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ABSTRACT This paper tackles a challenging decentralized consensus optimization problem defined over a
network of interconnected devices. The devices work collaboratively to solve a problem using only their local
data and exchanging information with their immediate neighbors. One approach to solving such a problem
is to use Newton-type methods, which are known for their fast convergence. However, these methods have a
significant drawback as they require transmitting Hessian information between devices. This not only makes
them communication-inefficient but also raises privacy concerns. To address these issues, we present a novel
approach that transforms the Newton direction learning problem into a formulation composed of a sum of
separable functions subjected to a consensus constraint and learns an inexact Newton direction alongside the
global model without enforcing devices to share their computed Hessians using the proximal primal-dual
(Prox-PDA) algorithm. Our algorithm, coined DIN, avoids sharing Hessian information between devices
since each device shares a model-sized vector, concealing the first- and second-order information, reducing
the network’s burden and improving both communication and energy efficiencies. Furthermore, we prove that
DIN descent direction converges linearly to the optimal Newton direction. Numerical simulations corroborate
that DIN exhibits higher communication efficiency in terms of communication rounds while consuming less
communication and computation energy compared to existing second-order decentralized baselines.

INDEX TERMS Distributed optimization, decentralized learning, communication-efficient federated
learning, second-order methods.

I. INTRODUCTION

M INIMIZING a sum of functions in a distributed man-
ner is motivated by a wide range of applications in

various networked systems, such as smart grids [1], feder-
ated learning (FL) [2], and wireless sensor networks [3].
A traditional approach involves using a central (on-cloud)
server with high computational and storage capabilities, and
each device sends its raw data to the server, which applies
centralized optimization to minimize a global objective func-
tion. Although this traditional approach is simple, it suffers
high communication costs and violates privacy [4]. To enable
collaborative learning while protecting privacy, privacy-
preserving collaborative learning techniques are necessary.

Recently, thanks to the fast growth of the computation power
of edge clients, the transmission of raw and private data to the
cloud can be avoided using federated learning (FL). In the
canonical FL approach, local models/gradients are updated
locally, and an on-cloud parameter server (PS) aggregates the
local models/gradients to update the global model/gradient,
which is then shared with edge clients. Iterating this way,
eventually, all clients converge to a global model.

Existing FL algorithms can be categorized into three
groups based on which information from the objective
function is used in the optimization process. Zeroth-order
algorithms are the first category in which clients are limited
to using samples of their own objective functions [5]. The
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second category is first-order algorithms where edge clients
use the gradients of their objective functions, to decide the
direction of the update. Primal methods such as federated
averaging [6], and primal-dual methods such as distributed
alternating direction method of multipliers (ADMM) [7]
are examples of first-order algorithms. Second-order algo-
rithms, which are the last category, employ the objective
function’s second-order information, i.e., Hessian matrix,
at each iteration. Despite the fast convergence of the Newton
method, which is the standard second-order algorithm, it suf-
fers from high communication cost. Moreover, it introduces
privacy issues, since the Hessian matrix contains important
information about the characteristics of the local objective
function and data. For instance, the authors in [8] demon-
strated how information from input images can be extracted
using the eigenvalues of the Hessian matrix. The aforemen-
tioned frameworks require a PS to aggregate the first- and
second-order data received from edge clients. Relying on a
single PSmay introduce a lot of communication overhead and
may not even be possible in a large system. Moreover, as an
aggregation hub, the networkmay experience a single point of
failure [9]. Therefore fully decentralized approaches, where
there is no central PS, have been gaining popularity. In fully
decentralized FL, edge clients share their local information
with their neighboring clients to establish model consensus,
which avoids creating a single point of failure while reducing
the communication bottleneck that occurs at the PS [10], [11],
[12].

A. RELATED WORKS
Communication-efficient solutions for distributed optimiza-
tion have been a study subject of several articles. The
following discussion highlights various techniques.

1) FIRST-ORDER METHODS
The standard approach to solve the distributed optimization
problem in the PS-based topology is to use first-order meth-
ods such as distributed gradient descent (DGD). At every
iteration of DGD, each client computes its local gradient
with respect to the current model parameters and sends that
information to the PS. After receiving all gradients, the PS
computes the global gradient and executes one GD step.
In decentralized settings, the local gradients are shared among
neighboring clients where each client averages the received
gradients and then performs a local GD step to update its
local model. Although first-order methods enjoy low compu-
tation complexity, they suffer from a slow convergence rate,
which depends on the condition number [13]. For example,
given a function that is L-smooth and µ-strongly convex,
GD achieves a global linear convergence rate of 1 −

2
κ−1

for a step-size of α =
2

µ+L , where κ =
L
µ

defines the

condition number [14]. This calls for a large number of com-
munication rounds; in addition to considerable energy and
bandwidth resources per communication round. These issues
can be tackled by reducing the number of communication
rounds [15] and/or minimizing the communication overhead
per communication round by leveraging some quantization

and compression schemes. Several techniques were proposed
to reduce the number of communication rounds; for example
by accelerating the convergence using momentum [16], [17]
and/or adaptive learning rate [18]. On the other hand, several
quantization [19], [20] and censoring schemes [21] were
proposed to minimize the payload size per communication
round while maintaining the convergence guarantees. It is
worth mentioning that using a fixed step size, DGD can only
converge to a neighborhood of an optimal solution [22]. Gra-
dient tracking decentralized gradient descent GTDGD tackles
this and converges to the optimal solution with a fixed size
by estimating the global gradient descent direction using the
neighboring and past local gradients [23] by every client.

2) SECOND-ORDER METHODS
Recently, second-order algorithms have attracted a lot of
attention, owing to their faster convergence compared to
first-order techniques, by taking advantage of the second
derivative’s curvature information, which gives adaptive
update directions. Although this reduces the number of com-
munication rounds, second-order information necessitates
significant computation and communication costs. In every
communication round, the Hessian matrix is computed and
transmitted, which induces a communication cost of O(n2)
per iteration compared to O(n) in first-order methods, where
n is the dimension of the model. Furthermore, Newton’s
approach is sensitive to inversion attacks since it involves
sharing both the gradient and the Hessian at each iteration,
which creates a privacy concern [24].

The problem of sending the exact Hessian matrix has been
addressed in various studies with communication-efficient
solutions that avoid sending the exact Hessian. The authors
in [25] suggested a Newton-based framework, in which edge
clients communicate a compressed version of the local Hes-
sian. However, gradients and compressed Hessians are still
communicated; hence the privacy issue is not completely
addressed. In a recent work [26], the privacy issue was
solved by learning the inverse Hessian-gradient product. The
idea is to formulate an inner problem with the objective of
learning the inverse Hessian-gradient. One alternating direc-
tion method of multipliers (ADMM) step is performed at
the client’s side in every outer (global) iteration to approxi-
mate the solution of the inner problem, and then the output
is shared with the PS. The algorithm still relies on the
presence of a Parameter Server (PS) to aggregate received
directions and construct the global Newton direction, intro-
ducing the risk of a single point of failure. In our work,
we extend this concept to a fully decentralized setting, effec-
tively mitigating the aforementioned PS-related limitations.
This approach is especially crucial for applications depen-
dent on battery-powered devices, where energy efficiency,
privacy preservation, and the elimination of single points of
failure are critical. These applications span various domains,
including UAV networks [27], and ultra-reliable, low-latency
communication in vehicular networks [28]. Few works have
utilized second-order information in decentralized settings
to accelerate convergence. In [29], the authors approximate
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the exact Newton step by utilizing the initial K + 1 terms
of the Taylor series expansion associated with the Hessian
matrix’s inverse. To achieve this, they represent the Hessian
matrix as the sum of two components, denoted as D and
A, where D corresponds to the diagonal elements, and A
corresponds to the off-diagonal elements. Additionally, they
leverage a mathematical expansion rule, expressed as (I −

Z)−1
=

∑
∞

j=0 Z
j, with Z = D−1/2AD−1/2 to represent

H−1. This approach allows them to approximate the Newton
step while considering a limited number of terms from the
expansion. However, it requires multiple exchanges of the
local directions to resemble the exact Hessian, which calls
for more communication rounds. Authors in [30] incorporate
the local Hessian in the update direction while tracking the
gradient. However, the local Newton direction may not be a
good estimate for the global one, which calls for additional
communication rounds to converge. Throughout this paper,
we will refer to both algorithms as Network Newton (NN)
and Newton Tracking (NT). Table 1 illustrates a comparison
with related algorithms. The comparison is in terms of the
communication overhead and storage requirements which
reflects the energy consumption as we’ll see in Section V.

An alternative to approximate Newton methods is the uti-
lization of quasi-Newton techniques that rely on gradients to
estimate curvature, avoiding the need for Hessian inverses.
Authors in [31] and [32] introduce a distributed adaptation
of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton optimization method. This approach focuses on
preserving the global secant condition and offers advantages
over Newton methods as it does not require Hessian com-
putation and is applicable to scenarios where gradients are
distributedly computable regardless of Hessian’s structure.
However, Quasi-Newton matrices are often dense, and for
problems with large model sizes, the storage and computa-
tion requirements associated with those dense Quasi-Newton
matrices can become prohibitive. Furthermore, despite these
algorithms relying on first-order information to estimate
the Hessian matrix, they necessitate the sharing of multiple
control vectors in addition to the local gradients, such as
the model and the neighborhood descent directions. This
inclusion introduces an additional overhead during each com-
munication round.

B. CONTRIBUTIONS AND OUTLINE
In this paper, we propose DIN, a novel second-order based,
decentralized, and communication-efficient FL scheme that
reduces the communication overhead per iteration and pre-
serves privacy by concealing the gradient and the Hessian.
DIN learns the inverse Hessian-gradient product along-
side the model. The problem of learning the inverse
Hessian-gradient product is formulated as a constrained opti-
mization problem and a framework based on Prox-PDA is
used to learn∇

2f (x)−1
∇f (x). In contrast toO(n2) in standard

Newton, each client in this step shares a model-sized vector,
yieldingO(n) communication complexity per iteration. Each
client updates its model utilizing the inexact Newton step
using the average estimates of the Newton direction received

from the neighboring clients. We extend a prior work [33]
and provide a detailed convergence analysis of DIN. Our
contribution can be summarized as follows

• We propose DIN, a communication and energy-efficient
decentralized FL framework that uses second-order
information to solve the consensus optimization prob-
lem. More specifically, we use the Prox-PDA [12]
algorithm to tackle the problem of learning the inverse-
Hessian-gradient product by decomposing the global
inverse-Hessian-gradient product learning function into
a sum of separable local functions. DIN does not require
clients to share their explicit gradient andHessianmatrix
at any iteration, resulting in a communication cost of
O(n) per iteration and privacy preservation.

• We prove convergence of DIN algorithm to an optimal
direction of Newton method under some assumptions in
Section. IV. The proof demonstrates that DIN converges
linearly and the optimality gap goes to zero.

• We conducted several experiments to solve the decen-
tralized logistic regression problem with real datasets
while capturing energy consumption. Numerical results
show that DIN outperforms NN and NT methods
under different network topologies and graph densi-
ties. We also show that DIN consumes less energy to
achieve the same optimality gap.

The paper is structured as follows. In Section II, we describe
the system model and problem formulation. In Section III,
we describe our proposed algorithm. Then, we conduct sev-
eral numerical experiments to compare the performance of
DIN with key baselines in Section V. Furthermore, we give a
conclusion of our work in Section VI, and finally, prove the
convergence of DIN in Appendices A-D.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a connected network consisting of N devices,
each having a local loss function fi : Rd

→ R, assumed
to be a convex and second-order differentiable, known only
to device i. The devices are connected through a graph
G = {V, E}, where V and E are the node and edge sets,
respectively. Devices collaborate to minimize the empirical
loss/risk, i.e., the average of their local objective functions,
to learn a common model, x ∈ Rd . Every device i can
only communicate with its immediate neighbors, defined as
Ni = {j|(i, j) ∈ E}, with |Ni| = δi denote the cardinality
of its neighbor set. Specifically, the devices’ goal is to find
the model that solves the following learning problem in a
decentralized manner

(P1) min
x∈Rd

f (x) =
1
N

N∑
i=1

fi(x). (1)

The starting point of our work is the Newton-like method
introduced in [34], which solves (P1) in the presence of a PS.
At iteration (k + 1), the Newton step update is given by

xk+1
=xk−

( 1
N

N∑
i=1

∇
2fi(xk )

)−1( 1
N

N∑
i=1

∇fi(xk )
)
, (2)
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TABLE 1. Communication overhead and storage requirements for decentralized consensus optimization algorithms to solve (1)

where ∇
2fi(·) ∈ Rd×d and ∇fi(·) are the Hessian and the

gradient of fi(·), respectively. For ease of notations, we define
Hk
i = ∇

2fi(xk ) and gki = ∇fn(xk ) as the Hessian matrix and
the gradient vector of device i evaluated at xk , respectively.
We also define the network Hessian and gradient as

H̄
k

=
1
N

N∑
i=1

Hk
i and ḡk =

1
N

N∑
i=1

gki . (3)

Hence, we can write the step in (2) as follows

xk+1
= xk − (H̄

k
)−1ḡk . (4)

Note that (4) can be implemented if every device has access to
the average of all gradients and all Hessians evaluated at xk .
However, this update cannot be implemented in a decentral-
ized way since every device can only exchange information
with a limited number of neighbors; thus it cannot obtain
ḡk and H̄

k
. Before we present our algorithm, we start by

introducing matrices related to the network topology
• The degree matrix D̃ = diag[δ1, δ2, . . . , δN ], is a diag-
onal matrix containing the number of neighbors of each
device, i.e., the degree of the device i.

• The incidence matrix Ã with entries Ã(k, i) = 1 and
Ã(k, j) = −1 if k = (i, j) ∈ E with j > i.

• The signed and signless Laplacian matrices defined as
L̃− = Ã

T
Ã and L̃+ = 2D̃− L̃−, respectively.

We also define the extended versions of these matrices where
the extended definition is given by taking the Kronecker
product with the identity matrix, i.e., A = Ã⊗ Id .

III. PROPOSED ALGORITHM
Inspired by [26], we propose to replace the inverse Hessian-
gradient product, i.e., the term (H̄

k
)−1ḡk in (4), with an

approximate solution of the following optimization problem

dk = argmin
d∈Rd

1
2
dT H̄

k
d − dT ḡk . (5)

Specifically, when solving the problem in (5) at iteration k ,
we find the direction dk = (H̄

k
)−1ḡk . Nevertheless, the

solution to this problem in a decentralized manner is still not
possible. To this end, we reformulate the problem in (5) and
cast it as a decentralized optimization problem

(P2) (d⋆)k = argmin
{d i}Ni=1∈Rd

{
φk (d) =

N∑
i=1

φki (d i)

}
s.t. d i = d j, ∀ (i, j) ∈ E, (6)

Algorithm 1 Decentralized Inexact Newton (DIN)

1: Input: N , {fi(·)}Ni=1, ρ,K ,
2: Output: x, ∀i
3: Initialization: x0i , d

(−1)
i ,λ

(−1)
i , ∀i.

4: for k = 0, . . . ,K do
5: Every node in parallel
6: Computes its Newton direction using

dki = (Hk
i,αi )

−1

gki − λk−1
i + ρ

δid
k−1
i +

∑
j∈Ni

dk−1
j

.

7: Updates its dual variable via

λki = λk−1
i + ρ

δidki −

∑
j∈Ni

dkj

 .

8: Updates its local model using xk+1
i = xki − dki .

9: end for

where φki (d i) =
1
2d

T
i (H

k
i +αiId )d i−dTi g

k
i , {αi}

N
i=1 are hyper-

parameters that we introduce to make sure that the matrices
(Hk

i + αiId ) are invertible, and d = [d1, d2, . . . , dN ]T ∈

RNd the concatenation of the local directions. Note that the
inexact Newton direction, i.e., −(Hk

i + αiId )−1gki , is also
a valid descent direction [30], [35], [36]. For a given xki ,
solving (P2) exactly, i.e., until converging to (d⋆)k , comes
at a very high communication cost since devices need to
iterate and communicate their updates at each iteration until
convergence. In this work, we propose to perform a single
update at each outer iteration k to approximate the solution
of (P2) and reduce the communication cost. In what follows,
we elaborate on how the single pass update of the direction
d is done. Using these introduced notations, (P2) can be
re-written as

min
d∈RNd

φk (d)

s.t. Ad = 0 (7)

The augmented Lagrangian of (7) is given as

Lkρ(d, µ) = φk (d) + ⟨µ,Ad⟩ +
ρ

2
∥Ad∥

2, (8)

where ρ > 0 is a constant penalty parameter, and µ =

[µ1, µ2, . . . ,µN ]
T

∈ RNd is the concatenation of the dual
variables. Minimizing the augmented Lagrangian directly
leads to a solution that cannot be implemented in a decentral-
ized way. Instead, we leverage the Prox-PDA algorithm [12],
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which adds the proximal term ρ
2 ∥d − dk−1

∥
2
L+

. In this case,
the update of the primal variables, at iteration k , is given by
solving the following optimization problem [12]

min
d∈RNd

φk (d)+⟨µk−1,Ad⟩+
ρ

2
∥Ad∥

2
+

ρ

2
∥d−dk−1

∥
2
L+

. (9)

Using L− = ATA and 2D = L− + L+, we can write

min
d∈RNd

φk (d) + ⟨µk−1,Ad⟩ + ρdTDd − ρdTL+dk−1. (10)

Setting the derivative with respect to d to zero, we get

∇φk (dk ) + ATµk−1
+ 2ρDdk − ρL+dk−1

= 0. (11)

On the other hand, the update of µ, at iteration k , is given by

µk
= µk−1

+ ρAdk . (12)

Next, we define λ = ATµ and multiply both sides in (12) by
AT . Using the fact that L− = ATA, we get

λk
= λk−1

+ ρL−dk . (13)

Hence, the dual variable of the ith device is updated as

λk
i = λk−1

i + ρ

δidki −

∑
j∈Ni

dkj

 . (14)

Writing the update of the primal variable of the ith device
from (7), we get

∇φki (d
k
i )+λk−1

i +2ρδidki −ρ

δidk−1
i +

∑
j∈Ni

dk−1
j

=0.

(15)

Replacing the expression of ∇φk (dk ) and re-arranging the
terms, we can write

dki = (Hk
i,αi )

−1

gki −λk−1
i +ρ

δidk−1
i +

∑
j∈Ni

dk−1
j

 ,

(16)

where Hk
i,αi = Hk

i + (2ρδi + αi)Id . Finally, the local model
is updated using the local Newton direction as

xk+1
i = xki − dki . (17)

The details of our algorithm are summarized in Algorithm 1.

IV. CONVERGENCE ANALYSIS
This section examines the convergence of the proposed DIN
algorithm under the assumption that each function fi in (P1) is
both strongly convex and twice differentiable. Additionally,
we introduce the extended function φ that is defined as

φ(d) =
1
2
dT (H + 0)d − dT g. (18)

where 0 ∈ RNd×Nd , and H are block diagonal matrices
with ith blocks αiId , and ∇

2fi(xi), respectively. Furthermore,

φ is assumed to have an L-Lipschitz continuous gradient in d .
That is, for any d1, d2 ∈ RNd , we have

∥∇φ(d1) − ∇φ(d2)∥ ≤ L∥d1 − d2∥. (19)

Additionally, since αi is chosen such that (H + 0) is positive
definite,φ is strongly convexwith a parameterµ, andwe have

∥∇φ(d1) − ∇φ(d2)∥ ≥ µ∥d1 − d2∥. (20)

Lemma 1: From the definition of the function φ given
in (18), and the assumptions in (19), and (20), the following
inequality holds

µL
µ + L

∥dk − (d⋆)k∥2

+
µ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ (dk − (d⋆)k )T (∇φk (dk ) − ∇φk ((d⋆)k )). (21)

Proof: The proof details are deferred to Appendix A.
Using the definition of λ, we can write (11) as

∇φk (dk ) + λk−1
+ 2ρDdk − ρL+dk−1

= 0. (22)

The necessary and sufficient optimality conditions of the
inner problem in (6) at the k-th iteration are given by

A(d⋆)k = 0, (primal feasibility) (23)

∇φk ((d⋆)k ) + (λ⋆)k = 0. (dual feasibility) (24)

Lemma 2: For each iteration k of the DIN algorithm,
it holds that

λk
− λk−1

− ρL−(dk − (d⋆)k ) = 0, (25)

and

∇φk (dk ) − ∇φk ((d⋆)k ) + λk
− (λ⋆)k

+ 2ρDdk − ρL−dk − ρL+dk−1
= 0. (26)

Proof: The details of the proof are deferred to
Appendix B.

At this point, and considering the results in (40) and (41),
we can present our third Lemma which gives the condition on
ρ to ensure the convergence of the terms ∥dk − (d⋆)k∥2 and
∥µk

− (µ⋆)k∥2. To do so, we first define the vector u ∈ R2Nd

and G ∈ RNd×Nd as

u =

[
µ

d

]
, G =

[
I 0
0 2ρ2δminI

]
, (27)

where δmin is the minimum degree of the graph. Note that
the sequence uk combines the dual variable µk and primal
variable dk . Similarly, u⋆ is defined as the concatenation of
the optimal solutions (µ⋆)k and (d⋆)k . It is evident that ∥uk −

u⋆
∥
2
G can be decomposed into ∥µk

−(µ⋆)k∥2+2ρ2δmin∥dk−
(d⋆)k∥2.
Lemma 3: Let 1

2δmin
≤ ρ ≤

1
σmax(A)

. Then, the sequences

∥uk−1
− u⋆

∥
2
G − ∥uk − u⋆

∥
2
G of DIN satisfy

∥uk−1
− u⋆

∥
2
G − ∥uk − u⋆

∥
2
G

≥
2ρ

µ + L
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2
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FIGURE 1. Optimality gap of DIN compared to baselines in terms of the number of communication rounds for a
random topology using different datasets.

+ (2ρ2δmin − ρ)∥dk − dk−1
∥
2

+ ∥dk − (d⋆)k∥22ρµL
µ+L I+ρ2(1−ρσmax(A))L−

. (28)

where σmax(A) is the largest singular value of the extended
incidence matrix A.

Proof: The proof is provided in Appendix B where we
use the result derived in Lemma 1.

According to Lemma 3, it is evident that the sequence
∥µk

−(µ⋆)k∥2 converges, indicating that dk−(d⋆)k converges
at the same rate. In the subsequent theorem, we find that rate
and demonstrate that the sequence ∥µk

− (µ⋆)k∥2 converges
linearly.
Theorem 1: Assume γ > 1, and let σmin(A) denote the

smallest non-zero singular value of the extended incidence
matrix A. Additionally, recall the definitions of the vector u
and matrix G in (27). If the assumptions in (19) and (20) are
satisfied, then the sequence ∥µk

− (µ⋆)k∥2 produced by DIN,
stated in Algorithm 1, satisfies

∥uk − u⋆
∥
2
G ≤

1
1 + ζ

∥uk−1
− u⋆

∥
2
G, (29)

where the constant ζ is given by

ζ = min
{
2ρµσmin(A)
γL(µ + L)

,
(2ρδmin − 1)(γ − 1)σmin(A)

2γρδmax
,

µL
ρδmin(µ + L)

}
(30)

Proof: The proof can be found in Appendix D.
Theorem 1 demonstrates that the DIN descent direction,

dk , converges to the optimal Newton direction, d⋆, with a

linear rate of 1
1+ζ

. While this approach utilizes an inexact
Newton step, the guaranteed linear convergence ensures that
dk approaches the optimal descent direction d⋆ in every
iteration. To further establish the global convergence of DIN,
i.e., xk → x⋆, one can utilize the global convergence analysis
of inexact Newton methods in [35] and [37], which we leave
as a subject of future work.

V. NUMERICAL EVALUATION
In this section, we conduct numerical experiments to evaluate
the performance of our proposed algorithm DIN, against
first- and second-order algorithms, DGD, GTDGD, Network
Newton (NN) [29], and Newton Tracking (NT) [30], under
different network topologies. We consider a binary classifi-
cation problem using a regularized logistic regression.

A. EXPERIMENTAL SETUP
We consider the regularized logistic regression problem

min
x∈Rd

{f (x) :=
1
N

N∑
i=1

fi(x) +
η

2
∥x∥2}, (31)

where the local loss function fi(x) is defined as

fi(x) =
1
m

m∑
j=1

log (1 + exp (−bijaTij x)), (32)

{aij, bij}j=1,...,m denote the data points at the ith device (i ∈

{1, . . . ,N }), where m represents the number of data samples
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FIGURE 2. Optimality gap versus the number of communication rounds for geometric network topologies using
different datasets.

TABLE 2. Details of the datasets

of each device. A regularization parameter η > 0 is added to
avoid overfitting and chosen to be equal to 10−3.
We consider three real datasets: a9a and w8a which were

taken from LibSVM [38] and FHS heart disease dataset [39].
The data is evenly split between N workers, which are con-
nected with undirected edges of a given generated graph.
The number of features of each dataset and the number of
workers is depicted in Table 2. Two network topologies are
implemented in the experiments: a binomial graph with edge
creation probability p = 0.4, and a geometric graph with
distance d = 0.4.

The energy footprint of the ith device consumed during
training consists of two parts, computation and communica-
tion components. The computation component Ec consists
of the energy required to power up the hardware (e.g.,
CPUs, GPUs, Memories, etc.), while Et represents the energy
needed to transmit and receive bits between neighboring
devices [40]. The total energy consumed by device i after t
iterations can be written as

ET (t) = Ec(t) + Et (t), (33)

with

Ec(t) =

t∑
k=1

ekdevice,i and Et (t) =

t∑
k=1

∑
j∈Ni

b(dki )e
k
i,j, (34)

where ekdevice,i is the computation energy consumed by device
i to perform one iteration k , b(dki ) is the size of the inverse
Hessian-gradient product vector in bits, and eki,j is the energy
needed to transmit one bit from device i to neighbour j in the
k th iteration.

We conduct the experiment on an NVIDIA Jetson Dev
Board [41], and we monitor the energy efficiency and the car-
bon emission using eco2AI python library [42]. The devices
are randomly distributed over a 100 × 100 m2 area, and we
assume a digital communication link with a free-space path
loss channel model. Hence, the maximum achievable rate
R = B log2(1 +

Pt
d2i,jBN0

), where B is the bandwidth, Pt is

the transmission power, di,j is the distance between trans-
mitter i and receiver j, and N0 is the noise spectral density.
To find the maximum data rate between neighbouring devices
and the energy consumed for transmission, we assume each
device transmits at full power Pt = 100mW, B = 2MHz,
N0 = 10−9W/Hz, and a 32-bit representation of transmitted
elements.

To evaluate the performance of the aforementioned algo-
rithms, we plot the optimality gap f (x̄k ) − f (x⋆) as a
function of the number of communication rounds, where
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TABLE 3. Computation/communication energy costs and corresponding carbon footprints for the a9a dataset for a target optimality
gap 10−5

x⋆ and f (x⋆) are pre-computed using standard Newton’s
method until convergence and x̄k is the average model
at iteration k . For hyperparameters tuning, we pick the
parameters that lead to the best performance for each
algorithm.

B. PERFORMANCE COMPARISON
Fig. 1 illustrates the optimality gap as a function of number of
communication rounds in a decentralized network topology
with a connection probability p = 0.4. We observe from
Fig. 1 that DIN is the fastest, followed by NT, NN, GTDGD,
and DGD for the three datasets. We clearly see in Fig. 1-(a-c)
that DIN reaches the optimality gap of 10−5 within at least
50 communication rounds earlier than the fastest baseline
(NT) for a9a and w8a datasets, and still reaches optimality
gap of 10−4 earlier than (NT) for the FHS dataset. Since
each algorithm has the same communication overhead per
round, DIN is the most communication/energy efficient one;
thanks to the fast convergence in terms of the number of
communication rounds.

In Fig. 2, we investigate the performance of DIN with
geometric network topology, in which every two devices are
connected if they are located within a normalized distance
d = 0.4. Each subfigure plots the optimality gap with respect
to the number of communication rounds for the different
datasets: a9a, w8a, and FHS.We observe from Fig. 2(a-c) that
DIN converges faster than the considered baselines, although
there is a degradation in the convergence speed compared to
the random topology, as seen in Fig. 1, due to the increased
sparsity of the network.

C. ENERGY-EFFICIENCY AND CARBON FOOTPRINT
In table 3, we report the energy consumption and the carbon
footprint required by the four algorithms to achieve a 10−5

optimality gap using the a9a dataset. We observe that DGD’s
total energy consumption is the highest, and so is its carbon
footprint. Although DGD is computationally less expensive,
it requires a very large number of communication rounds
to achieve the target optimality gap inducing high commu-
nication energy cost. On the other hand, NN consumes the
highest computation energy since NN performs two matrix
inversion operations in each communication round. Finally,
DIN requires lower energy for both computation and com-
munication due to its fast convergence while performing
a single matrix inversion operation in each communication
round.

FIGURE 3. Effect of the network density on the DIN performance
for the a9a dataset.

D. IMPACT OF THE GRAPH DENSITY
Finally, we investigate the effect of the graph density on
the convergence speed of DIN. We use four topologies: the
line graph, random graphs with p ∈ {0.3, 0.5}, and the
complete graph using a9a dataset. The hyperparameters α and
ρ are tuned to give the fastest convergence. Fig. 3 shows the
optimality gap versus the number of communication rounds.
We observe that the complete graph gives the fastest speed,
whereas the line graph yields the slowest convergence among
all topologies. Furthermore, when p = 0.5, DIN still achieves
a comparable performance to the complete graph case indi-
cating that DIN is still applicable in networks with limited
connectivity.

VI. CONCLUSION
This paper presents a decentralized FL algorithm based on
inexact Newton’s method. Each client updates its model uti-
lizing an approximate of the global inverse Hessian gradient
product, which is calculated using its local function/data
and shared approximate directions of its neighbors. By per-
forming one Prox-PDA step, the proposed approach avoids
sharing the Hessian of the device and thus ensures privacy.
Furthermore, by only sharing a model-sized vector, DIN has
the same per iteration communication efficiency as first-order
methods, yet it is shown to be much faster and more energy-
efficient. Numerical results show the supremacy of DIN over
existing decentralized algorithms such as DGD, NN, and NT
in solving the logistic regression problem. The convergence
analysis shows that DIN the learned direction converges to
the exact Newton direction. The utilization of quantization
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for DIN and its applicability to non-convex settings are left
as future work.

APPENDICES
A. PROOF OF LEMMA 1
From the assumption in (19), and (20) the objective function
φk is strongly convex with a constant µ and has a Lipschitz
continuous gradient with a constant L. As a result of the
Lipschitz continuity assumption of the gradient of φk (dk ),
we can have
1
L

∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ (dk − (d⋆)k )T (∇φk (dk ) − ∇φk ((d⋆)k )) (35)

Furthermore, from the strong convexity of φ in d , we have

µ∥dk − (d⋆)k∥2

≤ (dk − (d⋆)k )T (∇φk (dk ) − ∇φk ((d⋆)k )) (36)

Multiplying (35) by µ, and (36) by L and summing both
inequalities, we find a lower bound for the inner product
(dk − (d⋆)k )T (∇φ(dk ) − ∇φ((d⋆)k ))

µL
µ + L

∥dk−(d⋆)k∥2+
µ

L(µ + L)
∥∇φk (dk )−∇φk ((d⋆)k )∥2

≤ (dk − (d⋆)k )T (∇φk (dk ) − ∇φk ((d⋆)k )) (37)

B. PROOF OF LEMMA 2
Consider the feasibility condition in (23), we notice that the
optimal solution (d⋆)k = [(d⋆)k , (d⋆)k , . . . , (d⋆)k ]T lies in
null{L−}. Thus we have

ρL−(d⋆)k = 0 (38)

Subtracting the equations (24) and (38) from (11) we obtain

∇φk (dk ) − ∇φk ((d⋆)k ) + λk−1
− (λ⋆)k + 2ρDdk

− ρL−(d⋆)k − ρL+dk−1
= 0. (39)

Rearranging the terms in (14) and using (38), we have

λk
− λk−1

− ρL−(dk − (d⋆)k ) = 0 (40)

Substituting the term λk−1 into (39), we obtain

∇φk (dk ) − ∇φk ((d⋆)k ) + λk
− (λ⋆)k + 2ρDdk

− ρL−dk − ρL+dk−1
= 0. (41)

Finally, using 2D = L− + L+, we can write (26) as

∇φk (dk ) − ∇φk ((d⋆)k ) + λk
− (λ⋆)k

+ ρL+(dk − dk−1) = 0. (42)

C. PROOF OF LEMMA 3
According on the result in (42), we can replace the term
∇φk (dk )−∇φk ((d⋆)k ) in the left hand side of (37) by−(λk

−

(λ⋆)k ) − ρL+(dk − dk−1) to get

µL
µ + L

∥dk − (d⋆)k∥2

+
µ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ −(dk − (d⋆)k )T
(
λk

− (λ⋆)k
)

− ρ(dk − (d⋆)k )TL+(dk − dk−1) (43)

Using the fact that λk
= ATµk , we can write (40) as

1
ρ
(µk

− µk−1)T = (dk − (d⋆)k )TAT (44)

Substituting (44) in (43) and multiplying both sides by 2 we
have

2ρµL
µ + L

∥dk − (d⋆)k∥2

+
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ −2(µk
− µk−1)T (µk

− µ⋆)

− 2ρ2(dk − (d⋆)k )TL+(dk − dk−1) (45)

Knowing that for any three vectors a, b, and c we can write

2(a− b)T (a− c) = ∥a− b∥2 + ∥a− c∥2 − ∥b− c∥2 (46)

Setting a = µk , b = µk−1, and c = (µ⋆)k , we can write the
inner product 2(µk

− µk−1)T (µk
− µ⋆) as ∥µk

− µk−1
∥
2
+

∥µk
− (µ⋆)k∥2 − ∥µk−1

− (µ⋆)k∥2

2ρµL
µ + L

∥dk − (d⋆)k∥2

+
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ −∥µk
− µk−1

∥
2
− ∥µk

− (µ⋆)k∥2 + ∥µk−1
− (µ⋆)k∥2

− 2ρ2(dk − (d⋆)k )TL+(dk − dk−1) (47)

To begin with, let’s simplify the last term (dk −

(d⋆)k )TL+(dk − dk−1) by expressing L+ as 2D− L−.

(dk − (d⋆)k )TL+(dk − dk−1)

= 2(dk − (d⋆)k )TD(dk − dk−1)

− (dk − (d⋆)k )TL−(dk − dk−1)

= 2(dk − (d⋆)k )TD(dk − dk−1)

−
1
ρ
(λk

− λk−1)T (dk − dk−1) (48)

Now using the identity in (46), we can expand (48) further
given that a = 0

(dk − (d⋆)k )TL+(dk − dk−1)

= 2(dk − (d⋆)k )TD(dk − dk−1)

−
1
2ρ

∥λk
− λk−1

∥
2
−

1
2ρ

∥dk − dk−1
∥
2

+
1
2ρ

∥(λk
− λk−1) − (dk − dk−1)∥2 (49)

Substituting (49) in (47) we can write it as

2ρµL
µ + L

∥dk − (d⋆)k∥2

+
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ −∥µk
− µk−1

∥
2
− ∥µk

− (µ⋆)k∥2 + ∥µk−1
− (µ⋆)k∥2
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− 4ρ2(dk − (d⋆)k )TD(dk − dk−1) + ρ∥λk
− λk−1

∥
2

+ ρ∥dk − dk−1
∥
2
− ρ∥(λk

− λk−1) − (dk − dk−1)∥2

(50)

Furthermore, we can expand the term −4ρ2(dk −

(d⋆)k )TD(dk − dk−1) in (50) following the same way

− 4ρ2(dk − (d⋆)k )TD(dk − dk−1)

≤ −4ρ2δmin(dk − (d⋆)k )T (dk − dk−1)

= −2ρ2δmin

(
∥dk − (d⋆)k∥2 + ∥dk

−dk−1
∥
2
− ∥dk−1

− (d⋆)k∥2
)

(51)

Finally, substituting (51) in (50), we can have the following

2ρµL
µ + L

∥dk − (d⋆)k∥2 +
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ −∥µk
− µk−1

∥
2
− ∥µk

− (µ⋆)k∥2 + ∥µk−1
− (µ⋆)k∥2

− 2ρ2δmin∥dk − (d⋆)k∥2 − 2ρ2δmin∥dk − dk−1
∥
2

+ 2ρ2δmin∥dk−1
− (d⋆)k∥2 + ρ∥λk

− λk−1
∥
2

+ ρ∥dk − dk−1
∥
2 (52)

We can write the term ∥λk
−λk−1

∥
2 using (44) as ∥AT (µk

−

µk−1)∥2 which has an upper bound of σmax(A)∥µk
−

µk−1
∥
2,where σmax(A) is the largest singular value of the

extended incidence matrix A and by regrouping the terms in
(52) we have

2ρµL
µ + L

∥dk − (d⋆)k∥2 +
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ ∥µk−1
− (µ⋆)k∥2 − ∥µk

− µk−1
∥
2
(1−ρσmax(A))I

− ∥µk
− (µ⋆)k∥2

− 2ρ2δmin∥dk − (d⋆)k∥2 + 2ρ2δmin∥dk−1
− (d⋆)k∥2

− (2ρ2δmin − ρ)∥dk − dk−1
∥
2 (53)

Using the definition of the variables u and G in (27), we can
express ∥µk−1

− (µ⋆)k∥2−∥µk
−µk−1

∥
2
+2ρ2δmin∥dk−1

−

(d⋆)k∥2 − 2ρ2δmin∥dk − (d⋆)k∥2 by ∥uk−1
− u⋆

∥
2
G − ∥uk −

u⋆
∥
2
G. Furthermore, the term ∥µk

−µk−1
∥
2
(1−ρσmax(A))I can be

written as ∥dk − (d⋆)k∥2
ρ2(1−ρσmax(A))L−

using (44). Finally,
we can rewrite (53) as

2ρµL
µ + L

∥dk − (d⋆)k∥2 +
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

≤ ∥uk−1
− u⋆

∥
2
G − ∥uk − u⋆

∥
2
G − (2ρ2δmin − ρ)∥dk

− dk−1
∥
2
− ∥dk − (d⋆)k∥2

ρ2(1−ρσmax(A))L−
(54)

By rearranging the terms in (54), we get a lower bound for
the difference ∥uk−1

− u⋆
∥
2
G − ∥uk − u⋆

∥
2
G,

∥uk−1
− u⋆

∥
2
G − ∥uk − u⋆

∥
2
G

≥
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

+ (2ρ2δmin − ρ)∥dk − dk−1
∥
2

+ ∥dk − (d⋆)k∥22ρµL
µ+L I+ρ2(1−ρσmax(A))L−

(55)

D. PROOF OF THEOREM 1
The result in (55) provides a lower bound for ∥uk−1

−

u⋆
∥
2
G − ∥uk − u⋆

∥
2
G. We need to show that for a posi-

tive constant ζ we have ∥uk−1
− u⋆

∥
2
G − ∥uk − u⋆

∥
2
G ≥

ζ∥uk − u⋆
∥
2
G. Therefore the inequality ∥uk − u⋆

∥
2
G ≤

1
1+ζ

∥uk−1
− u⋆

∥
2
G is satisfied if we can show that the

lower bound in (55) is greater than ζ∥uk − u⋆
∥
2
G or we

write

ζ∥µk
− µ⋆

∥ + 2ζρ2δmin∥dk − (d⋆)k∥

≤
2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

+ (2ρ2δmin − ρ)∥dk − dk−1
∥
2

+ ∥dk − (d⋆)k∥22ρµL
µ+L I+ρ2(1−ρσmax(A))L−

(56)

To show that the inequality in (55) holds for some
ζ > 0, we need to first find an upper bound for
the squared norm ∥µk

− u⋆
∥ in terms of ∥dk − (d⋆)k∥

and ∥∇φk (dk ) − ∇φk ((d⋆)k )∥2 in the right-hand side
of (56). Observing the definition of λk as ATµk we can
write

∥AT (µk
− (µ⋆)k )∥ ≤ σmin(A)∥µk

− (µ⋆)k∥ (57)

Furthermore, Considering the expression in (26) and (57) we
can show that the term ∥µk

− (µ⋆)k∥ is bounded from above
by

∥µk
− (µ⋆)k∥2 ≤

γ

σmin(A)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

+
2γρ2δmax

(γ − 1)σmin(A)
∥(dk − dk−1)∥2.

(58)

where γ > 1 is a tuning parameter. For (42) to satisfy the
inequality in (56), we need to show that,

2ρµ

L(µ + L)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

+ (2ρ2δmin − ρ)∥dk − dk−1
∥
2

+ ∥dk − (d⋆)k∥22ρµL
µ+L I+ρ2(1−ρσmax(A))L−

≥
ζγ

σmin(A)
∥∇φk (dk ) − ∇φk ((d⋆)k )∥2

+
2ζγρ2δmax

(γ − 1)σmin(A)
∥(dk − dk−1)∥2

+ 2ζρ2δmin∥dk − (d⋆)k∥. (59)

To ensure that (59) holds and consequently enable (56),
we simply need to make sure the existence of
ζ > 0

2ρµ

L(µ + L)
≥

ζγ

σmin(A)
, 2ρδmin − 1 ≥

2ζγρδmax

(γ − 1)σmin(A)
,

2ρµL
µ + L

I + ρ2(1 − ρσmax(A))L− ≽ 2ζρ2δmin

(60)
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To satisfy the condition in (60), we choose ζ as

ζ = min
{
2ρµσmin(A)
γL(µ + L)

,
(2ρδmin − 1)(γ − 1)σmin(A)

2γρδmax
,

µL
ρδmin(µ + L)

}
(61)

which guarantees that

∥uk − u⋆
∥
2
G ≤

1
1 + ζ

∥uk−1
− u⋆

∥
2
G (62)
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