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ABSTRACT The advancement of deep learning (DL) techniques has led to significant progress in
Automatic Modulation Classification (AMC). However, most existing DL-based AMC methods require
massive training samples, which are difficult to obtain in non-cooperative scenarios. The identification of
modulation types under small sample conditions has become an increasingly urgent problem. In this paper,
we present a novel few-shot AMC model named the Spatial Temporal Transductive Modulation Classifier
(STTMC), which comprises two modules: a feature extraction module and a graph network module. The
former is responsible for extracting diverse features through a spatiotemporal parallel network, while the
latter facilitates transductive decision-making through a graph network that uses a closed-form solution.
Notably, STTMC classifies a group of test signals simultaneously to increase stability of few-shot model
with an episode training strategy. Experimental results on the RadioML.2018.01A and RadioML.2016.10A
datasets demonstrate that the proposed method perform well in 3way-Kshot, 5way-Kshot and 10way-Kshot
configurations. In particular, STTMC outperforms other existing AMC methods by a large margin.

INDEX TERMS Automatic modulation classification, few-shot learning, graph network.

I. INTRODUCTION

AUTOMATIC modulation classification (AMC) refers
to the process of distinguishing the modulation types

of wireless communication signals. In cooperative commu-
nication scenarios, identifying modulation scheme is the
primary condition for accurate information recovery. In non-
cooperative communication scenarios, knowledge of the
modulation types of intercepted signals is crucial for precise
interference guidance, electromagnetic spectrum monitoring,
and object detection.

Classical AMC methods can be divided into two cat-
egories: likelihood-based (LB) methods and feature-based
(FB) methods. LB methods obtain the classification result by
calculating the likelihood ratio function. However, acquiring
prior knowledge of the received signal in non-cooperative
communication is challenging. Additionally, maximizing the
likelihood ratio function to estimate unknown parameters is
computationally intensive. Therefore, FBmethods are prefer-
able for practical usage. FB methods address AMC by using
handcrafted features designed based on domain knowledge.
They extract features through preset calculation rules such
as high-order cumulants, instantaneous amplitude, and power

spectral density. These features are then fed into a classi-
fier to determine the modulation type. However, with the
rapid development of modern communication technology,
the number of communication devices has risen sharply, and
modulation types change rapidly. Facing these practical chal-
lenges, traditional FB methods expose serval shortcomings
such as difficulty in designing hand-crafted features, low pro-
cessing speed, and deterioration in recognition performance.
In complex electromagnetic environments, FB methods are
outperformed by other methods.

A. MOTIVATIONS
Recently, Deep Learning (DL) models have achieved remark-
able success in various domains, including object detection
[1], natural language processing [2], and classification tasks
[3]. With the integration of powerful optimization tools, DL-
based AMC models have emerged. These methods utilize
neural networks to automatically extract features, thereby
eliminating the laborious process of feature design. Driven
by large-scale data, DL-based AMC models offer serval
advantages, such as exceptional environmental generaliza-
tion, the ability to learn and extract effective features, minimal
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information loss during signal processing, and stable recog-
nition performance.

Despite some breakthroughs in current research on
DL-based AMC models, certain challenges have become
increasingly apparent as their practical application continues
to expand. Most existing DL-based AMCmethods rely heav-
ily on massive training samples. However, acquiring a suffi-
ciently number of training samples for practical applications,
especially in non-cooperative scenarios, is challenging.When
training samples are scarce, the performance of DL-based
models significantly deteriorates. Consequently, achieving
effective AMC under small sample conditions remains a crit-
ical challenge in DL-based AMC methods. Some researches
have attempted to introduce semi-supervised learning meth-
ods and transfer learning methods to reduce the reliance on
labeled samples. Although these models decrease the depen-
dency on labeled samples, they still require a substantial
number of unlabeled samples, which does not fundamentally
address the small sample problem.

Few-shot learning (FSL) is designed to address the prob-
lem of small sample classification using only a few samples.
It involves adapting a model to recognize new classes that
were not present during the training process, using only a
limited number of samples from these new classes. Recently,
serval attempts have been made to apply FSL techniques to
AMC task, but there is still considerable room for improve-
ment. The lack of support data and the imbalance in SNR
conditions make it challenging to develop a stable classi-
fier. Additionally, most existing few-shot models solely on
a few labeled training samples for prediction, overlooking
the potentially useful information contained in unlabeled test
samples within a task.

Therefore, we propose a graph-based few-shot transductive
prediction model. This model predicts the labels of the entire
testing set directly, rather than predicting each signal indepen-
dently. This approach not only enhances global accuracy and
stability but also taps into the latent information contained in
test signals. Besides, the proposed model achieves few-shot
classification through an episode training strategy which is as
same as meta learning.

B. RELATED DEEP LEARNING WORKS
The related deep learning works are categorized into four
groups based on required training samples and network
formats, so as to demonstrate the saturation of traditional
DL-based AMC methods and the urgency of AMC under
small samples. Broadly, these categories are supervised
learning-based models, semi-supervised and unsupervised
learning-based models, transfer learning-based methods and
few-shot learning-based models.

1) SUPERVISED LEARNING-BASED MODELS
Supervised learning-based AMC models, which require
extensive labeled samples, are currently the most widely
studied in the field of AMC. O’Shea et al. [4] were almost the

first researchers that introduced a Convolution Neural Net-
work (CNN) into AMC, employing VGG-net as backbone for
feature extraction. Additionally, they incorporated residual
structure into the 2d-CNN to enhance classification perfor-
mance [5]. The RadioML.2016.10A and RadioML.2018.01A
datasets they built also have become the most commonly
used datasets in AMC research. Dong et al. [6] proposed an
efficient and lightweight AMC model that initially employs
a phase estimator to counteract phase offset. Subsequently,
the I-channel, Q-channel and IQ-channel are fed into three
different convolution blocks in parallel for feature extrac-
tion. Furthermore, this model utilizes group convolution to
reduce algorithm complexity. Ke and Vikalo [7] served Long
Short-Term Memory (LSTM) as the backbone and designed
an LSTM denoising autoencoder for AMC. They employed
the last hidden state vector of LSTM as the extracted features,
which is then connected to a fully connected (FC) network
for modulation classification. Zhang et al. [8] designed an
efficient Residual Shrinkage Convolutional Neural Network
(RSCNN) for noise suppressing, comprising convolution
layers, batch normalization layers, shrinkage function, and
the ReLU activation function. The features extracted are
concatenated and fed into a FC network for modulation clas-
sification. Other significant contributions [9], [10], [11] have
also designed state-of-the-art AMC models based on CNN
and Recurrent Neural Network (RNN) variants.

In various networks, CNN and RNN are the most basic
network structures. This prominence stems from the CNN’s
proficiency in extracting spatial feature and the RNN’s effec-
tiveness in temporal modeling. Consequently, scholars have
increasingly sought to complement the advantages of these
two classical structures, which became the main considera-
tion for following researches [12], [13], [14], [15], [16], [17]
Huang et al. [12] proposed a hybrid Gated recurrent residual
Network (GrrNet) for AMC, comprising a Resnet-based fea-
ture extractor, fusion module, and GRU-based classification
module. Chang et al. [13] developed a hierarchical classifica-
tion head capable of integrating outputs from each layer for
the final prediction. Their model sequentially concatenates
convolution blocks, Bidirectional Gated Recurrent Units
(BiGRUs) and FC layers in a series way for feature extraction.
Furthermore, Chang et al. [14] recently designed a newmodel
named MLDNN. This model utilizes a CNN-block, BiGRU-
block and SAFN-block to simultaneously extract features
from I/Q and A/P sequences. It then incorporates a multi-task
learning head method for final classification.

In addition to the aforementioned representative works,
other researchers have attempted to introduce some novel
theories into AMC domain, such as Transformer [18], [19],
Neural Architecture Search (NAS) [20], Gradient-weighted
Class Activation Mapping (Grad-CAM) [21], and Attention
Mechanism (AM) [22], [23].

Overall, the supervised learning-based AMC models have
been extensively and thoroughly studied. Consequently,
focusing on marginal performance enhancements may not
justify the associated costs and efforts.
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2) SEMI-SUPERVISED AND UNSUPERVISED
LEARNING-BASED MODELS
Compared with supervised learning-based models, semi-
supervised and unsupervised learning-based models can
substantially decrease the need for labeled samples. These
methods leverage a combination of both labeled and unla-
beled samples, or exclusively utilize unlabeled samples, for
network training.

Dong et al. [24] utilized labeled samples to com-
pute cross-entropy loss and unlabeled samples to calculate
Kullback-Leibler (KL) divergence. They then jointly opti-
mized these two types of losses to train the network.
Yunhao et al. [25] introduced a spatiotemporal autoencoder
for AMC, capable of not only realizing unsupervised feature
extraction but also enabling semi-supervised classification.
Xie et al. [26] designed an improved autoencoder to com-
press and reconstruct the transformed spectrogram of signals,
thereby enabling efficient learning from signals without label
information. Following unsupervised pretraining, they uti-
lized a peak clustering algorithm for class determination.

3) TRANSFER LEARNING-BASED MODELS
Transfer learning leverages labeled dataset from source
domain with similar distribution to quickly generalize on
unlabeled dataset from target domain. This approach trans-
fers useful knowledge from the source domain to the target
domain through joint training, enhancing the model’s adapt-
ability and efficiency in target domain.

Deng et al. [27] designed a Generative Adversarial Net-
work (GAN)-based transfer learningmodel for AMC, namely
AMRMIDAN. They employed GAN as the backbone to
jointly train signal from both the source domain and target
domain, thereby achieving successful generalization on unla-
beled signals in the target domain. Zhou et al. [28] proposed
a transfer learning-based AMC model that utilizes a domain
discriminator to align the source and target domains into
a unified classification domain. Bu et al. [29] introduced
an adversarial-based transfer learning approach to AMC,
which mitigates the distribution difference between the orig-
inal source domain and the downsampled target domain.
Deng et al. [30] utilized a domain adversarial neural network
to transfer multimodal information from the source domain to
the target domain, enhancing the model’s adaptability across
different domains.

4) FEW-SHOT LEARNING-BASED MODELS
FSL bears resemblance to transfer learning, but it uniquely
requires a few labeled samples from the target domain,
as opposed to a large number of unlabeled samples. FSL
accomplishes rapid generalization in the target domain by
constructing analogous few-shot tasks in the source domain,
thereby efficiently adapting to new classes with a few labeled
samples.

At present, there exists serval well-performed FSL meth-
ods, such as Relation Network (RN) [31], and Prototypical

Network (PN) [32]. The RN measures the relationship
between different samples by calculating the similarity score
between feature vectors, enabling the network to learn to
distinguish different types. The idea of the PN is to create
a prototype representation of each class and classify signals
according to the Euclidean distance between the prototype
and the test signal.

More recently, research on few-shot AMC has begun to
emerge. Zhou et al. [33] introduced an RN into AMC,
achieving a classification accuracy of up to 93.2% under
5way-5shot condition in the RadioML.2016.10A dataset.
Che et al. [34] proposed a few-shot AMC method named
STHFEN, consisting of four sub-modules: the spatial fea-
ture extractor, the temporal feature extractor, the Euclidean
distance-based classifier, and the hybrid inference module.
The core concept of STHFEN for few-shot AMC is akin to
that of the PN. Wang et al. [35] introduced a few-shot AMC
framework named MsmcNet, which includes IQF modules,
1D-SFP modules, and a classifier. The core idea of MsmcNet
for achieving few-shot AMC is to determine the number of
1D-SFP sub-modules using a graph convolution network,
significantly reducing the network’s search space.Wang et al.
[36] employed an episode-based training strategy, utilized
the testing set to calculate the attention weight to enhance
features separability, and ultimately achieving signal classi-
fication through a similarity comparison network.

However, most existing few-shot signal classificationmod-
els directly apply method from few-shot image classification,
which may not be entirely appropriate. Signal classification
is profoundly influenced by the Signal-to-Noise Ratio (SNR),
which can lead to an excessive presence of low SNR signals
in randomly sampled tasks. This makes it challenging for the
model to learn effective features and can result in unstable
training performance.

C. CONTRIBUTIONS
In this paper, a novel few-shot AMC model is designed.
Considering the insufficient feature diversity in traditional
DL-based AMC models and the instability in existing
few-shot AMC models, our proposed few-shot AMC method
combines parallel multi-scale feature extraction network and
a graph model-based transductive learning. The key contribu-
tions of this paper are summarized as follows:

1) Inspired by the realization that features derived from
different input formats possess complementary represen-
tational capabilities, we have designed a hybrid parallel
spatiotemporal feature extraction module. This module ade-
quately excavate multi-stream signal features, incorporating
complex-value convolution and dilated convolution for the
feature extraction of complex signals and polar constellation
diagrams. Additionally, we have devised various convo-
lutional kernels for feature extraction and aggregation at
different scales.

2) Recognizing that themajority of existing few-shot signal
classification models experience significant instability dur-
ing training due to SNR condition imbalances in randomly
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sampled tasks, we introduce the graph model-based trans-
ductive learning method into few-shot AMC. This approach
enables the classifier to predict all test signals within a
task simultaneously, aiming to maximize overall classifica-
tion accuracy. Specifically, our model can propagate labels
from labeled signals to unlabeled signals by constructing a
unidirectional graph and computing a closed-form solution,
effectively leveraging the information contained in unlabeled
test signals. To the best of our knowledge, this is the first
implementation of a graph model-based transductive learning
method in signal classification.

3) To verify the effectiveness of our model, extensive
experiments were conducted on the RadioML.2018.01A
and RadioML.2016.10A datasets. The experimental results
demonstrate that our model outperforms other state-of-the-
art methods. Notably, in both 5way-5shot and 10way-5shot
under RadioML.2018.01A, our model’s classification accu-
racy surpasses that of other transfer learning model and
few-shot learning models by approximately 3%-12%.

The reminder of this paper is organized as follows:
Section II details the signal model and problem definition
considered in this paper. Section III introduces a few-shot
AMC model named Spatial Temporal Transductive Modula-
tion Classifier (STTMC) based on feature extraction module
and graph network module. Section IV presents numerical
experiments with different setting and provides a comprehen-
sive discussion of the results. Finally, Section V summarizes
our model and prospects the future work.

II. SIGNAL MODEL AND PROBLEM DEFINITION
In this section, the signal model used in this paper and the
problem definition of few-shot AMC are illustrated.

A. SIGNAL MODEL
Wireless signals, after channel transmission, can generally be
represented by the following equation:

r(n) = A(n)ej(ωn+θ )x(n) + σ (n), n = 0, 1, . . . ..N − 1 (1)

where x(n) represents the modulated signal, σ (n) is the addi-
tive Gaussian Noise, A(n) denotes the channel gain, ω and
θ are the frequency offset and phase offset respectively, and
r(n) is the unknown modulated signals at the receiver. Typi-
cally, the received signal is preprocessed into I/Q sequences,
which can be expressed as follow,

I = {real[r(n)]}N−1
n=0 ,Q = {imag[r(n)]}N−1

n=0 (2)

B. PROBLEM DEFINITION
Generally, there exist three datasets in an FSL problem: a
training set, a support set and a testing set. The support set
shares the same label space with the testing set, whereas the
training set has its own label space. If support set S contains
K labeled samples for each of the C categories, the FSL task
is referred to as a Cway-K shot task. Assuming that a model
is trained with a support set only, we can in principle obtain a

classifier for the testing set. However, the classification accu-
racy of such a classifier is definitely unsatisfactory. FSL aims
to perform meta-learning on the training set, acquiring quick
adaptability through a multitude of training tasks Ttrain sam-
pled from the training set. This adaptability is then extend to
test tasks Ttest , enabling the recognition of unseen categories
in the support set. In short, Ttrain is used to simulate Ttest ,
facilitating the extraction of transferrable knowledge. This
process allows the model to achieve improved performance
on the testing set.

III. SIGNAL TRANSDUCTIVE PROPAGATION NETWORK
In this section, we illustrate the proposed model in detail. The
main structure of STTMC is described in Fig.1, from which
we can see that STTMC is composed of two primarymodules:
a feature extraction module and a graph network module. The
former designs a spatiotemporal parallel feature extractor to
empower the model with strong feature extraction ability. The
latter constructs a graph network-based transductive few-shot
classifier for predicting labels in the testing set. It is worth
emphasizing that Fig.1 illustrates the forward propagation
process within a task, and the complete training process
encompasses multiple tasks, aligning with the FSL training
strategy. Each task, also known as an episode, collectively
forms an epoch.

A. FEATURE EXTRACTION MODULE
As shown in Fig.1, feature extraction module employs a
parallel structure, named Parallel Multi-scale Spatiotemporal
Network (PMSN), to excavate complementary features from
the I/Q sequence and the Accumulated Polar Constellation
Diagram (APCD) simultaneously.

For the I/Q sequence input, we design a hybrid series net-
work to extract temporal features. Considering the impact of
attenuation and channel fading, which result in an incomplete
orthogonal relationship between I-channel and Q-channel,
the information in these channels is inherently different.
Based on the above considerations, we process the I/Q signal
separately.

As shown in Fig.2, the I-channel and Q-channel are first
inputted into three 1D convolution blocks with kernel sizes
of (1,5), (1,8), and (1,11), respectively. The IQ-channel is
processed through three complex-value convolution opera-
tors with varying kernel sizes. The real part and imaginary
part of the complex kernel are set to (1,5), (1,8), and (1,11),
enabling the extraction of multidimensional features. Subse-
quently, the features extracted from the I-channel, Q-channel
and IQ-channel are concatenated. This concatenated output
is then fed into a GRU, following a flattening operation, for
further feature aggregation. In the aforementioned convolu-
tion block, the ReLU activation function is utilized, and the
number of filters is set to 16. The max-pooling size for each
block is (1,4), aiding in feature suppression. Additionally, the
GRU comprises 64 hidden units, and the 3-layer FC network
has dimensions of 256, 128, and 64. The output of the final
FC layer is regarded as the temporal features.
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FIGURE 1. Few-shot automatic modulation classification procedure of the proposed STTMC.

FIGURE 2. The detailed structure of the Temporal feature extractor.

In previous studies, complex signals were typically divided
into real parts and complex parts for processing. However,
this approach often resulted in the loss of the complex
algebraic structures inherent in the signal, and the phase infor-
mation might not be consistently preserved throughout the
network. To address this issue, we introduce complex-value
convolution to process IQ signals directly [37]. This method
allows for the retention of the signal’s complex structure and
phase information. The operation of the complex-value con-
volution operator is illustrated in Fig.3. The complex-value
convolution kernel is composed of a real part, denoted as
Kreal , and an imaginary part, denoted as Kreal . The output
of this convolution process is computed using the following
equation:[

Re(Output)
Im(Output)

]
=

[
Kimag × Sreal + Kreal × Simag
Kreal × Sreal − Kimag × Simag

]
(3)

where Sreal and Simag represent the real part and imaginary
part of complex signal, respectively.

Beyond the I/Q sequence input, we also utilize the
APCD to transform temporal sequences into images, thereby
enhancing feature diversity. The constellation diagram is
particularly effective in reflecting spatial features of sig-
nals, providing an insightful and intuitive visualization of
the signal structure. Unlike traditional constellation map-
ping, APCD first applies L2 normalization to the amplitude
A and normalizes phase ϕ. This approach aligns with the
fundamental principle of modulation, which involves encod-
ing messages into the amplitude or phase of the signal

FIGURE 3. Principle of complex-value convolution.

waveform. The conversion from I/Q to A/ϕ precisely captures
this inherent characteristic. By highlighting internal differ-
ences between modulation modes, the polar domain can also
achieve lower training overhead in feature extraction com-
pared to I/Q domain. Therefore, APCD maps the normalized
I/Q sequences to A/ϕ sequences, increasing the separability
between different modulation types. This is employed using
the following formulas:

An =

√
I2n + Q2

n (4)

ϕn = arctan(Qn/In) (5)

where In and Qn represent n-th point in I/Q sequence. After
converting from the I/Q domain to the A/ϕ domain, the
A/ϕ sequences are transformed into APCD as inputs for
the feature extraction sub-module [38]. Compared to tra-
ditional constellation diagrams generated directly from I/Q
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FIGURE 4. The detailed structure of the spatial feature extractor.

FIGURE 5. Principle of dilated convolution.

sequences, APCDs in the polar domain exhibit stronger clas-
sification capabilities, thanks to their resistance to amplitude
deterioration. The process of constructing APCDs involves
the following steps:

Firstly, the range of the radius axis r0, r1, the range of the
theta axis θ0, θ1, and the image resolution of the two axes
pr , pθ are determined. Then, each signal point is mapped onto
a grid-like image Pwith coordinates (i, j). The transformation
method is described by the following equations:

1gr = (r1 − r0)/pr (6)

1gθ = (θ1 − θ0)/pθ (7)

i = ⌊(r [n] − r0)/1gr⌋ (8)

j = ⌊(θ [n] − θ0)/1gθ⌋ (9)

The pixel value is set to 1 if any symbol is mapped to the
point. Finally, the historical information is accumulated by
the following formula,

p(i, j) = p(i, j) + 1 (10)

It is also worth mentioning that in constructing APCD,
we intentionally control the coordinate range to 36 × 36,
further compressing the size of the input image to avoid
high computational complexity. To extract the global features
from the APCD, we introduce dilated convolution to enhance
the perception of global information. As shown in Fig.4, the
APCD is firstly processed by four convolution groups with
different kernels: dilated conv2D with kernel sizes (3,3) and
(5,5), and traditional conv2Dwith kernel sizes (3,3) and (5,5).
Each convolution block has 16 filters and utilizes ReLU as the
activation function. The features with different scales are then
concatenated in the channel dimension and re-fed into a series
of convolution blocks for further feature aggregation. The
filter number and max-pooling size in these three convolution
blocks are set to 8 and (2,2), respectively. Finally, the output
of the convolution block is connected to a two-layer FC

network with dimensions 128 and 64. The final 64 units are
regarded as the final spatial features.

Dilated convolution is an innovative adaptation of the
standard convolutional kernel, incorporating a dilation fac-
tor to enlarge the receptive field. The principle of dilated
convolution is shown in Fig.5 from which we can observe
that it allows the receptive field of the convolution ker-
nel to expand exponentially, while keeping the number of
training parameters constant. The expansion of the receptive
field is particularly beneficial for connecting distant points
in the constellation diagram, making it especially suitable
for feature extraction from APCDs. By incorporating dilated
convolution, the model can capture broader spatial relation-
ships within the signal data, ensuring that even features that
are spatially separated in the APCD can be effectively inte-
grated into the analysis.

After processing through the PMSN, spatial and temporal
features are extracted, each with a shape 1 × 64. These
feature are then concatenated in a parallel manner to form a
spatial-temporal hybrid feature with a shape of 2× 64, ready
for use in subsequent module.

B. GRAPH NETWORK MODULE
Next, we present the graph network module in Fig.1, which
is used for modulation scheme decision-making through the
extracted features. The graph network is employed to depict
topological structure composed of nodes and edges. To build
a graph within a few-shot task, we first consider the extracted
features from PMSN as node values. Before calculating edge
values, a zoom factor is obtained by Zoom Factor Calculation
Network (ZFCN) for better adaption to different samples. The
structure of the ZFCN, as shown in Fig.6, involves a series of
convolution blocks with different kernels for further feature
extraction and dimension reduction, followed by a 3-layer FC
network with 32, 16, and 1 neurons to calculate the zoom
factor.

After preprocessing with ZFCN, we create an adjacency
matrix on the testing set and support set to measure the
similarity of different signals, forming the edges matrix.
The similarity between different features is obtained using the
following formula:

Wij = exp(−
1
2
d(
f (xi)
ρi

,
f (xj)
ρj

)) (11)

where xi and xj are different input signals, f (·) represents the
feature extractor, d(·, ·) denotes the distance measure (e.g.,
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FIGURE 6. Structure of zoom factor calculation network.

Euclidean distance) and ρ is the zoom factor calculated by
ZFCN.

With the graph constructed, the correlation between any
two samples within a task can be measured, aiding in the
pursuit of a global optimal solution rather than a local one.

As mentioned earlier, we consider the elements of the
edgesmatrix as the weights of an undirected graph. Assuming
a nonnegative matrix Y represents sample labels with a shape
(C ∗K +T )∗C , where C and K derive from Cway-K shot, T
represents the testing number. Let Yij = 1 if signal xi belongs
to support set and the corresponding label yi = j, otherwise
Yij = 0. Taking the binary Y as the initial value, labels of
the testing set are propagated iteratively according to graph
theory using the following formula [39]:

Ft+1 = αUFt + (1 − α)Y (12)

where α controls the amount of propagated label information,
and Ft represents the predicted labels of the testing set at
time t . We can also find from Eq.(12) that each point not only
obtains information from its neighbors but also retains initial
information. U represents the initialization matrix calculated
by U = M−1/2WM1/2, where M denotes a dialog matrix
whose (i, i)-element equals to the sum of the i-th row ofW .
Through continuous iteration, each unlabeled signal is

assigned to the class that received the most information,
achieving class prediction. According to Limit Theory, the
progression Ft can be further calculated by the following
formulas:

lim
t→∞

Ft+1 = lim
t→∞

(αUFt + (1 − α)Y ) (13)

lim
t→∞

Ft+1 = α lim
t→∞

UFt + (1 − α)Y (14)

F∗
= αUF∗

+ (1 − α)Y (15)

F∗
=

(1 − α)
I − αU

Y (16)

F∗ can be seen as an approximate closed-form solu-
tion for labels of the testing set. In this paper, we directly
use this solution as the predicting result without iterations,
significantly improving computational efficiency. The final
prediction result is then obtained using the softmax function.

P(yi = j| xi) =
exp(F∗

ij )
N∑
j=1

exp(F∗
ij )

(17)

where yi represents the predicted label for i-th signal in the
union of support and testing set. F∗

ij denotes the j-th compo-
nent of the predicted label from label propagation.

Finally, the classification loss between predicted results
and true labels from the union of the support set and the
testing set is calculated using cross-entropy function:

L =

N∗K+T∑
i=1

N∑
j=1

−1(
∧
yi == j) logP(yi = j| xi) (18)

where
∧
yi == j represents the true label of signal and 1(x)

denotes the binary function. If the argument x is true,
1(x) = 1, otherwise 1(x) = 0.
Notably, the adaptive moment estimation (Adam) opti-

mizer is used for updating network. The pseudocode of
STTMC is outlined in Algorithm 1.

Algorithm 1Workflow of STTMC

INPUT:C way, K shot, epochs, episodes, Testing Number
T
for i=1:epochs

Select C classes from training set as support set ran-
domly.

for j=1:episodes
S = {(xn, yn)}Kn=1 Extract K signals from support

set with C classes randomly.
Q = {(xm, ym)}Mm=1 Extract T signals from same C

classes and guarantee S ∩ Q = ∅.
Calculate SAPCD,QAPCD by (3)-(9).
Extract Feature (SSpatial,QSpatial) and Feature

(STemporal,QTemporal) through PMSN.
Calculate zoom factor ρ by ZFCN.
ConstructW by (11).
Predict label yprediction of Q by (16)-(17).
Calculate loss between yprediction and ytrue by (18).
Update parameters by Adam(L).

End for
End for
PREDICTION: Use Cway-Kshot labeled signals from
testing set to predict unlabeled signals.

To sum up, the decision-making process of STTMC
primarily relies on information propagation within a
graph, achieving global optimization within a task. Unla-
beled signals in testing set are extensively utilized for
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decision-making. Moreover, a closed-form solution is cal-
culated for decision-making, which not only eliminates
iterations but also reduces the need for training a FC net-
work (traditional classification head), thereby decreasing the
number of trainable parameters and facilitating the actual
deployment of the model.

IV. EXPERIMENTS
In this section, we evaluate the proposed few-shot AMC
model. Firstly, we explore the convergence performance of
our model in various settings, then analyze the network struc-
ture through numerous ablation tests. We also investigate the
performance of our model under different ways and shots.
Lastly, we compare our module with serval state-of-the-art
AMC approaches in the same settings.

A. DATASET
All experiments are conducted on the RadioML.2018.01A
and RadioML.2016.10A datasets, which are generated in
a laboratory environment. The RadioML.2018.01A dataset
includes 24 modulation types listed as follows: OOK, 4ASK,
8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK,
32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM,
128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-
DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK. The data
dimension of RadioML.2018.01A is 2*1024. The SNR for
each modulation scheme ranges from -20 to 30 dB with an
interval of 2 dB. The dataset contains a total of 255,5904
signals, with 4096 samples per SNR for each modulation
scheme. For evaluation, we consider SNR from -20 to 20dB.

The RadioML.2016.10A dataset comprises 11 modula-
tion types of complex-valued I/Q samples with a length of
128, includingWBFM, AM-DSB, AM-SSB, BPSK, CPFSK,
GFSK, 4-PAM, 16-QAM, 64-QAM, QPSK and 8PSK. The
samples are generated for 20 different SNR levels from -
20dB to 18dB in 2dB steps. The dataset has a total of 220,000
signals, with each mode having 1000 samples per SNR.

B. EXPERIMENTS SETTING
As discussed in Section.II.B, the training process for FSL
differs from traditional deep learning algorithm. It adopts
an episode-based method to optimize the network. The core
concept of FSL training method is to construct a task set
through repeated sampling from the training set, simulating
the real test task. In each epoch, a series of training tasks
T train = {T train1 ,T train2 , . . . . . .T trainN } are randomly sampled
from the training set, endowing the model with few-shot
classification ability through extensive training tasks. Each
task T traini is called an episode. After training the network
with T train, we can directly adapt to the test tasks T test . In each
task T , there exists a support set S with labeled signals and a
testing set Q with unlabeled signals. Moreover, S contains K
signals of C types is called Cway-K shot problem.
In this paper, we primarily explore the following

four conditions on the RadioML.2018.01A: 5way-5shot,
5way-10shot, 10way-5shot and 10way-10shot. The 5way

includes: FM, GMSK, 32QAM, 16APSK and 32PSK. The
10way includes: FM, GMSK, OQPSK, BPSK, 8PSK, AM-
SSB-DC, 4ASK, QPSK, OOK and 16QAM. We use the
remaining (24-C) categories in the RadioML.2018.01A
dataset for training, and then directly test the aforementioned
5 or 10 categories.

Additionally, we conduct 3way-3shot experiment on the
RadioML.2016.10A. The 3way includes two groups: group1
comprises BPSK, AM- SSB and 8PSK, while Group2
includes QAM16, PAM4 and QAM64. We use the remaining
8 categories in the RadioML.2016.10A dataset for training,
and then directly test the aforementioned 3 categories.

Different from the traditional predicting method, STTMC
predicts all test signals simultaneously to seek global opti-
mization within a task. Therefore, the number of testing
sample in each episode is a key parameter. In this paper,
we set the number of testing signals T to 30, unless otherwise
specified. The label information control factor α is set to 0.99.

For network training and inference, an Nvidia P5200 GPU
is used, and the CPU is Intel(R) Xeon(R) E-2186M. The
training epochs are set to 300 with a learning rate of 0.001.
In each epoch, the number of episodes is set to 100 and
employ the Adam optimizer.

C. CONVERGENCE PERFORMANCE
In this sub-section, we explore the convergence performance
of our model under different conditions, focusing on the
following experiments: 5way-5shot, 5way-10shot, 10way-
5shot, and 10way-10shot. Fig.7(a)-7(f) display the loss and
accuracy curves of our model. From the experiment result,
we observe that all curves exhibit high variability initially.
This is attributed to the mixing of training signals with dif-
ferent SNR during training process, which may result in all
sampled signals are of poor quality in an episode, leading to
the degradation of model performance. However, our model
converges stably in various situations after sufficient opti-
mization. Interestingly, we can also note that the validation
accuracy and loss sometimes outperform those in the training
process. This unusual phenomenon is due to the uncertainty
of the SNR of the training samples extracted by few-shot
model in each episode.

Furthermore, we observe that the impact of the K value on
our model is not obvious. In our experiment, the performance
of 5-shot and 10-shot seems to have little difference. In other
words, our model demonstrates good adaptability to various
few-shot conditions and performs well even with only 5-shots
required.

D. ABLATION TESTS
Following the complete training of ourmodel in Section.IV.C,
unseen classes in the testing set can be directly predicted
using the transductive method with only Cway-K shot sam-
ples. The test process still follows the Cway-K shot strategy.
It is also worth mentioning that The samples with varying
SNR in test tasks are randomly selected, and their average
value is taken as the final result.
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FIGURE 7. The training and validation accuracies and losses of STTMC under 5way-Kshot and 10way-Kshot. (a)Loss curve under
5way-5shot (b) Accuracy curve under 5way-5shot (c)Loss curve under 5way-10shot (d) Accuracy curve under 5way-10shot
(e)Loss curve under 10way-5shot (f) Accuracy curve under 10way-5shot (g)Loss curve under 10way-10shot (h) Accuracy curve
under 10way-10shot.

FIGURE 8. Comprehensive ablation analysis.(a) Ablation test with different input.(b) Ablation test with different convolution
kernel.(c) Ablation test of ZFCN.

To verify the advantages of our proposed network struc-
ture, we conduct serval ablation tests comparing classifica-
tion accuracy. In this section, we select 10way-5shot as the
base experimental setting. First, we compare classification
accuracy using different inputs for the proposed module.
We employ IQ, APCD, and IQ-APCD as input, respectively,
and the simulation result is shown in Fig.8(a). From the
result we can conclude that the average top-10 classification
accuracy of IQ-APCD is 3% and 6% higher than that of IQ
and APCD, respectively. This indicates that hybrid parallel
features extracted from different aspects are complementary.

Secondly, we explore the effectiveness of complex-value
convolution and dilated convolution. In this test, we replace
these specialized kernels with traditional conv2d to observe
the impact on performance. The result, as depicted in
Fig.8(b), reveals that average top-10 classification accuracy
using complex-dilated-conv is 2% and 3% higher than that
of without-complex-conv and without-dilated-conv, respec-
tively. This finding substantiates that both complex-conv and
dilated-conv contribute positively to feature extraction. It also

demonstrates that the features extracted by these different
convolution kernels are distinct and non-redundant, each con-
tributing uniquely to the overall performance of the model.

Finally, to validate the necessity of the ZFCN, we conduct
a comparative analysis by deactivating the ZFCN. Instead,
we directly utilize the extracted feature to calculate metric
matrix W . The simulation result is shown in Fig.8(c), from
which we can see that the performance degrades seriously
after removing ZFCN. The average accuracy gap between
is up to 7.54%. We believe that if we do not introduce a
zoom factor, it would be difficult to measure different feature
vectors at the same scale, which directly affects the rationality
of the metric matrix and leads to heavily performance degra-
dation.

E. CWAY-KSHOT EXPERIMENTS
In this part, we analyze the impact of varying shot values
on the overall average classification accuracy of the model.
We test different shot values from 1 to 10 under both 5-way
and 10-way. From Fig.9 we can see that even there is only
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TABLE 1. Average classification accuracy on RadioML.2018.01A with different testing number.

FIGURE 9. Average accuracy with different shot-value.

1 sample for training, our model still can achieve 45.9% clas-
sification accuracy in 5way and 43.4% in 10way. As the shot
value increases, the performance of our model is gradually
improved. Notably, when the shot value reaches 5, the perfor-
mance stabilizes, oscillating around 60% for 5way and 54%
for 10way. Overall, after conducting extensive experiments
across different shot values, we conclude that our model
exhibits good stability and can adapt well to various condi-
tions. Notably, the number of testing samples is consistently
set to 30 during these training process.

Besides, we investigate the impact of the number of testing
samples on our model.We use 10way-5shot as baseline, alter-
ing the number of testing samples from 5 to 50 in increments
of 5. The simulation result is shown in Table. 1. It can be
observed that the average accuracy is up to 49.17% when
the number of testing samples is equal to 5, which is quite
satisfactory in a few-shot condition. As the number of testing
samples increases, the performance of our model tends to
be better. This enhancement is attribute to the transductive
method’s advantage of predicting all signals simultaneously
to achieve optimal global classification performance. How-
ever, beyond 30 testing samples, the performance of our
model tends to stabilize. Consequently, we set the number of
testing samples to 30, which is also computational economi-
cal for each episode.

F. COMPARISON EXPERIMENTS
In this subsection, we conduct a comprehensive comparison
with other advancedmodels to further demonstrate the superi-
ority of our model. Initially, we replace our feature extraction
module, PMSN, with other typical feature extraction net-
works, namely CGDNet [40], MCLDNN [41], CLDNN [42]
and MCNet [43]. To maintain compatibility with the ZFCN
module, we configure the final output of all comparison
networks as a FC layer with 128 neurons, which is then
reshape into 2 × 64 for ZFCN. All comparative simulations

FIGURE 10. Comparison of different feature extraction network.

are carried out under the 10way-5shot condition. The result,
as shown in Fig.10, indicate that PMSN has a stronger feature
extraction capability than other models. It is noteworthy that
the compared models only utilize IQ sequences as input,
whereas PMSN employs hybrid inputs to enhance feature
diversity.

Furthermore, it is also important to investigate other few-
shot methods. We select serval representative few-shot meth-
ods for comparison, namely CNN-AMC(Transfer Learning)
[44], Prototypical Network [32], AMCRN [33], Relation
Network [31], IAFnet [36], and STHFEN [34]. We mainly
compare 5-way and 10-way conditions with varying shot val-
ues. For CNN-AMC,we utilize the training set for pretraining
and then fine-tuned the top layer with the testing set. For
RN and PN, we use our feature extraction module as the
backbone, replacing the graph network module with a rela-
tion metric module and a prototypical construction module.
Besides, it is also worth mentioning that the query number
is set to 30, and other parameter settings are keep consistent
across all few-shot models.

The simulation result of average classification accuracy is
shown in Fig.11. From the histogram, it is evident that our
model achieves better average classification accuracy under
various way and shot values. Specifically, CNN-AMC signif-
icantly underperforms other Meta Learning-based methods.
This is because transfer learning primarily addresses few-shot
problems by transferring existing knowledge to new tasks.
However, when there are significant differences in the target
task, transfer learning may not transfer useful knowledge
effectively, leading to performance degradation. Meta learn-
ing appears to be a better choice for quickly adapting to
new classification tasks. Comparedwith other few-shot meth-
ods, STTMC still maintains certain advantages. Notably, the
average classification advantages of STTMC under 10way
are better than those under 5way, further confirming our
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FIGURE 11. Average classification accuracy of STTMC and other FSL methods under different shot value in
RadioML.2018.01A. (a) 5way (b) 10way.

TABLE 2. Comparison of computational complexity.

hypothesis that simultaneous prediction is beneficial for
improving the overall performance. This is because the more
categories to be predicted, the larger the graph to be con-
structed, leading to the richer information contained in the
graph.

After comparing STTMC with other models in terms of
recognition performance, we further explore the computa-
tional complexity. From Table. 2, it is clear that STTMC has
the strongest feature extraction ability with relatively moder-
ate trainable parameters and flops. Additionally, we find that
the capacity of PN-based and RN-based few-shot methods
are significantly greater than few-shot transductive learning
method, and their classification performance is also inferior
to few-shot transductive learning method.

G. SPECIFIC CLASSIFICATION PERFORMANCE
To further demonstrate the specific classification perfor-
mance of STTMC, we analyze the classification accuracy
for each modulation type. Fig.12 presents the classifica-
tion accuracy for individual modulation types under the
RadioML.2018.01A dataset in both 10way-5shot and 5way-
5shot scenarios. Additionally, Fig.13 shows the classifica-
tion accuracy for individual modulation types under the
RadioML.2016.10A dataset in the 3way-3shot scenario.

1) 10WAY-5SHOT
The classification results in Fig.12(a) show that the accuracy
for each modulation type can exceed 90% when the SNR
is above 8dB. Signals with simpler waveform and structure,
such as FM and BPSK, are easier to classify even at low SNR

levels. Fig.12(b) and Fig.12(c) display the confusion matrices
of our module at 10dB and 0dB, respectively. At 10dB, it can
be observed that other five modulation modes are accurately
classified, with minor errors in 8PSK, AM-SSB-DC, 4ASK,
QPSK, and 16QAM, and the overall average accuracy can
achieve 94%.

When the SNR drops to 0bB, our model tends to mis-
classify some confusing modulation types, yet the average
accuracy remains at a respectable 59%, which is quite sat-
isfactory for a 10way-5shot scenario. It is also note that the
confusing signals are also prone to misclassification even
with sufficient training samples. We suppose that it is not
feasible to achieve accurate signal recognition using only a
few samples at low SNR levels. The significant randomness
of signals under low SNR makes it challenging to learn
general features that can be used for modulation classification
with limited samples.

2) 5WAY-5SHOT
The accuracy curves in Fig.12(d) reveal that, except for some
confusion between 32QAM and 32PSK, the other three mod-
ulation types achieve 100% accurate classification when the
SNR exceeds 10dB. Further investigation of the confusion
matrices in Fig.12(e) and Fig.12(f) shows that confusion
primarily occurs between these two modulation types as the
SNR degrades. The likely cause of this confusion is the high
similarity between the constellations of these two modulation
types at low SNR levels, which poses challenges to the feature
extraction of our model.

3) 3WAY-3SHOT
To further validate the effectiveness of STTMC, we con-
duct two 3way-3shot experiments on the RadioML.2016.10A
dataset. The simulation result indicates that STTMC still
adapts well to the RadioML.2016.10A dataset. In group
1, as shown in Fig.13(a)-(c), STTMC accurately rec-
ognizes AM-SSB, BPSK, and 8PSK when the SNR is
above 0dB. However, with a continuing decrease in SNR,
both BPSK and 8PSK tend to be misclassified as AM-
DSB. This couple of confusion is also occurred in many
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FIGURE 12. Classification performance of RadioML2018.01A under different experiment settings.
(a) Individual modulation types per SNR under 10way-5shot. (b) Confusion matrix of
RadioML.2018.01A at 10dB under 10way-5shot. (c) Confusion matrix of RadioML.2018.01A at 0dB
under 10way-5shot. (d) Individual modulation types per SNR under 5way-5shot. (e) Confusion matrix
of RadioML.2018.01A at 10dB under 5way-5shot. (f) Confusion matrix of RadioML.2018.01A at 0dB
under 5way-5shot.

FIGURE 13. Classification performance of RadioML2016.10A under different experiment settings.
(a) Individual modulation types per SNR under 3way-3shot of RadioML.2016.10A-group1.
(b) Confusion matrix of RadioML.2016.10A-group1 at 10dB under 3way-3shot. (c) Confusion matrix
of RadioML.2016.10A-group1 at 0dB under 3way-3shot.(d) Individual modulation types per SNR
under 3way-3shot of RadioML.2016.10A-group2. (e)Confusion Matrix of RadioML.2016.10A-group2 at
10dB under 3way-3shot. (f) Confusion matrix of RadioML.2016.10A-group2 at 0dB under 3way-3shot.

DL-based AMCmodels with sufficient samples, which might
be attributed to the analog modulation characteristics of
AM-DSB, resembling noise distribution. In group 2, STTMC

effectively distinguishes PAM4 and high-order QAMmodes.
As depicted in Fig.13(d)-(f), the average classification accu-
racy exceeds 87% when the SNR is above 0dB, and reaches
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96% at an SNR of 10dB. It is noteworthy that distinguish-
ing (16QAM, 64AQM) is challenging for many DL-based
AMC models. Therefore, the classification performance of
STTMC, achieved with only three training signals per class,
is impressively superior.

V. CONCLUSION
In this paper, we have introduced the graph model-based
transductive learning method into few-shot AMC originally.
Our model, namely Spatial Temporal Transductive Mod-
ulation Classifier (STTMC), is composed of two primary
modules: a feature extraction module and a graph network
module. Notably, STTMC employs complex-value convolu-
tion, dilated convolution and a hybrid structure for better
feature extraction. A significant aspect of STTMC is its
use of a closed-form solution calculated by a graph, to pre-
dict all test signals simultaneously rather than individually,
thereby improving the overall classification performance
of the model. The experimental results demonstrate that
STTMC achieves higher classification accuracy compared to
serval state-of-the-art few-shot models and a transfer learning
model. However, we also observed that STTMC’s perfor-
mance rapidly degrades at low SNR levels, particularly for
certain confusing signals. In the future, there are two potential
avenues for further improvement. On one hand, a denoising
module could be integrated into feature extraction module
to mitigate noise interference. On another hand, the training
strategy ofmeta learning could be optimized. Specifically, the
training strategy could be designed to intentionally construct
tasks that are tailored to adapt to the classification of low SNR
signals in advance, rather than relying on random sampling
methods. These enhancements could significantly improve
the model’s robustness and effectiveness, particularly in chal-
lenging low SNR scenarios.
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