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ABSTRACT In the past few years, Deep Reinforcement Learning (DRL) has become a valuable solution
to automatically learn efficient resource management strategies in complex networks with time-varying
statistics. However, the increased complexity of 5G and Beyond networks requires correspondingly more
complex learning agents and the learning process itself might end up competingwith users for communication
and computational resources. This creates friction: on the one hand, the learning process needs resources to
quickly converge to an effective strategy; on the other hand, the learning process needs to be efficient, i.e.,
take as few resources as possible from the user’s data plane, so as not to throttle users’ Quality of Service
(QoS). In this paper, we investigate this trade-off, which we refer to as cost of learning, and propose a dynamic
strategy to balance the resources assigned to the data plane and those reserved for learning. With the proposed
approach, a learning agent can quickly converge to an efficient resource allocation strategy and adapt to
changes in the environment as for the Continual Learning (CL) paradigm, while minimizing the impact on
the users’ QoS. Simulation results show that the proposed method outperforms static allocation methods with
minimal learning overhead, almost reaching the performance of an ideal out-of-band CL solution.

INDEX TERMS Resource allocation, reinforcement learning, cost of learning, continual learning, meta-
learning, mobile edge computing.

I. INTRODUCTION

THE role of Artificial Intelligence (AI) in communication
networks has become more and more central with the

transition from 4G to 5G, and learning is at the core of the
6G standardization process [1]. Mobile networks are evolv-
ing beyond rigid entities that users must adapt to, shifting
towards customizable services that dynamically respond to
users’ needs [2]. The Network Slicing (NS) paradigm sup-
ports this approach by enabling the definition of multiple
logical network slices overlaying the same physical infras-
tructure [3], with each slice devoted to a specific class of
service. This allows applications with very different require-
ments to coexist and share resources. However, managingNS,
as well as other advanced application scenarios, requires a
dynamic allocation of both transmission and computational
resources to users, according to their QoS targets, in a fast-
paced scenario [4], which is expected to become even more

complex and challenging with 6G. Hence, resource allocation
schemes must be able to detect changes in the environmental
conditions, as well as in users’ and services’ requirements.
The allocation policy should then adapt accordingly to ensure
efficient utilization of the available resources.

Hand-designed resource allocation strategies may not be
up to this challenge, and growing attention has been dedi-
cated to machine-learning approaches. In particular, DRL is
considered a promising framework for deriving adaptable and
robust strategies for network orchestration [4] and resource
allocation [5]. DRL’s effectiveness in dealing with complex
scenarios is indeed well-established: with proper training,
the DRL agents can find foresighted policies aiming for
long-term objectives [6], significantly improving network
performance. Such promising results, however, have been
typically obtained in stationary environments: if this assump-
tion is not satisfied, the performance of pre-trained DRL
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agents may dramatically decrease when the network dynamic
shifts away from the training environment, while dynamic
environments require not only an effective performance after
convergence but also quick reactions to changes, i.e., a high
training efficiency.

Approaches based on the CL paradigm [7] are designed
to deal with non-stationary systems. CL enables the adap-
tation of a learning agent to a series of subsequent tasks
that, in a network scenario, may represent different network
configurations. However, combining CL and DRL for man-
aging network resources in non-stationary scenarios has a
non-negligible cost in terms of energy, computation, and
communication resources [8], due to the complexity of the
training process.

The existing literature has extensively explored the
trade-off between the effectiveness of learned strategies and
their efficiency, considering the associated costs in terms of
computational, communication, and energy resources across
various scenarios. On the other hand, to the best of our
knowledge, no prior research has specifically delved into this
trade-off in case the learning algorithms and the users share
the same pool of resources. In this context, any resource used
by the learning process is subtracted from the data plane, i.e.,
the part of the system that is responsible for transmitting, pro-
cessing, and forwarding user data packets. In such a setting,
indeed, supporting CL represents an overhead for the sys-
tem, which can negatively impact users’ QoS: the resources
required for a learning agent to rapidly adapt to changes in
the environment may, in fact, surpass the performance gains
achieved through such adaptation. Any resources allocated to
the learning plane, i.e., to communicate experience samples
to the Cloud for processing, are taken away from the data
plane, and CL requires online updates and new experience,
as an offline pre-training is not sufficient to adapt to new envi-
ronment conditions. Therefore, the DRL agents are required
to choose wisely when and how much to train, avoiding the
use of resources that must be subtracted from the data plane
when this strongly affects the users’ QoS. We introduce the
term cost of learning to indicate the impact that the learning
process can have on user performance due to the competition
for the same resources.

The cost of learning problem is particularly critical con-
sidering the ever-larger size of most recent DRL neural
networks, and the growing demand for efficient systems,
as for the green networking paradigm [9]. We observe that
Mobile Edge Computing (MEC) [10] solutions do not solve
the problem, but just shift it to the network edge. In fact,
while MEC allows computationally expensive tasks (such as
the training of DRL algorithms) to be carried out directly in
dedicated edge nodes physically close to the data sources, the
limited transmission, computational and energetic resources
of such nodes still have to be shared between the data and
learning planes. Finding a balance between the number of
resources to be used for improving the system reactivity to
variations and those to be allocated to serve the users may be

a very difficult task. This is particularly critical in the case
of CL systems, in which agents must constantly adapt to new
working conditions. As the very same network resources are
also used for the training, a trade-off between the capability
of DRL agent to learn new tasks and its performance during
the current task arises.

Note that, although at a first glance this problem may
remind readers of the well-known exploration-exploitation
problem in learning systems, there is a fundamental differ-
ence: the exploration-exploitation problem involves finding
a balance between exploring new strategies, with the risk of
temporarily worse performance, and exploiting the currently
learned strategy (that, however, may be globally suboptimal).
In this setting, the resources required by the learning process
are typically ignored: whichever action the system chooses,
the outcome is assumed to be available to the learner, enrich-
ing its experience and improving its policy in future steps,
without any cost. On the other hand, the trade-off we consider
is beyond the standard DRL formulation, and requires an
external solution: we consider the resources needed to trans-
fer experience to the learner and use it to update the policy,
irrespective of whether it originates from an exploration or
exploitation action. From a theoretical perspective, the sce-
nario we look at is hence a Meta Learning (MeL) problem,
in which the agent’s actions determine the efficiency of the
learning data aggregation and processing.

The cost of learning is therefore a fundamental aspect
to be considered in modern network design, and recent
works have proposed learning-based frameworks that are
computation-aware [11]. Despite the high interest of the sci-
entific community in this field, the cost of learning for DRL
models is still a relatively unexplored subject in the network-
ing literature, and even the most recent works on resource
allocation and NS ignore the true cost of combining DRL
and CL in modern networks [12], making the effectiveness
of state of the art DRL solutions questionable.

In this work, we design a novel CL framework to
address the trade-off between effectiveness and efficiency in
learning-based resource allocation scenarios. We formally
define the resource allocation problem, including the cost of
learning, and show that our solution achieves performance
close to the ideal upper bound obtained by neglecting the cost
of learning. The proposed scheme enables the maximization
of the training efficiency (i.e., reducing the learning plane
overhead) while still achieving effective resource allocation
(i.e., the same QoS as the ideal approach that assumes learn-
ing does not consume users’ resources) in a reasonable time.
Although we applied our solution to a networking scenario,
the framework can be directly applied to any learning-based
allocation problem in which the allocated resources are also
required for the agent training, such as MEC job scheduling.

To the best of our knowledge, this is the first work to
consider the cost of learning in terms of the trade-off between
training efficiency and policy effectiveness. Themajor contri-
butions of our work are summarized in the following points:
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• we define a theoretical model to analyze the
trade-off between the effectiveness and efficiency in
learning-based resource allocation scenarios;

• we propose a novel framework to solve the cost of
learning problem, allowing the DRL agent to quickly
adapt to changes in the environment statistics according
to a CL approach;

• we test the proposed framework in a NS use case,
in which the learning agent and system users compete
for the same network resources;

• we compare the benefits and drawbacks of our approach
against a static resource-sharing scheme between data
and learning planes and an ideal strategy that considers
out-of-band resources for the agent training (or, equiva-
lently, assumes the learning agent does not consume any
user-plane resources); our simulation results show that
the proposed heuristic performs closely to the ideal (out-
of-band) approach, minimizing the impact of learning
plane traffic during the training.

A partial and preliminary version of this work was pre-
sented at the 2023 IEEE International Conference on Com-
munications [13]. The conference version introduced the
concept of cost of learning, but proposed a basic version
of the system model and addressed the problem only in a
stationary environment. In this manuscript, we extend that
work by introducing the CL approach, optimizing the pro-
posed heuristic, providing a much richer set of results, and
deepening the discussion and analysis of our observations.

The rest of this paper is organized as follows: first,
in Sec. II, we report the most significant related work; we
then present the model for optimizing data and learning plane
in Sec. III and define our proposed cost of learning-aware
solution in Sec. IV. We define the NS use case in Sec. V,
while Sec. VI presents the simulation results in that scenario.
Finally, Sec. VII concludes the paper and discusses some
possible avenues for future work.

II. RELATED WORK
While the latest advances in AI have made it possible to
reach stunning performance levels in multiple fields, there
is still a large gap between human cognition and AI models
in terms of adaptation. Most of the current learning models
need to be retrained from scratch every time a new task
has to be accomplished, with a high cost in terms of com-
putational power and time. For this purpose, the scientific
community has recently leveraged the CL paradigm, which
focuses on learning a series of subsequent data, associated
with different tasks, without catastrophically forgetting past
knowledge [14]. Therefore, in CL scenarios the goal is to
adapt to a time-varying environment, working on one task at
a time and assuming that future information is inaccessible.
This model appeals to the resource allocation problem con-
sidered in this manuscript, since in realistic networks the type,
number, and requirements of the users keep changing over
time, making the system non-stationary (though stationarity
can be assumed during the coherence intervals, i.e., the time

periods during which the main system parameters do not
change).

A baseline CL solution may involve a pre-trained model
that is iteratively adapted to new tasks (or to changes in
the environment), e.g., taking advantage of curriculum learn-
ing, as done in [15]. Replay-based methods form a more
recent class of CL algorithms, which store past experience
in memory or exploit a generative model to reproduce it,
using this information as model input while training on new
tasks [16], [17]. Regularization-based methods, which intro-
duce a penalty term in the model’s loss function with the
goal of avoiding performance degradation in past tasks [18],
[19], form another class of solutions. An extension of the
aforementioned class is proposed in [20], where the authors
estimate the importance of each learned parameter and pre-
vent the modifications of such parameters that most affect
performance in past tasks. Finally, architecture-based meth-
ods define an additional branch of the model for each task,
freezing the previously learned parameters when training the
model on new scenarios [21], [22]. An example is provided
in [23], where the authors developed a two-block model: the
first is retrained every time a new task arises, while the latter
distills the knowledge acquired for future reuse.

From a different perspective, CL algorithms aim at defin-
ing a strategy to detect the best settings for training a learning
model in new scenarios. This concept falls within the MeL
paradigm, which focuses on convergence speed and stabil-
ity [24]. MeL methods differ in the output of the learning
optimization, which may include the weight initialization
strategy [25], the optimizer algorithm [26], the loss func-
tion [27], the dimensions of the learning architecture [28],
and other hyper-parameters.

The methodology used for the MeL optimization task
may be based on gradient descent [29], evolutionary algo-
rithms [30], or learning-based approaches. For instance, the
authors of [31] develop a CLmodel in which a DRL agent has
to define the optimal settings of the task-specific block, bal-
ancing between validation accuracy and model complexity.
Besides, MeL methods differ in terms of optimization goals,
which may either be fully based on the model performance
on a validation set or consider more specific aspects, such
as the adaptability of the solution to multiple tasks [32], the
greater importance of fast adaptation than asymptotic perfor-
mance [33], and the difference between online and offline
learning scenarios [34].

In particular, the use of MeL methods for optimizing DRL
models is a relatively new field. In this scenario, the combi-
nation of CL and MeL avoids the need for a centralized agent
that can handle each possible state-action pair and enables
the definition of multiple and more straightforward policies.
The authors of [35] show the benefits of MeL in a real-
world scenario, analyzing a DRL robotic system that exploits
a recurrent module to preserve past knowledge and speed
up the training process. Interestingly, when applying MeL
combined with DRL, a fundamental parameter is the choice
of the exploration policy by which the agent interacts with the
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environment, which is an absent aspect in classification tasks.
For instance, the authors of [36] develop a MeL model where
prior information is used to define agnostic exploration poli-
cies enabling a better agent adaptation to multiple learning
problems.

In the context of CL andMeL for 5G and 6G network man-
agement, drift detection is a critical task: if the environment
changes abruptly, the MeL paradigm requires the learner to
first become aware of the change, and delayed detection
may lead to a violation of the service requirements [37].
Drifts can be classified as abrupt or gradual depending on the
period during which the system performance degrades. The
literature presents several drift detection algorithms, usually
considering the prediction error of the learning model for
estimating environment changes. It is possible to consider
both heuristic [38] or learning-based strategies [39], with
different advantages and drawbacks in terms of, e.g., false
alarm probability and assumptions on the drift characteristics.

Despite the numerous works investigating CL and MeL
in supervised and reinforcement learning scenarios, to the
best of our knowledge none of them considers the trade-off
between efficiency and effectiveness proposed in this
manuscript. In the following sections, we will take advantage
of solutions inspired by the literature, analyzing their impact
in terms of both training efficiency and user performance.
We will consider a baseline CL system where the models
trained for previous tasks are stored in a central memory,
similarly to what is done in [15]. Besides, we will consider a
simple drift detection algorithm to monitor the environment
statistics and trigger the retraining. We chose relatively sim-
ple techniques for both drift detection and CL in order to
focus on themain aspect of our analysis, which is the trade-off
between efficiency and effectiveness in resource allocation
problems, as represented by the cost of learning.

III. SYSTEM MODEL
Let us consider a generic resource allocation problem, which
is modeled as an infinite horizon Markov Decision Process
(MDP) defined by the tuple (S,A,P,R, γ ): S represents
the state space, A is the action space (which is potentially
different for each state), P : S × A × S → [0, 1] is the
transition probability matrix, which depends on the current
state, the action chosen by the agent, and the landing state,
R : S × A × S → R is the reward function, and γ ∈ [0, 1)
is the discount factor. Time is divided into slots, and the slot
index is denoted by t ∈ Z+. The ultimate objective of a DRL
agent is to find the optimal policy π∗

: S → A, which
maximizes the expected long-term reward:

π∗
= argmax

π :S→A
E

[
∞∑
t=0

γ tR(st , π(st ), st+1)

]
. (1)

In our model, at each time slot t , it is possible to allo-
cate N resource units. A resource unit may represent a
time-frequency resource in an Orthogonal Frequency Divi-
sion Multiple Access (OFDMA) communication channel,

a specific number of CPU cycles, or a certain amount of
power in the device’s battery. Particularly, the nature of these
resources is immaterial to our model, although it might affect
the definition of the MDP. Each resource unit may be used
to fulfill a generic user request, which may refer to the trans-
mission of a packet or the execution of some computational
tasks, depending on the nature of the scenario.

For simplicity’s sake, our model assumes that resource
units are interchangeable, and each request requires exactly a
single resource unit. Future extensions of this work may con-
sider more complex resource allocation schemes, in which
requests may require multiple resource units depending on
their class and originating user. However, we observe that
this can be re-conduced to the basic model by splitting these
complex requests intomultiple basic requests, returning to the
one-to-one mapping.

The system resources are assumed to be partitioned among
M different slices, where a slicemay include a single user, or a
group of users with the same features. The action space then
contains all possible resource allocation vectors that split the
N resources among theM slices:

A =

{
a ∈ {0, . . . ,N }

M
:

M∑
m=1

am = N

}
. (2)

Furthermore, we assume that each slice is associated with a
First-In First-Out (FIFO) queue of requests: each queue has
a limited size Q, after which the system starts dropping older
requests for that slice to make room for newer ones.

In this work, we assess the system performance in terms
of QoS degradation in the different slices. Specifically, the
QoS is tied to the latency and reliability with which the user
requests are accomplished, according to the slice to which
users belong. Assuming that the i-th request from slice m
is generated at time tm,i, we define the age 1m,i(t) of such
request as:

1m,i(t) = t − tm,i. (3)

Hence, the latency of the i-th request from slice m is given
by the age 1m,i(t∗) at the time t∗ the request gets assigned a
resource.

Given a specific state configuration s ∈ S, we denote by
1qm(i) the latency of the request in position i of the m-th
queue. Hence, the system performance is determined by the
reward

R(s, a, s′) =

M∑
m=1

am∑
i=1

fm
(
1qm(i)

)
, (4)

where fm : N → [0, 1] is a function mapping the latency of
each request to slice m’s resulting QoS. With a slight abuse
of notation, we set fm(∅) = 0, ∀m, where ∅ indicates that no
request is in that position in the queue.

In the case of slices with hard QoS requirements, the
function fm(·) returns 1 if the target request is served within
the maximum latency permitted by the slice, and 0 other-
wise: this may be the case of slices for critical applications,
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such as remote surgery or emergency communication ser-
vices. Conversely, slices with soft QoS requirement, may
be associated with smoother QoS functions, whose output
monotonically decreases as the target request spends more
time in the queue: this may refer to slices to serve multimedia
or high-throughput applications, such as bulk data transfer.

We can distinguish between rejected and dropped requests:
the first refer to new requests that find a full queue and are
immediately discarded, the second refer to queued requests
whose waiting time is higher than the deadline. In the latter
case, the requests are dropped before service since theywould
not contribute to the QoS of the slice and just waste resources.
We remark that only slices with hard timing requirements
can experience dropped requests, while request rejection can
occur in any slice.

In our model, user requests being dropped or rejected from
the queue have an infinite latency by definition. Besides,
it should be noted that dropped or rejected requests do not
generate any rewards, as they are never included in the sum.
The state of the system is then represented by the age of each
request contained in each queue so that in the most general
case, S = ({∅} ∪ N)M×Q.
The objective of the learning agent is to learn how to allo-

cate resources among slices to maximize the QoS associated
with the user requests. It should also be aware of the slices
that have a higher risk of violating hard timing requirements
and schedule resources to avoid missing deadlines. However,
learning is not a cost-free process, and the DRL agent may
take up some of the same network resources required by the
users in order to improve its policy. As we highlighted in
our previous work [11], considering the cost of learning can
lead to significantly different choices, limiting the amount
and type of experience samples that are selected for training:
this is also true regardless of the type of resource the learning
requires.

However, that work only considered static policies, which
set up a separate virtual channel (either divided in time or
in frequency) for the learning data, strictly separating the
learning and data planes. Equivalently, an agent learning how
to schedule tasks in an edge server could reserve a certain
percentage of computation time for self-improvement, but the
amount was decided in advance. This is clearly suboptimal:
intuitively, the relative returns from policy self-improvement
decrease over time, as the agent gradually converges to the
optimal policy. After convergence, and as long as the environ-
ment statistics are stable, the value of further improvements to
the policy is zero by definition. A dynamic policy for adapting
the allocation between requests and learning should then take
this into account.

Furthermore, the current state of the system also needs to
be considered: if delaying the queued requests further does
not have a large impact on the QoS, the system can take away
resources from the slices to improve the resource allocation
policy, but if the impact is big, e.g., if some requests from
a slice with hard timing requirements are already close to
the deadline, they need to be prioritized, choosing immediate

gains over potential future improvements. This is particu-
larly important for non-stationary environments, in which the
coherence time of the MDP statistics is finite. In such a case,
the learning agent needs to adapt to the changing statistics
of the environment, and cannot rely on offline training, but
must keep learning from experience and adapt to the changes
proactively.

IV. LEARNING SOLUTION
In our model, the allocation scheme should address the
resource demands of both users and the DRL agent orches-
trating the system itself. Theoretically, the decision to allocate
resources for the training could be included in the agent’s
action space. In such a case, the DRL agent needs also to
learn when to allocate resources to policy improvement, i.e.,
identifying the states in which learning is more profitable.
However, as the policy evolves over time, learning becomes
less of a priority, and the reward associated with the agent’s
resource demands is reduced. This makes the environment
non-stationary and may prevent the agent’s policy from con-
verging to the optimal solution. To avoid this issue, it is
necessary to separate the problems of orchestrating the data
and learning planes.

A. LEARNING AND DRL SLOT PARTITION
We model the environment so that each time slot could be
associated with one of two categories, namely, DRL and
learning. In DRL slots, all the resources are allocated to
the data plane and are split between the slices according
to the action chosen by the DRL agent, while in learning
slots, the resources are divided between the learning and data
planes following a simple heuristic. The learning slots are not
considered as experience samples for the DRL training, as the
actions in these slots might not belong to the action space A
considered by the agent if part of the resources are allocated
to the learning plane.

Practically, during the learning slots the resource allocation
actions z are in the wider space Z:

Z =

{
z ∈ {0, . . . ,N }

M
:

M∑
m=1

zm ≤ N

}
. (5)

We remark thatZ is not the action space, but a super-set of it,
i.e., A ⊆ Z . The definition of A given in (2) only considers
configurations assigning all of the available resource units to
the M slices on the data plane, as denoted by the condition∑M

m=1 am = N . Instead, Z includes actions that allocate part
of the resources to improving the agent policy, i.e., to the
learning plane: in particular, N −

∑M
m=1 zm resource units are

used for the transmission of learning data. Naturally, valid
actions inA are also part of Z , and represent the special case
in which the learning plane is assigned no resources.

Fig. 1 shows a basic schematic of the learning control loop
in a backhaul communication scenario: two classes of users,
corresponding to Internet of Things (IoT) (green) and human
communications (blue), transmit over a shared link, and the
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FIGURE 1. Schematic of the learning control loop in a backhaul communication scenario. The
connection between the base station and the Internet is used to carry both the users’ traffic (blue and
green streams) and the data needed to train the learner in the cloud (purple stream), according to the
allocation scheme depicted above the link.

FIGURE 2. Schematic of the computational resource allocation
problem in a 5G RAN. The CPU cores can be assigned to
different BBUs in order to process packets to and from the
corresponding RRHs, or to the learning plane, i.e., to improve
the CPU scheduler itself.

resources in each time slot (which correspond to bandwidth
and time resources in the uplink to the Cloud) are allocated
following a dynamic division. In the case of learning slots,
such as slots 3 and 6 of the figure, a significant portion of the
resources is allocated to the learning plane (purple line).

We remind the reader that the scenario reported in Fig. 1 is
not the only application of our model. For instance, our model
may be used to orchestrate the computational resources
shared between multiple virtualized Baseband Units (BBUs),
each of which is connected to a Remote Radio Head (RRH)
through a high-speed link in a 5G Radio Access Network
(RAN), as depicted in Fig. 2. In such a case, the RRHs are
responsible for transmitting and receiving radio signals, and
the virtualized BBUs handle the processing of base-band
signals. Processing packets to or from an RRH then becomes

a computational task that requires resources, i.e., CPU cycles,
to be assigned to the BBU connected to that RRH. In this case,
the competition for resources between the data and learning
planes is not over spectrum but rather over computing cycles.

For the sake of simplicity, we assume that each slot will be
used as a learning slot with probability ρ(t), which decreases
linearly over time as the learned policy becomes more stable.
The actual function determining ρ(t), i.e., the learning curve
shall be defined based on the coherence time of the scenario,
i.e., the number of slots τ over which the statistics of the
environment will be approximately stationary. As explained
later (see (9)) here we choose a linear function, but other
choices are possible.

We observe that the value of ρ(t) does not affect the
environment explored by the DRL agent, since the training
considers only the experience samples from the DRL slots.
At the same time, increasing ρ(t) can speed up the process by
which the experience samples are exploited for the training.
Conversely, lower values for ρ(t) make it more likely that the
resource allocation is governed by the agent decisions. In the
following, we also propose an adaptive strategy to update ρ(t)
based on the training performance of the DRL agent.

B. GREEDY ALLOCATION STRATEGY
In general, we could implement a learning-based strategy for
orchestrating the learning slots, e.g., by defining an addi-
tional DRL agent that splits the network resources among
the user and the learning data plane. However, this would
make the system require additional resources for training the
new strategy: the initial problem of how to tune the network
resources for the transmission of learning data presents itself
again, leading to a recursive problem. To avoid this issue,
we adopt a pre-determined solution that does not need to be
tuned according to the learning environment.

Our solution considers two contrasting objectives: mini-
mizing the loss of QoS for users and maximizing the number
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of experience samples that can be exploited for the training
process. To capture the first aspect, we define a function R̂ :

S×Z → R that represents an approximation of the instanta-
neous reward for each resource allocation, considering only
the information available in the current state. Assuming that
the QoS functions {fm(·)} are known, the value of R̂(s, z) is:

R̂(s, z) =

M∑
m=1

 zm∑
i=1

fm
(
1qm(i)

)
−

Q∑
j=zm+1

fm
(
1qm(i) + 1

) .

(6)

Note that maximizing (6) may lead to suboptimal resource
allocations, as R̂(s, z) does not account for the long-term
reward.

To model the second aspect, we consider that each
DRL slot generates an experience sample, which requires
ℓ requests (and as many resources) to be transferred to the
learner. Due to memory limitations, we assume that the
number of samples that can be buffered cannot exceed E .
We hence define a second function S(z, e) that captures
the effectiveness of the allocation z in transferring the
e ∈ {0, . . . ,E} samples observed by the agent. Particularly,
we define S in terms of the number of experience samples that
wemanage to transmit in the learning slot but, once again, this
is a arbitrary choice and other options might be more suitable
for other scenarios. The greedy strategy is then the solution
to the following optimization problem:

z∗(s, z, e) = argmax
z

(
M−1R̂(s, z) + E−1S(z, e)

)
. (7)

If fm is concave for all slices with a soft timing requirement,
we can exploit the FIFO nature of the queue to provide a
simple iterative solution. Practically, we start from the empty
assignment and gradually allocate resources to either one of
the slices or the learning process, depending on the value of
the utility function.

Fig. 3 shows a schematic of the full resource allocation
strategy during a learning slot, in a simple case with M = 2.
The state st of the system, observed by the learning agent,
is given by the number of queued requests associated with
each slice. At each time step, the node randomly chooses
whether to exploit the policy π of the learning agent or (with
probability ρ(t)) the greedy allocation policy, denoted by πg.
The latter policy reserves some resources for the learning
plane and, therefore, receives as input the number of expe-
rience samples that have been observed by the agent. The
output of both the agent and greedy strategy is the resource
allocation vector z = [zL , z1, . . . , zM ], where, in case π

is used, we always have zL = 0. Finally, we observed
that, whenever the agent policy π is followed, a new experi-
ence sample (st−1, at−1, rt , st ) is generated. Hence, selecting
π increases the number of learning requests, while πg makes
it possible to satisfy such requests, improving the agent pol-
icy π . Only by accurately tuning the probability ρ(t) it is
possible to maximize the training efficiency.

FIGURE 3. System-level diagram of the proposed scheme.

C. CONTINUAL LEARNING
Differently from our previous work [11], our solution can
also adapt to drift in the environment statistics. This allows
us to handle scenarios where the data traffic in each slice
changes in time because, e.g., the number of users associated
with each slice changes as well. Practically, we assume the
environment can be characterized by a set of parameters ω,
which determine its stochastic dynamic. From time to time,
this parameter can instantaneously change, making the envi-
ronment non-stationary (in the DRL jargon, changing the
task) and requiring the strategy to be updated in order to
pursue the new task.

To cope with such a non-stationary context we proposed
a CL strategy similar to the work in [15], but including con-
siderations on the cost of learning. When a context-change
is detected, say from ω to ω′, we consider its significance
by means of a distance function η(ω, ω′): if it is larger than
a threshold ηthr, we consider the environment to be novel
enough to warrant retraining. If the change is smaller than
the threshold, we implicitly assume that the policy is close
enough to the optimum that maintaining it is more convenient
than running a new training phase.

We define the environment index k ∈ N, which starts
from 0 and is incremented at every significant change in
the environment. Our solution maintains a record of the past
environments and the respective learned policies, so that as
the environment shifts into the new context ωk+1 = ω′,
we can find the closest past environment:

j∗ = argmin
j∈{0,...,k}

η(ωj, ω
′). (8)

If the previously experienced environment is close enough
to the new one, i.e., η(ωj∗ , ω

′) < ηthr, we can apply the
stored policy directly, relying on a short training phase with
increased exploration rate and training probability ρ(t) to
adapt to the small change. Instead, if no environment in
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FIGURE 4. Flowchart of the context adaptation algorithm.

the memory is close enough, training needs to begin from
scratch, leading to a slower and more expensive training
phase. A flowchart of the above process is depicted in Fig. 4.

After a drift detection, we empirically set the training
probability ρ(t) to an initial value ρ0. Then, we smoothly
decrease the value of ρ(t) up to minimum value ρf , making
the system reduce the number of network resources allo-
cated for the agent training, as the agent policy is improved.
We consider two possible configurations for dynamically
tuning ρ(t), named constant and adaptive decay, respectively.
In the constant decay scenario, ρ(t) decreases exponentially,
and ρ(t) is updated every H0 slots as follows:

ρ(t) = max
(
ρf , ρ(t − 1) · σ0

)
. (9)

In the adaptive scenario, the probability ρ(t) is adjusted
based on the Temporal Difference Error (TDE), i.e., the dif-
ference between the q-values computed by the agent policy
and the q-values updated according to the adopted Reinforce-
ment Learning (RL) algorithm. Assuming that the agent is
trained according to the classical Q-learning framework, the
TDE is defined as:

λ(s, a, r, s′) =

∣∣∣∣Q(s, a) −

(
r + γ max

a′∈A
Q(s′, a′)

)∣∣∣∣ , (10)

where Q(s, a) is the estimated long-term reward of the learn-
ing agent when taking action a in state s. To stabilize the
adjustment of ρ(t) and avoid frequent fluctuations, we com-
pute the moving average λ̄ of the TDE considering a period of
D slots. Hence, ρ(t) is exponentially decreased if the moving
average of the TDE is decreasing and exponentially increased

if the moving average of the TDE is increasing or remains
constant:

ρ(t) =

max
(
ρf , ρ(t − 1) · σ1

)
, if λ̄(t) < λ̄(t − D);

min
(

ρ0, ρ(t − 1) ·
1
σ1

)
, if λ̄(t) ≥ λ̄(t − D).

(11)

Doing so, the adaptive decay method aims at regulating the
value of ρ(t) everyH1 slots according to the estimation of the
accuracy of the agent policy.

D. COMPUTATIONAL AND MEMORY COMPLEXITY
The computational complexity of the feedforward
Deep Q-Network (DQN) [40] is O(W ), where W is the
total number of weights in the neural network approximating
the long-term reward function. This value is assumed to be
relatively small, as the complexity of resource allocation
tasks does not usually require millions of parameters, like
some tasks based on images or other high-dimensional data.
On the other hand, running back-propagation onm experience
samples requires O(mW ) operations, which may be beyond
the computational capabilities of Edge devices.

The proposed heuristic to decide whether to use resources
to train the DQN takes O(MQ) operations, and MQ ≪ W
for most practical systems. Greedy allocation steps are then
extremely computationally lightweight, requiring fewer oper-
ations than the normal operation of the DQN. The proposed
heuristic does not incur in the same pitfall as learning-based
approaches, as it follows a relatively simple rule and does not
add to the computational burden of the Edge node.

On the other hand, the memory requirements for the CL
solutions might be more significant: if we maintain up to
K environmental models as a starting point, we will incur a
memory cost of 4KW bytes to save all DQN parameters as
single-precision floating point numbers. This memory cost
might be significant, but it can be tuned: as we will show in
Sec. VI, keeping track of more past environments can result
in better performance, but also gives diminishing returns.
Therefore, it is possible to tune the value of K and ηthr to
limit the overall memory requirements.

V. NETWORK SLICING USE CASE
To substantiate the approach on a practical but easy-to-
analyze use case, we consider the resource allocation problem
in a simple network slicing scenario. We assume a common
communication link is used to transmit both the data packets
generated by the users, which belong to two different network
slices, and the pieces of information used to feed the learner.
Time is divided in slots of constant duration τ , and in each slot
the transmission channel can carryN orthogonal and identical
resource units. The scenario fits the general model presented
in the previous section, as the communication resources are
shared between the data and learning planes. The full param-
eters for the scenario, which we will describe in this section,
are given in Table 1.
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TABLE 1. Use case and learning parameters.

A. COMMUNICATION SYSTEM MODEL
We consider two slices, corresponding to the two types of data
sources:

• Slice 1 is for bulk file transfer, for which we do not
set any strict latency constraints. However, we want the
system to have the highest possible reliability to ease
the burden on the higher layers. As such, f1(T ) = 1 for
all finite values of T , but the QoS is 0 if T is infinite
(i.e., if the packet is dropped);

• Slice 2 is intended for interactive traffic, such as video
conferencing or Virtual Reality (VR) traffic, with a strict
latency deadline: packets need to be transmitted with
a maximum latency T (2)

soft. For the sake of simplicity,
we assume that, after T (2)

soft, the utility decreases linearly
with time, dropping to 0 if the latency is higher than
T (2)
max ≥ T (2)

soft, i.e., f2(x) = 1 if 0 ≤ x ≤ T (2)
soft,

and f2(x) = max
(
0, 1 − (x − T (2)

soft)/(T
(2)
max − T (2)

soft)
)

if

x > T (2)
soft.

We remark that, although these QoS functions are reason-
able, they may not be the most appropriate to represent the
considered slices. Since the purpose of this study is to gain
insights on the cost of learning in dynamic systems, more
than proposing a quantitative performance analysis of the
use-case, we prefer these neatly-shaped functions that allow

for a qualitative performance analysis while easing the inter-
pretability of the results.

The number of active users in each slice is variable, making
traffic non-deterministic. We consider a maximum number
of active users Um ∈ N for each slice m ∈ {1, 2}. Each
user follows a on-off model, which can be modeled as a
Gilbert-Elliott binary Markov chain with transition proba-
bility matrix O(m). In state 0, the user does not transmit,
while in state 1, it transmits packets of size L with a constant
bitrate Rm.

The aggregate traffic generated by slice m is then rep-
resented by the number um(t) of active users at time t ,
multiplied by Rm. We can then define a Markov chain over
um ∈ {0, . . . ,Um}, with transition probabilities:

P(um(t + 1) = v|um(t) = u) =

min(u,v)∑
w=max(0,u+v−Um)

(O(m)
11 )w(O(m)

10 )u−w

×

(
u
w

)(
Um − u
v− w

)
(O(m)

01 )v−w(O(m)
00 )Um−u−v+w.

(12)

The expected traffic Gm from slice m can be computed as:

E [Gm] =
O(m)
01 UmRm

O(m)
01 + O(m)

10

. (13)

On the other hand, the total channel capacity is simply:

C = τ−1NL. (14)

With the values in Table 1, we obtain C = 7.68 MB/s.
Some representative environment parameters are reported
in Table 2. Note that, based on the definition, slice 1 can
only experience rejected packets, while slice 2 can have
both rejected and dropped packets (if their age exceeds the
deadline T (2)

max).

B. LEARNING PLANE
In this part we define the two components of the learning
plane, i.e., the DRL agent, which will assign resources during
the DRL slots, and the greedy split approach, which manages
resource allocation in the learning slots.

DRL AGENT SETTINGS
We use a DQN [40] for the agent, as the problem is simple
enough not to require more advanced architectures.

We consider a simplified state: for each slice m ∈ {1, 2},
the input to the network is given by the following values:

• The number qm ∈ {0, . . . ,Q} of packets in the queue;
• The minimum latency Tmin

m for packets transmitted in
the previous slot;

• The maximum latency Tmax
m for packets transmitted in

the previous slot;
• The average latency T avg

m for packets transmitted in the
previous slot;

• The number dm of discarded (dropped or rejected) pack-
ets in the previous slot;
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TABLE 2. Traffic model parameters.

• The current number am of resource units allocated to the
slice.

The values for each queue are contained in the tuple s(m) =

(qm,Tmin
m ,Tmax

m ,T avg
m , dm, am), to which we add another

parameter ξ (m), i.e., the difference in the utility for slice m
if packets are not transmitted in the next slot. For slice 1, i.e.,
the latency-insensitive one, this corresponds to the expected
number of rejected packets; for the second slice, it is appli-
cable if some packets are close to or over the soft deadline
T (2)
soft. If the head-of-line packets are close to T (2)

max, this can
even lead to packet drops. We can define it as follows:

ξ (2) =

qm∑
i=1

f2
(
1q2(i)

)
− f2

(
1q2(i) + 1

)
. (15)

As the first slice does not have latency requirements, there
are no equivalent parameters for it. All the input values are
normalized to fit in the range between 0 and 1.

The input to the DQN is then given by s(m), ξ (m) which
corresponds to a total of 13 values; the training parameters
are defined in Table 1.

We denote the resource allocation vector during slot t by
at = [a1, a2]. At each step, the DRL makes an action δt to
change the resource allocation as:

at+1 = at + δt . (16)

For the sake of simplicity and interpretability of the results,
we admit only actions δt ∈ {(1,−1), (0, 0), (−1, 1)} that
change the allocation to each slice of at most 1 resource unit
per step. The outputs of the DQN correspond to the estimated
long-term value of selecting each δt , so the network only has
3 output values. The network architecture is given in Table 3.1

Greedy split algorithm settings
We set the size of the experience sample queue E = 1500,
and implement an early rejection policy. When a sample is
generated, its rejection probability is equal to e

E , i.e., to the

1The complete implementation of the DQN agent and dynamic resource
allocation is available at https://github.com/slahmer97/costoflearning

TABLE 3. DQN architecture.

current pressure on the queue. Consequently, samples that
find a full queue are always rejected, but sometimes samples
that could fit in the queue are dropped in favor of new
experiences, avoiding too many correlated samples filling the
queue.

For allocating network resources within the user slices
and the learning data plane, the greedy strategy πg operates
as follows. As the first slice has no latency requirements,
we consider allocating resources to it greedily only when the
number of packets in the queue is higher than a threshold χ1:
in this way, we avoid packet rejections but also leave more
resources for learning plane and latency-sensitive packets.

We can then define the following estimated rewards:

R̂1(s, z) = min(0, z1 − min(q1 − χ1,N )); (17)

R̂2(s, z) = min(0, z2 − min(ξ2,N )); (18)

S(z, e) = −

(
min(e,N ) −

(
N −

2∑
m=1

zm

))
. (19)

The minimum operation ensures that resources will not be
allocated to a slice once the queue pressure is below the limit
ξ1 or all packets with a close deadline are served, respectively.
We can define the following problem:

z∗(s, z, e) = argmax
z∈Z

S(z, e) +

2∑
m=1

R̂m(s, z). (20)

As the problem can easily be converted to an integer linear
problem, we can easily solve it through iterative methods.
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C. CONTINUAL LEARNING
In our environment, the statistics of the traffic change peri-
odically every 500 seconds: the parameter vector ω includes
O(1), O(2), U1, or U2, and as a result, corresponding changes
are made to the transition matrix P. The policy for a given
set of environmental parameters ω is defined by the set of
corresponding trained weights vectors in the DRL neural
network, θω.

In the slicing task, the average traffic for each slice is
enough to characterize a new environment, and we can iden-
tify each context with the vector ω = (E [U1] , E [U2]).
Additionally, we define the threshold ηthr as the point at which
we trigger this event. In other words, we only initiate a change
event if the distance between two environments is greater
than ηthr. While the average may not accurately represent
the environment due to potential variance changes with a
constant average, in our specific scenario, the average proved
sufficient in maintaining a system performance near the ideal
one (as described in the following section).

We observe that the implementation of a robust method
for detecting changes in the environment is critical, as the
failure to identify a true change or the detection of a false
change can lead to a degradation in system performance.
At the same time, the design of new detection algorithms
for such a goal goes beyond the scope of this study, which
focuses on analyzing the trade-off between efficiency and
effectiveness in CL systems. Hence, we defer the study of
reliable context-recognition problems as well as the tuning of
hyper-parameters of our framework to future research.

Following the strategy we outlined in Sec. IV-IV-C, the
weights of the neural network are chosen from the closest
environment observed in the past. We can also make an
additional consideration: if the offered traffic is decreasing
for both slices, the previous policy will still obtain good
results, as the new environment is substantially easier than
the previous one. We then define a strict minority relation
between vectors, so that x ≺ y if the two vectors x and y
are the same length and each element of x is smaller than the
corresponding element of y:

x ≺ y ⇔ |x| = |y| ∧ xi < yi, ∀i ∈ {1, . . . , |x|}. (21)

We also employ the Euclidean distance to define η(ω, ω′)
between two environments, so the centralized agent is
updated as follows:

θωk+1 =


θωk , if ωk+1 ≺ ωk ;

θωj∗ , if ∥ωk+1 − ωj∗∥2 < ηthr;

θ0, otherwise,

(22)

where ||x||2 is the ℓ2 norm of vector x and θ0 ∼ N (0, 0.1)
is a random initialization vector. After the new weight vec-
tor is selected, the algorithm temporarily increases both the
training slot probability ρ(t) and the exploration rate of
the DRL agent, so the policy can be adapted to the new
task.

Algorithm 1 Environment Parameter Update

Output: O(1), O(2), U1, U2
1: while E[Gm]

C /∈ [0.75, 1.1] do
2: for i ∈ [1, 2] do
3: O(i)[1], [1] = U(0.05, 0.95)
4: O(i)[1], [0] = 1.0 − O(i)[1], [1]
5: O(i)[0], [0] = U(0.05, 0.95)
6: O(i)[0], [1] = 1.0 − O(i)[0], [0]
7: end for
8: on0 =

O(0)[0],[1]
(O(0)[0],[1]+O(0)[1],[0])

9: on1 =
O(1)[0],[1]

(O(1)[0],[1]+O(1)[1],[0])

10: U1 = random
(
2,
⌊

14
on0

⌋
, 1
)

11: U2 =

⌊
max(⌊15−U1on0⌋,1)

on1

⌋
12: Compute the resulting E[Gm]
13: end while
14: return O(1), O(2), U1, U2

VI. SIMULATION SETTINGS AND RESULTS
In this section, we present numerical findings that demon-
strate the efficacy of the proposed learning framework in a
non-stationary environment. Particularly, we first present the
settings of the systems as well as the different configurations
of the learning framework that we tested. Then, we analyze
the results, focusing on the system performance within the
different approaches, given in terms of normalized reward and
other communication metrics.

A. SETTINGS
We consider the resource allocation scenario presented in
Sec. V, and run the resource allocation for 64000 seconds,
corresponding to 128 coherence periods lasting 500 s each.
Each allocation step corresponds to 1 ms, which makes the
environment stable for 5× 105 steps, then abruptly transiting
to a different behavior. The changes in the environment follow
Algorithm 1. In the algorithm, we denote the probability of a
user belonging to slicem being active as onm, and the uniform
distribution between a and b as U(a, b). We consider three
different CL approaches:

• From scratch: the CL approach is not applied, and when-
ever an environment drift is detected the learning agent’s
architecture is initialized from scratch, leading to a new
training phase. We note that this system is similar to the
one in the conference version of this work [13].

• Previous model: the learning agent is not retrained from
scratch but its starting parameters are the ones that were
obtained at the end of the previous coherence period.

• Nearest model: the agent neural network parameters are
the ones obtained after convergence in the most similar
environment among those analyzed so far, according to
the CL approach presented in Sec. V-V-C.

In the first two cases (i.e., the from scratch and previ-
ous model initialization), we consider the constant decay
algorithm for tuning the value of ρ(t) in time, considering
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FIGURE 5. Boxplot of the normalized reward with different
initialization strategies.

H0 = 10 seconds as updating period. Instead, when using
the nearest model for updating the agent policy, we consider
both the constant and the dynamic decay algorithm, with
the updating period set to H0 = 1 and H1 = 0.1 second,
respectively. Independently from the updating methodology
for varying ρ(t), we set the maximum and minimum value
of ρ(t) to ρ0 = 0.2 and ρf = 0.01, respectively. Finally,
for computing the moving average of the TDE, we consider
a period of D = 1 second.

For evaluating the learning strategy, we consider three
different benchmarks:

• Out-of-band : this scheme represents the ideal case in
which training data is transmitted over a side channel
with infinite capacity. This aligns with the common
assumption in the literature of free training, and repre-
sents an upper bound for performance;

• Frequency Division Multiple Access (FDMA): here we
assume 1 resource unit in each slot is reserved for the
learning plane, while the other 14 resource units can be
freely allocated to the users’ slices;

• Time Division Multiple Access (TDMA): we consider
a time division between the learning and data planes,
in which all available resources are allocated to the
learning plane once every Tℓ slots. We consider two
cases, with Tℓ = 10 and Tℓ = 100.

The full simulation parameters are listed in Tables 1 and 2.

B. RESULTS
At first, we explore the impact of three different initializa-
tion strategies on the normalized reward. Particularly, the
normalized reward is equal to 1 if all packets are delivered
with utility 1 (i.e., before T (2)

soft if they belong to slice 2)
and 0 if all packets are dropped or rejected. Looking at Fig. 5,
we can appreciate how the strategy of starting the learning
process from scratch, assuming that the new environment is
completely new, is significantly outperformed by the other
approaches. Exploiting transfer learning from the information
collected from past environments is then a critical factor,
leading to a higher enhancement in system performance
than our earlier work [13]. The CL approach presented in
Sec.IV-IV-C, which uses the nearest recorded environment,
enables a significant boost over the strategy of keeping the

previous environment. This is because the nearest environ-
ment selection makes it possible to start the DQN with
weights that are already close to the correct ones, speeding up
the training phase. Appreciably, using the adaptive algorithm
for tuning ρ(t), it is possible to further improve the perfor-
mance and reduce the number of outliers in the boxplot.

In Fig. 6, we report the total number of active flows
(i.e., of users transmitting data in the slot) of the two slices
during a simulation time of 2500 s, corresponding to 5 envi-
ronment drifts. The same simulation period was analyzed in
depth in Fig. 7, where we report the normalized size |Qi|,
with i ∈ {0, 1}, of the queues associated with the two slices,
the expectation E [R] of the normalized reward, the moving
average λ(t) of the TDE, and the training probability ρ(t).
In particular, the figure enables the comparison between the
results obtained with the adaptive and static methods for tun-
ing the training probability ρ(t) across the five environments.

Fig. 7a-b compare the size of the queues associated with
the two traffic classes. The sizes of both the queues are higher
and show more variability at the beginning of each coherence
period, since the agent’s policy still needs to be tuned, sta-
bilizing after approximately 200 seconds. On average, slice
s0 is characterized by a higher number of queued packets,
which is consistent with the QoS requirements of the related
data sources. Conversely, slice s1 is associated with a much
lower queuing size, reflecting the stronger delay constraint
for the second class of traffic. During each coherence period,
the expected reward E [R] follows an opposite trend than the
queuing size since it increases as the agent refines its actions
up to a maximum value of 1 (Fig. 7c). In most cases, the
adaptive algorithm seems to lead to a faster convergence time
than the static approach: in all environments but the second,
the dynamic adaptation of ρ ensures that the reward is maxi-
mized earlier. In the second environment, such a phenomenon
does not occur and, particularly, the two approaches achieve
two different resource allocation policies after convergence,
which is confirmed by the differences between the values
of |Q0| in the two cases. The different behaviors of the
two methods for tuning ρ(t) can be explained by consider-
ing Fig. 7d-e. The results outline how the static approach
decreases ρ(t) exponentially over time, ensuring that the per-
centage of resources used for the training gradually reaches
theminimumvalue as the agent improves its knowledge about
the system. Instead, the dynamic approach adapts ρ(t) to the
variations of λ(t), leading to an irregular trend where the per-
centage of training resources may both increase and decrease
in time. This allows ρ(t) to reach its final minimum value
faster in most environments, but leads to a slower and less
stable training. Indeed, in that environment the expected TDE
obtained after the agent policy convergences is significantly
higher with the adaptive approach, although the performance
at convergence is still almost perfect.

For comparing our leaning framework with the benchmark
approaches, we sampled four different coherence periods,
whose parameters are reported in Table 2. The reported index
corresponds to the time of their appearance in the simulation.
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FIGURE 6. Number of active flows over time in slice s0 (upper curve) and s1 (lower curve); the environment statistics
change every 500 s.

FIGURE 7. Comparison between the adaptive and static approaches in the first 2500 s of the simulation.

In all the selected environments, the load is greater than 0.945,
i.e., the offered traffic is very close to the channel capacity,

and in env. 12 and 110, the load is around 0.99. Fig. 8 shows
the average reward for these environments, along with the
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FIGURE 8. Performance of the schemes in four different sampled environments, measured by the average normalized reward,
the packet reject ion rate for slice 1, and the packet drop rate for slice 2.

packet drop rate for slice 1 (i.e., packets exceeding T (2)
max,

which are dropped from the queue as their utility is 0) and
the packet rejection rate for slice 2 (i.e., packets which find
a full buffer and are discarded directly). The indices of the
periods represent an incremental number of different envi-
ronments seen by the CL agent: the first, with index 0, is the
first to be seen, while there are 12 other periods between
0 and 12, and so on. Each period has the same duration, i.e.,
500 seconds.

As a first observation, we note that the ideal out-of-
band policy, which neglects the cost of learning, clearly
outperforms those that reserve some resources for the learn-
ing plane, which confirms that the cost of learning is not
negligible and needs to be accounted for when designing
the resource allocation strategies, as we have done in our
‘‘Dynamic’’ scheme. The bar plots in Fig. 8a-d show that
our scheme can outperform the static FDMA and TDMA
resource allocation strategies, almost reaching the same per-
formance as the ideal out-of-band system. The only cases
with an appreciable performance gap between our scheme
and the out-of-band system are env. 12 and env. 110: as we
remarked above, these are the most challenging ones, with
a total load close to or over 99% of the nominal link capac-
ity. In these limited cases, any learning policy that requires

resources for the training will unavoidably determine the vio-
lation of the QoS requirements for some users, which further
highlights the importance of the cost of learning in the sys-
tem design. Tuning ρ(t) adaptively results in slightly higher
performance in some cases, most appreciably in env. 110, but
the difference is limited in most cases, as the performance gap
with respect to the out-of-band ideal optimum ismostly due to
the initial training and exploration phase in each environment.

The relative simplicity of the system model we considered
makes it possible to analyze in depth the choices made by the
different schemes. From the bar plots in Fig. 8e to Fig. 8l
we can observe that the FDMA and TDMA schemes tend
to drop or reject a significant number of packets in all envi-
ronments, while the ideal and dynamic ones manage to limit
the number of unserved packets for both slices. Interestingly,
even the ideal scheme drops a significant number of packets
from slice 1 in env. 0, but performance is still high. We can
explain this by considering Fig. 9, which shows the empirical
Cumulative Distribution Function (CDF) of the latency for
packets in slice 2. Fig. 9a clearly shows that almost all packets
have utility 1, i.e., are delivered before T (2)

soft: in this case,
all schemes tend to privilege slice 2, filling the queue in
slice 1 more often. We should also consider that the learning
agents start from scratch in environment 0, i.e., they have
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FIGURE 9. Empirical CDF of the latency for slice 2 in the four selected environments.

no pre-trained weights to start from, and we should expect
a relatively large number of mistakes.

We also observe that the ideal and dynamic schemes have
matching latency profiles in env. 102, as Fig. 9c shows, while
the FDMAandTDMAschemes tend to transmitmore packets
with a latency close to T (2)

max. In environments 12 and 110,
shown in Fig. 9b and Fig. 9d, respectively, our scheme drops
more packets than the ideal one, and has a higher overall
latency, but still outperforms the static allocation schemes.
Adaptively setting ρ(t) can improve the performance of the
latency-sensitive slice significantly in both of these environ-
ments, leading to the performance improvements mentioned
in the previous paragraph. Interestingly, the two TDMA
schemes tend to have better latency performance than the
dynamic scheme in env. 12, but cannot improve the utility:
the fraction of packets with latency higher than T (2)

soft is the
same for all three schemes, and the two TDMA ones drop a
large number of packets, causing a significant performance
difference. In this case, serving most packets from slice 2 as
soon as they arrive is not advantageous, as it leads to worse
performance overall for TDMA.

VII. CONCLUSION AND FUTURE DIRECTION
In this work, we have designed a dynamic resource allocation
policy, which can mediate between the learning and data
planes, controlling the trade-off between the effectiveness and
efficiency of DRLmodels. Unlikemost works in the learning-
based networking literature, we specifically consider the cost
of learning, i.e., the resources required by the training process
of a DRL agent, and show that our dynamic policy can outper-
form static schemes and, after a short transition phase, match
the performance of an ideal systemwith an out-of-band learn-
ing plane. The adaptability of the scheme is demonstrated
by applying it in a CL setting with environment changes,
to which the dynamic scheme adapts extremely quickly.

Possible extensions of the work include the adaptation of
the scheme to more complex scenarios, with a larger number
of resources and slices and more stringent QoS requirements,
as those for Ultra-Reliable Low-Latency Communications
(URLLC).More advanced CLmodels could be implemented,
with the goal of further improving the performance of the

overall learning system. Furthermore, as mentioned before,
the detection of context changes that trigger retraining of the
network is another open question.

A critical challenge is to analyze the interplay between the
cost of learning and active learning, which requires selecting
the most valuable samples to be transmitted to accelerate the
training, particularly when resources in the learning plane
are scarce. Finally, of particular interest is the design of
meta-learning schemes that can learn when the resource allo-
cation scheme needs to be retrained, balancing the potential
performance improvement that could be brought about by
a retrained policy and the cost to learn it, relative to the
expected system coherence time.
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