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ABSTRACT Underlay Cognitive Radio (CR) systems were introduced to resolve the issue of spectrum
scarcity in wireless communication. In CR systems, an unlicensed Secondary Transmitter (ST) shares the
channel with a licensed Primary Transmitter (PT). Spectral efficiency of the CR systems can be further
increased if multiple STs share the same channel. In underlay CR systems, the STs are required to keep
interference at a low level to avoid outage at the primary system. The restriction on interference in underlay
CR prevents some STs from transmitting while other STs may achieve high data rates, thus making the
underlay CR network unfair. In this work, we consider the problem of achieving fairness in the rates of the STs.
The considered optimization problem is non-convex in nature. The conventional iteration-based optimizers
are time-consuming and may not converge when the considered problem is non-convex. To deal with the
problem, we propose a deep-Q reinforcement learning (DQ-RL) framework that employs two separate deep
neural networks for the computation and estimation of the Q-values which provides a fast solution and is
robust to channel dynamic. The proposed technique achieves near optimal values of fairness while offering
primary outage probability of less than 4%. Further, increasing the number of STs results in a linear increase
in the computational complexity of the proposed framework. A comparison of several variants of the proposed
scheme with the optimal solution is also presented. Finally, we present a novel cumulative reward framework
and discuss how the combined-reward approach improves the performance of the communication system.

INDEX TERMS Cognitive radio, distributed double deep-Q learning, fair rate maximization, multi-agent
training, resource optimization.

I. INTRODUCTION

COGNITIVE Radio (CR) technology is a powerful
tool that improves the spectral efficiency of the

communication networks by enabling the Secondary Users
(SUs) to share the spectrum of the Primary Users (PUs) [1].
In these CR systems, the channel of a Primary Transmitter
(PT) is shared by a single Secondary Transmitter (ST).
In traditional CR systems when the number of SUs increases,
many STs could be denied service due to unavailability
of frequency channels. Therefore, a CR system that can
serve many SUs per channel could improve the quality
of service (QoS). However, unlike the single SU case
where the problem of power allocation is convex and can
be solved using conventional optimization frameworks [2],

when multiple SUs per channel are considered, the problem
of optimizing resource allocation becomes non-convex in
nature. Classical optimization models cannot be applied
to such problems, as convergence cannot be guaranteed.
Moreover, the conventional iteration-based optimizers take
a long time to compute the solutions [3]. The problem of
optimizing power allocation at the STs when several STs
utilize the same channel is of dire importance to ripe the full
benefits of CR systems.

A. MOTIVATION
Research has shown that machine learning-based frameworks
can provide faster solutions than conventional techniques [4].
Although machine learning-based schemes provide excellent
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performance [5]. Nevertheless, classical supervised machine
learning techniques need a substantial volume of training
data [6]. The problem of generating training data becomes
more severe in the case of non-convex problems, as no
framework is guaranteed to provide the optimal solution
within reasonable time, and usually a lot of time is required to
generate the training data. In addition, if the system param-
eters change, re-training the model for the new parameters
is necessary, and this requires reproducing the training data
set [7]. To regenerate the training data, a lot of processing
power is required, to the point that the solution becomes
impractical, specially in the case of distributed systems.
Recently, various reinforcement learning (RL) schemes have
been demonstrated to offer quick results without requiring
additional methods for producing the training data [8]. The
RL techniques involve agents that are trained by taking
actions and getting rewards as a result of those actions.
The reward serves as a measure of how effective the action
was in achieving a particular goal. The RL agent learns the
relationship between the input state and the optimal action.
Hence, the overhead of generating large training data-set is
removed. Different improvements to simple RL models have
been proposed. For instance: deep reinforcement learning
(DRL) where a Deep Neural Network (DNN) is used to
provide the estimated state-to-action mapping [9], or deep
Q-learningwhere a Q-value function is employed for learning
[10], have been shown to further enhance the performance of
RL models.

B. RELATED WORK
Many works have considered RL solutions for solving
optimization problems. The work in [12] proposed DRL
framework for interference control in ultra-dense small
cells. In [13], the authors proposed a DRL-based scheme
for edge computing against jamming attacks. The authors
in [11] proposed DRL-based solution for power alloca-
tion to maximize the sum-rate of the cellular networks.
In [14], the problem of optimizing power allocation for rate
maximization in heterogeneous networks was considered.
Therein, the authors provided a distributed DRL framework
for the solution where a centralized node is required for
the training. For overlay CR system, the work in [15]
proposed a deep Q-learning-based solution where the STs
opportunistically access the spectrum if the PT is absent. The
optimization was performed to minimize the detection error.
Later, taking into account the problem of cooperative sensing
in CR networks, the authors in [16] proposed a Q-learning
framework. Considering an underlay CR system, the work
in [17] proposed a Q-learning-based framework for power
allocation at ST such that the ST can simultaneously transmit
with the PT while avoiding the outage at the primary system.
The results showed that the proposed framework provides
a good performance, however the solution requires multiple
sensors scattered over the network to feedback the received
power levels to the ST. Further, the proposed solution only

considers a simple scenario where only one ST can transmit
at a channel. To maximize the energy efficiency of CR
network the authors in [18] designed a Q-learning-based
solution technique. The proposed scheme provided good
performance for the channel gains used in training; however,
when the channels change retraining of the model may be
required to achieve good performance. The solution proposed
in [19] for spectrum access is based on a DRL framework
that is robust to changes in channel gains. Nevertheless,
the proposed approach mandates centralized training for a
distributed system, necessitating the transmission of thou-
sands of DNN weights to all users once the training phase is
finished.

The issue of attaining fairness across various communi-
cation systems has been widely explored in the literature.
The work in [7] optimized power allocation for achieving
fairness, the authors maximize the sum of log-average rates
which is a loose fairness objective and many times does
not provide perfect fairness even in the systems where
perfect fairness is achievable. Further, the performance of
the proposed scheme suffers a lot when tested for random
channels. In [20], considering the problem of achieving
fairness in orthogonal frequency division multiple access net-
works the authors proposed an iteration based optimization
framework. To achieve fairness in non-orthogonal multiple
access systems, the authors in [21] designed an alternate-
optimization algorithm for power allocation. In situations
where various STs share the same channel in interference
limited systems, the issue of unfairness becomes more severe.
In such systems, in order to maximize the system rate and/or
to avoid outage, it may become necessary to prevent many
STs from transmitting. A user that is allocated a channel
but is not allowed to transmit gains no benefit from the
channel which makes a multi-user CR system unfair in
terms of achievable rates of the STs. In order to address
the issue of fairness in CR systems, a centralized resource
allocation framework was proposed by the authors in [22].
The framework aimed to improve the fairness in rates of the
STs. In the system considered in [22], the STs are not subject
to interference from other STs, resulting in a problem convex
in nature. The authors proposed a Lagrangian-dual-based
solution, but it is not guaranteed to converge when multiple
STs are assigned to the same channel since the problem
becomes non-convex. Another approach to achieve fairness
in wireless powered CR systems was presented by the authors
in [23]. Similar to [22], the authors considered a systemwhere
each SU is assigned a separate channel for transmission.
Thus, the SUs do not face any interference from the other
SUs. The authors in [24] aimed to achieve rate fairness among
multiple STs sharing the same channel by optimizing power
allocation. For solving the non-convex problem, the authors
presented a sequential-quadratic-programming-based (SQP)
approach. However, SQP methods have a slow convergence
rate. Although iterative techniques such as those proposed
in [20], [21], [22], [23], and [24] offer potential solutions,
they are time-consuming and require re-optimization when
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the channel gains change. In the cases where the coherence
time of the channels is small, these iterative frameworks may
become useless.

C. CONTRIBUTIONS
In this work which is a substantial extension of [25],1

we present a deep-Q reinforcement learning (DQ-RL)
framework to address the issue of fairness in the rates of
multiple STs sharing a channel in an underlay CR scenario.
The proposed method provides a quick solution without
requiring the generation of an extensive dataset for training.
Additionally, the framework performs well for new channel
gain values after training is completed since a DNN is used in
DQ-RL to predict the Q-values for each action based on the
provided state parameters. Consequently, when channel gains
change after training, the DQ-RL agent can use the trained
DNN to identify the action that results in the highest reward.
The main contributions of the work can be summarized as
follows:

• A DQ-RL model is designed to ensure fairness in the
system. The proposed framework ensures that fairness
in rates of all the STs is achieved while protecting the
primary system from harmful interference.

• Two reward functions are proposed to improve the
performance of a system. The first one enables simul-
taneous transmission by every ST in each time slot
to ensure low latency. It is designed to maximize
the fairness index and the sum-rate of the secondary
system for latency sensitive communication scenarios.
The second reward function uses a cumulation-based
approach that allows STs to alternate between high
and low transmission power or take turns to transmit,
ensuring high fairness in average ST rates while
reducing overall interference.

• In order to enable fast training and reduce correlation
between Q-value calculation and estimation, two sepa-
rate DNNs are used at each agent. For the instantaneous
reward framework, fully connected DNNs are utilized.
However, for the cumulation-based reward function,
LSTM units replace the nodes in the first hidden layers
of the DNNs, which helps in handling sequential inputs.

• We propose a multi-agent distributed training model that
carries out training at the STs to eliminate the overhead
of training and transferring all agents from the SR.
This model is robust to channel dynamics and provides
fast solutions compared to existing solutions. Different
variations of the proposed model are presented, con-
sidering various numbers of input features, sequential
inputs, and resolution of action space. These variations
provide different levels of fairness, system rewards,
and computational complexities while requiring varying
levels of feedback from the SR.

The main contributions of this work as compared to the
present literature are summarized in the table 1.

1A summary of the major differences between this work and the
conference version is provided in table 2.

D. OUTLINE
The remaining of the paper is organized as follows: section II
presents the system model and the mathematical formulation
of the problem. The proposed DRL model is discussed in
section III, then the solution framework is explained in
detail in section IV. Section V presents different variants
of the proposed framework. A detailed discussion on the
performance and comparison of the different variants based
on the simulation results and computational complexities is
provided in section VI. Finally, the work is concluded in
section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider an underlay CR system where a frequency
channel is shared by K STs, simultaneously. The gains of the
channel from kth ST to primary receiver (PR) and from the
kth ST to the SR are represented as fk and hk , respectively.
Considering that the SR uses single-user decoding and treats
interference as noise, the rate of the kth ST is written as:

Rk = log2

1 +
pkhk∑K

j=1
k ̸=k

pjhj + Ipn + σ 2

 , (1)

where, pk is the transmission power of the kth ST, σ 2 denotes
the variance of additive white Gaussian noise (AWGN) and
Ipn represents the interference from the primary network to
the SR. The objective of our work is to improve the rate
fairness among all the STs in the system by optimizing
their power allocation. To measure the degree of fairness in
rates, we utilize the linear product-based fairness index θ ,
calculated as [26]:

θ =

K∏
k=1

Rk
maxj Rj

. (2)

Note that the value of θ is always bounded between 0 and 1.
If the rate of one or more STs is zero, the value of θ is also
zero, indicating that the system is unfair. Conversely, when
θ = 1, it implies that each user in the system has an equal
rate. Thus, higher value of θ signifies better fairness in the
rates among all STs.

Now consider a scenario where no user is transmit-
ting/communicating, although we know that the system has
no practical usage, the system is fair in terms of achievable
rate because the rate of each user is exactly the same (i.e.,
zero). Thus, maximizing the fairness in rates of all the users
has an intrinsic issue. Therefore, we have the condition that
θ = 0 if maxj Rj = 0. Similarly, if all STs are achieving
very low rates, the value of fairness index can still be high.
However, such a system is very inefficient due to the under-
utilization of resources and because a greater value of the
sum-rate could have been achieved. Thus, only maximizing
the fairness of the system can lead to some problems, a more
effective objective is to jointly maximize the fairness index
and the sum-rate of the system (the objective considered
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TABLE 1. Summary of the literature review. Our contribution is highlighted and distinguished from existing work in the last row.

TABLE 2. Summary of the major differences between this work and the conference version.

in this work). The sum-rate of the system is computed as
follows:

κ =

K∑
k=1

Rk . (3)

The problem to achieve fairness in the system while
maximizing the sum-rate can be expressedmathematically as:

max
pk
κ θ (4)

s.t.: pk ≤ Pthk , ∀k, (5)
K∑
k=1

pk fk ≤ Ith, (6)

Here, Pthk and Ith represent the battery capacity of the kth
ST and the interference threshold required to prevent primary
system outage, respectively. The constraint in (5) ensures that
each user follows its battery capacity, while (6) safeguards the
primary network against STs’ interference.

III. DEEP Q-LEARNING-BASED OPTIMIZATION
The optimization problem (4)-(6) discussed above is inher-
ently non-convex. Using conventional optimization frame-
works to solve it may result in abysmal performance since
convergence is not guaranteed. However, for non-convex
problems, it has been demonstrated that RL can offer
excellent results [27], [28].
The RL agent (ST) observes the system parameters, takes

actions (power allocation), and receives rewards from the
environment. Its goal is to maximize rewards, learning

optimal actions for diverse states. Vanilla RL excels in finite
state-sets, but our problem involves real-number parameters
(hi, fi, interference). Creating a state-to-action table is imprac-
tical, leading to the use of a DRL-based framework. DRL
employs a DNN for state-to-action mapping, eliminating
the need for pre-training data [4]. Real-time generation of
training data by RL agents is termed online learning [29].

Learning the state-action mapping is challenging due
to the unknown probability of state transitions after an
action. Addressing this, we adopt Q-learning, estimating the
expected reward (Q-value) for taking an action in a state.
In our DRL framework, the DNN provides Q-value estimates
for all possible actions. The agent selects the action with the
maximum Q-value as the solution. The Q-value for a state-
action pair is computed as:

Q(s, a) = 0(s, a) + γ max
ā
Q(s̄, ā), (7)

here, 0(s, a) is the immediate reward obtained by taking
action a in state s, and γ maxāQ(s̄, ā) represents the
discounted long-term reward of taking action a, where s̄ is
the next state after the agent takes action a in state s, γ
is the discount factor (with 0 ≤ γ ≤ 1), and ā is the
action that leads to the maximum reward value. To perform
Q-learning efficiently, we use deep Q-learning, which utilizes
two distinct deep neural networks (DNNs) to predict the
values of Q(s, a) and Q(s̄, ā). These are known as the policy
DNN and the target DNN, respectively2 [30]. In this work,

2Using two separate DNNs reduces the correlation and results in a fast
convergence [31].
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we designate the policy DNN as DNN1 and the target
DNN as DNN2. The DNN1 is used to choose an action
and DNN2 provides the estimated Q-value associated to the
action. Then, after some iterations, the weights of the DNN2
are replaced by the weights of DNN1. Once the training phase
is finished, we do not need the values of Q(s̄, ā) as the agent
only requires DNN1 to make the decisions.
The training of a DQ-RL agent involves two main phases:

exploration and exploitation. In the exploration phase, the
agent randomly selects actions, receiving rewards from the
environment. During exploitation, the agent aims to take
optimal actions based on learned experiences. We adopt
the ϵ-greedy strategy, initializing epsilon to 1. The agent
randomly selects actions if a random value is less than
epsilon (exploration); otherwise, it selects actions based on
the DNN’s output (exploitation). In each iteration, epsilon
decreases by a fixed factor, shifting from exploration to
exploitation. After taking an action, the agent stores the
reward, state, and action in a tuple. Experiences are added to
a buffer, and after ‘G’ iterations, a sample of experiences is
randomly selected. Q-values for these experiences train DNN
(DNN1).
To compute the Q-value we need the current reward

and the maximum Q-value of the next state. To calculate
maxa Q(s, a), we use a separate DNN (DNN2), as discussed
earlier. The next state parameters are provided to DNN2,
which produces the estimated Q-value of each action at the
output. The maximumQ-value is then selected as the value of
maxa Q(s, a). Once Q-values are computed, the current state
serves as input to the main DNN1 during the exploitation
phase. DNN1 generates Q-values, and the estimation error
is calculated using the mean-square error function. Then,
DNN1 weights are updated through back-propagation of the
error. After ‘F’ iterations, DNN2 weights are replaced by
DNN1 weights to enhance DNN2 estimations. Using different
DNNs and weight replacement has demonstrated improved
training and faster convergence [30], [31].

IV. PROPOSED SOLUTION
We propose a multi-agent DQ-RL-based technique. We pro-
vide a solution technique where a separate agent is trained at
each ST. The distributed learningmethod has the advantage of
removing the overhead of transferring the values of weights
from the SR to all the ST in each time slot (in the case of
centralized learning). In DRL, the action space comprises
the possible set of actions that the agent can take. For
instance, in the case of power allocation, considering the
battery capacity of a ST is 2W, and that the resolution of
the action space is 5, the agent can choose from 5 discrete
power values to allocate. Then, the action set is given by, e.g.,
A = {0, 0.5, 1, 1.5, 2}. Since there are 5 possible actions,
the output-layer of the DNN will have 5 nodes, therefore,
the possible solution values are: {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0},
{0, 0, 1, 0, 0}, {0, 0, 0, 1, 0} and, {0, 0, 0, 0, 1} referring to 0,
0.5, 1, 1.5 and 2 W power allocation, respectively. Increasing
the resolution of the action space may result in enhancing

TABLE 3. Number of layers and nodes in the proposed DNN.

the performance, but at the expense of more training time.
Thus, there is clearly a trade-off between the training time and
the system performance. Further, a high number of possible
actions makes it unlikely that the best action is visited by the
agent during the exploration phase especially if the number
of exploration iterations is small. Similarly, the parameters
that define the state of the environment also impact the
performance. Usingmore system parameters results in slower
training, but could provide better results. In theory, if we
consider all the system parameters i.e., all channel gains,
all SINRs, threshold values of interference temperature and
battery capacity, then the DNN should be able to identify the
important features and assign more weight to them, while
assigning zero weights to the features that have no impact.
Nevertheless, it should be noted that if the process of feature
selection is not left to the DNN, the training phase could be
completed in far less time.

For the solution, we consider that the system’s state-set
contains all hn, the value of interference at the PR, and
all SINRs of the STs. Thus, each agent needs to know
all the values in the state where the state-set is: S =

{h1, h2, . . . , hK ,
∑K

k=1 pk fk ,SINR1,SINR2, . . . ,SINRK }.3

The SR provides feedback to each ST, which includes the
parameters of the state-set along with the true interference
value, supplied by the PR. Adding more parameters such
as the gains of the interference channels (fk ), to the state-
set could potentially enhance the performance of DQ-RL,
however, it is not feasible because the feedback load on the PR
would increase to impractical levels. To reduce the feedback
bandwidth requirement, we also propose DQ-RL models that
require smaller state-sets than S. Further, we also consider a
case where the secondary system receives the reward value
from SR and a single bit interference feedback from the
PR which has the advantage of reducing the bandwidth
requirement compared to the case when the actual value of
interference is provided to the secondary system. Moreover,
when a single bit interference feedback is considered, the
secondary system may not need to engage the PR as the SR
can listen for the negative acknowledgement (NACK) signal
from the PR to PT.

A. DNN MODEL
For DQ-RL, DNN is necessary to estimate the Q-values.
The count of nodes in the input and output layers of the
DNN always match the number of input features and the
resolution of the action space, respectively. The capacity of a

3Each DNN receives an input consisting of the state-set S and pk , where
pk represents the ST’s transmission power in the previous time slot. It is
important to note that each ST already knows its own transmission power in
the previous time slot, so the value of pk is already available at each STs.
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FIGURE 1. Detailed architecture of the LSTM unit.

DNN depends on the number of layers it has and the number
of nodes present in each layer. A DNN’s capacity must be
large enough to fit the function of a specific complexity to
achieve a decent approximation.4 The proposed framework
employs DNNmodels where the number of hidden layers and
the number of nodes in each layer are provided in table 3.
We have considered dense fully connected layers for the
DNNs. However, for the case where we consider cumulative
reward of more than 1 previous state (discussed in the next
section) we replace the neurons in the input layer with LSTM
units because LSTM units allow to make decisions based on a
sequence of inputs, which the simple dense layers are unable
to do.

Recall that LSTM is a type of recurrent neural network
(RNN) architecture designed to provide a more robust
performance compared to the simpler RNNs, and capture
sequential dependencies in data. The detailed architecture of
the LSTM unit is shown in Fig. 1, where Ct denotes the cell
state, Ot is the output of LSTM unit and Xt is the input to
the unit, at time t . Then, Wf ,i, Wf ,o, Wi,i, Wi,o, Wc,i, Wc,o,
Wo,i and Wo,o are the weights of the LSTM unit. LSTMs
consist of memory cells with three gates: input gate, forget
gate, and output gate. The forget gate controls the retention
or removal of information from the cell’s memory, allowing
the network to discard irrelevant data. The output of the forget
gate is computed as [5], [32]:

ft = σ (Wf ,iXt +Wf ,oOt−1 + bf ), (8)

where σ (·) denotes the sigmoid activation function and bf is a
vector of biases. The input gate regulates the information flow
into the cell, determining which values to update. At input
gate we have the following operations:

et = σ (Wi,iXt +Wi,oOt−1 + bi), (9)

zt = tanh(Wc,iXt +Wc,oOt−1 + bz), (10)

4Computing the hyper-parameters of a DNN-based on the complexity
of function is still an open research topic. The theory mostly relies on the
observations that when amore complex function is considered, the number of
hidden layers and/or the number of nodes needs to be increased to achieve a
good performance. In this work, we were able to reduce the required number
of nodes while achieving good performance through trial and error.

where bi and bz denote the vectors of biases. Using these
values, the cell state is computed as:

Ct = ft ⊙ Ct−1 + et ⊙ zt , (11)

where ⊙ denotes Hadamard product.
The output gate manages the information output from the

cell, determining the final hidden state. The output of the gate
also known as hidden state is computed as:

at = σ (Wo,iXt +Wo,oOt−1 + bo), (12)

where bo denotes the bias value. Then the output of the LSTM
unit is computed as:

Ot = at ⊙ tanh(Ct ). (13)

These gates collectively enable LSTMs to selectively store,
update, and retrieve information from the sequences, making
them well-suited for tasks involving temporal dependencies
and memory retention in sequential data processing. While
simple RNNs and GRUs may offer comparable performance
for short sequential inputs, the proposed framework priori-
tizes flexibility to efficiently handle longer input sequences.
Therefore, we have opted for the utilization of LSTMs.

There are two phases in the training of DNN: forward
propagation and backward propagation. During forward
propagation, the output of a layer is calculated as:

ψx
1×y = f (ψx−1

1×z Wz×y), (14)

the output of layer x with y neurons, denoted as ψx
1×y,

is obtained using the activation function f (·), and the weight
matrixWz×y connecting layer x−1, with z neurons. The order
of the vector is also specified as (1 × y). The estimated Q-
value of each action for the given state (Q(s, a)) is obtained
from the output layer. In the proposed DNNmodel, the ReLU
activation function is employed in all the layers of the system,
which is given by:

f (b) =

{
b if b ≥ 0
0 otherwise.

(15)

During the backward propagation, the network calculates the
error and then propagates it backward in order to optimize the
weight values. We have considered mean-square error which
is calculated as:

L =
1
ω

ω∑
i=1

(Q(s, a)i − Q(s, a)i)2, (16)

where the training batch size is denoted by ω, while Q(s, a)i
represents the Q-value of the ith sample calculated using (7).
Additionally, Q(s, a)i refers to the estimated Q-value of the
ith training sample, which is provided by the DNN. We use
gradient descent optimization to update the weights as:

Wz×y = Wz×y −1

(
δL

δWz×y

)
, (17)

where 1 is the learning rate of the framework.
(

δL
δWz×y

)
is

the gradient of error (L) with respect to the weights (Wz×y)
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that we are updating. During the testing phase of DQ-RL, the
DNN does not need to be trained. Therefore, by inputting the
state parameters into the DNN, we can obtain the estimated
Q-values for the actions at the output.

B. SOLUTION TO MAXIMIZE THE INSTANTANEOUS
REWARD
In many RL solutions, the reward function for the agent is
based on the objective function of the problem, with the
goal of selecting actions that maximize the objective values.
In the context of the power allocation problem explored in
this paper, constraint (5) is always satisfied as the possible
actions simply represent the fractions of available power used
for transmission. However, constraint (6), which places an
interference constraint on the problem, can be violated if
the agent does not account for it. Thus, rather than using
the objective function value as the reward in this scenario,
we define the reward as follows:

0 = κθβ, (18)

where β is the indicator function of the primary network
outage and is defined as:

β =

{
1 if

∑K

k=1
pk fk ≤ Ith

0 otherwise.
(19)

Training the agent to maximize the reward function defined
in (18) enables the agent to allocate power in a way
that maximizes the objective and satisfies the interference
constraint.

C. SOLUTION TO MAXIMIZE THE CUMULATIVE REWARD
In the considered problem, we aim to jointly maximize the
fairness and sum-rate of the system. Achieving fairness in an
interference limited system is very complicated as it requires
that each ST be transmitting (if the transmission power of any
user is equal to zero then the fairness factor θ = 0 and also the
objective function in (4) is 0). With the fairness requirement,
each user is assigned some transmission power irrespective of
its interference channel gain, which results in producing high
values of interference, therefore, the outage probability at the
primary receiver defined as the probability that (

∑K
k=1 pk fk >

Ith) also increases. Whereas, for the considered interference-
limited system, in the case of other problems where energy
efficiency [33] or sum-rate [34] is maximized, some STs
may not be allowed to transmit at all, in order to reducing
the overall interference temperature. So that, the STs with
best channels can transmit with little interference, resulting
in increasing the sum-rate and the energy efficiency of the
system.

In RL, agents are provided with the knowledge of the
current state of the environment, and through training, they
learn which actions are likely to yield a high reward value.
As a result, it becomes possible to maximize the cumulative
reward value over multiple time slots. Instead of allocating
power to maximize fairness in each individual time slot, it is

possible to assign power in a way that maximizes the average
fairness of two or more consecutive time slots. To achieve
this, we define the average sum-rate as follows:

κ =

K∑
k=1

τk , (20)

where

τk =

∑T
t=1 Rk (t − T )

T
, (21)

the parameter T represents the number of time slots used in
calculating the cumulative reward. The rate of the kth ST in
the current time slot is (Rk (0)), its rate in the previous time
slot is denoted as (Rk (−1)), and so on. The average fairness
index θ is computed by:

θ =

K∏
k=1

τk

maxj τj
. (22)

The cumulative reward approach becomes very beneficial in
the considered system because the system is interference-
limited. Therefore, when all the STs are transmitting on the
same channel, each ST faces interference due to the transmis-
sions of the other STs. Hence, the overall interference that
each ST faces is high, resulting in poor performance for each
ST.

With the cumulative reward strategy, the STs that transmit
with less power in one time slot may transmit with more
power in the next slot; i.e., users can transmit in a sequential
manner. An ST that has transmitted with less power in a
time slot to keep the interference at a low level will transmit
with more power in the next time slot, whereas the STs
that transmitted with more power would choose to transmit
with less power. The cooperation among the STs ensures that
the average rates of all the STs are comparable (providing
fairness in rates) while reducing the interference faced by
each ST, resulting in better performance for each ST.

Thus, we also consider a variation of the proposed
DRL model where the agents are trained to maximize the
cumulative reward instead of the instantaneous reward. The
value of the reward, denoted as 0, is computed as 0 = κθβ,
where β is defined as in (19).

D. DQ-RL ALGORITHM
The steps involved in the training of each agent are given in
Algorithm 1. First we initialize, F that denotes the number
of iterations after which the weights of the DNN are replaced
in DQ-RL to make training relatively fast. Since, we employ
replay memory based training where in each training round
a min-batch of samples is chosen from the memory buffer
to train DNN1, a memory buffer of size D is initialized.
Further, instead of training the agent in each iteration, after
every training round, we wait for G number of iterations for
a reasonable amount of new samples to be stored into the
memory buffer before training DNN1, hence, we initialize
G at the start of the algorithm. Also, we initialize both the
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FIGURE 2. Training of the proposed DNN framework.

DNNs with random weights. The DNN used to estimate
the values of Q(s, a) is represented as DNN1, and the DNN
that estimates Q(s, a) is denoted as DNN2. Note that the
hyper-parameters (number of layers, nodes per layer) of
both DNNs are the same, which is necessary because the
weights of DNN2 are updated from the weights of DNN1.
In the algorithm, the weights of DNN1 are denoted as W ,
while W are the weights of DNN2. Then, in each time
slot/iteration, the state of the system is provided to the agents
after which each agent takes an action according to the ϵ-
greedy algorithm. After taking the action, the agent receives
a reward in step 7 of the algorithm. In step 8, the agent saves
the experience (state, action taken and reward received) in
the memory buffer. After every G time slots, a mini-batch
of training samples are selected at random from the buffer
in step 10. Then the Q-value for each selected sample is
calculated in step 11 using the reward value and the output
of DNN2, as shown in (7). In step 12, the estimated Q-
values are obtained from DNN1, after which the error in
estimation is computed as the mean squared error of the
estimated Q-value and the value obtained from (7). After
which, DNN1 is trained using back propagation (the steps
involved in computing the loss function are shown in Fig. 2,
where the detailed architecture of the LSTM unit is presented
in Fig. 1). For optimizing the weights of DNN1, we have
used gradient descent optimizer. After every F iterations the
weights of DNN2 are replaced by those of DNN1 to improve
the future reward estimates of DNN2.
In the testing phase, the steps of exploration and training

are removed and in each time slot, the agent takes actions
according to the output of the DNN1. Note that, in the
proposed framework, the training of the DNNs can be
continued in the testing phase as well. The continuous
training will have the benefit of making the system more
flexible, and robust to change in the number of STs, the
value of Ith, or the number of possible actions (resolution
of the action space). However, the continuous training would

require the agents to perform periodic exploration and would
demand continuous availability of processing resources.

Algorithm 1 DQ-RL Agent Training
1) Initialize memory buffer with size D, F , G and hyper-

parameters of the DNNs
2) Initialize DNN1 weights for Q(s, a) as W
3) Initialize DNN2 weights for Q(s, a) as W
4) for t in time-slots
5) Observe state at time t , (s)
6) Take action (a) according to ϵ-greedy algorithm
7) Receive reward 0
8) Store s, a, and 0 in the memory buffer
9) if remainder(t/G)==0

10) Randomly sample training examples from
memory buffer

11) Calculate Q(s, a) for each training example
12) Compute the loss and train DNN1 to predict the

values of Q(s, a),∀s, a
13) end if
14) if remainder(t/F)==0
15) updateW as W = W
16) end if
17) end for
18) Return trained agent

V. SOLUTION SCHEMES
This section discusses different variants of the proposed
framework and the optimal strategy, and also provides
complexity comparison of all the techniques. Note that,
in every variant, each agent takes the state of the system and
its own transmission power in the previous time slot as the
input of the DNN.

• Optimal: The Optimal algorithm employs a brute-
force search over all the potential power allocation
combinations to maximize the instantaneous reward.
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This approach yields the best possible solution for
the given resolution of the action space. However,
the Optimal technique necessitates a high degree
of cooperation among all the STs, as examining all
feasible permutations of the action space necessitates
coordination between the STs. Specifically, each ST
must possess accurate information about the actions of
the other STs in the succeeding time slot. It is important
to note that the possible permutations of the action space
differ from the resolution of the action space of the STs.
For example, suppose the system has two STs, and each
ST can take three possible actions. In that case, there
are only three possible actions at the ST’s end. However,
from the perspective of the system, there are 32 potential
actions.

• Maximize Sum-Rate: In this scheme, the agents
are trained to maximize the sum-rate of the system.
In interference-limited systems, if the objective is to
maximize the sum-rate, many users are not allowed to
transmit, consequently, the system is unfair. Note that,
for the Maximize Sum-Rate scheme, the state space is
defined by 2K + 1 parameters (i.e., S={h1, h2, . . . , hK ,∑K

k=1 pk fk , SINR1, SINR2,. . . , SINRK }).
• Instantaneous Reward: Here we train the agents to
maximize the reward in (18), in each time slot. The
parameters that define the state of the environment
are the same as in the case of Maximize Sum-Rate
technique (i.e., S={h1, h2, . . . , hK ,

∑K
k=1 pk fk , SINR1,

SINR2,. . . , SINRK }).
• Cumulative Reward, 1 Previous State: OR Feedback
interference, all hk , all SINRs: In this scheme, we train
the agents to maximize the cumulative reward of
every two consecutive time slots, the reward value
is computed as in (18) and κ and θ are calculated
as given in (20) and (22). Note that, the scheme is
exactly the same as Instantaneous Reward, except,
instead of considering the reward of the current slot,
the agents maximize the average cumulative reward
of the current and previous time slots. As each agent
already has the knowledge of the current state and with
training learns the best action to maximize the average
combined reward of the current and previous state, the
scheme is expected to outperform the technique where
we maximize the instantaneous reward in each time slot
(Instantaneous Reward). The state-set for each time
slot is defined as S={h1, . . . , hK ,

∑K
k=1 pk fk , SINR1,. . . ,

SINRK }.
• Cumulative Reward, 2 Previous States: If maximizing
the rewards of two consecutive time slots improves
the average performance of the system, it might be
interesting to consider even more previous time slots
before making the decision on the best action. Hence,
we train the agents to maximize the average reward
of every three consecutive time slots. The considered
multi-layer DNNs take the decision based on the current
inputs and have no memory of the previous inputs.

If we want to maximize the average cumulative reward
of three time slots, the DNN needs to account for
the previous two time slots. Therefore, the nodes in
the first hidden layer of the DNNs are replaced by
LSTM units. The LSTMs are memory-full units and are
used when we need the DNNs to provide the solution
while consideringmore than 1 previous inputs (sequence
of inputs). To provide the solution, the Cumulative
Reward, 2 Previous States scheme requires the state
parameters of 2 previous time slots where the state-set
of a time slot is given as: S={h1, h2, . . . , hK ,

∑K
k=1 pk fk ,

SINR1, SINR2,. . . , SINRK }.
• Cumulative Reward, 3 Previous States: In this
framework, the DNNs of each agent takes the states
of 3 successive time slots as input and maximize the
average reward of 4 consecutive time slots.

• Feedback interference, all hk and reward: In this
case, each agent is provided with the true value of
the interference produced, the reward obtained in the
previous time slot, and the current values of the channel
gains of all the STs. Thus, the scheme requires N +

3 features to define the state (i.e., S={h1, h2, . . . , hK ,∑K
n=1 pk fk , 0}).

• Feedback binary interference and reward: Here we
reduce the feedback burden on the PR and SR. In this
scheme the state is defined by two features, binary
feedback of interference (0 if the interference threshold
was violated, otherwise 1), and the reward value. Thus,
each agent makes the decision based on the binary
interference variable and the reward generated in the
previous time slot. That is, the state-set is S={β, 0},
where β and 0 are given by (19) and (18), respectively.
The binary feedback of interference just requires a single
bit, thus, the approach may become more suitable in
some scenarios where the feedback channel has very
limited capacity. Further, when a binary interference
variable is considered, the secondary system may not
need to engage the PR as the SR can listen for the
negative acknowledgement (NACK) signal from the PR
to PT.

VI. SIMULATION RESULTS
In this section, first we discuss the computational complex-
ities of all the solution schemes and then we compare the
performance of all the frameworks.

A. DISCUSSION ON COMPLEXITY AND
COMMUNICATION OVERHEAD
Here we compare the Big-O complexities of the proposed
schemes, which provide an insight on how the worst case
complexity of the frameworks increase with the number of
users in the system. The computational complexity of the
Optimal approach is directly proportional to the number of
STs and the resolution of the action space. When a new user
is added to the system, the complexity increases Y times,
where Y is the number of values in the action space. Thus,
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the computational complexity of theOptimal scheme can be
expressed as O(YK ).
On the other hand, in DQ-RL frameworks, the primary

source of computational complexity arises from the DNNs.
In this study, when the number of users is increased, the
size of the input laeyr of the DNN increases. Consequently,
the computational complexity of the testing phase can be
expressed as O(IE). Here, I represents the number of nodes
in the input layer and equals the number of features in the
state. Meanwhile, E , represent the number of nodes in the
first hidden layers, respectively.

The computational complexity of Maximize Sum-Rate,
Instantaneous Reward and Cumulative Reward, 1 Pre-
vious State schemes is O(IE). When the number of input
features is reduced as in the case of Feedback binary
interference and reward and Feedback interference, all
hk and reward the value of I reduces and therefore the
complexity also decreases. Then, for the cases where more
than 1 previous state is considered, the complexity of the
LSTM layer increases linearly with the size of sequential
inputs and the number of features per input. Therefore, for
Cumulative Reward, 2 Previous States and Cumulative
Reward, 3 Previous States, the computational complexity is
O(XIE), where X denotes the number of previous states being
considered for making the decision.

When the number of STs is increased, the complexity
of Feedback binary interference and reward remains
unchanged. However, the complexity of other frameworks
changes. The solutions of all other schemes depend on
the SINRs and/or channel gains of all the STs. There-
fore, the number of nodes in the input layer I also depends
on the number of STs. The relation is given as I =

2 + 2K for all the frameworks with S = {h1, h2, . . . , hK ,∑K
k=1 pk fk , SINR1, SINR2,. . . , SINRK }.5 The complexity of

these techniques have an order of O((2 + 2K )E). Likewise,
the complexity in the case of Feedback interference, all
hk and reward is given as O((3 + K )E) because the
number of channels increases with the STs. Therefore, in DQ-
RL models, the complexity grows linearly with the users.
In contrast, the complexity of the Optimal scheme increases
exponentially with the number of users (K ). It should be
noted that in the testing phase, the DNN only performs
forward propagation of the data. Whereas, in the training
phase the network first performs the forward propagation
and then backward-propagation. Hence, the complexity of
the single pass of the training phase is approximately double
that of the testing phase.6 Computational complexity of all
the frameworks is summarized in table 2, where Cumulative

5These include the K channel gain values (hk ), K SINR values, a single
value for interference, and one value for the transmission power used by the
agent in the previous time slot, which is not included in the state-set.

6Note that the frameworks that make the decision with less features
or require fewer consecutive inputs need smaller data-sets (less number
of samples) for training. However, finding the relationship of the optimal
number of samples with the number of features is still an open research topic.
For fairness in comparison, we have trained the DNNs in every scheme with
the same number of samples.

TABLE 4. Table of computational complexities.

Reward, X Previous States represents the framework where
‘X’ previous states are required by the DNN to provide the
solution. A single iteration of a DQ-RL-based solution takes
approximately 3.3 ms where consideration of cumulative or
instantaneous reward has negligible impact on the duration
of an iteration. A single iteration of the optimal scheme lasts
for 0.41 ms. However, the optimal scheme requires much
more iterations to provide the solution as compared to the
DQ-RL schemes (as shown in the results (Fig. 5) the DQ-RL
schemes converge within 15 iterations, however, the optimal
scheme requires 113 = 1331 iterations to give the solution).
Hence, the overall time of DQ-RL schemes is far less than
the optimal scheme. The Big-O complexity of the schemes
for the specified simulation parameters is depicted in Fig. 3.
Notably, theOptimal scheme exhibits the highest worst-case
complexity. To complement this analysis, Fig. 4 illustrates the
computational time required for convergence by the proposed
schemes. It is evident that the Optimal scheme demands a
significantly longer time to converge. The huge difference in
the convergence time is due to the fact that Optimal scheme
takes 1331 iterations to give the solution whereas the DQ-RL
framework converges within 15 iterations.

We now examine the communication overhead for each
framework. In DQ-RL schemes, requiring SINR values and
channel gains, the SR broadcasts (1 + 2K ) floating-point
values to each ST. Considering 32 bits per floating-point
value, the communication overhead becomes 32(1 + 2K )
bits. For the solution scheme not relying on SINR values,
the overhead decreases to 32(2 + K ) bits. The scheme using
only the binary interference indicator function and reward
incurs a communication overhead of 33 bits (32 bits for
reward and 1 bit for the binary indicator function). Notably,
in the scheme employing the binary interference indicator
function and reward, the communication overhead becomes
independent of the number of users in the system.

B. COMPARISON OF PERFORMANCE
For the simulations, we have used a Core-i5 computer
with a 2.50GHz processor, 4GB RAM, and no dedicated
GPU. For our simulation setting, the system parameters
are depicted in Table 5. We consider Rayleigh fading
channels, where the real and imaginary part of the channel
are drawn from independently and identically distributed
Gaussian distribution with zero mean and variance 1 [35].
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FIGURE 3. The figure compares the worst case Big-O complexity
of the proposed frameworks for the considered simulation
parameters.

FIGURE 4. The figure compares the convergence time that each
framework takes to provide the solution.

TABLE 5. Simulation parameters.

Rayleigh fading models the effect of multipath reception
in dense environments where non-line of sight components
become prominent. Further, the considered system model is
interference-limited because all the STs in the system share
the same frequency channel, where the STs are assumed
to be distributed uniformly. The agents were trained with
cumulative reward function considering one previous state,
with the state-set S = {h1, h2, . . . , hK ,

∑K
k=1 pk fk , SINR1,

SINR2,. . . , SINRK }, unless stated otherwise.
As discussed earlier, when we aim to enhance the

fairness of the system, training the agents to maximize the
cumulative rewards instead of the instantaneous rewards may
improve the performance. First, we present results comparing
performances of the instantaneous and the cumulative reward
policies. Figure 5 shows the impact of increasing the time
slots for which the cumulative reward is calculated. It can be
seen that the least value of the average reward is provided
when the instantaneous reward is maximized. As expected,

the optimal scheme provides the highest reward. When the
features of more previous time slots are used as input, the
value of reward also increases. However, the increase is not
uniform as when we maximize the combined reward of two
consecutive time slots (Cumulative Reward, 1 Previous
State), we observe an increase of 27.26%, as compared
to the case where we maximize the instantaneous reward.
Increasing the number of previous states from 1 to 2 results
in an average increase of 7.51%. Similarly, when the number
of previous states is increased to 3, the increase in average
reward is 5.50%. Although increasing the number of previous
states increases the average reward, there are many time-
slots where one or more users are not transmitting (to reduce
the interference faced by PR and other STs). Therefore, in a
latency-sensitive system, the Instantaneous Reward scheme
may be preferred.

The convergence behavior of the DQ-RL schemes can be
observed in Fig. 5. Specifically, for the case where K =

3 and the action space consists of 11 possible actions, the
Optimal scheme is able to converge after evaluating 113 =

1331 different combinations. Once convergence is achieved,
the reward values of the Optimal scheme are displayed in
Fig. 5. It should be noted that the time taken by all DQ-
RL techniques to converge in the testing phase is far less
than that of the Optimal scheme. Each DQ-RL framework
converges within 15 iterations, as shown in Fig. 5. The reason
behind the fast convergence of the DQ-RL frameworks is
that once the training of DQ-RL schemes is completed, the
agents no longer perform exploration. Hence, in each time
slot, the agent observes the state, their previous action, and
the reward obtained to estimate what action could improve
the reward compared to the previous time slot. The reward
obtained by the agents increases with each time slot, as a
result of improved actions. Until a maximum value of reward
is achieved, at which point no better action is possible, and the
system converges. When we increase the number of previous
states required to make the decision, the time to convergence
increases as a result of increased complexity. However, it can
be concluded that the DQ-RL schemes provide much faster
convergence than the Optimal scheme.

The problem of maximizing the sum-rate has been
considered extensively in the literature for different networks.
However, the objective of rate maximization is unfair as the
users with better channels are allocated more power, whereas
the users with comparatively bad channels are allocated less
power for communication. In interference-limited systems as
considered in this work, if the sum-rate is maximized the
unfairness increases because the users with relatively bad
channels are not be allowed to communicate at all. Now,
we provide the comparison of a scheme where the sum-
rate is maximized (Maximize Sum-Rate) with the proposed
frameworks in Fig. 6. It is apparent that the fairness offered
by the Maximize Sum-Rate scheme is very low, indicating
that the scheme is highly unfair. However, when we consider
the objective of maximizing the instantaneous reward with
the Instantaneous Reward scheme, the fairness of the
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FIGURE 5. A comparison of the average received reward of the
proposed frameworks with the optimal scheme and the impact
of increasing the number of sequential inputs on the average
reward.

system improves significantly. Moreover, if we switch to
the cumulative reward objective, the fairness of the system
further improves. An interesting observation to note is that
the average fairness of the Cumulative Reward, 3 Previous
States scheme becomes equal to the Optimal scheme after a
few iterations.

FIGURE 6. The figure shows average fairness provided by the
proposed frameworks versus the fairness of sum-rate
maximization technique.

To ensure fairness in a wireless communication system,
users with weaker channel gains are allotted more trans-
mission power than those with better channel conditions.
However, this strategy typically results in a decrease in
the system’s overall sum-rate when fairness is increased.
Fig. 7 compares the sum-rate of each scheme, with the
Maximize sum-rate scheme exhibiting the highest rate while
the fairness-based schemes offer lower average sum-rates.

FIGURE 7. Average sum-rate provided by each scheme and the
drop in the sum-rate of the system when fairness in rates of the
STs and the sum-rate of the system are jointly maximized.

It is also interesting to note that the sum-rates offered by
the fairness based schemes are comparable to each other.
Furthermore, it should be noted that in the scheme where
the sum rate is maximized, mostly, only the user with the
best channel condition is allowed to transmit, while the other
users in the system remain idle. It was observed during
the simulations that for the Maximize sum-rate scheme on
average 1.025 users were allowed to transmit on the channel.
Therefore, although the sum rate maximization scheme offers
a higher rate, it is highly unfair to the users in the system.

Figure 8 presents the outage probability results of each
proposed framework. In the case of theOptimal scheme, the
outage probability is zero, as the system considers all possible
power allocation combinations and selects the best solution
that satisfies the constraint (

∑K
k=1 pkhk < Ith). We would

like to emphasize that the figure shows the outage probability
of the Optimal scheme after it has searched for the best
solution. In contrast, the Maximize Sum-Rate scheme has
a lower outage probability compared to the fairness-based
schemes because it does not allow users with poor channel
conditions to transmit, thereby minimizing overall system
interference. However, with the Instantaneous Reward
scheme, each user is required to transmit in every time slot.
As a result, in a distributed solution framework, where the
STs cannot be certain about the decisions of other STs and
must base their decisions on previous observations, there is
a higher chance of taking incorrect action and transmitting
with excessive power, leading to higher outage probability
at the primary end. Therefore, the outage probability for the
Instantaneous Reward scheme is the highest among the
proposed frameworks. However, if we consider cumulative
reward over multiple time slots, the STs can take turns
transmitting or adjust their transmission power levels based
on previous observations. Hence, the cumulative reward
based approaches result in higher average rewards values
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FIGURE 8. The figure compares the outage probability of the
primary network for the different schemes.

while maintaining lower interference and outage probability
levels.

The performance of DQ-RL frameworks heavily relies on
the number of features defining the state of the environment.
More features may enhance performance but would increase
the feedback load and necessitate longer training times.
Conversely, considering only a few features reduces feedback
load and computational complexity but might result in
suboptimal performance. In this comparison, we assess the
performance of three frameworks utilizing different numbers
of state features. As depicted in Fig. 9, the highest reward is
achieved by the Feedback interference, all hn, all SINRs
framework. When SINRs are excluded from the state-
set (Feedback interference, all hn, reward), the average
reward decreases. The Feedback binary interference,
reward scheme, which relies solely on the feedback of
a binary indicator of interference and the reward function
value, exhibits the poorest performance. The system’s
performance with imperfect channel state information (CSI)
is contingent on the error in the CSI. In the best-case
scenario with perfect CSI, the performance matches that
of Feedback interference, all hn, all SINRs or Feedback
interference, all hn, reward, depending on the available
state features. Conversely, in the worst-case scenario with
maximum error, the performance aligns with Feedback
binary interference, reward. For all other cases (partial
error in CSI), the proposed frameworks consistently perform
between these two extremes, depending on the value of
error.

In CR systems, if the value of Ith is increased, the
performance of the system improves because the power
allocation at the STs becomes more flexible. Thus, the users
can increase the transmission power (if it would result in a
higher reward). Now we present the results that show the
impact of Ith on the performance of the proposed frameworks.
For the results in Fig. 10, the agents were trained for different
values of Ith. Figure 10 shows that increasing Ith results in
increasing the average reward. When Ith is increased from
0.6 W to 0.8 W, the marginal reward (increase in reward per
unit increase in the value of the parameter) is greater than
when we increase Ith from 0.8 W to 1 W. If the value of Ith is
further increased, the marginal reward keeps on decreasing.
There are two reasons for this marginal decrease: first, the

FIGURE 9. The average reward values of the secondary system
under different variants of the state-set.

sum-rate is a logarithmic function of allocated power, thus,
when the value of Ith is increased linearly, a logarithmic
increase in the value of rate is observed, second, when Ith is
increased, all STs may increase their transmit power initially,
however, after a certain point when some STs are already
transmittingwith full available power, the transmission power
can not be further increased.

FIGURE 10. The average rewards in the case of different systems
with values of Ith ranging from 0.4 W to 1.4 W. The case is
homogeneous to the scenario where the value of Ith of a system
changes and we retrain the agents for the new value of Ith.

The results in Fig. 10 show the effect of increasing Ith
on the performance of DQ-RL agents trained separately for
each value of Ith. The results showed that the DQ-RL-based
technique provides good performance for any value of Ith.
However, the approach to train the agents for each value
of Ith might not be practical because it is time-consuming.
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Now, we present the impact of varying Ith on the performance
of a DQ-RL agent trained for Ith = 1 W. As the model is
trained to keep interference below 1 W. We need to modify
the interference value before it is used by the agent to
provide a viable solution. Therefore, we modify the value of
interference as: interference = (

∑K
k=1 pk fk ) + (1 − Ith). The

modification allows us to use the agent trained for Ith = 1 for
any other value of Ith.7

Figure 11 shows the impact of Ith on the reward value.
As seen before, the reward increases with Ith. The proposed
model provides smaller values of reward as compared to the
previous case where a different DQ-RL model was trained
for each value of Ith. The performance at lower Ith is worse,
however, when Ith increases the rewards become comparable
to those shown in Fig. 10. Further, when Ith is increased from
1.2 W to 1.4 W the average reward remains approximately
the same. Whereas, in the case of Fig. 10 a small increase in
reward was observed at these points.

FIGURE 11. The average reward of the secondary systems when
the modified interference-value is provided to the agents such
that the same agents can be used for any value of Ith without
any retraining.

Increasing the resolution of the action space improves
the system’s performance, as depicted in Fig. 12. The
heightened resolution of the action space provides more
precise options for power allocation. For instance, when
considering 6 actions with Pthk = 1W, the smallest power
allocation step an agent can take is 0.2 W. However, in the
case of 11 possible actions, the smallest step is reduced to
0.1 W. For 6 actions, the maximum gap in power allocation
from the optimal point would be 0.1 W (10%). Conversely,
with 11 actions, the maximum gap from the optimal point is
reduced to 0.05 W (5%). Increasing the resolution from 6 to
11 actions results in a reduction of the maximum error
by 0.05 W. Further increasing the number of actions to

7Note that, it is not necessary to train the agent for Ith = 1W . The proposed
solution could work for the agents trained for any other value of Ith.

16 decreases the maximum error to 0.0333 W (3.33%), and
expanding the action space from 16 to 21 actions further
reduces the maximum error to 0.025 W (2.5%). Hence, for
a linear increase in the number of actions, the error decreases
in a non-linear fashion.8 Therefore, as we continue to
increase the number of actions, the framework progressively
approaches optimal power allocation, and the sub-optimality
introduced due to discretization diminishes. However, the
marginal reward keeps decreasing, as it is observed that there
is only a very small gain in the reward when increasing the
number of actions from 16 to 21.

FIGURE 12. Average reward provided by DQ-RL frameworks
trained for different resolutions of the action space, and each
agent in the system has the same resolution of action
space.

Next, in Fig. 13 we compare the average reward provided
by the proposed framework when the number of STs in
the system is changed. We consider the scenarios of 2,
3, and 4 STs. Increasing K decreases the average reward
because it becomes hard to achieve a high value of fairness
index while satisfying the interference constraint. Further-
more, as all the STs in the system share the same channel,
with an increase in the number of STs, the interference
of the system also increases, resulting in reduced per-user
SINR and high outage probability of the primary network.
Therefore, the average reward value decreases when K is
increased.

In Fig. 14, we compare the performance of an LSTM-
based framework with a counterpart using simple RNNs.
While maintaining consistency in other aspects of the
proposed scheme, we replaced the LSTM nodes in the
first layer of the DNN model with simple RNN nodes.
The results indicate that both frameworks exhibit good

8For fairness in comparison, we have trained all the considered
frameworks with an equal number of samples. However, DNNs with
more output nodes usually require more training to reach their maximum
performance.
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FIGURE 13. Average reward of the secondary systems containing
different number of STs communicating simultaneously.

FIGURE 14. Average reward comparison of the proposed LSTM
model with a simple-RNN model [32].

performance, but the LSTM-based scheme achieves superior
reward values. Additionally, the figure illustrates that the
simple RNN-based framework requires more iterations to
converge. It is worth noting that although a simple RNN
provides inferior performance compared to LSTM, the
computational complexity differs. A simple RNN requires
(2 + 2K )X + 2X2 multiplication operations and (2 +

2K )X + 2X2 addition operations, whereas LSTM units
demand 3(2 + 2K )X + 3X2

+ 3X multiplications and 3(2 +

2K )X + 3X2
+ 2X additions [32]. While LSTM units are

computationally more complex, modern programming lan-
guages like Python support multi-thread processing, allowing
parallel execution of independent operations and minimizing
the impact on execution time. For devices with limited
computational capabilities where multi-thread processing is

not feasible, employing simple RNN-based models becomes
more practical.

VII. CONCLUSION
We proposed a DQ-RL-based approach for optimizing power
allocation in an underlay cognitive radio network where
multiple STs share a channel. To address the issue of
unfairness in interference-limited systems, a novel distributed
framework is proposed to ensure fairness in rates among
all STs while satisfying the primary network’s interference
threshold. Several modifications to the DQ-RL model are
also proposed to enhance its effectiveness. One of the most
interesting outcome of the framework is that the proposed
cumulative reward based techniques result in greater network
fairness and lower primary outage probability compared to
the instantaneous reward technique.

In the future, we will work on improving the developed
model such that it could also provide the solution for
channel allocation in a multi-channel scenario. Improving
the scalability of the proposed scheme such that they are
insensitive to the number of secondary transmitters, is of
paramount importance. Furthermore, it would be interesting
to evaluate the impact of a regularization parameter for
penalizing primary outage, where instead of returning a
0 reward in the case of a primary outage the reward value
is decreased by a certain factor. In this work, we have
considered linear quantization of the available power, hence,
the number of actions increases linearly with Pthk . In the
future, we will try to find a better quantization technique that
provides better performance with less number of actions.
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