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ABSTRACT This paper proposes two energy-efficient reinforcement learning (RL)-based algorithms for
millimeter wave (mmWave)-enabled unmanned aerial vehicle (UAV) communications toward beyond-5G
(B5G). This can be especially useful in ad-hoc communication scenarios within a neighborhood with
main-network connectivity problems such as in areas affected by natural disasters. To improve the system’s
overall sum-rate performance, theUAV-operatedmobile base station (UAV-MBS) can harness non-orthogonal
multiple access (NOMA) as an efficient protocol to grant ground devices access to fast downlink connections.
Dynamic selection of suitable hovering spots within the target zone where the battery-constrained UAV
needs to be positioned as well as calibrated NOMA power control with proper device pairing are critical
for optimized performance. We propose cost-subsidized multiarmed bandit (CS-MAB) and double deep
Q-network (DDQN)-based solutions to jointly address the problems of dynamic UAV path design, device
pairing, and power splitting for downlink data transmission in NOMA-based systems. To verify that the
proposed RL-based solutions support high sum-rates, numerical simulations are presented. In addition,
exhaustive and random search benchmarks are provided as baselines for the achievable upper and lower
sum-rate levels, respectively. The proposed DDQN agent achieves 96% of the sum-rate provided by the
optimal exhaustive scanning whereas CS-MAB reaches 91.5%. By contrast, a conventional channel state
sorting pairing (CSSP) solver achieves about 89.3%.

INDEX TERMS NOMA resource control, reinforcement learning, UAV emergency communications.

I. INTRODUCTION

BEYOND 5G (B5G) and 6G cellular networks face
design challenges due to their increased requirements

on massive connectivity and communication speeds [1],
[2], [3], [4], [5], [6], [7]. This can be particularly press-
ing in zones stricken by disasters where the primary base

stations (BSs) infrastructure is momentarily out of com-
mission owing to sustaining severe or mild impairment.
In such scenarios, ad-hoc intervention based on dispatched
unmanned aerial vehicles (UAVs) can allow for a quick and
suitable remedy to maintain adequate coverage and provide
high-speed, reliable wireless connections to offload downlink
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data to appropriately activated receivers within the afflicted
region [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. The mobile UAV base stations (UAV-MBSs) can there-
fore play the pivotal role of rapidly dispatched mobile BSs
within certain target regions.

Incorporating mmWaves into UAV-based transmissions
can provide vital advantages to the communication sys-
tem. The huge bandwidth resources provided by mmWaves
can help the UAV-mounted BS to support high-speed com-
munications as well as flexible coverage [19], [20]. For
example, the authors in [19] have studied UAV-mounted
BSs to support dynamic rerouting for reconfigurable back-
hauls operating over mmWaves bands. In [20], the authors
proposed a beamforming technique to support flexible cov-
erage within target zones by exploiting mmWave-enabled
UAV transmissions. Moreover, the availability of the line-
of-sight (LOS) component in UAV-based systems is suitable
for mmWaves-based communications aiming to reach high
gains [21], [22].

On the other hand, non-orthogonal multiple access
(NOMA) downlink protocol is an efficient multiplexing can-
didate approach for the UAV-MBS to utilize to satisfy the
connectivity and transfer speeds requirements set forth for
B5G and 6G wireless systems. Contrary to conventional
orthogonal multiple access, NOMA-based transmissions are
preferred because they have been demonstrated to offer better
overall performance through stacking the data of multiple
receiving devices (RDs) using a unified resource block (RB)
design, wherein jointly-multiplexed devices would enjoy a
larger transmission bandwidth as well as more frequent
scheduling [23], [24], [25], [26], [27], [28]. Data frames
conveying information of multiplexed receivers are sent over
the unified RB at varying levels of transmission power to
enable each device to successfully recover its own intended
data by applying successive interference cancellation (SIC)
to sequentially retrieve then remove the messages within
the received NOMA stack until it extracts its intended mes-
sage signal [29]. Energy-efficient planning of the dispatched
UAV-MBS flying course throughout the entire communica-
tion period is imperative so that the UAV’s battery use is
optimized. In addition, it is of critical importance to optimize
the continuous adaptation of various allocated power portions
within a maximum allowable budget of available transmis-
sion power as well as the dynamic activation of the receiving
devices to reap as much of the promised performance of
NOMA-based operation as possible [30], [31]. Moreover,
making proper choices regarding the selection of appropriate
receiving devices to add to a certain NOMAmessage stack is
important to attain boosted sum-rate levels [32]. In addition,
each time the UAV moves position, power allocation and
device pairing need to be re-optimized, resulting in a surge in
complexity and energy consumption. This is not acceptable
especially when coupled with the UAV’s limited battery life.

The aforementioned challenges have not been sufficiently
addressed to the best of our knowledge. Recently, reinforce-
ment learning (RL)-based methods have been attracting the

attention of the research community due to their effective-
ness and inherent flexibility in dealing with highly dynamic
sequential decision problems. In this paper, we present two
proposed algorithms based on the powerful RL framework to
address the joint issue of energy-efficient dynamicUAV-MBS
path design, receiving device activation, and transmit power
distribution for high-speed NOMA-UAV-based downlink
wireless communications. In particular, multiarmed bandit
(MAB) and double deep Q-network (DDQN) RL agents
are employed to leverage their highly adaptable nature to
handle various dynamic and complex models. For the pro-
posedMAB approach, we consider the two variants: minimax
optimal stochastic strategy (MOSS) and upper confidence
bound (UCB), for their simple yet effective deployment.
For the DDQN-based algorithm, the RL agent training can
be carried out offline where the agent engages in multiple
interactions with the UAV-NOMA environment model before
it is dispatched for operational deployment. The DDQN RL
agent learns an effective, deep neural network (DNN)-based
strategy and uses it to determine the appropriate projections
of the environment’s subsequent states onto a series of deci-
sions yielding high returns in the long term. On the other
hand, noDNNs are incorporated in theMAB-based approach,
which is deployed directly to make on-the-fly online deci-
sions while aiming to attain adequate performance in terms of
the achievable total data rate level through the dynamic selec-
tion of various allowable actions according to their varying
levels of some appropriate fitness criteria to determine their
effective utilities. The utility of making various decisions are
updated continuously over the communication time horizon.

The main contributions of this work are:
• We propose two RL-based schemes for energy-efficient
UAV trajectory course planning and joint downlink
NOMA power allocation and receiver selection. Both
schemes are operated within battery-constrained UAV-
NOMA environments with dynamic wireless channels.

• The DDQN RL agent is trained to absorb the under-
lying characteristics of the UAV-NOMA environment
within the DNN it uses to implement its action-selection
policy. We define the appropriate UAV-NOMA states,
actions, and rewards so that the trained agent can
achieve energy-efficient, near-optimal sum-rate perfor-
mance when deployed for operation.

• The MAB-based agent is configurable with either
CS-UCB or CS-MOSS operation modes and can learn
to quickly converge to a highly-rewarding long-term
operation policy by scanning the search space while
balancing the exploration-vs-exploitation issue through
the dynamic evaluation of various arms’ utilities. The
agent makes on-the-fly decisions and update them as
needed.

• We operate and test the proposed solutions within
mmWave-enabled UAV-NOMA environments having
LOS signals of variable strength.

• The proposed DDQN and CS-MOSS RL agents reached
96% and 91.5% of the ergodic sum-rate provided by
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the exhaustive solver whereas the conventional chan-
nel state sorting pairing (CSSP) solver reached 89.3%.
Moreover, considerable energy savings of at least 91%
were achieved by the proposed agents while supporting
the same transfer speed as CSSP.

II. RELATED WORK
Pairing NOMA receiving devices optimally for downlink
transmissions generally requires a complete scan exhausting
all possible groupings. However the computational burden
of such a brute force approach is huge which deems the
application of the optimal solver unrealistic from a practi-
cal standpoint [32]. Numerous strategies were devised for
the appropriate grouping of receiving devices over unified
NOMARBs. Famous benchmarks include the random group-
ing algorithm (RGA), which samples the action space using
a uniform random decisioning strategy, and channel-state
grouping (CSG) [33], wherein strong nodes (i.e., devices
with boosted channel conditions) are grouped with weaker
nodes (i.e., devices with attenuated channel conditions). The
authors in [34] developed a technique leveraging unsuper-
vised learning for node clustering wherein they developed an
algorithm based on expectation maximization by harnessing
spatial correlative patterns among different nodes to solve the
device grouping problem.

Although optimized distribution of the power available for
signal transmission over receivers multiplexed on a given RB
can be attained for power-domain NOMA systems using the
technique outlined in [35], optimized operation results can
be accomplished only by considering the joint problem of
device grouping and power distribution, a taxing NP-hard
problem [31]. Upon handling the problem in [31], the authors
devised an allocation scheme that operates suboptimally by
constructing a correlation structure for the downlink chan-
nels, and then deploying difference of convex optimization to
distribute the available power. With a focus on reducing the
amount of power consumption, the work in [36] leveraged
the sparse nature associated with NOMA power distribution
to formulate a convex-relaxed version of the power distri-
bution and user grouping problem. However, the presented
technique incurs high computational demand to solve the
formulated string of problems. A relaxed version based on
l1-norm characterization is formed in [30] for the joint prob-
lem of power distribution and device grouping, wherein the
authors applied a solution method based on compressive
sensing.

Although the above body of research work handles the
problem of NOMA user grouping and power distribution
for a variety of conventional wireless communication sce-
narios, it fails to accommodate less common yet important
mission-critical scenarios such as emergency-oriented com-
munications wherein an effective and reliable transmission
system which can be quickly deployed is needed. For exam-
ple, in [37], the authors considered a cloud computing
environment where computation tasks of mobile users are
offloaded to a moving UAV, with an energy minimization

objective with QoS constraints. However, NOMA user pair-
ing and power splitting optimization was not considered.
In [38], a joint optimization of course planning, device
scheduling, and ground users’ transmission power is accom-
plished for an uplink NOMA data collection system to
minimize the total flight time of the UAV. However, downlink
NOMA sum-rate maximization and UAV energy consump-
tion optimization were not considered. In [39], the authors
presented a joint UAV trajectory planning and user schedul-
ing algorithm for downlink NOMA sum-rate maximization.
However, dynamic NOMA transmit power splitting and UAV
energy optimization were not considered. Other possible
use cases include dispatching UAV-mounted mobile BSs to
blackout sites where receiving devices are disconnected from
the main servicing infrastructure. To incorporate this need,
an emergency network UAV-aided framework is developed
in [8] for operation in disaster zones. The scheduling and tra-
jectory of UAV-MBSs are firstly designed to support wireless
coverage to the receiving devices on the ground. Afterwards,
to expand the UAV-MBSwireless service domain, the authors
formed a ground-based multi-hop D2D system and studied
the UAV-MBS transceiver design. However, the generic sys-
tem presented in [8] does not account for NOMA resource
management optimization. To address this point, the authors
in [9] established a UAV-assisted framework for NOMA-
based emergency communications. The proposed scheme
started by establishing a UAV-active uplink line to collect
information relevant to the IoT devices within the areas under
emergency operation. Subsequently, to support coverage for
IoT users, a joint power management and UAV dispatching
scheme is proposed. However, downlink NOMA user group-
ing is not considered. To handle this issue, the work presented
in [40] combines both NOMA power distribution and user
grouping with UAV-MBS path design and optimizes the oper-
ation jointly with a sumrate-maximization objective in mind.
However, energy-efficient operation is not guaranteed since
battery-aware design is not considered.

In this paper, we consider energy-driven design of the joint
problem of dynamic UAV-MBS path planning and down-
link NOMA user grouping and power association where
battery-constrained operation is taken into account and opti-
mized routing is accomplished through the deployment of
the proposed RL-based frameworks where the RL agents
are aiming to maximize the total rate while operating in
a battery-constrained mode for energy-efficient UAV-MBS
deployment.

III. SYSTEM MODEL & PROBLEM FORMULATION
Consider a downlink UAV-MBS-based system operating via
NOMA protocol to offload information data to a group of
wireless receiving devices as illustrated in Fig. 1. Applica-
tion scenarios for such a UAV-based communication system
include deployment in emergency cases (e.g., environments
affected by a natural disaster [8], [9]) where ground users
are experiencing connection issues due to temporary damage
of the nearby BS as depicted in Fig. 2. In this case, the
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FIGURE 1. NOMA-UAV-MBS system model.

FIGURE 2. NOMA-UAV-MBS emergency environment.

serving UAV-MBS can offload emergency communications
data to ground users via a multi-hop UAV relay chain or by
utilizing HAPS link communications. Another practical use
case is to establish temporary hotspot communication links
for suburban or rural environments [41]. These non-terrestrial
based use cases are an integral part of B5G and 6G net-
works [2], [42]. Initially, the transmitting UAV-MBS begins
at some arbitrary position (e.g., center of the flying zone).
The coverage area is split into multiple small regions of
potential spots for hovering, with the blue circles marking
the hovering positions’ centers. The receiving devices are
scattered arbitrarily throughout the flying zone covered by
the UAV-MBS. To optimize the rate of transferring data,
the UAV-MBS transmitter must carefully select the receiving
devices to activate and offload data to, as well as allocate
the available transmit power efficiently. In addition, energy-
efficient dynamic course planning is important to position the
UAV-MBS in an optimized manner across all the allowable
hovering spots so as to accommodate and account for the
evolving nature of the various wireless links while avoiding
rapid depletion of the UAV’s battery. In this work, we assume
that the UAV-MBS is capable of predetermining its own
location within the flying zone.1 We also assume that the
channel-state information (CSI) is available at the UAV-MBS
side, which can be accomplished via CSI broadcasting by the
ground users over control channels. It is worth mentioning
that the operation of the proposed agents does not require the

1This is typically accomplished through a global navigation satellite sys-
tem (GNSS). However, if the GNSS is unavailable or more precise location
information is needed, then other techniques may be used (e.g., integrating
ultra-wideband (UWB) technology with LiDAR-based range finders) [43].

UAV mobile BS to have explicit knowledge of the ground
users’ locations. CSI availability is sufficient for the proposed
RL agents to operate. Alternatively, if the reward feedback
information is readily available, the MAB agent can estimate
the proper action and navigate the zone accordingly. Since
downlink NOMA protocol [23] is utilized, the information
offloaded to the activated receiving devices is sent over uni-
fied RBs where the corresponding total rate attained by the
selected devices may be expressed as

R =
D∑
d=1

W log2

(
1+

pdgd∑d−1
i=1 pigd + σ 2

)
, (1)

where, without loss of generality, we assume a descending-
order CSI (gain information) between the UAV-MBS and the
receiving devices: g1 > g2 > · · · > gD. The channel gain, gd ,
of the d-th activated device is based on the small-scale Rician
fading in Eq. (3) and the distance-dependent large-scale
effects in Eq. (18). W represents the available transmission
bandwidth, and σ 2 represents the variance of the zero-mean
additive white Gaussian noise. pd is the portion of the trans-
mission power that the UAV-MBS allocates to the signal of
the d-th selected receiving device. Under the assumption of
a total number of K candidate receiving devices, we have
d ∈ {1, 2, . . . ,D}, where D < K represents the number
of information streams offloaded via the downlink NOMA
multiplexing protocol.

We assume that the UAV’s battery has a finite capacity of χ
energy units (EUs) and that the battery energy level decreases
linearly as a function of the traveled distance according to

L(i) = χ −

i∑
j=1

η Z (j)− Eh , (2)

where L(i) denotes the UAV’s battery level at time step i
and Z (j) is the distance traveled at step j, j = 1, 2, . . . , i.
η is the energy expense per unit distance. The second term
represents the energy consumed to move the UAV around
the flying zone. Eh is the hovering energy consumed to keep
the UAV in air. Although the UAV will consume energy to
remain in air during the entire communication period, this
consumed energy will be common among competing solvers
for a given service duration. Therefore, the surplus energy
consumed to move the UAV around within the coverage zone
will be the main differentiating factor for optimizing the total
energy consumption. The hovering energy will then represent
a minimum common threshold for the energy consumed, and
thus we focus on the extra energy required to move the UAV
throughout the flying zone since this can differ from one
solver to another based on the traversed flight trajectories.
Moreover, the energy consumed due to wireless transmission
during the service period will be the same for all solvers
and was consequently not included in the formulation of
the energy consumption that we aim to conserve. A fixed
transmission power budget, Pt , is customarily considered,
and the maximum achievable sum-rate is pursued. Although
such linear energy consumption models are simple, they can
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provide a fairly accurate representation of the energy con-
sumed to move the UAVwithin the flying zone and have been
verified empirically in the literature [44], [45], [46], [47].

We assume that the communication channel’s wireless link
between the UAV-MBS transmitter and the d-th candidate
receiving device is given by a Rician channel representation
to model the presence of the LOS signal. Therefore, the
channel link connecting receiving device d to the UAV-MBS
may be written as

ĝd =

√
Fr

Fr + 1
ḡd +

√
1

Fr + 1
g̃d , (3)

where ḡd denotes the LOS deterministic component which is
set to a typical value of 1 [41]. g̃d represents anNLOS random
component that follows the Rayleigh distribution. Fr denotes
the Rician channel parameter.

Dynamic spot selection for UAV-MBS adaptive hovering
throughout the flying zone is of paramount importance to
properly tune the effective wireless links connecting the
receiving devices to the UAV-MBS in a way that maxi-
mizes the collective acquired rate without expending the
UAV’s battery inefficiently. By changing the UAV-MBS loca-
tion, the wireless channel can then be controlled to combat
the interference and thus boost the effective SINR level at
the receiving devices, and consequently improve the sum-
rate [21], [48], [49]. Adjusting the UAV hovering location
within the service area is therefore important for the pro-
posed scheme to mitigate the effects of interference among
multiplexed NOMA users to maximize the achievable sum-
rate level. Consider for example a two-user NOMA downlink
transmission with SIC detection: the normalized sum-rate
is log2(1 +

p1g1
σ 2 ) + log2(1 +

p2g2
p1g2+σ 2 ). Here, the channel

gains, gd , d = 1, 2, are time-varying and depend on the
Tx-Rx separation distance. Therefore, by changing the UAV
Tx location, the channel gains can be adjusted to maximize
the sum-rate level. Moreover, changing the UAV’s location
can be useful for situations where blockers are present in
the environment around stationary users. In this case, the
UAV can change its location to achieve a LOS link to the
ground user and provide better connectivity. In addition, care-
ful activation of receiving devices as well as proper splitting
of the UAV-MBS transmission power among the selected
devices must be adjusted dynamically to provide and sustain
high operational performance.We can therefore formulate the
objective problem as,

max
X ,Y ,D,pd

E
[∑D

d=1 W log2

(
1+ pdgd∑d−1

i=1 pigd+σ 2

)]
∑H

j=1 η Z (j)
(4)

s.t.

(
pd −

d−1∑
u=1

pu

)
gd−1
σ 2 ≥ µ ∀ d ∈ D, (c1)

D∑
d=1

pd = Pt , (c2)

EhH+
H∑
j=1

η Z (j) < χ, (c3)

Xmin ≤ X ≤ Xmax , Ymin ≤ Y ≤ Ymax , (c4)

D ⊂ K, (c5)
where the ergodic sum-rate in Eq. (4) is maximized with an
optimized UAV energy consumption over the service period
horizon,H. X and Y are the bounded coordinates of the serv-
ingUAV-MBS.D is the ordered subset of activated users from
the candidate set, K. Constraint (c1) ensures reliable SIC
detection of NOMA signals and is described in detail later in
Eq. (13). Constraint (c2) ensures the allocated NOMApowers
conform to the available transmit power budget of the serving
UAV-MBS. Constraint (c3) restricts the consumed energy
within the UAV’s battery capacity. Constraint (c4) ensures the
serving UAV-MBS will remain within the boundaries of the
coverage zone. Constraint (c5) ensures the activated NOMA
users are selected from the candidate user set.

IV. PROPOSED ALGORITHMS
This section presents RL solution methods based on
CS-MAB and DDQN to address the joint problem out-
lined earlier in section III. Although both methods share
the same underlying agent-environment interaction princi-
ple, they have distinctive features and operate on different
basic concepts: DDQN agents rely on DNNs to represent
their decision-making policy and can provide near-optimal
performance if environment-related information is collected
adequately during offline training sessions. MAB agents,
on the other hand, do not employ DNNs, and make on-the-
fly decisions through direct online deployment where they
adjust their decisions dynamically according to the rewards
received during a series of successive interactions with the
environment. Since no DNNs are present, MAB-based opera-
tion is generally less complex and simpler to implement than
its DDQN-based counterpart. It may, however, provide less
optimized performance than DDQN. It is worth mentioning
that these solving agents will reside at the UAV-MBS side.
Such AI-native operation of the communication system is
in line with the design principles of future B5G and 6G
networks [42].

A. DEEP RL-BASED OPERATION: Q NETWORK METHOD
Algorithm 1 outlines the proposed DDQN solution for the
joint UAV-MBS path design and NOMA device activation
and power allocation scheme. The fundamental operating
premise is to develop a successful strategy to transfer
sequential input environmental variables to highly reward-
ing decisions over the long run, which are reflected in the
cumulative rates acquired by active receiving devices. The
algorithm leverages the main Q-learning concept that maps
a given action A to a fitness Q-value when taken in a state L
by following some policy π according to

V π
q (L,A) = E[r1 + βr2 + β2r3 + . . . |A0 = A, L0 = L] ,

(5)
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where V π
q (L,A) denotes the mean discounted summation

of rewards acquired in a long-term sense. These rewards
are earned when, starting at some arbitrary state L0 = L,
action A0 = A is applied, then the subsequent state-action
path is dictated in accordance with the policy π . r1 denotes
the immediately-acquired reward and rl ∀ l > 1 represents
the rewards acquired subsequently during future states. β ∈

[0, 1] is a parameter to adjust the amount of discounting to
apply to balance r1 with future rewards.

A DDQN is used to provide Vq(L,A;9i), a configurable
parametric implementation of the value functionwhich can be
tuned to generate a good approximation of the optimal func-
tion V ∗q (L,A). A DNN is employed to store9i, the parameter
set used to generate the optimal strategy. DDQN RL agents
employ a separate set of parameters 9̄i to generate Yi which
provides a target for the training of 9i, the main strategy
set for the i-th agent-environment interactive exchange. The
learnable target is estimated as

Yi = ri + βV̂q(Li+1, argmax
A

Vq(Li+1,A;9i); 9̄i) , (6)

where themainDNNparameter set9i is reserved for decision
making whereas the assessment of the corresponding fitness
value is estimated through the target DNN, 9̄i. V̂q(.) repre-
sents the response generated by the target DNN.

1) NOMA-UAV-MBS: STATE & ACTION SPACES, AND
REWARDS
The state defining the environment of the NOMA-UAV-MBS
system is formed for the i-th interactive step as

Li = {g1(i), g2(i), · · · , gK (i),L(i)} , (7)

where gk (i) and L(i) represent the channel gain of the
k-th candidate and the UAV’s battery level at time step i,
respectively.

The action Ai applied by the proposed DDQN agent to
state Li is formed as

Ai = {X (i),Y (i), s1(i), s2(i), · · · , sK (i),

p1(i), p2(i), · · · , pK (i) } , (8)

where X (i) and Y (i) are the coordinates of the chosen UAV
hovering spot at the i-th step, whereas sk (i) = 1 is a binary
indicator denoting the selection of the k-th device and pk (i)
represents its corresponding transmission power portion allo-
cated by the UAV-MBS.

The immediate reward resulting from applying Ai in the
i-th interaction step to the environment can be expressed as

ri =
K∑
k=1

rk (i) , (9)

where the reward contribution of the k-th activated device is
evaluated as

rk (i) = log2 (1+ 0k (i)) , (10)

Algorithm 1 Proposed DDQN Agent for Joint UAV-MBS
Path Design and NOMA Device Activation and Power
Allocation.

– Set Pt , χ, g, µ, E, η, I , δ, αs, αf , γ, αd
– Initialize 9, 9̄ = 9, d = 1, α1 = αs, M = NULL
– While e ≤ E run the following episode:
• Set i = 1, L(i) = χ

• Initialize NOMA-UAV-MBS state Li
• While i ≤ I

1) Draw a random sample s from a uniform distribution U (0, 1):
If s ≤ αi ⇒ Pick decision Ai randomly. Else, Ai =

argmaxA Vq(Li,A;9).
2) IfAi does not conform to the QoS requirement (13):
∗ For k ∈ Vu, Vu ≡ set of violating devices, enforce (13) on Ai by

rectifying the allocated power portion for each active device in Vu:

pk =
µσ 2

gk−1
+

k−1∑
u=1

pu

∗ Normalize Tx power level of all active devices:

pd ←
pd∑D
u=1 pu

Pt

3) Execute Ai in the environment, then monitor its resulting state Li+1
and the UAV’s battery level L(i), and acquire the generated reward ri

4) Append (Li,Ai, ri,Li+1), the experience gathered through interac-
tion, to the memory unitM

5) Randomly pick an experience mini-batch (Lj,Aj, rj,Lj+1) from the
memoryM:
∗ Set A∗ = argmaxA Vq(Lj+1,A;9)
∗ Form the agent’s training target as

Yj = rj + 1[Lj ̸= Terminal]βV̂q(Lj+1,A∗; 9̄)

∗ Take a single gradient descent step on∑
j(Yj − Vq(Lj,Aj;9))2 w.r.t 9

6) If iModδ = 0:Adjust 9̄ softly using a smoothing parameter γ :

9̄ ← γ9 + (1− γ )9̄, 0 < γ < 1

7) If αf < αi:Reduce αi further to approach the final level αf through the
annealing factor αd :

αi+1 = αi(1− αd ), 0 < αd < 1

8) If L(i) ≤ (1− g)χ (i.e., UAV’s battery is depleted):
∗ Penalize the reward for battery draining:

ri = ri − ρ

∗ Mark state Li as Terminal, and set α1 = αi.
∗ End Episode

9) Increment iteration index: i← i+ 1
• end While
• Configure probability of randomized decisioning for the upcoming episode:

α1 = αI

• Advance episode: e← e+ 1
– end While

where
• 1[.] is the indicator function. E is the number of episodes and I is the maximum
number of iterations within an episode.
• αs is the initial probability of randomized decisioning, whereas αf represents
the final probability of picking an action in a random fashion during advanced
interactions.
• ρ is the penalty for battery draining and δ is a configurable controller to adjust
the target network’s update interval.
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with the ratio of desired signal power to the collective power
of interference and noise (SINR) evaluated as

0k (i) =
sk (i)pk (i)gk (i)∑k−1

u=1 su(i)pu(i)gk (i)+ σ 2
. (11)

The β-discounted total reward accumulated throughout an
interaction horizon I may therefore be expressed as

R(I ) = E[r1 + βr2 + β2r3 + · · · + βI−1rI ]. (12)

The proposed RL operation in Algorithm 1 is designed so
that the DDQN agent interacts continuously for E episodes,
each comprising up to I interactions with the NOMA-UAV-
MBS environment. The proposed agent aims to learn a
successful strategy that sequentially projects the environ-
ment’s states to a series of actions that maximize the total
long-run reward in (12). At the start, two identical random
instantiations of the parameter sets9 and 9̄ are generated for
the main and target DNN-based policies. The NOMA-UAV-
MBS environment is then subjected to a uniformly distributed
random action with probability αs. The decision is made with
probability 1 − αs depending on the existing DNN strategy,
9. Subsequently, the SIC-related QoS requirement for proper
detection, (

pd −
d−1∑
u=1

pu

)
gd−1
σ 2 ≥ µ , (13)

can be checked and, if necessary, enforced whenever the
action is not conforming to the condition. pd and µ respec-
tively denote the power portion allocated for active receiving
device d , d = 2, 3, . . . ,D, and a reliable detection threshold
for the SIC operation. The sum-rate immediate reward as well
as the next resultant NOMA-UAV-MBS system state can then
be buffered into an experience-gathering memory unit M
which collects important information relevant to the agent’s
ongoing interaction with the environment. The collected
information helps the agent to form a concrete set of expe-
riences which can be progressively fused and harnessed to
update the agent’s acting policy9 during each round of inter-
action. The buffering memory unit, M, is propagated with
training data objects taking the form of 4-tuple items each
consisting of a possible state of the environment, an associ-
ated action performed during that state, a resultant subsequent
state, and the reward collected from that interaction. A mini-
batch of random data items is fetched from the experience
memory unit for tuning and adjustment of the main policy
DNN toward the agent’s learnable target, Yj. In double DQN
operation, each training data item within the mini-batch is
used to compute a corresponding learnable value over a two-
step process: firstly, the training item’s next state information
is passed through the main DNN, 9, to find the action with
the associated highest Q-value. Secondly, the training item’s
immediate reward component is combined with the output
of the secondary DNN, 9̄, which corresponds to the action
selected in the first step. Although the main DNN parameter
set is updated at each interaction, the critic’s network, 9̄,

is smoothly updated in a periodic fashion every δ iterations.
To accomplish this soft update, a fractional smoothing factor,
γ ∈ (0, 1), is used to fuse the updated parameter set of the
main DNN with the current parameter set of the target DNN.

To optimize the operation for battery-aware decisioning,
at each interactive iteration, the agent’s inspect the status
of the UAV’s battery to determine whether to prematurely
halt the ongoing episode. If the UAV’s battery is drained
(i.e., L(i) ≤ (1 − g)χ , g is the battery drain percentage),
the agent’s reward is discounted by a configurable penalty
parameter, ρ. The agent then saves the current value of the
probability of making its decision on a random basis, αi,
to be used as the starting value, α1, for the next episode,
then the current episode is abruptly terminated, thus giving
the agent an incentive towards deciding in favor of actions
that, in the long run, do not drain the UAV’s battery rapidly.
Otherwise, towards the end of the interaction iteration, if the
current probability of executing a random decision is greater
than a preconfigured minimum end value, αf , then the prob-
ability is reduced through a controllable decay parameter,
αd . This probability reduction mechanism is gradual and
lasts for an amount of iterations controlled through αd to
allow the DDQN agent to build more confidence to follow
its developing internal strategy, 9, more frequently while it
absorbs more knowledge of the underlying characteristics of
the environment it is interacting with. Once the probability
reduction process halts, the agent subsequently maintains a
fixed level of αf for sampling decisions randomly throughout
all remaining interactions. It is worth mentioning that, from
a practical perspective, while the inference of the deployed
agent’s policy consumes additional energy, it is overwhelm-
ingly eclipsed by the energy consumed to keep flying the
UAV around within the service zone.

B. MULTIARMED BANDIT-BASED SOLUTION
Algorithm 2 outlines the proposed CS-MAB solution for
the joint UAV-MBS path design (deciding which coordi-
nates to choose for subsequent hovering positions within the
defined grid for UAV-MBS operation) and NOMA device
activation and power allocation scheme. The algorithm’s
deployment can be implemented via either CS-MOSS or CS-
UCB options. The UAV-MBS player starts initially at some
arbitrary state of the environment and pulls a decision arm
then loops successively over all the allowable decision arms
in a number of interactive steps in order to form initial crude
estimates for the various utilities of playing different decision
arms in accordance with Eq. (14). During this initializa-
tion phase, a separate reward jar is dedicated to collect the
achievements of each decision arm. Each jar’s initial value is
set to the immediate reward acquired by executing the corre-
sponding decision arm in the environment. As for the DDQN
case, Eq. (9) reflects how much reward is generated for a
given arm play. Each decision arm Ai is a three-tuple action
object containing the hovering position coordinates (X ,Y )
of the UAV-MBS, along with the UAV-MBS transmit power
portions (p1, p2, . . . pK ), and a set of active receiving devices
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Algorithm 2 Proposed Cost-Subsidized MAB Operation for
Joint UAV-MBS Path Design and NOMA Device Activation
and Power Allocation.

– Set Pt , λ, µ, χ, η, H
– Initialize i = 1, NOMA-UAV-MBS state Li
– While i ≤ H
• If i ≤ Amax

1) Pull decision armAi
2) IfAi does not conform to the QoS requirement (13):
∗ For k ∈ Vu, Vu ≡ set of violating devices, enforce (13)

on Ai by rectifying the allocated power portion for each
active device in Vu:

pk =
µσ 2

gk−1
+

k−1∑
u=1

pu

∗ Normalize power level of all active devices:

pd ←
pd∑D
u=1 pu

Pt

3) Set up a reward jar for current arm: mi = ri
4) Initialize a pull counter for current arm: ni = 1
5) Evaluate the utility of pulling current arm:

fi =

{
mi +

√
2 log (i), CS− UCB

mi +
√
max (log (i) , 0), CS−MOSS

(14)

• Otherwise
1) Set k = argmaxj fj
2) Form a candidate subset of decision arms:

�(i) =
{
j : fj ≥ (1− λ) fk

}
(15)

3) Pull battery-aware armAi∗ :

i∗ = argmax
j∈�(i)

L(j) (16)

4) IfAi∗ does not conform to (13):
∗ For k ∈ Vu, enforce (13) onAi∗ by rectifying the allocated

power portion for each active device in Vu:

pk =
µσ 2

gk−1
+

k−1∑
u=1

pu

∗ Normalize power level of all active devices:

pd ←
pd∑D
u=1 pu

Pt

5) Update reward jar ofAi∗ : mi∗ ← mi∗ + ri
6) Increment corresponding counter: ni∗ ← ni∗ + 1
7) Update the utility corresponding to playingAi∗ :

fi∗ =


mi∗
ni∗
+

√
2 log (i)
ni∗

, CS− UCB

mi∗
ni∗
+

√√√√max
(
log

(
i
ni∗

)
, 0
)

ni∗
, CS−MOSS

(17)

• Move to new NOMA-UAV-MBS state, Li+1.
• Increment iteration index: i← i+ 1

– end While
where
• The horizon,H, is the total number of played arms.
• Amax denotes the number of arms available to the agent.
• λ is the cost-subsidizing control parameter.

as defined in Eq. (8). Moreover, a set of counters is initialized
to record the frequencies of pulling various decision arms in

later stages. During each interaction, and before executing
the chosen decision arm on the NOMA-UAV-MBS system,
if the chosen decision arm is not conforming to the data
detection fidelity requirement in (13), the agent enforces the
condition by boosting the power portions associated with the
violating receiving devices and applying power normalization
to maintain the feasibility of transmission power budget.

As soon as the initialization phase terminates, dynamic
selection of decision arms is accomplished by harnessing
the available information of various arm-pulling utilities
as well as the UAV-MBS battery level, which are updated
dynamically in every interactive iteration in accordance with
Eqs. (17), and (16) and (2), respectively. In particular, a fea-
sible subset of candidate receiving devices exceeding a
configurable QoS threshold on utility is formed according
to Eq. (15) where a recommended cost-subsidizing factor of
λ = 0.1 is used [50]. Next, to control the battery energy
consumption and facilitate for a battery-aware operation, the
feasible decision arm resulting in the current highest battery
level is played in the environment as dictated by Eq. (16).
The corresponding generated reward is then added to the
associated reward jar of the played arm. In addition, the
corresponding counter of the played arm is incremented by
one, and the associated utility value is updated. The state
of the environment advances subsequently to a new state
and another iteration of interaction begins. The CS-MAB
algorithm keeps on interacting with the environment for a
predefined horizon,H.

Numerous hyper-parameters govern the process of training
a DDQN RL agent and, generally speaking, high complexity
is associated with the required computations. This concern
may nonetheless be bypassed if computations are offloaded
to a prior stage of offline training wherein the DDQN RL
agent’s skills are honed through interactive training on the
possibly-simulated environment. Afterwards, online opera-
tion is commenced and the experienced agent is deployed.
The proposed DDQN agent (with A layers) has a deployment
complexity ofO(vAK ) forK candidate devices within an area
of v hovering positions. On the other hand, the deployment
complexity of the CS-MAB agent is O(vK ). By contrast,
in optimal operation, UAV-MBS placement and the grouping
of D devices for active operation over an allocated RB would
incur O

(
v
(K
D

))
, thereby demanding a far greater implemen-

tation cost.

V. NUMERICAL ANALYSIS
A. SIMULATION ENVIRONMENT
The settings of the simulated environment are given in
Table 1. The table presents the default simulation values of
the used settings for the evaluated scenarios. We assume a
data-offloading NOMA-UAV-MBS downlink system where
5 candidate receiving devices are scattered arbitrarily within
a 100 × 100 m2 2-D zone. Various grid sizes ranging from
less than 100-by-100 m2 and going well beyond 100-by-
100 m2 have been considered in the literature. For instance,
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TABLE 1. Simulation settings.

the authors in [51] considered a grid size of 30-by-30 m2

whereas the authors in [21] considered a 200-by-200 grid.
Similarly, the authors in [9] considered a 200-by-200 emer-
gency communications area with four deployed UAVs. In our
work, we consider an in-between 100-by-100 area which can
be suitable for spots not covered yet by the main network’s
infrastructure (e.g., in remote areas) or for zones suffering
network instability such as in areas hit by disasters thus
temporarily rendering the main network out-of-service. It is
worth mentioning that other grid sizes can be used depending
on the application. All receiving devices employ antenna
elements at a fixed 1 m height. Initially, and at a fixed 10 m
height, the UAV-MBS begins at the (0,0) hovering point
within the flying region. The carrier setting for the mmWave
is configured to 60 GHz. The system bandwidth setting is
100 MHz. We also consider the close-in model (CI),

PLdBCI (f ,Z ) = PLdBFS (f ,Z0)+ 10υ log10

(
Z
Z0

)
+ ϒ

ζ
CI ,

(18)

for large-scale channel disturbances. The used channel expo-
nent setting for pathloss is υ = 2.1 (typical for LOS
propagation of mmWaves in urban environments) [52]. Tak-
ing such mmWave signal propagation models into account
is important since B5G and 6G will heavily leverage the
broad spectrum offered by mmWaves. The model simulates
large-scale fluctuations which is combined with small-scale
fading of Eq. (3) to account for overall variation of the
wireless channel. The channel gain of the d-th candidate
receiving device is thusPLdBCI+20 log10

∣∣ĝd ∣∣ dB. The standard

deviation, ζ , for CI model emulated shadowing, ϒζ
CI , is con-

figured as 4.4 dB. PLdBFS is the nominal pathloss for free-space
in dB. Since it delivers appropriate model accuracy and main-
tains parameter stability both for outdoor as well as indoor
urban environments (including micro and macro variants)
spanning a broad frequency spectrum within microwave and
mmWave bands, a Z0 = 1 m reference distance is utilized for
typical CI models. A 1 m reference point might be crossing
the boundaries of the near-field emitted by massive antennae
arrays. However, the inaccuracy introduced by such small
distance is mostly trivial from the perspective of practical
wireless communication systems [52], [53].

The UAV-MBS operates at a 20-dBm default transmission
power level to offload the NOMA message relaying the data
of active receiving devices. The simulated AWGN noise is
generated using the typical −174 dBm/Hz for its PSD level.

The primary and secondary DNNs employed in the
RL-based DDQN operation are built with a total of 5 fully-
connected layers. Layers 1 through 4 have rectifying linear
units (ReLUs) as non-linear activation functions: A(x) =
max(0, x). The fifth layer (output layer) has the linear char-
acteristic A(x) = x. The structure of the two sets of neurons
configured for both DNNs is identical: 100 neurons within
each of layer 1 and 5, whereas the remaining three layers
in the middle consist of 95,90, and 85 neurons respectively.
Moreover, each neuron in both DDNs is configured with an
adjustable bias term.

DNN training for updating the main parameter set 9 at
each interactive iteration is accomplished by performing a
single optimization step using stochastic gradient descent
with momentum operation (SGDM optimizer) [54] towards
an energy-efficient and highly rewarding mapping strategy
from input environmental states to appropriate decisions that
the agent can apply. The associated learning step size is
configured as 0.001. The critic’s secondary DNN set, 9̄,
is only periodically updated every fourth interactive step. The
gradual update of 9̄ is performed in a smooth fashion using
a soft mixture of 9̄ and 9 with a 10−3 softening parameter.
A limit of five thousand items is set on the size of the memory
tank buffering experience data items collected by the DDQN
agent over successive interactive steps.

The end policy for the trained DDQN agent is acquired by
progressively updating the main DNN set 9, using an 8-item
mini-batch (which is composed through random sampling
from the previously stored experience items) during each
update step. The DDQN agent’s training starts with a 100%
chance of choosing a random decision (with uniform selec-
tion distribution among the decision set). The agent gradually
shifts away from this randomized decisioning by annealing
its probability over successive interactive iterations until the
chance of operating in a random fashion reaches a preset
terminal level of 0.01. By setting the decaying parameter
αd = 5 × 10−3, this probability decay process runs for
slightly over 900 interactive iterations before it halts when
the terminal level αf is attained. The training phase comprises
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a 100 episodes in total where each one runs for up to a
100 interactive iterations.

FIGURE 3. Evaluation of the performance in terms of the
acquired ergodic sum-rate over 100, 000 simulated
interactions.

B. RESULTS AND DISCUSSION
In Fig. 3 we evaluate the performance of the proposed
algorithms in terms of the normalized ergodic total rate
with the total transmission power of the UAV-MBS ranging
from −20 dBm to 20 dBm. Upper and lower perfor-
mance benchmark references are respectively represented
by the exhaustive and random solution strategies. In addi-
tion, to show the performance gain compared with existing
NOMA user paring approaches that maximize the achievable
sum-rate, conventional CSSP resource allocation reference
baseline [33] is includedwith optimal UAV-MBS positioning.
In CSSP, candidate receiving devices are arranged based on
their channel state quality conditions wherein the devices
experiencing larger gaps in their channel gains are paired.
Although UAV energy efficiency is an important aspect that
we geared the proposed RL-based algorithms to tackle, the
main objective of this work is the maximization of the
achievable ergodic sum-rate of downlink NOMA. Therefore,
we compare with the conventional CSSP benchmark along
with the exhaustive strategy for the upper performance bound.
Clearly, the optimal exhaustive approach can support the
highest total rate level in a consistent manner by virtue of
exploring every available point within the action space before
applying the most-rewarding alternative. On the other hand,
random-based operation runs by choosing to execute some
randomly sampled alternative from the available decision set,
thereby resulting in a heavily non-optimized andweak perfor-
mance, which mainly functions as an indicator of achievable
levels for the total rate. Coming on top of the proposed
algorithms is the DDQN solution where it manages to remain
within a close performance gap from the upper level provided
by the exhaustive scan. Beginning with extremely low levels
of UAV-MBS transmission power, the proposed algorithms
produce performance results close to those achieved by a
random approach, with CSSP taking the lead until around
−4 dBm where the proposed DDQN first overtakes CSSP.
As theUAV-MBS transmission power is increased, noticeable

distinct performance gaps of the achievable sum-rate then
begins to emerge until the DDQN agent rises to slightly
over 77% of the exhaustive at 0 dBm as opposed to 72%
for CSSP, with the CS-MOSS agent following next at about
55%whereas the CS-UCB agent falls behind around the 25%
mark. The proposed CS-MAB agents then quickly rise to
surpass CSSP starting around 8 dBm. All schemes then keep
on rising until the DDQN agent manages to attain almost
96% of the sum-rate level achievable by an exhaustive scan at
20 dBm, whereas CS-MOSS rises to 91.5% and CS-UCB fol-
lows closely after at 89.5%which is immediately followed by
CSSP at 89.3%. It is worth mentioning that CS-UCB surpass-
ing CS-MOSS at around 7.5 dBm can be attributed to the fact
that these two settings of the CS-MAB agent employ different
utilities in Eq. (17) of Algorithm 2 to balance exploitation of
previously gained knowledgewith the exploration of different
available arms in the action space. This can consequently lead
to the formation of different candidate subsets of decision
arms in Eq. (15), which may in turn be subject to further
rectification in step 4. The intricate dynamics at play here
will ultimately manifest as a sum-rate performance increase
in favor of one setting with respect to the other which can
evidently vary depending on the operating power regime.

FIGURE 4. UAV hovering distribution for 100, 000 simulated
interactions for (a) Exhaustive search, and (b) Random
selection strategy.

Figure 4 illustrates the distribution of UAV hovering spot
selection based on an exhaustive search for sum-rate max-
imization in part (a) and a random selection strategy in
part (b). Figure 4 (a) shows the critical positions within the
flying zone that the UAV-MBS visits for hovering during a
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FIGURE 5. UAV hovering distribution for 100, 000 simulated
interactions for the proposed (a) DDQN RL agent, and
(b) CS-MAB-UCB RL agent.

series of 105 interactive steps while following an optimal
solution policy as given by an exhaustive search covering
the entirety of the action space. This intensive scanning of
the grid filters the ineffective hovering spots while leaving
intact the five positions represented by the blue bars due to
their optimized positioning relative to device scatter pattern.
These five critical hovering locations are chosen exclusively
by the UAV-MBS to attain the transmission rates of Figs. 3
and 10. Despite the fact that all of the 5 locations are preferred
and chosen by the optimal strategy, their associated visiting
frequencies are not the same as indicated by the difference
in their corresponding bar heights, and the UAV-MBS pre-
dominantly converges to the position (30,20) for hovering.
Furthermore, in part (b) we can observe the non-optimized
behavior of the random strategy where, as expected, all spots
are selected with almost equal visiting frequencies.

Figure 5 illustrates in part (a) the distribution of UAV
hovering spot selection based on a trained DDQN RL agent,
whereas in part (b) the CS-UCB agent’s selection strategy
is presented. For the entire deployment stage, the trained
DDQN agent decides to maintain a fixed position at the spot
most frequently visited by the optimal scanning as indicated
by the presence of a singular blue prism at the (30,20) grid
point. On the other hand, the CS-UCB agent switches back
and forth between the same spot and the spot at (−20,−30)
while occasionally visiting other positions with less relative
frequency as indicated by the blue bars of varying heights in
part (b).

FIGURE 6. Path traced by the UAV for DDQN-based operation,
for (a) Training, and (b) Deployment: DDQN agent decides to
fly over to the marked spot where it maintains position during
the service period.

To get a complementary view of the DDQN operation,
the trajectories traced by the UAV during both training and
deployment are shown in Fig. 6. In part (a), each line in
this figure represents a traced path segment connecting a
departure point to a destination point where theUAV traverses
the path connecting the two spots as it makes successive
decisions while interacting with the environment. The col-
ors represent different traversed path segments for different
agent-environment interactions. The agent learns by explor-
ing various hovering positions to absorb the essential features
of the environment prior to deployment. Noticeably, the agent
goes through the three spots at (30,20), (10,20), and (0,40)
more often than it routes through other spots on the grid. Upon
deployment in part (b), the trained DDQN agent opts to route
directly from the (0,0) starting point to the critical position
found at (30,20) where it maintains position as discussed
earlier in part (a) of Fig. 5.

The energy efficiency of the UAV movement is presented
in Fig. 7 for CSSP and the proposed RL-based schemes
where the Y-axis represents the total energy consumption
level per normalized ergodic sum-rate. As shown, an energy
efficiency level of about 0.44 EU per bps/Hz is achieved by
the DDQN solution and is lower than those achieved by both
CS-UCB and CS-MOSS solutions. The CS-MOSS solution
comes second in line at around 1.31 EU per bps/Hz, thus
requiring just a little below 200% higher energy to support
the same total transfer speed provided when operating using
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the DDQN solution. The CS-UCB solution consumes about
1.4 EU per bps/Hz which sets it at around 220% and 7.5%
behind the DDQN and CS-MOSS solutions, respectively.
Lastly, to maintain adequate total rate levels, CSSP incurs
a significant energy loss in comparison where it consumes
over 11 times higher energy than CS-UCB. Operating in
such energy-efficient modes is essential for meeting the
high expectations set forth for 6G networks where a mini-
mum of 10-fold improvement is expected in terms of energy
efficiency [55]. This demonstrates the effectiveness of the
proposed RL-based approaches.

FIGURE 7. UAV movement energy efficiency of the proposed
RL-based algorithms evaluated using 100, 000 simulated
interactions.

The trajectory traced by the UAV is shown in Fig. 8 for
CS-MAB-based operation with and without battery opti-
mization. In part (a), the subsidizing factor of the deployed
CS-UCB agent is configured to λ = 0 whereas in part
(b) a recommended typical value of λ = 0.1 is used [50].
When the operation is not optimized for energy efficiency,
the CS-UCB agent keeps rerouting through all the spots on
the grid extremely intensively without any signs of filtering
down the traced path. On the other hand, when battery opti-
mization is turned on in part (b), the CS-UCB agent prunes
the traversed path significantly and flies along amuch smaller
subset of path segments compared to the operation illustrated
in part (a) when battery usage optimization is turned off. This
clearly shows the effectiveness of cost-subsidizing operation
when a MAB solution is deployed.

Figure 9 illustrates the effect ofmore noise accommodation
as the system bandwidth increases (for a fixed transmit power
level of 20 dBm) and the resulting impact on the training
performance of the proposed DDGN agent. As expected,
since the reward is based on the normalized sum-rate, increas-
ing the system bandwidth allows in more noise and leads
consequently to less accumulated episode reward for the
interacting agent. Nonetheless, the proposed agent learns
a stable, high-reward policy in all cases where the band-
width is varied from 100 to 500 MHz. Specifically, when
operating over a 100 MHz link, training rewards as high
as 8.53 bps/Hz are achieved. The training reward then dips
down to near 7.5 bps/Hz over 200-MHz links. Switching
the operation to the 500-MHz bandwidth results in episode
rewards below the 6 bps/Hz level. The figure also tracks

the five-episode reward moving average level as the agent’s
training progresses towards amature high-reward policy. This
demonstrates the successful training operation of the pro-
posed DDGN agent for various noise levels.

To verify the ability of our proposed solutions to support
proportionally increasing total rate versus a variable transmit
bandwidth range, Fig. 10 demonstrates the total achievable
rate corresponding to 100 ∼ 500 MHz Tx bandwidths at
60-GHz NOMA mmWave carrier. The main purpose of
Fig. 10 is to validate that the RL algorithm’s performancewill
not deviate significantly from the optimal solution as the sys-
tem bandwidth is increased andmore pronounced noise effect
is allowed. This is particularly important for communication
systems operating over the mmWave frequencies where large
bandwidths are commonly used. The linear scaling by the
bandwidth serves to emphasis the fact that larger bandwidths
can accommodate higher speeds holds for downlink NOMA.
When operating at a hundred MHz, all solutions result in
sub-Giga data transfer speeds. All approaches then rapidly
exceed 1 Gbps except for the random strategy which grows
very slowly towards the 1-Gpbs level where it breaks it
around the 500 MHz mark at which point the proposed meth-
ods manage to support rates beyond 2.5 Gbps. The DDQN
agent comes on top of the proposed RL solutions where it
achieves speeds as high as 2.92 Gbps while enjoying the
full 500 MHz of system bandwidth. By contrast, CS-MOSS
attains 2.81 Gbps whereas CS-UCB reaches 2.68 Gbps when
utilizing the full bandwidth. CSSP trails behind and achieves
2.57 Gbps at the same 500-MHz point. Nonetheless, the
optimal exhaustive scan can evidently support even faster
transmission rates going well beyond 3 Gbps by running
through all permissible decisions.

The capability of the proposed algorithms to learn suc-
cessful adaptations to changing LOS circumstances within
the wireless links of the used communication channels is
validated in Fig. 11 where a comparative analysis of the
DDQN agent versus cost-subsidized MAB methods is pre-
sented. The main purpose of Fig. 11 is to ensure that the
proposed schemes will maintain stably high performance
around the default quiescent point and will remain resilient
to perturbations in the wireless environment. Therefore, only
the proposed schemes are presented in this figure (simu-
lation results at the default point defined in Table 1 are
already presented previously for all schemes; in Fig. 3 for
example). The strength of the simulated LOS channel com-
ponent is swept by adjusting the Rician parameter LOS
control over the range −40 ∼ 40 dB. Both DDQN and
CS-MAB solutions show similar trends. When operating
over non-LOS-dominated links (corresponding to −40 ∼
−10 dB), the response exhibited by the DDQN agent is flat
at around 7.7 bps/Hz. Similarly, CS-MOSS operates around
7.34 bps/Hz whereas CS-UCB provides 7.17 bps/Hz over
the same region. Next, the total rates of both DDQN and
CS-MAB solutions begin to accelerate as operation is shifted
towards channels with more inherent presence of the LOS
component as illustrated in Fig. 11 for the −10 ∼ 10 dB
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FIGURE 8. Path traced by the UAV for MAB-based operation, for
(a) No battery optimization: λ = 0 CS-UCB, and (b) With battery
optimization: λ = 0.1 CS-UCB.

FIGURE 9. Tracking the training performance of the proposed
DDQN agent over a 100 episodes in terms of the acquired
episode reward and the five-episode reward moving average
for varying system bandwidth levels.

region. As shown for the region 10 ∼ 40 dB, the achieved
levels of the total ergodic rate that can be supported by the
proposed algorithms saturate eventually when operation is
heavily geared toward LOS-dominated links where, at the end
point of 40 dB, the DDQN solution provides 8.54 bps/Hz,
whereas CS-MOSS supports 8.17 and CS-UCB comes next
at 8 bps/Hz.

To investigate the sensitivity of the proposed DDQN
algorithm to varying buffering unit sizes, we study its perfor-
mance in Fig. 12. Starting at the lowest possible capacity of

FIGURE 10. Evaluation of the deployment performance in terms
of the ergodic sum-rate acquired at variable system bandwidth
levels with 100, 000 simulations.

FIGURE 11. Tracking the maximum deployment performance of
the DDQN agent vs cost-subsidized MAB for varying levels of
LOS component presence.

FIGURE 12. Tracking the performance of the proposed DDQN
agent for various memory unit sizes.

|M| = 8 (i.e., same as training batch size), the achieved nor-
malized energy consumption is about 0.304 EU per bps/Hz.
As expected, when the unit capacity is increased beyond the
batch size, the performance is improved where 0.234 and
0.227 EU per bps/Hz are obtained at |M| = 10 and |M| =
50, respectively. As the unit capacity is increased further,
more datapoints from the action space are gathered and
retained while training the agent. This leads to the explo-
ration of more paths and consequently drives the total energy
consumption up, where 0.286 and 0.438 EU per bps/Hz are

VOLUME 2, 2024 629



reached at |M| = 500 and |M| = 5000, respectively. As the
size of the unit is increased even further, the number of new
potentially improving exploratory points dwindles, which
drives the consumption up only slightly where it saturates at
around 0.476 EU per bps/Hz when |M| = 500, 000. In all
cases, the proposed DDQN algorithm manages to achieve
highly efficient normalized energy consumption performance
which demonstrates its effectiveness.

VI. CONCLUSION
In this article, we have conducted an investigative study
on the utilization of CS-MAB as well as DDQN agents
as viable RL-based data-offloading solutions for emer-
gency use cases deploying ready-to-dispatch UAV-MBSs for
NOMA-based downlink transmissions. The DDQN agent’s
training was accomplished in an offline stage wherein the
agent engages with the UAV-MBS-NOMA environment in a
multi-iteration interactive mode prior to operational deploy-
ment. CS-MAB agents on the other hand were directly
operated online as they do not utilize DNNs to require a
training stage. Due to its tailored ability to resolve highly
complex dynamic sequential decision problems, the pro-
posed RL DDQN approach succeeded in supporting an
energy-efficient near-optimal total rate level consistently in
various battery-constrained transmission scenarios, whereas
the proposed cost-subsidized MAB-based approaches fol-
lowed closely after. Both proposed approaches have been
tested via operation in mmWave-enabled propagation modes
with varying dominance levels of the LOS Rician channel
component. This is of particular importance to B5G and
6G networks where higher spectral and energy efficiencies
are targeted. Both CS-MAB and DDQN solutions exhibited
accelerated performance over links with strong LOS pres-
ence where they respectively supported as high an ergodic
total rate level as 8.17 bps/Hz and 8.54 bps/Hz. We tackled
the joint dynamic UAV-MBS trajectory design and NOMA
transmit power splitting and receiving device activation prob-
lem to adequately support ready-to-deploy energy-efficient
solutions accommodating increased transfer speeds break-
ing beyond 2.5 Gbps which may prove critical importance
for deployment in emergency cases with high-speed data-
offloading demands as in the regions afflicted by disasters.
Future extension to multi-UAV scenarios will be considered
where collision avoidance mechanisms will be employed.
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