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ABSTRACT The Global Navigation Satellite System (GNSS) plays a crucial role in critical infrastructure
by delivering precise timing and positional data. Nonetheless, the civilian segment of the GNSS remains
susceptible to various spoofing attacks, necessitating robust detection mechanisms. The ability to deter such
attacks significantly enhances the reliability and security of systems utilizing GNSS technology. Supervised
Machine Learning (ML) techniques have shown promise in spoof detection. However, their effectiveness
hinges on training data encompassing all possible attack scenarios, rendering them vulnerable to novel attack
vectors. To address this limitation, we explore representation learning-based methods. These methods can be
trained with a single data class and subsequently applied to classify test samples as either belonging to the
training class or not. In this context, we introduce a GNSS spoof detection model comprising a Variational
AutoEncoder (VAE) and a Generative Adversarial Network (GAN). The composite model is designed to
efficiently learn the class distribution of the training data. The features used for training are extracted from
the radio frequency and tracking modules of a standard GNSS receiver. To train our model, we leverage the
Texas Spoofing Test Battery (TEXBAT) datasets. Our trained model yields three distinct detectors capable
of effectively identifying spoofed signals. The detection performance across simpler to intermediate datasets
for these detectors reaches approximately 99%, demonstrating their robustness. In the case of subtle attack
scenario represented by DS-7, our approach achieves an approximate detection rate of 95%. In contrast, under
supervised learning, the best detection score for DS-7 remains limited to 44.1%.

INDEX TERMS Generative adversarial network, GNSS security, GPS spoofing, receiver security, repre-
sentation learning, spoof detection, TEXBAT, variational autoencoder.

I. INTRODUCTION

GLOBAL Navigation Satellite System (GNSS) has
become deeply ingrained in our daily lives, permeating

various sectors of national economies and societal functions.
Its extensive civilian applications span smart grids, smart
cities, financial systems, UAV navigation, communications,
safety-critical operations, and precision agriculture, while
it also plays a pivotal role in military domains, includ-
ing aerospace, maritime operations, and precision-guided
weaponry [1]. The widespread adoption of GNSS can be
attributed to the open access of civilian GNSS signals,
which has enabled the development of cost-effective GNSS
receivers, readily accessible to the general public [2], [3].
However, the very characteristics that make GNSS appeal-

ing, i.e., low power and openness, also render it vulnerable
to Radio Frequency Interference (RFI). This interference
can manifest as either intentional or unintentional disrup-
tions, with the former category further divided into jamming
and spoofing interference [4]. Among these, spoofing inter-
ference represents a particularly deceptive threat to GNSS
integrity. Malicious actors can exploit spoofing techniques
to deceive GNSS receivers, leading them to report inaccu-
rate timing and positional data [4]. Given the importance of
GNSS in numerous critical applications, ensuring its secu-
rity and reliability has emerged as a paramount concern,
sparking extensive research endeavors within the scientific
community [1]. Integration of GNSS receivers across the
aforementioned diverse applications amplifies the impact
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of GNSS spoofing on their performance. Various spoofing
detection methods have been proposed in these domains,
for instance, [5], [6], [7] for smart grids, [8], [9] for UAVs,
and [10], [11] for terrestrial vehicles. Our research focuses
on detecting spoofing attacks directly at the GNSS receiver
level, contrasting with techniques that conduct spoof detec-
tion at the application side. From this point forward, we will
exclusively focus on spoofing detection methods that conduct
detection at the receiver level. By addressing spoofing at the
source, downstream applications reliant on GNSS data can
operate without susceptibility to such attacks.

Detection methods for GNSS spoofing fall into three pri-
mary categories: (i) cryptographic approaches that rely on
the unpredictability and verifiability of signal modulation
within GNSS spreading codes or navigation data, employing
cryptographic principles for signal authenticity verification;
(ii) geometric techniques that leverage the angle-of-arrival
diversity exhibited by genuine GNSS signals, using spatial
characteristics for distinguishing authentic from spoofed sig-
nals; and (iii) GNSS signal processing techniques that include
methods that do not fit into the previous two categories,
often involving signal processing techniques for spoof detec-
tion [12]. Among these techniques, single antenna based
techniques offer practical advantages, such as requiring no
modifications to GNSS signals, low-cost implementation,
and software/firmware updates at the receiver end. These
approaches include direct power monitoring [13], utilization
of Automatic Gain Control (AGC) units [14], and monitor-
ing the auto-correlation profile of a receiver’s tracking loop
through Signal Quality Monitoring (SQM) [15], [16], [17],
[18], [19], [20]. Certain methods combine power monitoring
and auto-correlation analysis [12], [21], with the majority
adopting a Bayesian detection framework for spoof detection.
These diverse approaches constitute a growing research field
dedicated to safeguarding GNSS against spoofing attacks.
In this paper, we contribute to this area by introducing
a GNSS spoof detection model based on representation
learning.

Detecting GNSS spoofing attacks poses a significant chal-
lenge, primarily attributed to the varying power advantages
exhibited by the spoofed signals over genuine ones. In cases
where spoofed signals enjoy a substantial power advantage,
conventional SQM metrics tend to remain relatively stable.
However, an abnormally high received power or Carrier-to-
Noise Spectral Density Ratio (C/N0) can raise immediate
suspicion regarding the presence of a spoofed signal at the
receiver. Conversely, when the power advantage is minimal,
the attack may either prove ineffective or lead to significant
distortion of the auto-correlation function. This distortion
arises from the interaction between authentic and spoofed
signals with similar power levels. In such scenarios, SQM
metrics can effectively detect these attacks during their ini-
tial stages, particularly when the correlation peak carry-off
begins, as demonstrated in Section II-C. However, it’s essen-
tial to recognize that SQMmetrics are best suited for transient
detection and may lose their effectiveness once the spoofed

signal displaces the peak by approximately one chip duration
of the respective satellite’s pseudo random number (PRN)
code. Similarly, received power and C/N0 behave as static
indicators. It is a reasonable assumption that a spoofer can-
not entirely obstruct or negate the authentic GNSS signal.
Therefore, a robust defense strategy against spoofing attacks
emerges by combining abnormal power detection with SQM
metrics within a unified detection scheme. This approach has
been previously explored in works such as [12] and [21].

Prior studies in single antenna based spoof detection
have demonstrated effectiveness against spoofing attacks
involving medium to low power advantages relative to the
genuine signal [9], [12], [21]. However, addressing attack
scenarios where the spoofer achieves a full carrier phase
alignment with the genuine signal during both initial inser-
tion and tracking correlator peak carry-off stage poses a
significant challenge. These attacks demand either physical
access to the victim receiver or precise channel informa-
tion between the attacker’s and victim’s antennas [22], [23].
Termed as ‘sophisticated,’ such attacks are the most difficult
to execute. Yet, given the widespread use of civilian GNSS
signals in critical infrastructure, attackers seeking substantial
gains may invest in equipment to execute such sophisticated
attacks. Single-antenna-based GNSS receivers face consid-
erable difficulty in detecting these attacks. In this study,
we introduce a detection model capable of identifying both
intermediate and sophisticated attacks. Leveraging genuine
data samples, our proposed model is trained within a repre-
sentation learning framework, enabling effective discernment
of whether a test sample originates from the same distribu-
tion as the training data. Our comprehensive analysis across
various attack scenarios demonstrates the exceptional detec-
tion performance of our proposed model across all attack
scenarios.

A. RELATED WORKS
The Bayesian frameworks utilized in the aforementioned
studies demand careful selection of signal models, prior
and/or likelihood functions, and rely on the detection of fea-
ture distribution changes induced by the presence or absence
of a spoofed signal. Only then, can a suitable detection thresh-
old be confidently determined to achieve a desired level of
detection or false alarm probabilities. In contrast, Machine
Learning (ML) methods, specifically deep learning (DL)
models like Fully ConnectedNeural Networks (FCNNs) [24],
have showcased their proficiency in tackling complex chal-
lenges that defy conventional modeling techniques. These
approaches reduce the requirements of precise specifications
of mathematical models, noise models, or their associated
statistical parameters. It is precisely this attribute that posi-
tions ML and DL techniques as well-suited for addressing the
challenge of spoofing detection.

In recent years, there has been a notable surge in the
development of ML-based techniques for GNSS spoof-
ing detection. These approaches utilize features extracted
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from standard GNSS receivers’ acquisition, tracking, and
Position-Velocity-Time (PVT) modules as input for training
various supervised ML models in classification tasks. For
instance, Bose et al. [25] employed an FCNN that incor-
porated features such as C/N0, pseudorange, carrier phase,
and Doppler shift to identify spoofing attempts. Similarly,
Aissou et al. [9] used a set of 13 features extracted from
tracking and PVT solution blocks to train multiple ML clas-
sifiers. In another work, Shafiee et al. [26] explored the
use of FCNN, Naive Bayes, and K-Nearest Neighbors (K-
NN) algorithms, incorporating received power alongside two
SQM metrics (delta and early-late phase) for classifier train-
ing. Manesh et al. [27] employed an FCNN-based classifier
with inputs consisting of pseudorange, Doppler shift, and
Signal-to-Noise Ratio (SNR). Similarly, Iqbal et al. [28] used
received power, C/N0, and five SQM metrics to train an
ensemble of ML classifiers for detecting time-push attacks in
smart grid systems. Borhani et al. [29] leveraged the Cross
Ambiguity Function (CAF) acquired from the acquisition
block of a GNSS receiver to train deep learning models,
including an FCNN, for detecting multiple peaks in the
CAF, indicating the presence of a spoofed signal. A similar
approach was presented by Li et al. [30] using a Generative
Adversarial Network (GAN). These methods, however, are
computationally expensive due to the requirement for mul-
tiple CAF computations. Dasgupta et al. [31] used the PVT
solution from the GPS receiver, speed and steering angle data
from a Control Area Network (CAN), and directional accel-
eration values from the intertial measurement unit (IMU)
as input features to train an LSTM model. Subsequently,
they used the feature forecasting to flag whether the current
feature values are closer to the predictions or not. Similarly,
Calvo et al. [10] used the Doppler shift of the GPS satellites
to train an LSTM for spoof detection. Finally, Kim et al. [11]
derived differential features from PVT module-calculated
location data to identify irregularities in mobility profiles.
They trained multipleML-based classifiers, achieving a note-
worthy detection accuracy of up to 99.1%. A summary
of ML and DL based spoof detection methods is given
in Table 1.
However, it’s worth noting that some works, such as [9],

[11], [25], and [31], incorporate PVT solutions as features.
However, this inclusion can introduce additional detection
delays since PVT solutions are acquired over a look-back
sample window. For instance, even under hot start conditions,
where the receiver possesses valid time, position, almanac,
and ephemeris data, it can still take an upwards of 22 sec-
onds to re-acquire a complete PVT fix [32], [33], with the
subsequent solutions generated over a few seconds. However,
by the time these computations are completed, a spoofer
may have already gained full control over the tracking stage.
Moreover the PVT solution may not yield additional infor-
mation if the spoofer ensures that the induced changes in time
and coordinate solutions remain within the expected mobility
profile of the target receiver.

While ML-based methods (discussed previously) have
demonstrated their effectiveness in countering GNSS spoof-
ing attacks, they exhibit certain limitations:

• These methods face a fundamental challenge inherent
in supervised learning: the acquisition and labeling of
training datasets that comprehensively cover the various
attack classes. This necessity to encompass as many
attack classes as possible within the training datasets
poses a significant challenge.

• Another notable challenge arises when these models
encounter datasets that substantially deviate from or
contain data entirely unseen during their training phase.
This limitation often manifests when the models have
been exposed to only a limited range of spoofing scenar-
ios, lacking diversity in their training data. As a result,
they may struggle to effectively recognize and adapt to
new and more complex spoofing scenarios.

• Effective feature selection is crucial, impacting not only
the model’s detection capabilities but also its speed and
accuracy, emphasizing the need for features that can be
quickly acquired and are highly informative.

• Rather than utilizing established spoofing benchmarks
like the TEXBAT dataset [22], [23] or similar resources,
many of these methods rely on proprietary datasets
generated internally. This makes the performance com-
parison across works rather difficult.

B. OUR CONTRIBUTIONS
To address the aforementioned limitations, in this work:

• We develop a detection model trained within a represen-
tation learning framework, diverging from supervised
learning methods. This strategy resolves the primary
challenge associated with supervised learning by focus-
ing solely on acquiring high-quality genuine data for
training, rather than attempting to encompass the entire
attack space.

• Our detection model is proficient in identifying both
intermediate and sophisticated level attacks, broadening
its capability beyond basic threats.

• Ourmodel is trained using an informative featureset eas-
ily obtainable from any standard GNSS receiver during
run-time.

• We perform an evaluation conducted on the publicly
available TEXBAT dataset, encompassing a variety of
attack patterns, from simplistic to sophisticated spoofing
scenarios, facilitating straightforward comparisons with
existing works.

In this paper, we employ a feature vector comprising
received power, C/N0, and five distinct SQMmetrics at each
time point. As depicted in Figure 1, received power is cal-
culated at the RF block output, while the remaining features
are readily accessible (or computable) at the tracking block
of a standard GNSS receiver, ensuring practicality and cost-
effectiveness. By using static and transient detection features,
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TABLE 1. Summary of related work on GNSS spoof detection using ML and DL based models.

our featureset, empowers the detection of spoofed signals
both before and after the correlation peak carry-off phase.

Our primary focus is on evaluating the detection per-
formance and resilience of ML classifiers against various
spoofing attacks. For performance baseline, we use 4 super-
vised ML models: the Random Forest Classifier (RFC),
Gradient Boost (GB), K-Nearest Neighbours (K-NN), the
Support Vector Machine (SVM), and a DL based FCNN.
These models are analysed under classic supervised learn-
ing and under leave-one-out testing scenario, highlighting
their limitations. The central contribution of this work lies
in the development of a representation learning-based zero-
day spoof detection model. Our proposed model consists
of three distinct FCNNs, connected as composite model
containing a Variational AutoEncoder (VAE) and a Gen-
erative Adversarial Network (GAN). The model is trained
using a unified algorithm that combines both reconstruc-
tion and adversarial training frameworks. Once fully trained,
the model offers three distinct detection strategies, each
surpassing baseline performance. The most effective detec-
tion model achieves an impressive 99% detection accuracy
for simple to intermediate-level spoofing scenarios and
maintains a detection accuracy of over 93% for the sophisti-
cated attack scenario, all while imposing low computational
demands.

To summarize, the major contributions of this paper are as
follows:

• We comprehensively evaluate the performance and
resilience of multiple ML models, including RFC, GB,
K-NN, SVM, and an FCNN under different training and
spoofing conditions. This analysis provides insights into
the limitations of these classifiers when dealing with
evolving spoofing threats.

• Our primary contribution is the development of a
modular representation learning-based zero-day spoof
detection model which is formulated by combining a
Variational AutoEncoder (VAE) and a Wasserstein Gen-
erative Adversarial Network (WGAN).

• Our fully trained model offers three distinct detection
strategies with different computational requirements,
each outperforming the baseline classifiers. These
strategies enhance the reliability and accuracy of GNSS
spoofing detection.

• We conduct a comprehensive analysis by evaluating our
detection strategies across various spoofing scenarios,
encompassing time and position shifts. These scenarios
involve both static and mobile GNSS receivers, ranging
from simple to sophisticated spoofing scenarios derived
from publicly available TEXBAT data recordings.
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FIGURE 1. Block diagram of a typical single antenna GNSS
receiver and our feature generation module.

These contributions collectively advance the field of GNSS
spoofing detection by introducing a robust and adaptable
model capable of detecting a wide range of spoofing attacks,
including zero-day attacks, and providing practical solutions
for real-world applications.

The structure of the paper is as follows: Section II pro-
vides essential background information, specifically details
on feature computation, discussion on adversary threat model
and highlighting the various stages of carrying out induced
spoofing. In Section III, we delve into the proposed model
architecture, the training algorithm, and the three distinct
detection models. A comprehensive and in-depth experi-
mental evaluation is presented in Section IV, encompassing
the evaluation of supervised ML models under the classical
and leave-one-out training strategy. This is followed by an
extensive assessment of the proposed zero-day detectors,
conducted on the entire TEXBAT dataset. Section V presents
conclusion, limitations, and future work.

II. BACKGROUND
A. GPS RECEIVER
From this point forward, our discussion will center on the
Global Positioning System (GPS) [2] as the primary subject
for signal modeling and analysis. Specifically, our research
focuses exclusively on single-antenna-based GPS receivers.
A typical GPS receiver comprises three essential computa-
tional modules, collectively responsible for extracting data
from the received GPS signals and utilizing this information
to estimate the receiver’s time and positional coordinates [33].
The structural overview of such a receiver is depicted in
Figure 1. The first Radio Frequency (RF) module, plays a
pivotal role in down-converting the incoming GPS signal to
an Intermediate Frequency (IF), thereby enabling subsequent
modules to process it effectively. Additionally, the RFmodule
is responsible for signal amplification and quantization. The
acquisition module of the GPS receiver utilizes the PRN
codes of all GPS satellites to determine which satellites are
currently in the receiver’s line of sight. This determination is
made by comparing the received power of each satellite signal
against a predefined threshold. Once a satellite is identified,
the receiver estimates its code delay and Doppler shifts. For
all the identified satellites, the tracking module utilizes these

estimates to perform parallel correlation between the incom-
ing signal and the synchronized PRN codes. This parallel
processing is followed by both coherent and incoherent inte-
gration, resulting in digital samples. These digital samples are
subsequently used by the PVT solution module to estimate
the receiver’s position, velocity, and the current time.

B. TRACKING STAGE SIGNAL MODEL
The feature set used in this work is generated from the output
of the RF module and output of the correlators present in the
tracking module of a typical GPS receiver, thus, the signal
model at these points is discussed next.

Considering a spoof free scenario, the genuine complex-
valued signal rg(t), coming from a specific satellite, appear-
ing at the RF module output can be written as:

rg(t) =
√
Pg D(t − τg) C(t − τg) exp (jφg), (1)

where Pg denotes power of the genuine signal, t represents
time, D(t) = ±1 represents the BPSK-modulated navigation
data, and C(t) denotes the satellite specific BPSK-modulated
PRN spreading code. τg and φg are the code delay and carrier
phase (in radians), respectively. Note that Pg, τg, and φg are
all time-varying, however, for notational simplicity, their tem-
poral dependence notation is suppressed here. Without loss
of generality, we can further simplify by assuming D(t) = 1.
After passing through the tracking module, the signal at the
output of tracking correlators is given by [12]

Id =
√
Pg R(dTc) cos(φg) + ζ Id ,

Qd =
√
Pg R(dTc) sin(φg) + ζ

Q
d , (2)

here the tracking correlators’ output is complex-valued, with
the In-phase and Quadrature components denoted as Id and
Qd , respectively. A single PRN code chip duration is denoted
by Tc, d is unitless and (as dTc) is used to represent code delay
for each of the multiple correlators present in the receiver. For
instance, for a three correlator system, d is set as d = 0 for
prompt, d > 0 for late, and d < 0 for early correlators.
The noise components in I and Q channels are denoted by
ζ Id and ζQd , respectively, which contain zero-mean thermal
Gaussian noise, with a constant noise spectral density N0.
Finally, R(·) denotes the ideal auto-correlation function of a
BPSKmodulated code, also shown in Fig. 2 can be written as

R(dTc) =

{
1 − |dTc|/Tc, |dTc| ≤ Tc,
0, |dTc| > Tc.

(3)

The Id and Qd components from (2) are assumed to be
independent Gaussians with statistics [34]

µI =
√
Pg R(dTc) cos(φg), µQ =

√
Pg R(dTc) sin(φg)

σ 2
I = σ 2

Q = σ 2
0 =

1
2Tint (C/N0)

, σ 2
IQ = 0, (4)

hereµI , µQ, σ 2
I , σ

2
Q are the statistics of I andQ components

given in (2), and their covariance is σ 2
IQ. σ

2
0 represents the

noise variance at the correlators’ output, and Tint is the coher-
ent integration period of the output signal.
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In the presence of a spoofed signal, the tracking corre-
lators’ output signal (2) will have an additional component
corresponding to this spoofed signal, thus the new signal
model will become

Id =
√
Pg R(dTc) cos(φg) +

√
ηPg R(dTc −1τ )

cos(φg +1φ) + ζ Id ,

Qd =
√
Pg R(dTc) sin(φg) +

√
ηPg R(dTc −1τ )

sin(φg +1φ) + ζ Id ,

ψd = Id + Qd i, (5)

here, the spoofed signals’ power advantage over the genuine
signal is denoted by η = Ps/Pg, which is measured over the
integration period. Similarly, 1τ , and 1φ are the code and
carrier phase offsets of the spoofed signal w.r.t. the genuine
one. The overall complex-valued output is denoted by ψd .

C. THREAT MODEL
Typically, an attacker aiming to compromise a system
requires in-depth knowledge of its modules and subsystems.
The greater the information they possess, the higher the
likelihood of a successful attack. In GNSS spoofing attacks,
the civilian L1 C/A channel is an open standard [33], pro-
viding attackers with all the necessary details to generate
such signals. To execute an attack, an adversary can utilize
commercially available Universal Software Radio Periph-
eral (USRP) devices for the RF part of the GNSS receiver,
while implementing the remaining transmit-receiver chain
in software. Moreover, the target receiver should be within
the transmission range of the attacker’s antenna. With two
USRP devices (TX and RX) and a capable computer system,
an attacker could execute an ‘Induced Spoofing’ attack on the
target receiver. This type of attack represents an intermediate
level attack, wherein the attacker strategically adjusts code
phase and power levels subtly to avoid unlocking the tracking
loop of the target receiver. The entire process of such an attack
is illustrated in Fig. 2 and is detailed below:

1) To initiate the attack, the attacker first estimates the
speed and location of the target receiver. It also needs
to estimate the number of satellites in view and capture
their navigation signals at the target receiver’s antenna.
Armed with this information, the spoofer generates a
low-powered signal centered at the same frequency
(center frequency plus Doppler shift). However, this
signal intentionally lags the genuine signal in code
phase by more than 2 chips, as depicted in Fig. 2
(a). Subsequently, the spoofer incrementally adjusts its
code phase to gradually approach the genuine signal.

2) The spoofer continues to adjust its code delay until it
synchronizes with the genuine signal, typically achiev-
ing synchronization within 0.5 chips, as depicted in
Fig. 2 (b) and (c). Once synchronized, the spoofer
begins to increase its signal power to slightly surpass
that of the genuine signal. Through careful alterations
of its code phase, it starts to carry off the resultant track-

ing correlator’s peak, as illustrated in Fig. 2 (d) and (e).
This phase of the attack is where the correlation peak
of the tracking correlators experiences the significant
distortion.

3) The spoofer continues carrying off the correlation peak
until it is at least 2 chips ahead of the genuine one,
as depicted in Fig. 2 (f). Finally, the spoofer gradu-
ally reduces its signal power to nominal levels, thus
completing the takeover of the target receiver’s tracking
loop.

In intermediate-level attacks, as discussed above, the attacker
maintains the initial phase offset between the genuine and
spoofed signals throughout the attack [22]. This results in
substantial distortion in correlation peak symmetry, as shown
in Fig. 2. SQM metrics are specifically designed to detect
and capture this distortion, playing a crucial role in iden-
tifying induced spoofing attacks. However, in cases where
the attacker possesses precise knowledge of the receiver
antenna’s position and a detailed fading model between the
spoofer and the target antenna, they can execute a more
sophisticated and subtle attack where the attacker aligns the
carrier phase of the spoofed signal precisely with the authen-
tic one, resulting in minimal correlation peak distortion [23].
Such an attack, termed ‘sophisticated,’ is challenging to exe-
cute unless the attacker has physical access or can approach
the target receiver’s antenna closely [12], [17]. Instances such
as shipment vehicle monitoring, asset tracking, and smart
traffic management could potentially face this kind of attack.
In this study, apart from assessing various intermediate-level
attack scenarios, we also evaluate our proposed detectors
against a sophisticated-level attack.

D. FEATURE COMPUTATION
In this work, we utilized the widely-used open-source sin-
gle antenna based software receiver called FGI-GSRx [33].
The receiver is MATLAB based and gives full access to the
received signal at various stages of the signal processing
pipeline. All 7 features examined in this paper can be obtained
in real-time from the output of the RF block and tracking
block of a GPS receiver. To compute each feature, we average
over a 20 ms time window. The extraction methodology is
described in detail below.

1) RECEIVED POWER
In case of the civilian L1 GPS band, most of the signal
power is concentrated in a 2 MHz band around the L1
carrier frequency of 1575.42 MHz, thus we filter the RF
output signal using a 2 MHz bandwidth filter. Let yRF [n] be
the complex-valued baseband samples at the output of the
receivers’ RF block. We pass it through a low pass filter to
get a filtered version ỹRF [n], then for a given time interval,
received power (in dBW) can be computed as

P[k] ≜ 10 log10

 1
N

kN∑
n=(k−1)N+1

|ỹRF [n]|2

 (6)
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FIGURE 2. Various stages of a typical induced spoofing attack observed within the correlators
of the tracking module.

hereN is the number of samples in a 20 ms time window. The
initial power value (in dB) is subtracted from the entire vector
to create a relative received power feature.

2) CARRIER TO NOISE RATIO
The C/N0 is a key metric to measure the received GPS
signals’ strength. However, direct measurement of C/N0 is
not possible and requires estimation. To estimate this metric,
we use the well-knownNarrow-bandWide-band Power Ratio
(NWPR) method [33]. The reason for considering both the
received power and C/N0 is to enable the trained classifier to
distinguish between genuine interference and spoofing cases,
as discussed in [21].

3) SIGNAL QUALITY MONITOR
In order to capture the correlation peak distortion during the
spoofed and authentic signal interaction, we use 5 differ-
ent SQM metrics as input features. These metrics are given
below:

• Ratio Metric [15]

mratio =
I−d + I+d

IP
, (7)

• Delta Metric [15]

mdelta =
I−d − I+d

IP
, (8)

• Early Late Phase (ELP) Metric [16]

melp = tan−1
(
Q−d

I−d

)
− tan−1

(
Q+d

I+d

)
, (9)

• Symmetric Differences [12]

msd =
|ψ−d − ψ+d |

σN0

, (10)

• Manfredini Metric [21]

mfred =
|Ex − Lx |

|ψP|
. (11)

Here the variables I±d , Q±d , and ψ±d are given in (5) with
d = 0.5. IP and ψP are the respective prompt correlator
values. mfred is computed using 9 correlators evenly spaced
between d = [−0.1016, 0.1016], with Lx and Ex being the
linear combination of complex values from late and early
correlator fingers, respectively. Finally, σN0 is the standard
deviation of ψ−2 during the spoof free case.

While the inclusion of received power and C/N0 in the
feature set can aid the model in discerning between regular
RFI and spoofing attacks, this aspect doesn’t constitute the
primary focus of our research [21]. These features enable
our model not only to detect high-powered spoofer promptly
upon their arrival at the receiver’s antenna but also to handle
matched power spoofing attacks. In these cases, the spoofer
maintains a slight increase in received power, making it
detectable when combined with other correlation peak dis-
tortion monitors. In addition to the five SQM metrics in our
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feature set, we explored three other metrics–S-curve bias
(SCB) [35], slope-basedmetrics [18], andWSCM-basedmet-
ric [19]. However, they were excluded from our final feature
selection due to being highly correlated to at least one of our
chosen basic features, and thus did not provide any significant
performance enhancements.

The rationale behind choosing these five distinct SQM
metrics rests on their complementarity, each contributing
uniquely to the detection process. For instance, when the
metric melp exhibits a large value, mdelta and mratio tend to
have smaller values, and vice versa, as evidenced in previous
studies [17]. Themetricmsd quantifies the absolute difference
between early and late correlators scaled by the standard devi-
ation of noise (in the absence of spoofing). Notably, it tends
to produce high values both during and after the complete
takeover of the receiver’s correlator peak. Lastly, mfred is
particularly sensitive to small distortions that occur during
the initial stages of correlator peak pull-off. This sensitivity
arises from its utilization of correlator fingers that are in close
proximity to the prompt signal.

E. THE BASE LEARNER - FCNN
The foundational component of the proposed model, as delin-
eated in Section III, is a Fully Connected Neural Network
(FCNN), also commonly referred to as an Artificial Neural
Network (ANN). This neural network architecture comprises
several essential layers, including an input layer, multiple
hidden layers, and an output layer, as visually represented
in Fig. 3. The input layer serves as the entry point for the
feature vector, accepting it as input and making it available
for processing by neurons in subsequent layers. Each hidden
layer plays a crucial role in this network’s operation by taking
the outputs from neurons in the preceding layers, applying
non-linear transformations to them generating its own set
of outputs. This process, known as forward propagation,
continues sequentially through the network’s layers until it
reaches the final layer, which is responsible for producing the
network’s final output.

The basic element of an FCNN is a neuron which typically
has three components associated with it, a weight vector,
a bias value, and an activation function. Let ali be the mth

neuron of l th layer of an ANN. The output of this neuron is
generated as

slm = f (wl
m al−1

+ bm), (12)

where al−1
=

[
al−1
1 , al−1

2 , . . . , al−1
n

]⊤

is a column vec-

tor containing outputs previous layers’ neurons, wl
m =[

wlm1,w
l
m2, . . . ,w

l
mn

]
is a row vector containing the linear

coefficients/weights of the mth neuron, n is the number of
neurons in the previous layer, bm is the bias term, and f is
a point-wise non-linear activation function. These equations
can be rewritten for an entire layer of neurons as

al = f (Wl al−1
+ bl). (13)

Here Wl
∈ Rm×n is the coefficient matrix for the l th layer,

al−1
∈ Rn contains the outputs of previous layer, bl ∈ Rm is

the bias vector. Output of the final layer is used to construct
a loss function which evaluates the network’s performance in
its intended task. This loss function is optimized by adjust-
ing the model parameters (weights and biases). In practice,
these parameters are often challenging to solve analytically.
However, iterative optimization algorithms, such as gradient
descent, are adept at efficiently approaching local optimal
solutions. Keen reader is referred to [36] for additional infor-
mation.

III. PROPOSED SPOOF DETECTION MODEL
As previously discussed, under the supervised training frame-
work, models are typically trained using all possible classes
or categories of data they are expected to recognize. This
extensive training equips the models to identify new sam-
ples that may not be identical to their training counterparts
but share similar features with them. However, such models
may struggle to reliably recognize entirely dissimilar samples
[37]. In the context of spoofing detection, our objective is to
create and train a model that not only performs well on the
data it is trained on but also exhibits robustness in recognizing
samples it has never encountered before. Therefore, in the
case of a novel attack scenario, our model should possess the
capability to flag it as potentially malicious. Representation
learning / profiling-based training frameworks offer a promis-
ing approach in this context [38]. These frameworks involve
training models using data from a single known class (in our
case, genuine GPS data) and subsequently using these models
to classify whether a test sample shares a similar distribution
to the training set or not. Such detectors are often referred to
as zero-day detectors because they excel at detecting samples
originating from unknown distributions.

To this end, in this section, we present the model architec-
ture, discuss the forward pass, cover loss computation, outline
training algorithm, and explore three detection frameworks.

A. MODEL ARCHITECTURE
The proposedmodel consists of three interconnected FCNNs:
the Encoder (Eφ), Decoder (Dθ ), and Critic (Cϕ) as shown
in Fig. 3. Architecturally, the encoder and decoder networks
operate in a VAE configuration [39], while the decoder
and critic networks function as a Wasserstein GAN termed
(WGAN) [40]. It’s important to note that the decoder network
is shared between both branches of the model. The data flow
through each network is discussed below.

1) THE ENCODER
The encoder model takes as input the feature vector x, which
contains feature values at a specific time instance (as detailed
in Section II), alongwith a one-hot-encoded binary class label
c indicating whether the feature is from a static ([1, 0]⊤) or
dynamic ([0, 1]⊤) receiver. This class label helps in improv-
ing the encoder’s capability to map samples from both classes
closer to the origin of the latent space. The encoder produces
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FIGURE 3. A complete diagram of the proposed model.

two output vectors of equal sizes: a mean vectorµz and a vari-
ance vector6z, both sized according to the dimensions of the
latent space. These vectors collectively define a latent proba-
bility distribution qφ(z|x, c), parameterized by the encoder.
During training, the objective is to enable the encoder to
map its inputs into a continuous latent space, where each
input corresponds to a region in the latent space rather than
a single point [39]. This facilitates the subsequent generation
of samples by the decoder (discussed below), which are not
exact replicas of their input counterparts.

2) THE CRITIC
In WGANs, the traditional discriminator found in vanilla
GANs is substituted with a critic. Unlike a binary classifier,
the critic functions as an evaluator, providing high scores for
real samples and low scores for fake ones generated by its
corresponding generator network, which in this case is our
decoder. The term ‘adversarial’ in GAN signifies that during
the network training phase, the critic and generator networks
engage in a competitive process. The critic model takes as
input both real data samples x and generated fake data sam-
ples û, assigning a score to each sample. Its training objective
is tomaximize the predictive difference between real and gen-
erated fake data samples. This adversarial interplay between
the critic and generator networks is instrumental in refining
the model’s ability to generate realistic data representations,
and consequently helping critic to be more, critical.

3) THE DECODER
While the encoder and critic networks do not directly interact,
they both utilize the shared decoder network, each with a
distinct input approach:

• When collaborating with the encoder, the decoder
receives the latent variable z, sampled from the latent
probability distribution qφ(z|x, c) using the reparameter-
ization trick [39]:

z = µz + ϵ ⊙ 6z, (14)

where ϵ ∼ N (0, I) and ⊙ represents element-wise
multiplication. This enables gradient backpropagation
through the sampling process into the encoder model
while preserving the probabilistic nature of the sam-
pling. Using z and the class label c, the decoder is trained
to reconstruct the original input x by sampling from the
distribution pθ (x|z, c) (parameterized by the decoder).

• When operating alongside the critic, the input z to the
decoder is generated similarly to the reparameterization
trick in (14), but with µz = 0 and 6z = 1. In this
context, the decoder’s objective is to learn the real data
distribution pg(x).

In our proposed model, the encoder, decoder, and critic net-
works collaborate harmoniously to achieve the overarching
goal of robust spoof detection. Training solely on authentic
data enhances the encoder and decoder’s proficiency in recon-
structing samples conforming to the training data distribution.
Simultaneously, the critic becomes adept at evaluating the
authenticity of both real and generated data samples. Once
trained, the model can be used in three distinct ways to detect
spoofing attacks, which are discussed in Section III-III-C.

B. MODEL LOSS COMPUTATION AND TRAINING
ALGORITHM
1) VAE LOSS
Consider a data vector x and its label c, a probabilistic encoder
encodes these inputs into the latent vector z according to the
distribution qφ(z|x, c), and a probabilistic decoder decodes z
using pθ (x|z, c) into x̂. The encoder and decoder networks are
trained together by maximizing the following loss function

LVAE (θ ,φ; x, z, c) = Ez∼qφ (z|x,c)(log pθ (x|z, c))

− DKL(qφ(z|x, c)||pz(z)). (15)

Equation (15) is also called the variational lower bound [39].
The first term in (15) is the log likelihood function and the
second term is the latent loss which uses Kullback-Leibler
Divergence (KLD) between the learned latent distribution
qφ(z|x, c) and a prior distribution pz(z). Here, the KLD is
used as a regularizer to induce some structure onto the latent
distribution. In its current form, qφ(z|x, c) is intractable and
the KLD between the latent and the selected prior needs to
be estimated [39]. However, if we assume qφ(z|x, c) to be
Gaussian with an approximately diagonal covariance, and
pz(z) = N (0, I) to be a unit Gaussian, the KLD can be
computed without estimation [39]. Furthermore, assuming a
Laplacian pθ (x|z, c), the (15) can be written as

LVAE (θ ,φ; x, c) ≃
1
2

N∑
i=1

J∑
j=1

(1 + log(σ 2
ij ) − µ2

ij − σ 2
ij )
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−
1
N

N∑
i=1

∥xi − x̂i∥1, (16)

here N is the total number of batch samples, J is the dimen-
sion of z, µij is the jth element of µi, σij is the j

th element
of 6i, and ∥ · ∥1 is the vector ℓ1−norm. Here we chose
pθ (x|z, c) to be Laplacian to enable the reconstruction error
to be robust to outlier samples which are often found in real
datasets [41].

2) WGAN LOSS
In the standard GAN, the loss function relies on the
Jensen-Shannon Divergence (JSD) between real pr and gen-
erated pg data distributions. However, JSD has limitations; it
fails to effectively measure the distance between distributions
when there is minimal to no overlap between them [42].
This can lead to the discriminator becoming perfect, resulting
in the vanishing gradient problem during training. To cir-
cumvent this issue and ensure stable training, we adopt the
WGAN framework.

WGAN replaces the JSD of the vanilla GAN with the
Earth Mover Distance (EMD), also known as theWasserstein
Distance (WD). EMD, a member of the Integral Probabil-
ity Metrics (IPM) family, quantifies the effort required to
transform one distribution into another by redistributing mass
from one region to another. Unlike JSD, WD is a smooth and
effective distance metric, even when the distributions being
compared exhibit minimal or no overlap. Formally, the WD
between pr and pg is given by

WD(pr , pg) = inf
γ∼

∏
(pr ,pg)

E(x,y)∼γ [∥x − y∥] , (17)

where
∏
(pr , pg) is the set of all possible joint probability

distributionswith pr (x) and pg(y) as itsmarginal distributions.
Informally, γ (x, y) can be considered a transport plan, i.e., the
amount of mass required to be moved from y to x in order to
transform pg into pr . Working with (17) is difficult as it is not
possible to exhaust all possible distributions of

∏
(pr ,pg) [40].

Instead, authors propose to solve (17) using the functional
format given below

WD(pr , pg) = sup
∥f ∥L≤1

Ex∼pr [f (x)] − Ex∼pg [f (x)], (18)

where the function f is 1-Lipschitz (i.e., |
d(f )
dx | ≤ 1) and the

supremum is taken over it.
In the WGAN model, the critic’s output is a real num-

ber rather than a probability, with higher values assigned
to real samples. Consequently, the WGAN critic is trained
to maximize the difference in its predictions between gen-
uine data and generated fake data samples. To encour-
age the critic to learn a 1-Lipschitz continuous function,
a critical aspect of WGAN training, the learned weights
are constrained to remain within a narrow range, typ-
ically [−0.01, 0.01], following each training batch. The
critic model is trained by maximizing the following loss

function:

Lcritic = max
ϕ∈F

EX∼pr (x)[Cϕ(x)] − EZ∼pz(z)[Cϕ(Dθ (z, c))],

(19)

where, F is the set of 1-Lipschitz continuous functions, Cϕ is
the critic network, and Dθ is the decoder network. Although
WGAN has been shown to stabilize training, the weight
clipping deployed in the critic update of WGAN greatly
lowers its learning capacity and often leads to convergence
failure. To solve this issue, instead of gradient clipping,
we augment (19) with a Gradient Penalty (GP) to enforce the
Lipschitz constraint on the critic [43]. The resulting critic loss
becomes

Lcritic = max
ϕ∈F

EX∼pr (x)[Cϕ(x)] − EZ∼pz(z)[Cϕ(Dθ (z, c))]

− λ Ex̃

[
(∥1Cϕ(x̃)∥2 − 1)2

]
(20)

where x̃ is uniformly sampled from the line segment joining
points sampled from pr and pg, respectively, ∥·∥2 is the vector
ℓ2−norm and λ is the GP controlling parameter. WGAN-GP
has been shown to learn a better parameter distribution w.r.t.
WGAN, and has been used as the default in many GAN loss
variants.
Finally, the generator (decoder) in WGAN is trained to

generate samples as close to the real ones as possible, in order
to fool the critic into giving fake samples a higher score. The
loss function to ensure this is given by

LDecoder = max
φ

EZ∼pz(z)
[
Cϕ(Dθ (z, c)

]
(21)

The fusion of VAE and GAN architectures offers the
advantage of harnessing the strengths of both paradigms.
By doing so, we can capitalize on the precise reconstruc-
tion capabilities of VAE models while leveraging the feature
learning prowess of the GAN architecture. This synergy
allows us to acquire a rich representation of the underlying
data, resulting in a more robust and effective model for our
spoof detection task.
To consolidate the training process, we outline the algo-

rithmic steps for the model depicted in Fig. 3 in Algorithm 1.
In this algorithm, the Cϕ model is updated κ times for each
update of Eφ and Dθ models. This repeated updating of Cϕ

ensures its convergence, consequently yielding accurate gra-
dients for theDθ model in (21) [40]. While we do not provide
a formal proof of convergence for the training algorithm, we
showcase the empirical loss curves for training the model
with κ = 5 in Fig. 4. The plotted curves demonstrate
consistent improvement across all component losses in the
initial 60 epochs, prompting us to prolong the training process
to ensure thorough model parameter stability. For detailed
insights into the specific model hyper-parameters, please
refer to Section IV-C1.

C. DETECTION METHODS
In this section, we discuss the development of detectionmeth-
ods built on the premise of recognizing similarity between
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Algorithm 1 The Training Algorithm
Input: Data samples X, labels C, epochs, λ, model

training ratio κ , total batches nB, models
Eφ,Dθ , Cϕ .

1 Initialization: Initialize φ, θ , and ϕ, the model
parameters of Eφ,Dθ , Cϕ ,

2 for t in epochs do
3 for b in nB do
4 Fetch new batches for x, c.
5 Training the Critic Cϕ:
6 Sample ϵ ∼ N (0, I)
7 Sample α ∼ U(0, 1)
8 Compute: yx = Cϕ(x), û = Dθ (ϵ, c), and

yû = Cϕ(û)
9 x̃ = α x + (1 − α) û
10 yx̃ = Cϕ(x̃)
11 Compute (20) as
12 Lcritic = E[yx]−E[yû]−λ E[(∥1yx̃∥2−1)2]
13 Perform gradient backprop. through Cϕ using

Lcritic,
14 Update ϕ, the parameters of Cϕ to maximize

Lcritic.
15 Training the Encoder Eφ and Decoder Dθ :
16 if mod(t, κ) == 0 then
17 Sample ϵ ∼ N (0, I)
18 Compute:
19 µz,6z = Eφ(x, c)
20 z = µz + ϵ ⊙ 6z
21 x̂ = Dθ (z, c)
22 û = Dθ (ϵ, c)
23 yû = Cϕ(û)
24 Compute LVAE using (16)
25 Compute (21) as LDecoder = E[yû]
26 Compute Ltotal = LVAE + LDecoder
27 Perform gradient backprop. through Eφ

and Dθ using Ltotal
28 Update φ and θ , the parameters of Eφ and

Dθ , respectively to maximize Ltotal .

Output: The trained Eφ,Dθ , Cϕ models.

test samples and those used for model training. Specifically,
our goal is to equip the detection model with the capability
to discern whether an input sample closely resembles the
trained data or deviates significantly from it. To achieve this,
we employ the computation of three distinct test statistics.
With the careful selection of appropriate thresholds, these
statistics serve as the basis for flagging samples as either
genuine or spoofed, resulting in the creation of three sepa-
rate detectors. The subsequent sections will elaborate on the
computation of these statistical measures.

1) THE ℓ2 CRITERION BASED DETECTOR Dℓ2
The encoder network, denoted as Eφ , plays the central role
in our first detection model. Its primary objective is to map

FIGURE 4. Convergence graph for model training using
algorithm 1.

FIGURE 5. Latent representations generated by the Encoder Eφ .

genuine input features into a latent space that is explicitly
centered at the origin and symmetrically distributed around it,
a constraint enforced through the KLD in (15). Consequently,
spoofed samples deviate significantly from this centered ori-
gin. To establish a baseline for our detection, denoted as
E[µzg ], we calculate the expected value of the mean vector
µzg , where µzg ,6zg = Eφ(Xg,Cg). Here, Xg represents the
genuine training samples, and Cg signifies their correspond-
ing labels.

Our test statistic for a given test sample x̄ is computed as
ζℓ2 (x̄) = ∥µzx̄ − E[µzg ]∥2. Our experimental results show
that E[µzg ] closely approximates the origin. Subsequently,
for a predefined threshold ρ, if ζℓ2 < ρ, the sample is
classified as genuine; otherwise, it is deemed spoofed. This
detection method, founded on the ℓ2 distance, is denoted as
Dℓ2 . To visually illustrate the latent representations generated
by the trained Eφ across all datasets (as shown in Table. 2),
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we selected 1000 random samples from each dataset and
present their representations in Fig. 5. Notably, samples orig-
inating from genuine static and dynamic training datasets
(DS-0 and DS-1) are mapped closer to the origin due to the
reduction of KLD component in (15). Conversely, depending
on their similarity to the training samples, samples from
other datasets (i.e., attack samples) are mapped closer or
further from the origin. For instance, DS-2 and DS-5 attack
dataset samples are mapped away from the origin, indicating
their significant dissimilarity from the genuine training sam-
ples, as they originate from high-powered spoofing scenarios.
These observations validate the appropriateness of distance
from the origin as a viable test statistic for spoof detection.

2) THE RECONSTRUCTION ERROR BASED DETECTOR
Drec

The decoder network, denoted as Dθ , serves a pivotal role
in our second detection model. It is trained to generate sam-
ples that closely resemble those from the genuine sample
distribution, a goal achieved by maximizing the objective
functions in (16) and (21). When a test sample x, along
with its corresponding test label c, is passed through the Eφ
model, it generates a latent variable z (computed using (14)).
Simultaneously, z and c are passed through Dθ to produce
the reconstructed sample x̂. In cases where the test sample
is genuine, the model should be able to reconstruct it well.
Conversely, for spoofed samples, the model is expected to
struggle in replicating them since it was not exposed to such
samples during training.

Under this premise, we calculate a test statistic for a given
test sample x̄ and its reconstruction ˆ̄x as ζrec = ∥x̄ − ˆ̄x∥1.
Subsequently, employing a predefined threshold ρ, if ζrec <
ρ, the test sample is classified as genuine; otherwise, it is
designated as spoofed. This detection method, based on the
reconstruction error, is termed Drec.

3) THE CRITIC SCORE BASED DETECTOR Dcr

The critic network, denoted as Cϕ, plays the central role in our
third detection model. It is trained by maximizing the objec-
tive in (20), aided by a proficient generator (decoder). This
training equips the critic to effectively distinguish between
genuine samples, which were part of its training set, and
spoofed ones, which it has never encountered before. When
a test sample x̄ is presented to the critic, it generates a score,
denoted as ζcr = Cϕ(x̄). This score is high for genuine test
samples and low for spoofed ones, making it a robust statistic
for spoof detection. Notably, unlike ζℓ2 and ζrec, computing
ζcr does not necessitate knowledge of the test sample’s class
label. Consequently, a predefined threshold ρ is applied to
this score. If ζcr > ρ, the test sample is classified as genuine;
otherwise, it is flagged as spoofed. This detection method,
is named Dcr .

4) THRESHOLD COMPUTATION
Selecting an appropriate threshold is crucial for the detection
performance of the models. The threshold ρ is determined

based on the acceptable False Positive Rate (FPR) tolerance,
typically provided in the detector’s design specifications.
After training the models, we calculate the three test statistics
(ζℓ2 , ζrec, and ζcr ) for the entire training dataset and determine
their respective thresholds. These thresholds are set to cor-
respond to the specified FPR for the training dataset. When
presented with a test sample x̄, each detection criterion inde-
pendently identifies it as spoofed if it surpasses its respective
threshold, given as

Dℓ2 : ζℓ2 (x̄) ≜ ∥µzx̄ − E[µzg ]∥2 ≥ ρℓ2 ,

Drec : ζrec(x̄) ≜ ∥x̄ − ˆ̄x∥1 ≥ ρrec,

Dcr : ζcr (x̄) ≜ Cϕ(x̄) ≤ ρcr . (22)

The detection criteria discussed above follow different
pipelines to provide a detection result for a test sample x̄, i.e.,

• For ζℓ2 (x̄), the test sample passes through the encoder
network, the output is used to perform a difference oper-
ation followed by a norm computation to generate the
test statistic.

• For ζrec(x̄), the test sample first passes through the
encoder, whose output is used to generate latent variable
z (using (14)), which is passed through the decoder
for sample reconstruction. The output is then used in a
difference operation followed by a norm computation to
generate the test statistic.

• For ζcr (x̄), the test sample is passed through the critic
network only to generate the test statistic.

Based on the above discussion and assuming that the FCNNs
constituting each of these models have similar computational
complexities, the test statistics can be sorted in terms of their
decreasing computational requirements as follows: ζcr (x̄) <
ζℓ2 (x̄) < ζrec(x̄). Moreover, as reported in Section IV-C, for
an input FPR of 5%, detectors based on all three criteria show
similar detection performance, with the critic-based detector
(Dcr ) outperforming the rest when the input FPR is reduced
to 0.1%.

IV. EXPERIMENTAL EVALUATION
In this section, we conduct a comprehensive performance
analysis of the proposed detection methods using the publicly
available TEXBAT dataset [22], [23]. Our evaluation begins
with binary classification analysis under classical supervised
learning and leave-one-out training strategy, which highlights
the limitations of models trained under supervised learn-
ing. Subsequently, we present the results obtained from our
proposed detection models, designed to address the limi-
tations effectively. Lastly, we compare the performance of
our proposed models with statistical hypothesis-based spoof
detection methods, highlighting the superior performance of
our approach.

A. TEXBAT DATASET
The TEXBAT dataset, provided by the RadioNavigation Lab-
oratory (RNL) at the University of Texas in Austin, comprises
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TABLE 2. Summary of Texas Spoofing Test Battery (TEXBAT) scenarios.

high-fidelity binary recordings representing diverse spoof-
ing scenarios involving civilian GPS L1 C/A signals [22],
[23]. These recordings are centered at a carrier frequency of
1575.42MHz and possess a 20MHz bandwidth. Each sample
is encoded with 16 bits and has a complex sampling rate
of 25 Msps. TEXBAT stands out as one of the few publicly
available datasets for evaluating anti-spoofing GPS receiver
systems. For a succinct overview of the various spoofing
attack scenarios, please refer to Table 2.
In Table 2, the term code phase prop. signifies that the

spoofed signal’s carrier phase changes proportionally to the
code phase.Frequency lockmode denotes scenarios where the
initial phase offset between the spoofed and authentic signals
remains constant throughout the spoofing episode. Carrier
aligned implies precise alignment of the spoofed signal with
the carrier phase of the authentic signal. Matched suggests
that the power of the spoofed signal and genuine are matched,
though exact values are unspecified. Lastly, Spoofing type
refers to deviations induced by the spoofer in time or position
information.

This study uses all datasets listed in Table 2, covering
both static and dynamic scenarios. The DS-0 dataset contains
genuineGPS signals recordedwith an antenna placed atop the
RNL lab, whereas, DS-1 contains genuine signals recorded
using a vehicle-mounted antenna travelling within Austin,
Texas. Rest of the datasets can be divided into three spoof-
ing attack scenarios, with varying degree of implementation
difficulty as:

• Simple: DS-2 and DS-5 were generated using the gen-
uine static and dynamic datasets, whereby, the spoofer
enjoyed a significant power advantage over the genuine
signals, and with code phase proportional synchroniza-
tion.

• Intermediate: DS-3, DS-4, and DS-6 are the datasets
where the spoofed signals has relatively small power
advantage (essentially matched) and generated by per-
forming a frequency lock with the respective genuine
signals.

• Sophisticated: The DS-7 dataset contains the most
challenging attack setting, where the spoofer’s power
is matched with the genuine signal, while maintaining

precise carrier phase alignment with the genuine signal
as well, which in turn causes low distortion in the corre-
lation function as shown in Fig. 6.

To minimize redundancy, we concentrated our attention on
attack scenarios within the time window just preceding the
insertion of the spoofed signal and following the completion
of correlator peak capture. This approach allowed us to thor-
oughly analyze the entire process of the attacker pulling off
the correlation peak.

1) FEATURE EXTRACTION
We employed FGI-GSRx [33], an open-source GNSS soft-
ware receiver designed for single-antenna GNSS processing,
to process the raw RF samples from the TEXBAT datasets.
This receiver is implemented in MATLAB, and thus, the
initial feature extraction was conducted usingMATLAB. The
subsequent analyses presented in this study utilized seven
features extracted from the satellite with the highest received
power, sampled at an output rate of 50 Hz (averaging sam-
ples in a 20 ms time window). For visual inspection, the
resulting features for datasets DS-4, DS-6, and DS-7 are
displayed in Fig. 6. ML model training and performance
analysis were conducted in Python v3.9, utilizing the Scikit-
Learn [44] and PyTorch [45] libraries. To facilitate effective
model learning, we scaled the training dataset features to
the range of [0, 1]. In summary, our dataset comprised 65%
spoofed samples and 35% genuine samples, totaling 107,500
samples. Although the total number of samples may appear
as if the dataset is unbalanced, this is not strictly the case
as we have ensured each scenario, whether it is genuine or
attacking, contains similar total sample number. For instance,
referring to Table 2, DS-0 to DS-5 contain 250 seconds of
samples each, DS-6 includes 300 seconds of data, and DS-7
comprises 350 seconds of data.

2) PERFORMANCE METRICS
The performance metrics selected for our analysis are
classification-based, including Accuracy (ACC), True Posi-
tive Rate (TPR), which is also known as the detection rate,
and False Positive Rate (FPR), often referred to as the false
alarm rate. The True Negative Rate (TNR) and Miss Rate
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FIGURE 6. Features extracted from a) DS-4 (PRN-23), b) DS-6 (PRN-22), and c) DS-7 (PRN-23) datasets.

(MR) can be deduced from the FPR and TPR, respectively,
and are therefore not explicitly included in the performance
scores. Furthermore, for results presented in Section IV-B1,
we also report the F1-score, precision, and recall results as
the training dataset in this case is unbalanced. To assess the
performance of the three proposed detectors, Receiver Oper-
ating Characteristic (ROC) curves are utilized as well. These
curves help evaluate and compare the detectors’ performance
across various thresholds. In our evaluations, we consider the
positive case to indicate the presence of a spoofer, while the
negative case represents a genuine sample.

B. BINARY CLASSIFICATION
To evaluate the effectiveness of the extracted features in
detecting spoofed signals, we employed four widely usedML
classification models: the Random Forest Classifier (RFC),
Gradient Boost (GB), K-Nearest Neighbours (K-NN), the
Support Vector Machine (SVM), and a Fully Connected
Neural Network (FCNN). We implemented RFC, GB, K-
NN, and SVM using the scikit-learn [44] package, while the
FCNN was developed using PyTorch [45]. We fine-tuned
each model for optimal performance, configuring the RFC
with 8 estimators, GB with 20 estimators, setting K = 8 for
K-NN, and using the radial basis function (RBF) kernel
for the SVM. The FCNN architecture comprised three lay-

ers with node configurations of 20 − 10 − 1. It utilized
the Parametric Rectified Linear Unit (PReLU) activation
function for the first two layers and the Sigmoid function
for the final output layer. Training involved minimizing the
binary cross-entropy loss across 20 epochs, employing the
Adam optimizer with a learning rate set at 1e−3 and a batch
size of 256.

1) PERFORMANCE UNDER SUPERVISED LEARNING
In this section, we present the performance assessment of
models trained within a supervised learning framework. The
entire dataset was evenly divided into training and testing
sets (50-50 split), and the ML and FCNN models mentioned
earlier were trained on the training set. Subsequently, their
performance was compared using the testing set. To ensure
robustness in the evaluation, we repeated the performance
assessment 10 times with different train-test splits, presenting
the average classification results in Table 3. In addition to the
five models trained on our featureset, we included three other
models; FCNN-S [26], FCNN-B [25], and Nu-SVM [9]–for
comparative analysis. These models were trained using the
featuresets introduced in their respective papers. To main-
tain a consistent complexity level among the FCNN models,
we preserved the same model architecture for FCNN-B and
FCNN-S as discussed earlier.

470 VOLUME 2, 2024



Iqbal et al.: Deep Learning Based Induced GNSS Spoof Detection Framework

TABLE 3. Binary classification results on the test set.

Upon reviewing the scores in Table 3, it is evident that all
five models trained on our featureset consistently performed
well, exhibiting a minimal TPR of approximately 98%, while
the SVM model achieved the highest TPR. These results
underscore the efficacy and informativeness of the proposed
featureset. Moreover, the scores reported by models trained
on alternative featuresets also demonstrate commendable per-
formance. However, upon closer inspection of the train-test
sets, we discovered that the training set contained samples
that closely resembled those in the test set. This similarity
arises because the data is sampled from a time series sig-
nal, leading to a high degree of sample correlation. As a
result, we emphasize caution when interpreting performance
analysis based on a simple train-test split, particularly when
working with high sampling rate time series data like that of
GPS spoofing datasets.

2) LEAVE-ONE-OUT STRATEGY
To establish a robust baseline for our upcoming analysis,
we evaluated the generalization capabilities of the top per-
forming ML models (SVM, RFC, and FCNN) using the
Leave-One-Out (LOO) strategy. In this strategy, we employed
all but one dataset for training the models, reserving the
remaining dataset for testing. The LOO strategy offers a
distinct advantage as it evaluates the models’ performance
on a dataset excluded from the training set. Consequently,
the model can no longer rely solely on memorization of
the training samples; instead, it showcases its generalizable
abilities that are effective across diverse attack scenarios. By
employing this strategy on all the datasets listed in Table 2,
we conducted 10 independent runs and computed the aver-
age results, which are presented in Table 4. This rigorous
evaluation approach ensures that the models’ performance
is not influenced by the specific characteristics of a single
dataset and provides a more comprehensive assessment of
their generalization capabilities.

Analyzing the accuracy metrics presented in Table 4,
we observe the remarkable performance of all three classi-
fiers across a spectrum of scenarios, ranging from genuine
to various spoof attack scenarios (DS-0 to DS-6). In each
case, the classifiers consistently achieved accuracy surpass-

ing 98%, with the lowest accuracy recorded at 97.36% for
DS-2 when using FCNN, a still commendable result. Like-
wise, when examining the TPR for the attack datasets (DS-2
to DS-6), the lowest value is reported by SVM at 98.10%.
These results demonstrate the robustness and reliability of
the featureset and these classifiers in distinguishing between
genuine and spoofed signals across different attack scenarios.
However, it is essential to exercise caution when interpret-
ing these results, considering the similarities among certain
attack scenarios. Notably, DS-2 and DS-5 share common
characteristics, such as a substantial relative power advantage
and alignment of the spoofed signal with the code phase of
the authentic signal. Similarly, DS-3, DS-4, and DS-6 exhibit
comparable attack profiles, characterized by a low relative
power advantage and spoofed signals operating in frequency-
locked mode. Given these similarities, it is plausible that
the presence of DS-3 and DS-4 in the training dataset could
influence the effective classification of unseen DS-6 during
testing, even if DS-6 was not included in the training data.
These observations underscore the importance of carefully
considering dataset characteristics and their potential impact
on model performance.

Nonetheless, the DS-7 attack dataset stands apart from the
others due to its unique characteristics. Spoofed signal in
DS-7 attack boasts matched power with the genuine GPS
signal and achieves full carrier phase alignment, making it
a more subtle attack. As a result, this attack leads to minimal
variations across different SQM metrics, as illustrated in
Fig. 6. Specifically, the Delta, ELP, and SD metrics exhibited
negligible changes in their sample statistics throughout the
entire attack. Consequently, when evaluated against DS-7,
all three models exhibited notably lower performance levels.
FCNN, for instance, achieved the highest TPR at 44.11%.
This disparity in performance underscores a fundamental
challenge inherent in supervised learning, i.e., the models
trained on a specific dataset tend to falter when subjected to
significantly different datasets during the testing phase. The
distinctive attributes of DS-7, such as its power matching and
precise carrier phase alignment, made it close enough to the
genuine samples such that all three classifiers classified most
of DS-7 as genuine.

To further investigate the performance of SVM and FCNN
models against the DS-7 dataset, we conducted an additional
experiment, whereby our models were adjusted to produce
logits rather than binary outcomes and were trained on all
datasets except DS-7. Utilizing the DS-0 (genuine static)
dataset, we computed thresholds across various FPR values
using both models. Subsequently, these thresholds were used
to classify DS-7 samples as genuine or spoofed, and the
results are outlined in Table 5. Surprisingly, both models
demonstrated significant improvements: SVM’s TPR rose
from 25.5% to 72.32%, while FCNN’s TPR increased from
44.11% to 78.54% at an FPR of 5%. Nevertheless, these
enhancements are still considerably lower than their typi-
cal performance against other attack datasets, as presented
in Table 4. These outcomes underscore the necessity for
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TABLE 4. Performance metrics of ML models under leave-one-out testing scenario for the TEXBAT datasets. The Metrics Are Accuracy
(ACC), True Positive Rate (TPR), and False Positive Rate (FPR).

TABLE 5. TPR over multiple FPRs for DS-7 dataset.

classifiers capable of detecting even the slightest feature dis-
tortions, especially in sophisticated attacks like DS-7.

C. EVALUATION OF THE PROPOSED ZERO-DAY
DETECTOR
As demonstrated in the previous section, supervised train-
ing models can encounter challenges when faced with test
datasets that substantially differ from the training data.
To tackle the issue outlined in the preceding subsection,
we employ representation learning based methods. In this
framework, the model acquires the ability to discern one class
from the training dataset and subsequently applies this knowl-
edge to classify test samples, even if it has not been explicitly
trained on them. This approach holds the potential to enhance
the model’s accuracy when dealing with novel and previously
unseen datasets, making it particularly advantageous for GPS
spoofing detection where attack scenarios may vary widely.

1) IMPLEMENTATION DETAILS OF THE PROPOSED
MODEL
Our proposed model, illustrated in Fig. 3, comprises three
FCNNs, each consisting of four layers. The input to the
encoder model is a vector of size R9, encompassing x ∈

R7 features and c ∈ R2, a one-hot-encoded label representing
the receiver’s status (static or dynamic). The model architec-
ture itself follows a node configuration of 20 − 10 − 5 − 4,
utilizing PReLU activation functions at its inner nodes and
no activation function at the final output layer. The encoder

serves tomodel a 2D latent distribution, characterized by a 2D
mean and 2D variance vector at its output. On the other hand,
the input to the decoder model is a vector of size R4, consist-
ing of z ∈ R2, the latent variable, and c ∈ R2. The decoder
model consists of four layers with a node configuration of
5−10−20−7 and employs similar activation functions as the
encoder. Finally, the critic model takes an input of R7, which
can be either a real data sample or a fake one generated by the
decoder. Its inner node architecture adopts a configuration of
20−10−5−1 with PReLU activations in hidden nodes and
a no activation function at the output node.

The model was exclusively trained using genuine datasets,
specificallyDS-0 (static) andDS-1 (dynamic), as described in
Sections III-B, utilizing Algorithm 1. The model was trained
over 150 epochs, with a batch size of 256. Adam optimizer
was employed to update the model parameters. The learning
rates for the model were progressively updated after every
50 epochs, following the sequence [1e−4, 5e−5, 1e−5]. Fur-
thermore, a training ratio of κ = 5 was applied to balance
the training of the critic and encoder-decoder models. These
parameter selections emerged after comprehensive hyperpa-
rameter tuning, yielding the optimal performance.

2) DETECTION SCORES UNDER MULTIPLE INPUT FPRs
Using the trained model, we devised three strategies for
detecting out-of-distribution samples, as outlined in Sec-
tions III-C: Dℓ2 (utilizing the ℓ2 criterion), Drec (based on
reconstruction error), and Dcr (using critic scores), employ-
ing the statistics as given in (22), respectively. We calculated
the respective thresholds ρ for each detector using the input
FPR [5.0%, 1.0%, 0.1%], utilizing the trained datasets DS-
0 and DS-1. With these thresholds in hand, we evaluated
the performance of each detector individually using each
dataset, ranging from DS-0 to DS-7, for spoofing detection.
The detection performance under each detector is presented
in Table 6 for Dℓ2 , Table 7 for Drec, and Table 8 for Dcr .
Additionally, for visualization purposes, test statistics for
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TABLE 6. Detection performance for Dℓ2 based on ℓ2 criterion. Input FPR is computed using the genuine data samples only.

TABLE 7. Detection performance for Drec based on reconstruction errors.

each strategy are shown in Figs. 7, 8, and 9 corresponding
to the ℓ2 criterion, reconstruction error, and critic scores,
respectively.

In comparison to the baseline performance of the ML
algorithms, as shown in Table 4, the performance of all three
proposed detectors remains similar for the attack datasets of
DS-2 to DS-6 across all input FPRs. Given that all three
ML models reported an FPR of approximately 1% for DS-
0 and DS-1, let’s focus on the case with a 1% input FPR
for detailed inspection, comparing the performance of the
proposed detectors for the attack datasets DS-2 to DS-6.
In terms of accuracy, the proposed detector Drec takes the
lead, consistently maintaining an accuracy above 99%, with
SVM being a close second. Regarding TPR, FCNN impres-
sively maintains a 100% TPR consistently. The proposed
detectors Dcr and Drec, along with the RFC model, come in
a close second as their TPR scores consistently stay above
99.9%. Based on these comparisons, for the DS-2 to DS-6
spoof attack datasets, it can be concluded that the proposed
detection models consistently met the performance of the

baseline MLmodels and, in some cases, even exceeded them,
all without having seen any of the attack samples during their
training.

For the subtle spoofing attack case of DS-7, FCNN reports
the highest TPR of 78%. In contrast, the proposed detectors
take a decisive lead, reporting a lowest TPR of 81.91% by
Drec and the highest of 94.69% by Dℓ2 under the 5% input
FPR. This demonstrates that for novel and subtle unseen
attacks on GNSS receivers, the proposed detectors have a
high chance of success compared to traditionally trained
models. When comparing the proposed detectors among
themselves and reducing the input FPR from 5% to 1%
and then to 0.1% for DS-2 to DS-6, we observe that the
accuracy and TPR reported by Drec and Dcr consistently
exceed 99.5% and 99.9%, respectively. Similarly, the FPRs
consistently decrease for all three detectors as well. However,
when examining the scores reported for the DS-7 dataset,
with the reduction in input FPR, the TPR reported by Dℓ2
sees a steep decline, dropping from 94.69% to 23.66% and
then to 0.2%. This is because of the low class separation
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TABLE 8. Detection performance for Dcr based on critic scores.

FIGURE 7. Test statistics based on ℓ2 criterion under 5% input FPR.

between ℓ2 metric for DS-7, as seen in Fig. 7. Drec exhibits
a similar downward trend in TPR, with its scores decreasing
from 81.91% to 38.27%.Meanwhile,Dcr reports the smallest
decline, decreasing from 93.36% to 76.74%. Looking at the
mean results reported in Tables 4, 6, 7, and 8, we find that
the proposed detector Dcr based on critic scores consistently
maintains an accuracy and TPR above 96%, outperforming
its competition.

Instead of using the input FPR for threshold detection,
if we employ the FPR from the test dataset itself for threshold
computation, the Figs. 7, 8, and 9 clearly reveal that the test
statistic separation under Dcr is superior compared to Dℓ2
and Drec. Consequently, under this condition, it should also
outperform the other detectors. To illustrate this, we present
the ROC curves for all datasets under the three detectors in
Fig. 10. The ROC curves indicate that the performance ofDcr
and Dℓ2 is similar, with Drec being close but exhibiting the
lowest reported AUC for DS-7. These results underscore the

TABLE 9. Detection performance for Dcr for input FPR of 1%.

utility of representation-based learners for GPS spoof detec-
tion. We only need to train our models using high-quality
genuine GPS signals, and the resulting model proves
robust enough to identify novel, unseen, and sophisticated
attacks.
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FIGURE 8. Test statistics based on reconstruction error under 5% input FPR.

FIGURE 9. Test statistics based on critic scores under 5% input FPR.

3) AN ABLATION STUDY
In this section, we present an ablation study to assess the per-
formance gains resulting from different model architectures
and training strategies. The study involved four models: the
vanilla GAN, VAE-GAN (GAN with an additional encoder),
VAE-WGAN (WGAN-GP substituted for the vanilla GAN),
and CVAE-WGAN (conditioned Encoder and Decoder mod-
els of VAE-WGAN on class labels). These models were
evaluated using DS-5, DS-6, and DS-7 datasets, encom-
passing dynamic datasets and sophisticated attack scenarios.
We focused on TPR and FPR metrics generated byDcr for an
input FPR of 1%, as presented in Table 9 for analysis.

The results indicate that both GAN and VAE-GANmodels
performed poorly. Despite various attempts with different
hyperparameters, maintaining a balance between discrim-

inator and generator loss posed a significant challenge.
The discriminator excelled in distinguishing real and fake
samples, leading to the generator’s failure and subsequent
poor performance. Introducing the WGAN-GP training strat-
egy notably improved TPR, achieving 100% for DS-5 and
DS-6, and 91% for DS-7. However, this improvement was
accompanied by unreasonably high FPRs for DS-5 and
DS-6, exceeding 60%. Conversely, DS-7 exhibited a low
FPR of 4.65%. An analysis of latent mappings revealed
that the encoder was having difficulties in mapping genuine
dynamic samples close to the latent space origin, which in
turn affected decoder, and consequently affecting the dis-
criminator’s ability to distinguish genuine dynamic samples
from fake ones, leading to elevated FPRs for the dynamic
samples.
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FIGURE 10. Receiver operating characteristic (ROC) curves for a) Dℓ2 , b) Drec, and c) Dcr detectors.

TABLE 10. Performance comparison on TEXBAT scenario DS-7.

Addressing this issue, we conditioned the encoder and
decoder models on class labels for static and dynamic classes
in the CVAE-WGAN model. This modification allowed the
encoder to smoothly map genuine training samples from both
static and dynamic datasets around the latent space origin.
As a result, FPR scores for DS-5 and DS-6 dropped below
20%, maintaining 100% TPR. DS-7 experienced a slight
decline in TPR but achieved a 0% FPR. This enhancement
in model performance demonstrates the importance of condi-
tioning the models on class labels to mitigate false positive
rates in dynamic datasets, ensuring robust spoof detection
across various attack scenarios.

4) COMPARISON WITH RECENT WORKS
In this section, we undertake a comparative analysis of the
proposed spoof detectors with statistical hypothesis-based
spoof detection methods, as outlined in previous studies [12],
[17], [19], [21]. The basis for this comparison lies in the fact
that these methods also leverage features readily available
at the tracking stage of a standard GPS receiver, including
received power, C/N0, and multiple correlation finger out-
puts. For the purpose of this evaluation, we concentrate on
the DS-7 scenario dataset, as it presents the most challenging
scenario among all the TEXBAT datasets. Wesson et al. [12]
employ received power,C/N0, and the symmetric differences
metric (10) in their spoof detection approach. In contrast,
Manfredini et al. [21] utilize AGC values from the RF
front end and the SQM metric (11), where the AGC values

are the inverses of the received power, as opposed to our
method. Sun et al. [17] combine ratio and delta metrics,
while Zhou et al. [19] employ a custom SQM metric com-
puted using five correlator pairs. Across all these methods,
the detection window is consistently set at 2 seconds (100
samples), and the detection thresholds are computed using
[5%, 1%, 0.1%] false positive rates (FPR) as specified in their
respective papers. To ensure consistency in the comparison,
we merge the normal and multipath hypotheses into a single
non-spoof hypothesis for [12]. Similarly, we combine the
spoofing and jamming hypotheses into a single spoofing
hypothesis. Additionally, in the case of [17], the presented
results utilize the SQM composite based on the probability
of false alarm (PFA) with the weighting factor λ = 0.5, as it
yielded superior performance.

Using the nomenclature adopted in Table 6, we present the
performance of these methods in Table 10. Upon examining
the true positive rate (TPR) across all input false positive
rates (FPRs), it is evident that [17] exhibits the lowest per-
formance. This outcome aligns with expectations as it is a
transient detector, relying on conventional SQM metrics that
are sensitive only during the correlator peak pull-off phase;
once the pull-off exceeds 1 chip length, their detection rate
rapidly declines to zero. In contrast, [19] demonstrates high
sensitivity to correlation peak distortion, swiftly detecting the
peak pull-off due to the utilization of multiple equi-distant
correlators. Nevertheless, the TPR of [19] is approximately
10 points lower than that of the Dcr across input FPRs of
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5% and 1%, and similar at 0.1%. On the other hand, despite
employing power and SQM metrics, both [12] and [21]
exhibit lackluster performance in the sophisticated attack
scenario of DS-7. This can be attributed to the spoofer’s min-
imal power advantage and their achievement of challenging
frequency matching with the genuine GPS received signal.
Overall, Table 10 demonstrates that the proposed detectorDcr
not only achieves a higher detection rate but also yields lower
FPRs, highlighting its effectiveness in comparison to existing
methods.

V. CONCLUSION & FUTURE WORK
In this study, we addressed the critical challenge of spoof
attacks on GNSS receivers, which are integral to various sys-
tems in our daily lives. Leveraging features computed at the
RF and tracking stages of a typical GNSS receiver, we shed
light on the effectiveness and limitations of supervised ML
models. These models exhibit outstanding detection capabil-
ities when tested on samples resembling the distribution of the
training datasets. However, when faced with the subtle attack
scenario of DS-7 in a leave-one-out training strategy, they are
susceptible to failure, with the highest detection rate reaching
only 44%, as reported by FCNN. To overcome this challenge,
we introduced a representation learning-based spoof detec-
tion model comprising three FCNNs, representing a fusion
of VAE and GAN architectures. The model was meticulously
trained using genuine TEXBAT datasets, encompassing gen-
uine GPS signals recorded by both static (DS-0) and dynamic
(DS-1) receivers. Subsequently, we devised three distinct
spoof detectors based on the three trained FCNNs. Our
experimental results demonstrated that the proposed detectors
matched the performance of supervised ML models for DS-
2 to DS-6 datasets, achieving an impressive detection rate
of approximately 99%. Furthermore, our models showcased
superior detection rates for DS-7 across various input FPRs,
with a highest TPR of 94.7% with an FPR of 1.37% attained
by the Dℓ2 detector. Notably, the Dcr detector, based on critic
model scores, emerged as the most robust option, consistently
outperforming other detectors under multiple input FPR set-
tings. Moreover, these lightweight detectors, once trained
offline, can be seamlessly integrated into GNSS receivers
through a firmware update, incurring minimal computational
overhead. In summary, our approach offers a promising
solution to safeguard GNSS systems against increasingly
sophisticated spoofing attacks, ensuring their continued reli-
ability and security in essential applications.

An essential requirement underpinning our effective detec-
tor’s performance is the availability of high-quality genuine
training data encompassing diverse scenarios. This includes
genuine data collected in open fields, rural low-rise building
areas, and urban settings with high-rise buildings. Access
to such diverse genuine data ensures the proposed model’s
capacity to generalize effectively across varied operating con-
ditions. Furthermore, an intriguing avenue for future research
involves treating the training samples as a time series. This
approach could lead to the development of a detection model

that conducts spoof detection within a time window rather
than on a per-sample basis, as commonly performed in our
and other recent studies.
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