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ABSTRACT During the past 10 years, researchers have extensively explored the use of machine learning
(ML) in enhancing network intrusion detection systems (IDS). While many studies focused on improving
accuracy of ML-based IDS, true effectiveness lies in robust generalization: the ability to classify unseen
data accurately. Many existing models train and test on the same dataset, failing to represent the real unseen
scenarios. Others who train and test using different datasets often struggle to generalize effectively. This
study emphasizes the improvement of generalization through a novel composite approach involving the use
of a lifecycle-based dataset (characterizing the attack as sequences of techniques), automatic feature learning
(auto-learning), and a CNN-based deep learningmodel. The establishedmodel is tested on five public datasets
to assess its generalization performance. The proposed approach demonstrates outstanding generalization
performance, achieving an average F1 score of 0.85 and a recall of 0.94. This significantly outperforms
the 0.56 and 0.42 averages recall achieved by attack-based datasets using CIC-IDS-2017 and CIC-IDS-
2018 as training data, respectively. Furthermore, auto-learning features boost the F1 score by 0.2 compared
to traditional statistical features. Overall, the efforts have resulted in significant advancements in model
generalization, offering a more robust strategy for addressing intrusion detection challenges.

INDEX TERMS Intrusion detection, ML-based IDS, model generalization, lifecycle-based dataset,
auto-learning features.

I. INTRODUCTION

INTRUSION Detection Systems (IDS) play a crucial role
in safeguarding network systems. Broadly speaking, it can

be categorized into either signature-based or anomaly-based.
Signature-based IDS, although effective at identifying known
threats, often fail to detect novel attacks. On the other hand,
anomaly-based IDS can detect new types of attacks, but they
suffer from a high false-negative rate [1].
Machine Learning (ML) has emerged as a solution to these

problems, significantly improving the performance of IDS.
It boosts accuracy, lowers the false-negative rate, and enables

the detection of a wider range of threat variants [2]. This is
achieved by allowing the ML model to learn the behavior of
the network, which it uses to classify and identify potential
threats.

Research in the field of ML-based IDS has proposed
numerous solutions, with the current research focus being
on improving the accuracy of the ML-based IDS [3], [4],
[5], [6]. However, achieving high accuracy is only a part
of the solution. A robust IDS should also exhibit strong
generalization capabilities [7], [8]. Generalization refers to
the model’s ability to apply knowledge from training data to
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unseen data. Unfortunately, many of the current studies have
trained and tested models only on a single dataset that did not
truly represent unseen data, creating a trustworthiness issue.
The ability to accurately classify new data using a different
kind of datasets beyond the training data is crucial for the
ML-based IDS.Without testing on the genuinely unseen data,
the actual performance of these systems remains unclear,
leaving the true effectiveness of the IDS systems in real-world
scenarios ambiguous.

The current generalization test utilizes the inter-dataset
strategy by training ML models with one dataset and testing
them with another, such as training on dataset A and testing
on dataset B. However, existing research using this approach
shows strong performance on trained data but poor results
on unseen data [9], [10], [11]. For example, models trained
with CIC-IDS-2017 and tested with CIC-IDS-2018, and vice-
versa, achieved the F1 score below 50%.

This decrease in performance is alarming, especially
considering the CIC-IDS-2017 and CIC-IDS-2018 datasets
are very similar, containing the same categories of attacks and
using identical tools. The primary difference between them
lies in the scale of their respective network environments,
which ranges from a configuration of 15 machines to one
comprising 500 machines. Despite these close similarities,
the observed decline in generalization capability poses a
significant challenge in the domain of ML-based IDS.
These results imply that even minor changes in the network
environment, such as differences in scale or traffic volume,
can drastically affect a model’s ability to effectively adapt to
new situations.

This raises serious concerns about the reliability of ML-
based IDS in real-world applications. If these systems are
unable to maintain consistent performance in slightly varied
network settings, their usefulness in diverse and changing
real-world scenarios becomes questionable. The primary
goal of ML-based IDS is to reliably identify threats across
different and evolving environments, maintaining a steadfast
level of security regardless of changes in network infrastruc-
ture. Therefore, addressing this issue of poor generalization
is vital for the development of robust and reliable IDS
solutions.

The use of synthetically generated datasets in prior studies,
despite not fully replicating real network benign traffic, is a
critical initial step in validating models. Ensuring a model’s
performance in a controlled environment is essential for
establishing its foundational robustness before deployment in
more complex, real-world scenarios. However, evidence from
the literature suggests that achieving broad generalization,
even in these controlled settings, remains challenging.

The poor generalization in IDS is influenced by several
factors, including the nature of the dataset, feature extraction
methods, and machine learning model choices. Many previ-
ous studies used attack-based datasets, categorizing attacks
only by their type [12], leading to datasets that are overly
specific to a particular attack tool and lack diversity [12].
Current feature extraction methods rely either on statistical
approaches that capture spatial information but miss other

crucial details, or on packet-level features, which represent
packet data within a traffic flow using an array of header
fields.Moreover, many IDSs employ shallow learningmodels
which tend to underperform compared to deep learning
counterparts [5], [13], [14].

Our research is specifically motivated by the observed
gaps in the generalization performance of these DL models.
The prevalent practice of training and testing models on the
same dataset does not adequately challenge their ability to
generalize to truly unseen data, a critical aspect for real-world
applications. This work aims to rigorously evaluate ML/DL
models’ generalization capabilities by employing inter-
dataset testing, an area where existing literature indicates a
notable shortfall. Our investigation extends beyond statistical
features to include raw packet data, aiming to fortify the
argument for this research’s necessity in advancing IDS
efficacy against novel threats.

While previous research predominantly focused on
using attack-based datasets, statistical features, and shallow
machine learning (ML)models or deep learning (DL)models,
which had a poor generalization performance, this study
introduces a novel composite approach in the dataset, fea-
tures, and learning model. First, the CREMEv2 dataset [15]
is used as the training data. This dataset introduces the
lifecycle-based dataset method, which emphasizes both
attack lifecycles and techniques. It maps attack lifecycles
to specific tactics and techniques, based on the MITRE-
ATT&CK framework. Tactics represent the ‘why’ behind an
attack, signifying its purpose. They encompass objectives an
attacker aims to achieve, such as initial access, execution,
persistence, and impact. Techniques, on the other hand, focus
on the ‘how’–the specific methods employed to execute a
given tactic. By detailing the process of an attack based on
its lifecycle, the dataset achieves greater variety, making it
richer and more comprehensive.

The approach also incorporates auto-learning features to
extract features directly from raw traffic without heavily
depending on predefined statistical methods. Additionally,
a deep learning CNN model is used to create traffic patterns
from these features, enhancing its ability to detect anomalous
network activities [16], [17].

The effectiveness of the proposed approaches is evaluated
by thoroughly testing them using the inter-dataset strategy,
employing five of the latest public datasets for a compre-
hensive assessment. This rigorous testing ensures a thorough
understanding of how well the system generalizes to unseen
data.

To enhance the understanding, this work also investigates:
(1) factors influencing generalization: datasets, features, and
learning models, (2) impact of dataset: attack-based vs.
lifecycle-based datasets. The model is trained with CIC-
IDS-2017, CIC-IDS-2018 as the attack-based datasets, and
CREMEv2 as the lifecycle-based dataset to grasp how
dataset choice affects generalization, (3) features and learning
models, assessing the performance of different methods
for generalization, as well as key auto-learning features
in lifecycle-based datasets, revealing how CNN effectively
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interprets data, (4) exploring how the number of convolution
layers affects model generalization.

With relation to the related works, this paper’s contribu-
tions are three-fold:

• To the best of our knowledge, this is the first study that
proposes a novel composite approach by integrating a
lifecycle-based dataset, auto-learning features, and CNN
to improve the generalization performance of ML-based
IDS.

• A detailed evaluation and analysis of generalization
performance provides insights and validation for the
proposed methods.

• Sensitivity analysis of deep learning model config-
urations is performed to analyze their impact on
generalization performance.

The contribution of this paper lies not only in analyzing
the benefits of utilizing the MITRE-ATT&CK framework-
based dataset for improving ML-based IDSs but also in
demonstrating a methodological advancement in model train-
ing and evaluation. Integrating auto-learning features within
a CNN addresses the challenges of model generalization
across previously unseen datasets. This method significantly
enhances model generalization, reduces reliance on extensive
feature engineering, and illustrates how IDS can evolve
from depending on manually defined, static features to
dynamically extracting and learning features directly from
raw data. This work not only advances cybersecurity by
providing a nuanced approach to enhancing IDS capabilities
but also equips researchers and practitioners with robust tools
to tackle real-world variability in security threats.

The remaining sections of this paper are structured as
follows: Section II discusses related work, providing an
overview of previous research in the field. Section III delves
into the system architecture, presenting the overall framework
used in this study. In Section IV, the system implementation
is detailed, explaining the methodology employed. Section V
is devoted to presenting the results and analysis derived
from this experiments. Finally, in Section VI, conclusions are
drawn based on the findings, highlighting the key insights and
contributions of this research.

II. RELATED WORKS
Table 1 provides a comprehensive summary of prior
research on model generalization for ML-based Intrusion
Detection Systems (IDS). This summarization offers a
comparison based on several crucial parameters, including
the generalization testing/trainingmethod employed, features
utilized, the ML/DL model chosen, datasets considered,
and the solutions proposed. In current literature, there are
four different methods for evaluating model generalization
performance: intra-dataset testing, unified-dataset testing,
inter-attack testing, and inter-dataset testing.

In the intra-dataset testing, both training and testing are
conducted on the same dataset. Meanwhile, the unified-
dataset testing combines several datasets and proceeds to
train and test on this unified dataset. The inter-attack testing
strategy involves training exclusively on a single attack

class within a dataset and subsequently testing against other
attack classes within that same dataset. Lastly, inter-dataset
testing diverges from the previous methods as it entails
training and testing on entirely separate datasets. This method
is particularly crucial for assessing the adaptability and
robustness of theML-based IDS across different data sources.

For the intra-dataset testing, various studies have been
conducted. Reference [19] focused on exploring pattern
leakage across three distinct datasets. Pattern leakage, in this
context, refers to the process of encoding and scaling the
entire dataset. Remarkably, this process also encompassed the
test set derived from the full dataset. By testing with statistical
features and conventional ML models, they were able to
achieve high accuracy. Meanwhile, in [18], the emphasis was
on combining ML + DL methods, which showed promise
in increasing generalization. This approach resembled that
of [20], which aimed to improve generalization by selecting
appropriate statistical features. However, similar to [19], the
testing process in [18] and [20] was also unreliable since the
model was trained and tested using the same dataset, resulting
in the test dataset not being truly unseen.

In the context of unified-dataset testing, current literature
presents two approaches for combining datasets: Federated
Learning (FL) [21], [22], and feature engineering [23].
FL involves training local models from different datasets and
aggregating them into a global model using the FedAdagrad
method. This approach enhances generalization capabilities
by integrating knowledge from diverse datasets. On the
other hand, feature engineering aims to unify features and
integrate datasets for training and testing. While training
and testing with combined data show potential, this method
proves impractical for real-life applications due to the
extensive dataset preparation required, making the process
time-consuming and resource-intensive.

For the inter-attack testing, [24] utilized the integrated
feature selection techniques, specifically filtering and embed-
ding methods. They employed the CIC-DDoS-2019 dataset
for training with the LGBM model on one DDoS class and
subsequently tested the model on other DDoS classes within
the same dataset. However, a limitation of this approach is
that it is only applicable to similar types of attacks, such as
DDOS-like attacks, and may not be suitable for assessing
generalization across significantly diverse attack types.

In the context of inter-dataset testing, [9] and [10]
investigated generalization using supervised learning. They
trained the model with CIC-IDS-2017 and tested it with CIC-
IDS-2018, and vice versa. However, the model exhibited
poor generalization on the testing data in both cases. Similar
results were observed in [11], where unsupervised learning
was utilized for testing, but the model still failed to generalize
to unseen data. The F1 score of these inter-dataset testing
works remained below 60%.

In contrast, this paper differs from previous works in
several ways. While previous studies relied on attack-based
dataset methods, which directly execute attacks, resulting
in limited effectiveness for handling unseen data, this work
employs the CREMEv2 dataset as the lifecycle-based dataset,
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TABLE 1. Summary of the related works on generalization of ML-Based IDS.

extracts features using an auto-learning technique, and the
CNN autonomously learns the features and data. The model’s
generalization performance is further validated through inter-
dataset testing.

III. SYSTEM ARCHITECTURE
This section provides an overview of the three fundamental
elements employed to enhance generalization performance.
Firstly, an explanation of CREMEv2 as a lifecycle-based
dataset method is presented. Next, the discussion covers the
auto-learning features and the CNN architecture used in this
study.

A. LIFECYCLE-BASED DATASET: CREMEv2
Lifecycle-based datasets such as CREMEv2 are structured to
encompass the full spectrum of a cyber threat, mapping out
each stage of an attack from inception through execution and
aftermath, following the structure of the MITRE ATT&CK
framework. This framework provides a globally accessible
knowledge base of adversary tactics and techniques, which
CREMEv2 utilizes to generate realistic sequences of cyber
attack lifecycles. Instead of focusing solely on the impact
of an attack, these datasets offer insights into the ‘behavior’
of threat actors over time, illustrating the progression and
evolution of attacks across different stages. By integrating
data that spans the entire lifecycle of an attack, these

datasets enable the development of IDS capable of identifying
early indicators of a threat, understanding the sequential
tactics of attackers, and adapting to the changing dynamics
of cyber threats. This comprehensive view, guided by the
structured phases of the MITRE ATT&CK framework,
allows for the creation of security systems that are not
only reactive but also proactive, significantly enhancing their
ability to detect and mitigate a broad spectrum of cyber
threats, especially those that are new or in the process of
evolution.

In contrast, attack-based datasets are designed to capture
specific instances of cyber threats, concentrating primarily
on the technical details of those threats, such as signatures,
methods, and immediate impacts. These datasets are con-
structed by simulating particular types of attacks, which
focus on the impact of the attack itself, resulting in narrow
data. The primary aim is to provide a repository of attack
signatures that can be used to train IDS to recognize
specific types of malicious activities. While this approach
is effective for detecting well-known, predefined attack
patterns, it inherently lacks the broader context in which
actual cyber-attacks unfold. Consequently, IDS developed
using attack-based datasets may perform well in identifying
specific threats for which they have been trained but can
struggle with new or varied attack forms that deviate from
the documented patterns.
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FIGURE 1. Mapping attacks to sequences of techniques on CREMEv2 [15].

The fundamental difference between the two types of
datasets lies in their scope and applicability: while attack-
based datasets offer depth in specific attack types, lifecycle-
based datasets provide a broad and integrative perspective
that encompasses the full range of cyber threat behaviors.
This comprehensive approach inherent in lifecycle-based
datasets results in better-prepared, more adaptable cyber
defense mechanisms capable of addressing the multifaceted
nature of modern cyber threats.

CREMEv2 was generated based on the MITRE ATT&CK
framework [15]. This framework serves as the foundation for
developing specific threat models and methodologies.

CREMEv2 comprises five attack variants, encompassing
both host-based and network-based attacks. These variants
include ransomware, resource hijacking, mirai, disk wipe,
and end point dos. To map these attack variants to 14 tactics
within 17 different MITRE techniques, a manual comparison
was conducted based on attack behavior. The mapping results
are shown in Figure 1, where the columns represent the
used tactics, and the rows correspond to the techniques or
lifecycles involved.

As an updated version of CREMEv1 [25], CREMEv2
involves a broader range of techniques with a restructured
testbed [15]. This new version incorporates a router machine
and establishes a host-only network to segregate the main
OS from the virtual machines, thereby mitigating external
attack impacts. The testbed comprises ten virtual machines,
including one controller, one data logger, four clients, and one
machine simulating the roles of attacker, target, and benign
server. This setup aims to create a controlled environment
conducive to reproducing various cyber-attack scenarios
while efficiently monitoring and logging all pertinent data.

For the replication of attack scenarios, CREMEv2 utilizes
several attack tools aligned with the MITRE ATT&CK
framework. These tools simulate various types of cyber
threats, such as botnets, disk wipes, ransomware, resource
hijacking, and endpoint DoS attacks. For example, Mirai’s

pre-compiled version is employed for botnet simulations,
Metasploit modules for gaining privileged access, and custom
scripts for simulating ransomware and resource hijacking
activities. Each tool is chosen based on its ability to represent
a specific attack technique within the framework, ensuring
accurate mapping of these activities to MITRE ATT&CK
techniques.

The dataset generation process begins with the automated
replication of attack scenarios using the aforementioned
tools. The attack replication is orchestrated by the controller
server, which manages all processes and controls all entities
involved. As the attacks unfold, data is concurrently recorded
by the client, target server, and benign server. These data
streams are then transmitted to the data logger server for
centralized log collection. Utilizing a centralized log collec-
tion system facilitates efficient data processing and enables
the generation of comprehensive datasets that accurately
reflect the intricacies of each attack scenario. Following data
collection, a meticulous labeling process is undertaken using
the breakpoint information generated during the attacks.

Figure 2 illustrates the generation of lifecycles and the
collection of traffic in CREMEv2. It details the interac-
tions between various components, such as attacker and
benign servers, malicious clients, target server, data logger,
and controller. These components simulate cyber-attacks
following specific stages indicated by the legend, ranging
from reconnaissance to executing impact tactics like data
destruction. The legend explains the sequence and types of
attacks, highlighting tools and methods used at each stage.

B. AUTO-LEARNING FEATURES
In this work, ‘auto-learning’ is referred to as the system’s
capability to autonomously learn and extract relevant features
from raw data, specifically network traffic, without the
need for pre-defined rules or manual feature selection.
This is accomplished through the utilization of a CNN,
inherently designed to recognize patterns and features
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FIGURE 2. CREMEv2 lifecycles reproduction workflow.

FIGURE 3. Auto-learning feature extraction process.

directly from the input data during its training. The
technique’s ‘learning’ aspect is characterized by the CNN
model’s ability to autonomously identify patterns, anomalies,
and characteristics within the network traffic’s raw byte
representations, facilitated by transforming the raw traffic
data into an image-like format. This enables the convo-
lutional layers to detect features across multiple levels of
abstraction.

The approach to handling raw network traffic data aims
to transform it into a format efficiently processed by the
CNNmodel, involving the sampling of data within a network
flow into a predetermined number of packets and bytes [16].
In networking, a ‘flow’ refers to a sequence of packets
between a specific source and destination, typically identified
by shared network attributes such as IP addresses, port

numbers, and protocol types. The strategy of extracting only
the initial x bytes from the first y packets of each flow aims
to reduce computational and memory demands, thus ensuring
more efficient processing.

This approach strikes a balance between capturing enough
detail to identify anomalies and avoiding information over-
load. The initial bytes can provide a snapshot of the traffic,
offering enough insight for anomaly detection without the
need for full packet inspection.

Figure 3 provides an illustration of the feature extraction
auto-learning process. This process begins with the flow
reconstruction for identifying the flow from the raw data,
achieved by grouping raw network packets based on their
5-tuple characteristics. The first y packets per flow are
subsequently extracted.
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The next phase involves packet segmentation, where the
first x bytes of the initial packet from each flow are
extracted. This extraction process serves two purposes: (1)
it reduces the traffic load for analysis and expedites the
process, particularly for lengthy sessions, (2) because deep
learning models require uniform data lengths, a default
packet size is established. Packets surpassing this predefined
size are trimmed, while smaller ones are zero-padded. This
technique involves the extraction of the initial three packets,
each consisting of 60 bytes, as it has been empirically
determined to yield the best performance in terms of F1 score,
as indicated by prior research conducted by [16].

The final step in the feature extraction process involves
trace sanitization. This process includes removing all specific
testbed configuration and metadata information by deleting
24 bytes of such information from each packet in the input
data. This step is vital to ensure that the CNN model does not
resort to shortcut learning based on artifacts in the training
data, such as ports, MAC addresses, and IP addresses. The
sanitization ensures that the CNN model does not acquire
knowledge of specific testbed configurations. Following this
sanitization, the data is then converted into one-dimensional
vectors, which are then employed as inputs for the CNN
model.

Based on this auto-learning configuration, which extracted
three packets, each consisting of 60 bytes and removed
certain metadata information, a feature set of 107 features
is obtained, with each feature representing information from
the bytes of individual packets. Features with index 0-35
represent the first packet, 36-71 correspond to the second
packet, and 72-107 pertain to the third packet.

C. CNN ARCHITECTURE
In the realm of IDS, it has been observed that unsupervised
methods, despite their advantages, struggle with gener-
alization, particularly during inter-dataset testing, where
a noticeable drop in performance was observed [11].
Consequently, a supervised learning approach has been
adopted, characterized by using diverse datasets, advanced
feature extraction techniques, and CNN models to improve
generalization. This decision is driven by the necessity for
precise, actionable insights in cybersecurity, emphasizing the
accurate identification of normal and malicious activities.
By capitalizing on the structured framework of supervised
learning, a more effective approach to tackling the challenges
of intrusion detection has been established.

The CNN model is one of the prominent deep learning
models known for its exceptional performance in utilizing
auto-learning features. Through this approach, the model
autonomously learns valuable features, showcasing its effec-
tiveness in various applications.

In this study, a one dimensional (1D) CNN model
was utilized. The effectiveness of 1D-CNNs in handling
temporal relations can be attributed to their ability to capture
local dependencies and identify discriminative patterns
within sequences. Unlike 2D-CNNs, which process two-
dimensional spatial data, 1D-CNNs are designed to process

TABLE 2. CNN architecture.

one-dimensional sequential data, making them particularly
suitable for tasks involving time series or sequential inputs.
In the context of network traffic analysis, 1D-CNNs can
effectively capture spatial dependencies between adjacent
bytes in network packets. This capability allows them to
discern patterns that are indicative of different classes
of protocols or applications, thereby enabling accurate
classification of traffic [26].

The architecture of the CNN model is presented in
Table 2, showcasing its key components and design. The
values and configurations chosen for each component in
this table have been carefully selected based on exten-
sive experimentation, ensuring optimal performance and
generalization capabilities. A single convolutional layer is
utilized to effectively extract and learn essential features
from the input data. Additionally, batch normalization is
implemented after each crucial layer, a strategy that not
only mitigates overfitting but also addresses the vanishing
gradient problem, thus enhancing the model’s generalization
capability. The integration of max pooling further contributes
to the architecture’s efficiency by summarizing the learned
features and reducing computational complexity.

The architecture also includes a flattening process followed
by three dense layers designed for learning. Rectified
Linear Unit (ReLU) is employed as the activation function,
contributing to the model’s learning process. In the final
dense layer, a sigmoid activation function is used, facilitating
binary classification of the data. This architecture embodies
a comprehensive approach to extracting, processing, and
classifying data, ensuring optimal performance for intrusion
detection tasks.

IV. SYSTEM IMPLEMENTATION
To conduct the experiments, several steps are followed.
Initially, the testing datasets are selected, and the re-
labeling process is applied to all the testing datasets. The
relevant features are then extracted. While extracting the
features, both auto-learning features and statistical features
are utilized. The inclusion of statistical features aims to
facilitate a performance comparison between auto-learning
and statistical features. Afterward, the data extracted from
the auto-learning features is trained using a CNN model,
and its generalization performance is assessed. Furthermore,
we train models with statistical feature data using both CNN
and ML models. This decision is motivated by the fact that
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many previous studies have utilized standard ML models to
evaluate their generalization performance [9]. Thus, to ensure
a fair comparison of results, it is included in the evaluation
process. Finally, the obtained results are analyzed.

In this section, the details of the various components used
in the experiments are explained, including the selection of
testing datasets, the re-labeling process of those datasets,
information on auto-learning and statistical features, and the
specificMLmodel utilized for training the statistical features.

A. SELECTING TESTING DATASET
For assessing the generalization performance, it is crucial
to incorporate a variety of testing datasets to ensure a com-
prehensive evaluation. In this study, the selection of testing
datasets was guided by specific criteria. Public datasets
available in recent years were considered, prioritizing those
that offered raw pcap files and comprehensive documentation
detailing data collection procedures. This documentation
encompassed insights into the tools, techniques, data capture
environment, and timestamps of attack processes. Given that
auto-learning features require raw data processing and re-
labeling, access to this documentation was crucial. Based
on these criteria, five datasets were identified that met
the requirements. The following section provides a concise
overview of the testing datasets utilized in this study:

• CIC-IDS-2017: Released in 2017 by the Canadian
Institute for Cybersecurity (CIC) [27], this dataset had
7 distinct attack classes. It was generated over the course
of 5 days, utilizing a network of 14 machines. Aside
from offering a comprehensive list of attack classes,
it provides raw PCAP files and has been extensively
utilized by numerous studies.

• CIC-IDS-2018: As the extension of the CIC-IDS-2017,
this dataset was published in 2018, encompassing the
same attack classes. However, it differentiates itself by
magnifying the testbed using a cloud environment, thus
involving over 500 machines in a span of a 10-day attack
process.

• CIC-DDOS-2019: Published in 2019 by the CIC [28],
this dataset has a specialized focus on DDoS variants.
It comprises 12 different DDoS variants, making it an
invaluable resource for specialized DDoS research.

• CREMEv1: Published in 2022, CREMEv1 is a sophis-
ticated toolchain designed for automatic dataset collec-
tion [25]. The dataset contains multiple data sources,
including network traffic, host statistics, and Syslogwith
5 attack scenarios. Each of these scenarios is executed in
a systematic manner, spanning across three predefined
stages.

• CCU Mirai HTTP: This dataset published in 2019 by
CCU, Taiwan [16]. It was specifically designed to
emulate DDoS attacks and was set up using the Mirai
malware by involving 7 IoT devices. These devices
were used to initiate 4 types of DDoS attacks, with a
comprehensive list detailing each DDoS variant.

These datasets provide a comprehensive and diverse testing
ground to assess the model’s resilience and adaptability to

varying attack profiles and complexities, ensuring a robust
evaluation of its generalization capabilities.

B. DATASET RE-LABELING PROCESS
Re-labeling the raw data necessitates several steps. Initially,
the process began with the raw pcap files, with the goal of
extracting features from their raw data and then performing
the re-labeling process. However, because these pcap files
mixed benign and attack data, labeling posed a challenge.
To streamline this process, it was necessary to filter and
separate benign and attack traffic, group them based on each
class, and save each class to a new file.

To facilitate this separation, crucial details such as attack
duration, attacker and victim IP addresses were derived from
the dataset metadata. Utilizing this information, the sepa-
ration process was initiated according to the methodology
outlined in [29]. For instance, for the CIC-IDS-2017 dataset
regarding the DoS-slowloris attack, it was determined that the
specific attack time was from July 5th, 9:47 to 10:10 a.m.,
with the attacker IP being 205.174.165.73 and the victim IP
being 192.168.10.50. These details were utilized to group
relevant packets from the original pcap files. By extracting
these packets and re-writing them into new pcap files, the
data was effectively organized and labeled. This re-labeling
process step was crucial in creating structured datasets for
subsequent analysis and model training. It also guaran-
tees the dataset’s integrity and reliability for subsequent
analysis.

C. FEATURE EXTRACTORS
In the process of extracting features, two different feature
extraction methods were utilized: auto-learning features
as the default configuration and statistical features for
performance comparisons. The details of the implementation
of these feature extractors are explained below.

AUTO-LEARNING FEATURES
In the processing of auto-learning features, Scapy [30] was
used to handle the raw data stored in PCAP files. Scapy
is a versatile packet manipulation tool that offers several
advantages in the data processing realm. Using Scapy greatly
facilitated the workflow by allowing us to read the raw data,
carry out flow reconstruction, select the first three packets
per flow, extract the initial 60 bytes from each packet, and
subsequently sanitize the data.

STATISTICAL FEATURES
Two different statistical feature extraction tools were utilized.
The purpose was to compare their performance against the
auto-learning features. The tools utilized were CICFlowMe-
ter and NFStream, both of which are widely recognized
within the field.

CICFlowMeter, developed by CIC, generates a compre-
hensive set of 81 features [31]. It has been integrated into
feature extraction processes across all CIC datasets. This
tool is particularly notable for its user-friendly interface
and widespread adoption by researchers. The fixed version
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of CICFlowMeter was utilized, as derived from [29],
ensuring consistency and reliability in the extraction
process.

Another feature extraction tool is NFStream, which was
officially released in 2022 [32]. Operating on a Python-based
platform, NFStream is capable of calculating the statistical
attributes of network flows. It offers a total of 61 features and
boasts efficient data structures and algorithms that enable it to
handle high-speed network traffic effectively, both in online
and offline scenarios.

D. ML ALGORITHM
As previously noted, besides training the lifecycles-based
dataset with CNN for auto-learning and statistical features,
machine learning (ML) was also used to train the statistical
features. In this study, XGBoost was specifically selected for
the training of statistical features due to its notable benefits
over other ML algorithms [33], [34]. XGBoost’s strength lies
in its architecture, where it combines multiple weak learners
to form a more robust predictive model. This construction
enables it to effectively handle complex relationships within
the data.

When evaluating the model, F1 score was chosen as the
primary metric due to its ability to strike a balance between
precision and recall. By combining both precision and recall
into a single score, the F1 score provides a comprehensive
assessment of a model’s ability to correctly classify instances
across different classes.

E. MODEL TRAINING AND TESTING PIPELINES
Figure 4 outlines the pipeline of the model development
process, dividing it into two distinct pipelines: one leveraging
statistical features and the other leveraging auto-learning
features. In the first pipeline, raw data in pcap files undergo
feature extraction using NFStream and CICFlowMeter tools,
which extract statistical features for model training and
evaluation. The CREMEv2 dataset is then split into three
parts: 70% for training, 20% for validation, and 10% for
testing with a random split method. The training data is
utilized to train the XGBoost and CNN models, while the
validation data serves to fine-tune model hyperparameters
and optimize performance. Finally, other datasets are utilized
for inter-dataset testing to assess the models’ robustness and
scalability across different datasets.

The second pipeline employs auto-learning features,
transforming the raw PCAP files into a suitable format
for the CNN model. Similar to the previous pipeline, the
CREMEv2 dataset is randomly split into 70% for training,
20% for validation, and 10% for testing. The training data
is utilized to train the CNN model, while the validation
data is employed to fine-tune model hyperparameters and
optimize performance. Additionally, other datasets are uti-
lized for inter-dataset testing. The end goal is to assess and
compare the generalization performance of ML and CNN
models, highlighting the potential of auto-learning features in
improving the generalization of the IDS model. All the code
can be retrieved from the GitHub repository [35].

V. RESULTS AND ANALYSIS
In this section, the results are structured around the factors
impacting the generalization performance. These include
(1) the most important factor in improving generalization
performance, encompassing datasets, features, and learn-
ing models; (2) the influence of datasets - attack-based
datasets such as CIC-IDS-2017 and CIC-IDS-2018 versus
the lifecycle-based dataset, CREMEv2 - on generalization
performance; (3) an evaluation of features and learning
models, specifically, the performance of auto-learning and
statistical features trained using lifecycle-based datasets
with ML or CNN models, along with an examination of
key features of auto-learning with CNN in CREMEv2 to
understand how CNN interprets and classifies unseen data;
and (4) an analysis of parameter effects, focusing on the
impact of convolution layer configurations and the number
of packets and bytes of auto-learning features on the model’s
generalization capabilities.

A. DATASETS Vs. FEATURES Vs. LEARNING MODELS
To evaluate the impact of different factors on enhancing
generalization performance, a comprehensive analysis was
conducted, by comparing combinations of datasets, features,
and learning models. Figure 5 illustrates the results of the
generalization testing performance for all these combina-
tions, with the average F1 score being derived from five
different testing datasets. It is important to note that auto-
learning is dependent on the CNN model, which results in
six performance combinations.

The results clearly demonstrate that the choice of dataset
as the training data is the most crucial factor influencing the
improvement of generalization, followed by the features and
type of learningmodels. The combination of a lifecycle-based
dataset with auto-learning features and CNN demonstrated a
remarkable average F1 score of 0.85, effectively generalizing
across all testing datasets. However, a significant degradation
in performance was observed when transitioning from the
lifecycle-based dataset to the attack-based training dataset
(CIC-IDS-2017), dropping the F1 score from 0.85 to 0.45.
Even in the worst-case scenario with the lifecycle-based
dataset using statistical features (0.69 and 0.67), it still
outperformed the best configuration in the attack-based
dataset (0.45).

Datasets serve as the foundational knowledge base for
machine learning models. The creation of a dataset with
appropriate methods equips the model with a thorough
understanding of various scenarios. On the other hand,
features, which are derived representations of the raw data
to highlight certain aspects or patterns in the data, are
constrained by the quality and range of the original dataset.
Superior feature extraction methods on a limited dataset,
such as utilizing attack-based dataset with auto-learning
features and CNN, will still fall short compared to even
basic features from a comprehensive dataset such as the
lifecycle-based dataset with statistical features. Furthermore,
when considering learning models, different models vary
in their ability to discern patterns. However, even the most
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FIGURE 4. The pipelines of training and testing the IDS model.

sophisticated model, when trained on a limited dataset, can
only learn from what it is exposed to. Its ability to generalize
well is thus inherently limited by the dataset’s scope and
quality.

Training a model on the CREMEv2 as a lifecycle-
based dataset not only empowers it to identify the detailed
behaviors and sequences that characterize attack lifecycles
but also enriches its understanding of malicious activities
beyond the limitations of specific attack scenarios. This
broad perspective enables the model to recognize potential
threats within unfamiliar attack-based data, applying the
core principles learned from CREMEv2 effectively, despite
having no prior exposure to their specific signatures or
instances. Furthermore, incorporating auto-learning features
into the CNN model significantly bolsters this capability.
By enabling the model to abstract and learn from input
data representations through multiple layers, it can detect a
wide range of features, from low-level details to high-level
features. This comprehensive approach to data interpretation
greatly enhances the model’s accuracy and its ability to
adapt to emerging and diverse cyber threats, showcasing a
remarkable improvement in its generalization capabilities.

In conclusion, while features and learning models play
significant roles in the generalization performance, a dataset
with a lifecycle-based approach stands out as the most crucial
element. Ensuring dataset quality and representativeness
by considering an attack as part of its lifecycle should
thus be a primary concern in ML-based IDS research
aiming for model generalization. In subsection V-B, the
reasons behind the superior generalization capabilities of
the lifecycle-based dataset for the attack data are explored.
Meanwhile, a thorough analysis of the features is provided in
subsection V-C.

B. DATASET: ATTACK-BASED Vs. LIFECYCLE-BASED
In this analysis, the comparative performance between using
attack-based and lifecycle-based datasets is explored. For
this purpose, CIC-IDS-2017 and CIC-IDS-2018 were used as
examples of attack-based datasets, while CREMEv2 served

FIGURE 5. Datasets vs. Features vs. Learning Models.

as the representative for the lifecycle-based dataset. Detailed
testing results and insights can be found below, with Figure 6
providing an overview of the generalization testing outcomes
for each dataset.

Training the model with either CIC-IDS-2017 or CIC-
IDS-2018 as attack-based datasets, employing CNN with
auto-learning features, results in a failure to effectively
generalize over the majority of the testing datasets. These
models exhibit exceptional performance in intra-dataset tests,
surpassing 0.99. However, their performance significantly
degrades when subjected to inter-dataset testing. Specifically,
training with CIC-IDS-2017 leads to an average F1 score
of 0.44 in inter-dataset tests, with an inability to recognize
CREMEv2 dataset (0.109). Similarly, training with CIC-IDS-
2018 results in an average F1 score of 0.421 in inter-dataset
tests, indicating a failure to generalize over these datasets.

In contrast, training the model with the lifecycle-based
dataset, CREMEv2, resulted in the best generalization
performance, achieving an average F1 score of 0.85 in inter-
dataset testing. This approach excelled in recognizing attack
data within the testing dataset, as indicated by its high recall
score, averaging at 0.94 (as depicted in Figure 5b). This
substantial improvement becomes evident when compared
to attack-based datasets, which only achieved average recall
scores of 0.56 and 0.42 when trained with CIC-IDS-2017
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and CIC-IDS-2018, respectively. The increased recall rate
highlights the superior ability of the model to detect attacks,
underlining its potential for enhancing intrusion detection
systems. This performance was two times better than using an
attack-based dataset for training, and notably outperformed
previous works [9], [10], [11], whose inter-dataset testing
recall score hovered around 0.4-0.6.

The strength of the lifecycle-based dataset lies in its
comprehensive characterization of attacks into techniques
and lifecycles, providing a more detailed view of attack
behaviors. This approach enables a deeper understanding of
attack patterns and behaviors, facilitating the identification
of both known and new or similar attack behaviors. The
richness and variety of attack behavior within the lifecycle-
based dataset contribute significantly to its heightened
generalization power.

Furthermore, the patterns observed in the sequences of
techniques within CREMEv2 align closely with those found
in other attack datasets, facilitating the model’s ability to
generalize across diverse attack scenarios. For instance, in the
case of SSH brute-force attacks from the CIC-IDS datasets,
CREMEv2 captures similar behaviors through techniques
such as ‘‘Exploit Public Facing Application,’’ wherein
unauthorized access to SSH servers is attempted. Similarly,
the port scan attacks in CIC-IDS find correspondence with
the ‘‘Active Scanning’’ technique in CREMEv2. Although
CREMEv2 may not contain attacks labeled with the exact
names as those in other datasets, the shared patterns within its
sequences allow the model to effectively learn and generalize
to these scenarios. By encompassing a comprehensive range
of attack techniques and tactics, CREMEv2 enables the
model to match patterns across datasets, enhancing its
generalization capabilities.

Moreover, the lifecycle-based dataset is not just a collec-
tion of varied attacks; its design aims to closely replicate real-
world network conditions compared to conventional attack-
based datasets. It captures data from various operational
stages of a network, including normal operations, pre-attack
indicators, active attack phases, and post-attack scenarios.
This comprehensive coverage provides a more accurate
reflection of the complexities and nuances found in actual
network environments, making the attack data not too specific
with the network environment setup.

In addition to the aforementioned investigations, an analy-
sis was conducted on the attack data variety inherent in both
the attack-based and lifecycle-based datasets. To visually
represent the diversity in data distribution, Principal Compo-
nent Analysis (PCA) was employed to transform the high-
dimensional data into a lower-dimensional representation.
PCA aims to find the principal components that capture
the maximum variance in the data, and the position of
data points on the PCA plot reflects their relative positions
in this reduced-dimensional space. The key of PCA is to
analyze not only the spread of data but also the direction
of maximum variance, which can provide insights into the
underlying structure and variability of the data. Figure 7
shows the distribution of the attack data for both CREMEv2

FIGURE 6. Comparison of generalization performance:
lifecycle-based vs. attack-based datasets in F1 Score and recall.

and CIC-IDS-2017. In this visualization, the X- and Y-axes
of the scatter plot represent the first and second principal
components, while each data point corresponds to a sample
extracted from the respective dataset. The precise location of
a data point within the scatter plot is determined by its values
along PCA1 and PCA2.

The figure clearly illustrates that CREMEv2 data points
are distributed across multiple distinct clusters, indicating
a variety of underlying patterns, whereas the data points
of CIC-IDS-2017 are more tightly grouped, suggesting less
variability within the dataset. This suggests that CREMEv2
has a higher level of diversity or variability in its attack data
compared to CIC-IDS-2017. This variation in CREMEv2
reflects its ability to capture a wider array of attack behaviors
and patterns. This richness in data variety undoubtedly
contributes to its heightened generalization performance,
allowing the model to effectively recognize the unseen data.

FIGURE 7. Attack Data distribution: CREMEv2 vs. CIC-IDS-2017.
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Furthermore, as mentioned earlier, in attack-based datasets
such as CIC-IDS-2017, the focus is primarily on generating
data based on the impact of the attack. From the perspective of
a MITRE framework, these datasets typically revolve around
a single tactic. For example, in the case of DDoS attacks, the
emphasis is placed on performing a direct network flood on
the target.

On the other hand, in the CREMEv2 dataset, which follows
a lifecycle-based approach, generating a DDoS using botnet
attack involves a sequence of 8 attack techniques, as illus-
trated in Figure 1. This comprehensive approach serves as
a strong factor contributing to its superior generalization
capabilities.

An experiment was conducted to demonstrate that the true
strength of the CREMEv2 dataset is in its representation of
attacks as sequences of techniques within a lifecycle. The
goal was to show that when CREMEv2 generates attack data
in the same manner as attack-based datasets (emphasizing
only the impact of an attack), its capability to effectively
generalize unseen data diminishes.

CREMEv2 was configured to use only the ‘impact’ tactic
for DDoS attacks initiated by the botnet. The data was then
filtered to keep instances related to the final technique for
network flooding and all preceding technique sequences were
discarded. Following this, the model’s ability to generalize
was tested using other DDoS attacks from CIC-IDS-2017,
CIC-IDS-2018, and CIC-IDS-2019.

Figure 8 illustrates the generalization performance when
the model is trained using only the ‘impact’ tactic from
CREMEv2. It is evident that the model fails to generalize to
unseen data during inter-dataset testing, achieving an accu-
racy rate between 0-0.3. Its performance is primarily effective
in classifying data from intra-datasets. This limitation arises
because the CREMEv2 dataset becomes overly specific to a
particular attack tool, lacking the diversity required for robust
generalization.

In conclusion, creating datasets that align with the attack
lifecycle is crucial. Detailed representations of an attack’s
stages enhance dataset variability, improving its capacity to
generalize unseen attack data.

FIGURE 8. Generalization of CREMEv2 only using the ‘impact’
tactic.

However, despite achieving strong performance in recog-
nizing attack data with a high recall score, CREMEv2 dataset
has limitations regarding its benign data. As illustrated in
Figure 9, CREMEv2 only attains an average precision score
of 0.78, resulting in a relatively high number of false positives
compared to false negatives. This indicates that the CNN
model might struggle to effectively generalize the benign
class, as CREMEv2 only simulates the benign behavior of
HTTP, FTP, and SMTP traffic. To address this challenge,
novel solutions for generating more comprehensive benign
traffic that enhance generalization are needed.

FIGURE 9. Precision score of lifecycle-based vs. attack-based
datasets.

C. FEATURES: AUTO-LEARNING Vs. STATISTICAL
In this section, the comparison between the performance
of auto-learning and statistical features is explored. The
discussion is divided into two main areas: firstly, a direct
performance comparison, and secondly, an examination of
the key features captured by CNN from the auto-learning
process.

PERFORMANCE COMPARISON
A comparison was conducted to assess the impact of different
feature extraction methods by training the model on the
CREMEv2 dataset. The results, show in Figure 10, highlight
the performance of auto-learning features versus statistical
features. From the figure, it is evident that all methods achieve
high F1 score, exceeding 0.98 when tested with the same
training dataset. However, variations in F1 score become
apparent when inter-dataset testing is conducted across the
methods.

Auto-learning features exhibited a notably higher stability
in generalizing the inter-dataset testing when compared to
statistical features. The former demonstrated a remarkable
ability to generalize across all testing datasets, significantly
enhancing overall performance by 0.2. For example, in the
case of CREMEv1, the F1 score improved from 0.39
(XGBoost) and 0.61 (CNN) to a substantial 0.84, with an
average F1 score of 0.85. This improvement can be attributed
to auto-learning’s capacity to capture intricate and complex
patterns through the automatic extraction of meaningful
features from high-dimensional data.

Furthermore, this study also demonstrates that good
generalization performance can be achieved despite using
only a limited number of packets (3-packets) and a small
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FIGURE 10. Overview of classification performance of auto-learning vs statistical features trained
on CREME v2.

amount of data (60 bytes from each packet) per flow.
The auto-learning feature mechanism employed here utilizes
sophisticated analytical techniques that go beyond basic
packet analysis. This approach involves scrutinizing data
irregularities, such as unusual flags, unexpected packet sizes,
or atypical timing. These anomalies are potentially indicative
of malicious activities, including scanning, spoofing, or the
initial stages of more complex attacks. This broader context
provides valuable insights that enable the CNNmodel to have
good generalization.

In contrast, statistical features showcased limitations in
their ability to capture complex patterns present in the
data. The simplicity of metrics employed, including counts,
averages, means, max, and min, hindered their capacity to
comprehensively capture crucial data nuances. Consequently,
the model’s capability to learn intricate data patterns was
restricted. Further investigation of statistical features revealed
that even when utilized with different statistical feature
extractors such as NFStream and CICFlowMeter, the model
still struggled to generalize with respect to CREMEv1, self
generated brute force, and CIC-IDS-2018.

KEY FEATURES CAPTURED BY AUTO-LEARNING
Furthermore, an investigation was conducted to explore the
reasons underlying the impressive recognition capabilities of
CNN with auto-learning features trained using CREMEv2.
To accomplish this, feature importance scores were calcu-
lated by computing the gradients of the model output with
respect to the input features. By computing these gradients,
it becomes possible to determine which features have the
most significant impact on the model’s predictions.

The key features present in several datasets, including
CREMEv2, CICIDS-2017, and CICIDS-2018, were inves-
tigated. The findings reveal that the CNN model considers
distinct key features when analyzing each testing dataset,

as shown in Figure 11. The ability of the CNN to adapt
and learn varied and adaptive representations from different
datasets is crucial. This adaptability to the variability of dif-
ferent datasets empowers CNN’s generalization performance.

Moreover, CNN’s architecture facilitates the construction
of feature hierarchies, ranging from basic and local features to
intricate and widespread features. This hierarchical approach
allows the CNN to capture the varying complexities of
network patterns present in each testing dataset. As a result,
the CNN’s capacity to learn and interpret these intricate
patterns contributes significantly to its robust generalization
performance.

Figure 11 provides additional insight, showing that the
CNN places significant emphasis on feature index 102-106,
which corresponds to the third packet within a network flow.
This packet furnishes the most pertinent context and informa-
tion. In a network communication sequence, the first packet
serves as the SYN packet initiating the session, followed
by the second packet, which is the SYN-ACK response.
The third packet, an ACK, marks the commencement of
bidirectional data exchange. This sequence encapsulates the
distinctive network pattern and lays the foundation for CNN’s
decision-making process.

In the analysis of these key features, it was found that
they are predominantly linked to TCP options information.
TCP options encompass additional settings and parameters
within the TCP headers of network packets. These options
are pivotal in capturing distinct network behaviors and
attributes due to their inclusion of additional details about
the management of TCP connections, such as how a TCP
connection is established, maintained, and terminated, which
can vary depending on specific systems, applications, and
network environments. These options also provide a way to
capture fine-grained details of network interactions, making
them as a valuable features for the CNN model.
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FIGURE 11. Key features computed by model gradients for the
CNN model on CREME v2, CIC-IDS-2017, and CIC-IDS-2018.

Furthermore, the distribution of key data features related to
the TCP options were investigated, specifically focusing on
features 106, 107, 105, and 70. Figure 12 visually presents
the data distribution of these features across four distinct
datasets. The x-axis represents the value range of specific
features within the datasets, while the y-axis illustrates the
frequency of occurrence of these values for that particular
feature in the dataset. The analysis of the figure reveals
that CREMEv2 exhibits more diverse distributions with a
wider range of values in these features compared to the
other datasets. Utilizing CREMEv2 as the training data, with
its diversified feature distributions, can prove advantageous
for enhancing generalization performance. By training on
a broader spectrum of data patterns, the model develops

increased robustness and adaptability to different variations
and potential data scenarios. Training on such a diverse
dataset equips the model to handle a wider array of patterns,
enhancing its adaptability to various variations and potential
data scenarios.

Moreover, it also can be seen that there is overlapping
data distributions between CREMEv2 and the other datasets.
The convergence of distributions between the testing datasets
and the training data (CREMEv2) indicates that the model
has encountered similar patterns during its training phase.
Consequently, when testing data exhibits resemblances in
distribution characteristics, the model is better poised to
handle such scenarios. This capacity of the model to
generalize effectively to data that aligns with its training
distribution forms a pivotal aspect of achieving commendable
performance.

FIGURE 12. The distribution of key data features.

A comprehensive analysis of the TCP options data revealed
that the length of the TCP options field can range from 0 to
40 bytes. Notably, this field might not be fully occupied in
every packet. The precise length of the options field in a given
packet can differ, contingent uponwhich options are activated
and the respective data they encompass. For example, the
Maximum Segment Size (MSS) option occupies 4 bytes,
while the Timestamps option takes up 10 bytes.

The raw PCAP data in the CREMEv2 dataset was
extensively examined to identify the exact values of the TCP
option data as essential features. Given the variable nature
of this field, only two specific options were extractable:
WScale and timestamps. TheWScale (Window Scale) option
in TCP fields allows for an increase in the maximum
window size beyond its original 65,535 bytes. This window
size informs the sender how much data the receiver can
handle, acting as flow control. In high-latency networks with
increasing bandwidth, a larger window size is essential to
optimize bandwidth utilization. Additionally, the timestamps
option within the TCP options field provides supplementary
information about the timing of data transmission and
acknowledgments within a TCP connection. Using this
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timestamp information, the Round-Trip Time (RTT) for the
third packet in each flow was calculated.

The distribution of WScale and RTT values between the
benign and attack data of CREMEv2 was then compared,
as shown in Figure 13. From the figure, it is evident that
both benign and attack data exhibit diverse distributions,
enabling the CNN model to effectively distinguish patterns
between them. Moreover, there exists a relationship between
the WScale data and the RTT. When the RTT is long,
having a large window size becomes crucial to maintain
uninterrupted data transmission without frequent waits for
acknowledgments. The WScale option offers a means
to expand this window size, thereby facilitating the full
utilization of available bandwidth even in the presence of
extended RTTs. As shown in Figure 13, attack traffic exhibits
longer RTT values compared to benign traffic, necessitating
the use of WScale data. This explains why only 17% of
benign data includes WScale data, as benign RTT durations
are generally shorter.

However, while this observation is valuable, it is important
to note that the CNN model does not heavily rely solely on
these values. As Figure 11 illustrates, there are several other
combinations of features used by the CNN to comprehen-
sively learn the behavior of CREMEv2 data.

Furthermore, CNNs effectively detect patterns regardless
of the order of information in a packet. Their convolutional
layers, containing filters (kernels), are crucial for this
capability. These filters, designed to identify specific patterns
like edges or textures, are applied universally across the input
due to shared weights and local connections. This ensures
consistent pattern recognition by the network, even with
varying feature information order [36].

Finally, the CNN model’s ability to detect intrusions
with just three packets stems from its training on raw byte
representations. It allows it to uncover complex patterns
within the data that human analysts or traditional detection
systems may overlook. During the initial handshake process,
seemingly standard TCP flows offer subtle clues that the
CNN model can exploit. For instance, variations in TCP
window size, sequence and acknowledgment numbers, and
specific TCP options can indicate various types of malicious
activities. Through training, the CNN model learns to recog-
nize these associations, leveraging them to identify potential
threats accurately. Converting packet data into an image-like
format enables the CNN model to operate within a high-
dimensional feature space, facilitating the identification and
comprehension of intricate relationships between different
packet features. This comprehensive analysis, combined
with the model’s ability to learn hierarchical features from
raw byte images, greatly enhances its performance and
effectiveness in ML-based IDS.

D. THE EFFECTS OF PARAMETERS
This section explores the comparison between the effects
of some parameters on the generalization performance. The
discussion is divided into two main areas: firstly, the effect of

FIGURE 13. The distribution of WScale and RTT values.

the number of convolution layers on CNN, and secondly, the
effect of packet count and byte size on auto-learning features.

FIGURE 14. Effect of varying convolution layers on
generalization performance.

NUMBER OF CONVOLUTION LAYERS ON CNN
An investigation was carried out to assess the impact
of convolution layers on generalization performance by
augmenting the number of layers in the model architecture.
The results, as shown in Figure 14, revealed that an
increase in convolution layers actually led to a reduction in
generalization performance across several datasets, including
CREMEv1, CCU Mirai, CICIDS-2017, and CIC-DDOS-
2019. For instance, in the case of CREMEv1, the generaliza-
tion performance degraded by 0.27, decreasing from 0.93 to
0.76. Similarly, for CICIDS-2017, the degradation was even
more pronounced at 0.4, dropping from 0.97 to 0.58.

This phenomenon can be attributed to the hierarchical
feature extraction process of convolutional layers. Typically,
convolutional layers extract features in a hierarchical manner.
The initial layer might detect simple patterns, such as edges
in images, while subsequent layers identify progressively
more complex structures, utilizing the patterns detected by
the earlier layers. Deeper layers delve into evenmore intricate
details.

In the context of IDS, it is conceivable that the most
critical and discriminative features for identifying network
anomalies are relatively low-level and can be captured by just
one convolutional layer. Additional layers might introduce
unnecessary complexity or capture overly abstract features
that do not significantly contribute to intrusion detection. This
can lead to overfitting on the training data, where the network
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captures noise instead of general patterns, resulting in poorer
generalization when encountering unseen data.

Furthermore, each convolution operation, typically fol-
lowed by pooling process, reduces the spatial dimensions of
the data. This reduction is beneficial to some extent, as it
focuses on more abstract and essential features. However,
an excessive number of convolution operations poses the risk
of themodel losing critical information that might be valuable
for the IDS task.

PACKET COUNT AND BYTE SIZE ON AUTO-LEARNING
FEATURES
An investigation was conducted to assess the impact of
modifying the configuration of auto-learning features by
including additional packets and bytes. The goal was to
discern how changing these parameters affects the auto-
learning process.

The findings indicate that increasing the number of packets
and bytes detrimentally affects generalization performance,
as shown in Figure 15. The datasets most significantly
impacted by this change, CIC-IDS-2017 and CIC-DDoS-
2019, saw the most severe degradation in performance,
dropping from 0.75 and 0.86, respectively, to below 0.4.

Further analysis indicated that attack traffic usually com-
prises packets with smaller sizes and bytes [37], particularly
in the case of DoS or DDoS attacks. Introducing more bytes
inadvertently added unnecessary information. This led to
increased complexity and dimensionality of the data, which,
in turn, made it difficult for the learning process to identify
relevant patterns and relationships within the data. As a result,
the increase in packets and bytes adversely affects themodel’s
capability to effectively generalize across different testing
datasets.

FIGURE 15. Effect of varying packet count and size of auto
learning features on generalization performance.

VI. CONCLUSION AND FUTURE WORK
This study aims to enhance model generalization through a
novel composite approach: the incorporation of a lifecycle-
based dataset, the utilization of auto-learning features, and
the employment of a deep learning model. Specifically, the
model was trained using a CNN equipped with auto-learning
features. The inter-dataset testing strategy is implemented,
wherein training and testing are conducted on separate

datasets. In total, five public datasets are utilized, and
the results demonstrate that the proposed approach can
effectively generalize across all testing datasets.

The dataset emerges as the most pivotal factor in boosting
generalization, followed by features and the learning models.
By employing the lifecycle-based dataset, auto-learning
features with CNN, achieve an impressive average F1 score
of 0.85 on the testing datasets. This significantly outperforms
the best configuration involving attack-based datasets, which
yield an average F1 score of 0.45.

The distinction between attack-based and lifecycle-based
datasets emerges as a critical consideration. The strategic
mapping of attacks to lifecycles in CREMEv2 not only
characterizes attacks in terms of techniques and lifecycles but
also illuminates the attack’s behavioral sequence. The greater
variety inherent in this approach infuses it with superior
generalization power on attack data.

Comparing the two feature extraction approaches, the
findings reveal that auto-learning features exhibit a notable
capability to capture intricate patterns directly from raw data,
thereby elevating the model’s generalization performance.
Conversely, statistical features, rooted in simple metrics
such as counts and averages, fall short of comprehensively
capturing the intricate complexities of the data.

Lastly, from the learning models’ perspective, the combi-
nation of auto-learning features with CNN is explored. This
synergy empowers the model to discern local patterns by
extracting insights from smaller data fragments. Moreover,
it equips themodel tomanage variations, making it resilient to
outliers or noise. The capability to distinguish different traffic
types is especially enhanced when using a single convolution
layer.

In conclusion, this study introduces a holistic approach
to enhance model generalization by utilizing a lifecycle-
based dataset, auto-learning features, and a well-optimized
CNN model. The cumulative impact of these efforts yields
substantial improvements in model generalization, promising
a more robust and adaptive approach to intrusion detection
challenges.

Potential future work can include investigating the
effects of utilizing multi-data sources, such as traffic,
accounting, and Syslog, for model generalization in binary
(benign/malign) and multi-class (type of attack) classifica-
tion. Additionally, exploring the generalization performance
by detecting attacks using a two-stage ML process—first
detecting the technique and then identifying the lifecycle
based on the sequences of techniques—could be a valuable
research direction. Another area for future exploration
involves improving the generalization of the CREMEv2
dataset regarding benign data. This can be achieved by
developing a comprehensive method for generating benign
data. Apart from that, incorporating additional attack tech-
niques and lifecycles from the MITRE ATT&CK framework
can also be considered. This expansion aims to enable the
creation of larger andmore varied datasets, thereby enhancing
the robustness of machine learning model generalization
performance.
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