provides a certain level of orthogonality in dif-
ferent SF transmissions, owing to the reduced cross-energy
among the mismatched LoRa transmissions with different
SFs [23]. However, collisions of inter-SF signals would in
practice still cause packet losses, shown in [7], [23], [24],
[25]. This is further aggravated in cases where the colliding
signals have identical SFs, thus requiring a higher signal-
to-interference plus noise ratio (SINR) to be successfully
detected by the receiver [7]. The work in [26] proposes a
methodology to allocate different SFs to users to mitigate
this effect. However, while the proposedmethod improves the
throughput, interference still increases the error probability
due to the non-perfect orthogonality. Recent research has
also shown how coherent detection methods enhance the per-
formance in same-SF interference scenarios, demonstrated
by theoretical approximations and Monte Carlo simulations
as shown in [25]. However, the work focuses on same-SF
interference and does not explore inter-SF scenarios. Addi-
tional work on investigating the theoretical BER performance
of traditional LoRa receivers under same-SF interference is
explored in [8], whereas [27] extends the work on same-SF
interference to include chirp misalignment.

B. MACHINE AND DEEP LEARNING IN
TELECOMMUNICATION
ML methods, with a focus on DL, have been recently inves-
tigated in the field of wireless communications, including
works on automatic modulation recognition (AMR) [19],
[28], occupancy detection in the license-free band [29],
[30], and optimization of interference management algo-
rithms [31]. Many more applications of ML in commu-
nications exist, which are reviewed in [16] for the physi-
cal layer of communications, and in [32] for higher layers.
ML has also proven to be beneficial in the IoT application
layer, enabling dynamic adaption to a change in user traf-
fic conditions and providing advantages in terms of energy
efficiency and resource control, as outlined in a survey of
recent advances in IoT application layer protocols and ML
research directions [33]. Our previous work in [10] explored
the use of DL-based signal detection techniques with CNN
models for the LoRa modulation scheme under AWGN,
synchronization time offset, and carrier frequency offset
impairments. The proposed neural network outperformed the
conventionally used noncoherent detector. Another research
work that utilizes DL sequence detector networks can be
found in [12], constructing a sliding bidirectional recurrent
neural network (SBRNN). The SBRNN can take in infor-
mation from previous symbols, unlike symbol-by-symbol
detectors, to combat inter-symbol interference (ISI) for non-
LoRa signals. Another advantage of some DL-based detec-
tors is that they do not need channel state information
(CSI) which is further demonstrated in [13], which pro-
poses a detection method based on the generative adversarial
network (GAN).

Conventional DL-based detectors in past research litera-
ture rely on a data-driven approach, where the DL network
learns from a large labeled dataset and mathematical mod-
els are not necessarily utilized to aid in training. However,
DL-based detectors can be further optimized by leveraging
domain knowledge for a model-based approach to signifi-
cantly reduce the network complexity as well as the dataset
size required for training [34]. An example of a model-based
approach for signal detection in OFDM systems is pre-
sented in [35], where the research work achieves high perfor-
mance relative to traditional methods and the model-driven
DL approach converges quicker requiring fewer parameters
compared to the data-driven DL signal detection receiver
shown in [36]. Another work presenting model-based DL
signal detection is shown in [14], which uses DL to learn
the log-likelihoods and performs Viterbi signal detection.
In addition to solid detection performance, the research work
also proposes a method to train in real-time and adapt to
time-varying channels. Essentially, leveraging some form of
domain knowledge in the selection of the architecture by uti-
lizing statistical models, preparing the input data, employing
known mathematical processes, or in the selection of the DL
architecture can increase the overall performance, reduce the
computational complexity, lessen the dependency of a large
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dataset, and speed up convergence in the training of a DL
detector [37].

To combat non-Gaussian interference, ML can be used
to realize efficient frequency band selection techniques for
IoT devices [38]. ML for signal detection is also shown
to effectively deal with non-Gaussian interference, such as
in [36] for the OFDM scheme, demonstrating robustness
to non-linear channel impairments, interference, and com-
parable BER performance to traditional detection methods.
However, conventional detection methods outperform the DL
methods in noise-limited scenarios. The HybNet architecture,
on the other hand, leverages optimal detection in AWGN con-
ditions with conventional detection, while also performing
well in interference-limited conditions by using DL detec-
tion techniques. For detecting multiple-input and multiple-
output (MIMO) signals with correlated interference, authors
in [39] show a DL-based approach that uses a maximum
likelihood detector first to detect the signal and then a DL
network to predict and remove local correlation among the
noise in different symbols. Extending the HybNet framework
to MIMO signals would require a different architecture to
accommodate a MIMO system. Though, DL is a promising
tool for the suppression of correlated interference. Nonethe-
less, achieving efficient detection performance on signals
impaired with co-channel interference with DL-detection is
an open research question.

III. IOT SIGNAL MODEL
This section explains the general structure of LoRa modu-
lation utilized to generate the synthetic data for training the
DL neural network. It also details traditional LoRa detection
methods utilized as a comparison benchmark with the pro-
posed DL method.

A. LORA MODULATION
LoRa CSS modulation is based on linear cyclic chirping
within a given bandwidth, denoted as B. Each chirp encodes
a single symbol with a given duration, denoted as Ts. The
bandwidth according to the LoRaWAN protocol can take
one of the following values as B ∈ {125, 250, 500} kHz,
whereas the chirp rate of the symbols is controlled by the
corresponding SF, where the SF ∈ {7, 8, 9, 10, 11, 12} per the
LoRaWAN protocol. Based on the SF the number of available
symbols is given by M = 2SF. We follow the same notations
as in [6] and [10] to describe LoRa signal modulation where
a single symbol (chirp) is represented as follows,

sk (t) = exp
(
j2π

∫ t

0

[
(βx + ζk )modB −

B
2

]
dx

)
, (1)

where ζk is the shift frequency representing the symbol value
as follows,

ζk = mkδf, (2)

where mk is the data symbol value mk ∈ {0,1,. . . ,M − 1}, k
is the symbol’s index, and δf represents the frequency step
between the shifts. The frequency step in LoRa is designed

to be equal to the symbol rate itself, i.e.,δf = B/M . On the
other hand, β represents the chirp rate given by,

β =
fhigh − flow

Ts
=

B
Ts

, (3)

where flow = fc −
B
2 and fhigh = fc +

B
2 are respectively the

lower and upper-frequency bounds of the chirp around the
carrier fc. Accordingly, the sequence of symbols (message)
can be expressed as follows,

x(t) =

K∑
k=1

sk (t − kTs), (4)

where K is the total number of symbols contained within a
message.

B. CONVENTIONAL LORA DETECTION
The detection of LoRa symbols is typically performed in two
steps; (i) the symbol is dechirped with the same chirping rate
to convert the received symbol into a single tone, accord-
ingly, the sequence of symbols will manifest as a multiple
frequency shift keying (MFSK)modulation signal, (ii) then in
the second step the symbols are detected using a conventional
frequency detector (matched filtering can be used find the
peak given by the frequency tone).

To dechirp the signal, each symbol in the received LoRa
waveform is multiplied by a synchronized and inverted chirp
with zero frequency shift. The dechirping pulse train is rep-
resented as follows,

s⋆(t) =

K∑
k=1

exp
(
jπB(t−kTs) − j2πβ(t−kTs)2

)
. (5)

In an ideal channel, each dechirped LoRa symbol can then be
expressed as follows,

y(t) =

K∑
k=1

exp (j2πζk (t − kTs)) , (6)

which is a sequence of single tones, each tone with a fre-
quency offset ζk corresponding to the value of the symbol.
Note that this is now a typical MFSK signal. Accordingly,
we can use conventional MFSK matched filtering detection
methods to detect the symbols. Two main approaches are
typically utilized; (i) noncoherent detectionwhen phase infor-
mation is not available, and (ii) coherent detection when
perfect phase information is known.

1) COHERENT DETECTION
Optimal detection of a LoRa symbol in AWGN environments
can be achieved using coherent detection. Coherent detection
is executed by correlating the dechirped signal with all per-
missible frequency shifts, then the estimated symbol value is
based on the frequency shift that produces the largest real-
valued output. Matched filtering of an MFSK LoRa symbol
is shown as follows [9],

m̂coh = argmax
k

Re

[∫
∞

0
y(t)wk(t − τ )dτ

]
, (7)
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where wk(t) = exp (j2πkδft) represents a set of harmonics
and k is an integer representing the number of discrete fre-
quency steps k = {0, 1, . . . ,M − 1}.. Coherent detection can
be efficiently implemented with the FFT [40], as follows,

m̂coh =

⌊
1
δf

argmax
f

Re [Y (f )]

⌉
, (8)

where [9] provides an analytical expression for BER assum-
ing a coherent detection and proves its optimality in an
AWGN channel. However, this requires, the receiver to be
phase-locked to the transmitter, by using a phase-locked loop
(PLL) [40]. An alternative method is to use noncoherent
detection to perform signal detection without phase synchro-
nization.

2) NONCOHERENT DETECTION
Noncoherent detection follows the methodology of coherent
detection. Whereby each LoRa symbol is dechirped and then
correlated with permissible frequency shifts. However, the
magnitude of the output is taken, which is shown as fol-
lows [9],

m̂ncoh = argmax
k

∣∣∣∣∫ ∞

0
y(t)wk(t − τ )dτ

∣∣∣∣ . (9)

Equivalently, the FFT can be applied as follows [40],

m̂ncoh =

⌊
1
δf

argmax
f

|Y (f )|

⌉
, (10)

where Y (f ) = FFT{y(t)} denotes the FFT of the received
FSK signal and ⌊.⌉ represents the rounding function. This
method achieves the same performance as in 9, but at less
processing complexity. However, when compared to coherent
detection, noncoherent methods come at the cost of higher
BER in AWGN environments.

C. DATASET CREATION
To create a synthetic dataset of LoRa symbols, we use the
open-source MATLAB emulator [6], [41] which was previ-
ously developed by our team. The target and interferer LoRa
signals are generated as I/Q waveforms, with a fs = 1 MHz,
a SF = 7, and a B = 125 kHz. A randomly generated
LoRa message consisting of the symbol sequence vector
M = {m1,m2, . . . ,mn} is utilized to create each waveform.
For injecting interference to the original LoRa signal with
a random phase shift, another LoRa signal, representing the
interference, is added to the original signal which also has
a random phase shift and delay. Finally, the resultant signal
is resampled to Nyquist rate of fs = 125 kHz. Superimpos-
ing the target signal with interference while the two signals
are sampled at a higher sampling rate allows for a more
realistic signal due to the higher resolution. For the training
and detection process, a sequence is picked up arbitrarily to
represent the target signal and is assigned a controlled power
of ps. In addition to the interference, the received target signal
is further impaired with a Gaussian noise process having

a controlled power. We denote the controlled interference
power as pI and the noise power as σ 2. The INR is denoted
as α, and the SINR is denoted as γ ,

α =
pI
σ 2 , γ =

ps
pI + σ 2 . (11)

Since the performance is only related to the INR and SINR,
the dataset consists of signals with a uniformly distributed
SINR between {−15, 15} dB and a uniformly distributed INR
between {−30, 30} dB. Additionally, we normalize the inter-
ference and noise power concerning the target LoRa signal
power, i.e., ps = 1. Accordingly, the stored emulated received
waveform is comprised of three parts; (i) the target LoRa
signal, (ii) the interference, (iii) the AWGN noise, as follows,

r(t) = x(t) exp (jφs))︸ ︷︷ ︸
Signal

+

√
α

γ + αγ
xI(t − τ ) exp (jφI)︸ ︷︷ ︸
Interference

+

√
1

γ + αγ
n(t)︸ ︷︷ ︸

AWGN

, (12)

where x(t) is the target LoRa baseband signal, xI(t) is the
interfering baseband LoRa signal with a random time shift of
τ , and n(t) ∼ CN

(
0, σ 2

)
is the complex zero-mean AWGN.

Both the target signal and the interfering signal have a uni-
formly distributed random phase shift between 0◦ and 360◦

denoted by φs and φI respectively. Then, to normalize the
signal, the overall signal is divided by the target signal power
as follows,

rnorm(t) =
r(t)
√
ps

. (13)

Note that the reasoning behind normalizing the signal power
to ps = 1 is to keep the magnitude of the target signal power
consistent while training the DL receiver. This is because
normalization can give a clue to the DL receiver as to which
signal is the interfering signal and which is the target signal.
We assume every signal has an uncorrupted preamble which
can be used to estimate the signal power.

The complex baseband signal is cropped into LoRa sym-
bols, where each target symbol is synchronized in time,
as such this implicitly assumes that a receiver is capable of
performing preamble detection and synchronization with the
target signal. Each symbol in the dataset is labeled according
to the transmitted symbols. Since increasing the SF leads
to more permissible values in a symbol (e.g. SF 7 means
128 different variations could be represented in a symbol, and
SF 8 means 256, etc..), the training dataset size will increase
due to the number of classes increasing according to the
number of possible symbol values that a symbol can encode,
which is equal to 2SF. Consequently, the training time would
be much longer, and the network complexity would also need
to be increased. An illustration of the creation process of the
dataset is depicted in Fig 1.
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FIGURE 1. Dataset generation process for training each CNN.

TABLE 1. Notations and symbols

IV. DEEP LEARNING DETECTION
Following typical CNN architectures, the main elements that
commonly makeup CNNs are as follows: (i) convolutional
layers interlaced with (ii) max-pooling layers and (iii) batch

normalization layers. The convolutional layer performs the
convolution operation on the input with a kernel (filter) with a
certain dimension. The window of the kernel slides across the
input data with the unity stride. The output is then multiplied
by an activation function, where the Rectified Linear Unit
(ReLU) is utilized. Note that the ReLU function is linear for
positive inputs and gives zero for negative inputs. Typically,
each convolutional layer is followed by a batch normaliza-
tion layer, which normalizes the mean and variances of the
convolutional layer output, which speeds up training. A max-
pooling layer then follows, which down-samples the data by
taking the maximum value in each max-pooling filter. The
output is then passed into a fully connected layer that uses
a Softmax activation function that outputs an l-length vector
of scores summing to 1, where l is the number of classes.
Finally, a classification layer assigns the classes according to
the probabilities.

A. DATA MODALITIES
In this section, we explain the three different data modalities
that could be used for detecting LoRa signals:

1) I/Q MODALITY
The first model is constructed with time-domain I/Q samples.
The model takes in the complex input signal represented as
the real part,

RI = Re[r(1), r(2), . . . , r(N )], (14)

and the imaginary part,

RQ = Im[r(1), r(2), . . . , r(N )], (15)

where for each time-domain symbol r(.) there areN temporal
samples. The samples are then arranged into two 1D vectors
to be used in the DL network as follows,

R =

[
RI
RQ

]
, (16)

where R ∈ R2×N .

2) TIME-FREQUENCY DOMAIN MODALITY
In the second modality, we convert the time domain sam-
ples into a spectrogram using the squared magnitude of the
short-time Fourier transform (STFT). STFT works by taking
segments of the time domain signal and converting each one
using the FFT. After that, the FFT vectors are combined in
a 2D matrix representing the spectral change across time.
In such representation, a linear chirp, for example, will appear
as a straight line. The calculation of a spectrogram matrix is
achieved by performing the STFT and then taking the squared
magnitude as follows,

X (ω, p) =

∣∣∣∣∣∣
NDFT−1∑
n=0

r(n)g(n− pO)e−jωn

∣∣∣∣∣∣
2

, (17)

where X (ω, p) ∈ RNDFT×
N−L
W−L . r(.) denotes the captured

sample of a cropped discrete-time LoRa baseband symbol.
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FIGURE 2. Illustration of the proposed HybNet architecture
switching between a deep-learning branch and a matched
filter-branch based on the interference-to-noise ratio.

FIGURE 3. Plot of an absolute valued dechirped LoRa symbol
with added interference from another LoRa signal with the
same SF. The annotations show how the energy detector
switching works.

Every pth column of the spectrogrammatrix has N−L
W−L values.

A Hamming windowing function is denoted by g(.) with
an overlap length between each Discrete Fourier Transform
(DFT) of O = W − L. The parameters chosen for the STFT
are outlined in Table 1.

3) FREQUENCY DOMAIN MODALITY
The third DL approach uses the frequency domain, where
only the absolute of the FFT of a dechirped LoRa symbol is
used. The input signal can be represented as follows,

F(ω) =

∣∣∣∣∣
N−1∑
n=0

r(n)e−jωn/N
∣∣∣∣∣ , (18)

where r(.) is the dechirped LoRa symbol and N is the
number of temporal samples. This modality exploits domain
knowledge by pre-processing the input data to simplify the
detection process.

B. HYBRID ARCHITECTURE: HybNet
The proposed HybNet architecture is the core contribution
of this paper, which in essence is a classifier that switches
between two different detection branches; (i) a DL network
(in our case we select the FFT-CNN as referred to in Fig. 6),

due to the performance characteristics which are shown in
Section V, and (ii) a traditional matched detector (in our case
we utilize noncoherent detection which is a type of matched
filter detection). This architecture is developed to marry the
advantages of both detectors, i.e. the optimal performance of
matched filters in AWGN and the improved performance of
CNN in co-channel interference conditions. In order to decide
which detector branch to choose, a supervisory selector sys-
tem is utilized to decide whether to pass the signal to the first
branch or the second.

Note that this selector is trained with another CNN net-
work, which we dub as the Selector CNN which utilizes the
absolute valued dechirped FFT of a LoRa symbol as the input.
A dataset consisting of 200,000 symbols with a uniformly dis-
tributed SINR ranging between {−15, 15} dB and a uniformly
distributed INR between {−30, 30} dB is created to be trained
on. Each LoRa symbol is labeled with either one of two
possible classes; (i) Traditional or (ii) Deep learning. If the
received symbol is identified to lack LoRa interference or the
gain of the interfering LoRa signal is less than that of the
target, the symbol is labeled as ‘‘Traditional’’. Consequently,
the received symbol is passed to be purely detected by the
noncoherent detector (outlined in subsection IV-B.) On the
other hand, if the gain of the interfering transmissions is larger
than the gain of the target, the symbol is labeled as ‘‘Deep
learning’’. In that case, the received symbol is passed onto the
DL detection branch. An illustration of the utilized switching
architecture is shown in Fig. 2.
Instead of the Selector CNN, simple threshold switching

can be used, whereby the simple switching method based on
the energy level is shown in Fig. 3. If the peak magnitude of
the FFT exceeds the threshold, then the signal is passed to
be detected by the DL detection branch. On the other hand,
if the peak magnitude of the FFT falls below the threshold,
noncoherent detection is used.

To evaluate the efficacy of a simple threshold energy detec-
tor instead of a DL network for the switching logic, different
threshold values are accessed and plotted against the switch-
ing accuracy, which is shown in Fig. 4. The figure shows
that the optimum accuracy of the energy detector occurs at
a threshold of magnitude 1.089. Note that the resulting FFT
is normalized by Y = FFT(y)/length(y). The performance
of the energy detector is also compared to the Selector CNN
switching network at varying INR levels in Fig. 5. For this
test, a dataset consisting of 20,000 symbols with a uniformly
distributed SINR between {−15, 15} dB per INR point is
used. From the figure, the Selector CNN consistently clas-
sifies whether noncoherent or DL detection should be used to
reduce the error rate from the detection process. Also from the
figure, the accuracy of the Selector CNN slightly dips at an
INR between −15 dB and −5 dB since the magnitude of the
interfering and target LoRa symbol in the dechirped FFT are
similar, thus it becomes more difficult for the Selector CNN
to correctly discern which is the interfering signal and which
is the target. Finally, threshold switching performs worse than
the Selector CNN at all INR values.
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FIGURE 4. The plot of the overall accuracy for the energy
detector against a varying threshold value.

FIGURE 5. The plot of the overall accuracy against a varying INR
value to compare the performance of a threshold energy
detector and the Selector CNN.

C. CNN SETUP DESCRIPTION
Three different CNN networks were designed to cater to the
three data modalities explained in Section IV-A, and this is
because both input dimensions and contents are different. For
each of the three networks, we utilize a Bayesian optimizer to
tune the network’s hyperparameters. Bayesian optimization is
a more efficient method for selecting hyperparameters com-
pared to search methods such as brute-force, grid search, and
random search [42]. The hyperparameters that were chosen
for optimization are; (i) the number of convolutional layers,
(ii) the convolutional filter size, (iii) the initial learning rate,
and (iv) the dropout rate. The resulting network architectures
are summarized in Table 2. The summary of the CNN archi-
tectures is also illustrated in Fig 6, showing the input format
to each network.

Considering the simple classification task, the network
architectures are shallow. The Selector network, on the other
hand, is manually optimized for the hard switching architec-
ture since high accuracy is achieved with a straightforward
network. A simple two-layer CNN is used with a convo-
lutional layer width of 16 using the ReLU activation func-
tion. All the networks were trained with stochastic gradient
descent with momentum (SGDM) over 60 epochs. The train-
ing parameters for all the networks discussed in this paper are

FIGURE 6. Illustration of all three DL-based detector models
used in this paper.

outlined in Table 3. Also note that the re-training frequency
of a DL network depends on the environment in which the DL
receiver is deployed. If the behavior of the wireless channel
is not represented in the training dataset, then the DL receiver
requires transfer learning (incremental training). Incremental
learning further trains the existing network with new data and
updates the weights. Incremental learning does not need to
train a network from the beginning.

V. SIMULATION RESULTS AND DISCUSSION
This section presents the performance benchmark of the
different architectures based on the BER indicator. A Monte-
Carlo simulation of both same-SF interference (SF7 on SF7)
and inter-SF interference (SF8 on SF7) is performed. The
performance is investigated for a variable level of INR and
we also investigate a static INR with varying levels of SINR.
A lower INR value indicates a noise-dominant scenario
(noise-limited performance), while a higher value indicates
an interference-dominant scenario (interference-limited per-
formance). Note that this work investigates the detection
performance for signals with a normalized signal power ps =

1 unit power. We assume that the receiver is able to estimate
the received power of the target signal based on an uncor-
rupted preamble. This is because the focus of this work is on
the retrieval of the corrupted payload which has an order of
magnitude longer duration than the preamble.

A. DETECTION PERFORMANCE
The BER performance for a same-SF LoRa interferer, with an
SF7 in Fig. 7. Furthermore, the performance of the DL-based
techniques is depicted in Fig. 8 showing the performance
in an inter-SF interference scenario. The figures both show
the BER of the noncoherent detector increases as the INR
increases because the interfering signal masks the target sig-
nal, thus noncoherent detection is unable to correctly detect
the symbol. Additionally, the FFT-CNN has the best per-
formance under noise-limited scenarios. However, at high
INR values in an inter-SF scenario, both the IQ-CNN and
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TABLE 2. CNN network summary

TABLE 3. Training options

STFT-CNN slightly outperform the FFT-CNN. This is due
to the FFT-CNN having no time information, unlike the
IQ-CNN and STFT-CNN.

To present the performance improvement of the HybNet
framework compared to the DL-based detectors, fixed INR
plots with varying SINR are used. Traditional noncoherent
methods (upper-bound) are plotted alongside the HybNet
framework and FFT-CNN performance. The performance of
HybNet is depicted in Fig. 9 and in Fig. 10 for SF7 and
SF8 interference respectively, at an SINR at the value of
γ = −15 dB. It can be clearly seen how the proposed HybNet
architecture can effectively switch between the noncoherent
detector and the FFT-CNN branches and thus follows the
optimal performance in both noise-limited and interference-
limited scenarios. The efficient switching indicates that the
interference detector network can accurately select a detector
depending on the interference level. Furthermore, the switch-
ing performance of the CNN compared to the energy detector

FIGURE 7. Detection performance for a target LoRa symbol with
SF7, an interference LoRa signal with SF7, and a fixed
SINR = −15 dB.

can be observed in Fig. 11. From the plot, it can be seen that
the energy detector switches between the noncoherent andDL
pathways at a lower efficacy compared to the CNN. Also to
note, the efficacy of the energy threshold switching network
further degrades when the fixed SINR is decreased while
the CNN switching network continues to be efficient. The
performance of the HybNets at a fixed SINR of γ = −20 dB
can be observed in Fig. 12.
We further analyze the overall dataset accuracy, training

time, and detection time of the three main architectures dis-
cussed in this paper, the IQ-CNN, STFT-CNN, and the FFT-
CNN, in addition to the performance of HybNet and the
HybNet architecture when the threshold switching is used
(discussed in subsection IV-B).We utilizeMATLAB to create
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FIGURE 8. Detection performance for a target LoRa symbol with
SF7, and an interference LoRa signal with SF8, and a fixed
SINR = −15 dB.

FIGURE 9. Detection performance of the switching architecture
for a target LoRa symbol with SF = 7, an interference LoRa
signal with SF = 7, and a fixed SINR = −15dB.

FIGURE 10. Detection performance of the switching architecture
for a target LoRa symbol with SF = 7, an interference LoRa
signal with SF = 8, and a fixed SINR = −15 dB.

the testing dataset which consists of 200,000 symbols with
a uniformly distributed SINR between {−15, 15} dB and a
uniformly distributed INR between {−30, 30} dB. MATLAB
is also used for preprocessing and for DL. The system used for
the experimentation has a 16-logical core Intel Xeon CPU at
3.2 GHz and an Nvidia Quadro 4000 GPU. Table 4 shows the
additional performancemetrics of the networks, including the

FIGURE 11. Detection performance of both the CNN switching
architecture and the energy detection switching architecture for
a target LoRa symbol with SF = 7, an interference LoRa signal
with SF = 7, and a fixed SINR = −10 dB.

FIGURE 12. Detection performance of both the CNN switching
architecture and the energy detection switching architecture for
a target LoRa symbol with SF = 7, an interference LoRa signal
with SF = 7, and a fixed SINR = −20 dB.

overall dataset accuracy, training time for each architecture,
and detection time per symbol.

For the DL detectors, the IQ-CNN requires the least
amount of pre-processing compared to the other networks and
has a low training time, however, it has the lowest accuracy.
On the other hand, the STFT-CNNhas higher accuracy, never-
theless, it also exhibits the longest training time and time per
symbol. Notwithstanding, the FFT-CNN exhibits the lowest
complexity, the highest accuracy, and trains the fastest. The
HybNet increases the dataset accuracy, however, the training
time is slightly higher as it is the sum of FFT-CNN and the
Selector CNN training times. To compromise between high
performance and high complexity, the HybNet network can
be used with the energy detector as the switching network
instead of the Selector CNN. Using the energy detector for
the switchingmechanism exhibits an accuracy higher than the
noncoherent detector and the time per symbol is significantly
lower compared to the pure DL detectors. One shortcom-
ing of the HybNet architecture is the Selector CNN does
not perfectly switch between noncoherent detection and DL
detection which is shown in the transition where the channel
switches between noise dominant and interference dominant.
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TABLE 4. Performance analysis

FIGURE 13. Detection performance of the proposed architectures
compared with the noncoherent detector. The target LoRa
symbol with SF = 7, an interference LoRa signal with a mixture
of SF = 7&8, a fixed INR = 10 dB.

To make sure the Hybnet architecture as well as the DL
detectors still have desirable BER performance in varying
SINR regimes, we plot the BER with a constant INR value
and sweep the SINR. The performance with a fixed INR of
10 dB is shown in Fig.13, which shows that the FFT-CNN
outperforms the baseline noncoherent detector as the SINR
is swept from −30 dB up until the BER reaches 0 at around
3 dB. In addition, the HybNet with Selector CNN switch-
ing consistently maintains the optimum detector selection.
However, the STFT-CNN outperforms the FFT-CNN at a
certain region which could be addressed by adapting the
HybNet architecture to have three detection paths to switch
between noncoherent, the FFT-CNN, and the STFT-CNN.
Nonetheless, this significantly complicates the detector and
could be addressed in future research.

We also investigate a noise-limited scenario in Fig.14. This
plot further confirms that the HybNet with CNN switching
outperforms the HybNet with threshold switching. Addition-
ally, the HybNet with CNN maintains near-optimal perfor-
mance.

Moreover, the error rate of the Hybnet architecture
is shown to outperform the methods developed in the
CNN-based detection architecture in [10] and the convo-
lutional denoising autoencoder (AE) with a CNN detector
in [11].

B. COMPLEXITY ANALYSIS
Firstly, the proposed deep learning method is supposed to
run on the receiver side, which, in the massive IoT case,
is mainly on the access point side (i.e. the majority of the

FIGURE 14. Detection performance of the proposed architectures
compared to noncoherent detection. The target LoRa symbol
has SF = 7, and the interference LoRa signal is a mixture of
SF = 7&8. The interference-to-noise ratio is fixed at
INR = −20 dB.

FIGURE 15. Complexity and detection accuracy characteristics
as the number of layers increases.

traffic is in the uplink direction). IoT access points are typ-
ically well-resourced in terms of computational power and
energy budget to uplink IoT end devices. The theoretical
time complexity for all the networks can be expressed as
O

(
L

∑M
l=1 Kl−1FlWlKl

)
[43], where l is the index of con-

volutional layers and M is the number of layers. L is the
number of input symbols, and Kl−1 denotes the number of
input channels. Fl is the dimensions of the convolutional
filter multiplied together. Wl is the number of filters per
convolutional layer. Finally,Kl is the dimensions of the output
multiplied together. Themax-pooling, dropout, and fully con-
nected layers have insignificant time complexity compared to
the convolutional layers, so their complexity is not included
in the calculation. From the theoretical expression, the time
complexity linearly increases with several input symbols for
all three networks. The theoretical expression confirms that
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the time complexity is much higher for the STFT-CNN since
the convolutional filters Fl as well as the output dimensions
Kl are 2-dimensional.

We further investigate the performance of the proposed
architecture as the number of convolutional layers in the
CNNs is changed, the results are shown in Fig.15. The
plot confirms the complexity in terms of training time and
detection time per symbol is much higher in the case of
the STFT-CNN compared to the IQ-CNN and FFT-CNN.
In terms of accuracy, as the number of layer increase, so does
the accuracy up until the optimized number of layers is
reached, which in our case is five. The optimized performance
characteristics are shown in Table 4.

VI. CONCLUSION
This paper investigated deep learning approaches that rely
on convolutional neural networks for the detection of LoRa
symbols in the presence of AWGN and colored interference.
This paper presented a new framework HybNet that switches
between traditional matched filter detection and deep learn-
ing detection. As such the proposed architecture combines the
merits of (i) the optimal detection in Gaussian noise based
on the matched filter, with (ii) the improved performance of
the deep learning detector under non-Gaussian interference.
The paper tested different input data modalities for deep
learning, namely; (i) I/Q-based, (ii) time-frequency-based,
and (iii) spectrum-based. The spectrum-based deep detector
showed the best detection performance in heavy interfer-
ence conditions and the lowest time complexity compared
to the I/Q-based and time-frequency-based networks. This
improvement in the performance suggests that the proposed
hybrid architecture would outperform stand-alone conven-
tional detection methods in a broader range of applications,
especially in random access IoT networks where the interfer-
ence is caused by overlapping co-channel transmissions. Pos-
sible future work could include evaluating the performance of
the HybNet architecture under multi-path channel conditions.
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