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ABSTRACT In this paper, we propose a robust design for an intelligent reflecting surface (IRS)-assisted
multiple-input single output non-orthogonal multiple access (NOMA) system. By considering channel
uncertainties, the original robust design problem is formulated as a sum-rate maximization problem under
a set of constraints. In particular, the uncertainties associated with reflected channels through IRS elements
and direct channels are taken into account in the design and they are modelled as bounded errors. However,
the original robust problem is not jointly convex in terms of beamformers at the base station and phase
shifts of IRS elements. Therefore, we reformulate the original robust design as a reinforcement learning
problem and develop an algorithm based on the twin-delayed deep deterministic policy gradient agent (also
known as TD3). In particular, the proposed algorithm solves the original problem by jointly designing
the beamformers and the phase shifts, which is not possible with conventional optimization techniques.
Numerical results are provided to validate the effectiveness and evaluate the performance of the proposed
robust design. In particular, the results demonstrate the competitive and promising capabilities of the proposed
robust algorithm, which achieves significant gains in terms of robustness and system sum-rates over the
baseline deep deterministic policy gradient agent. In addition, the algorithm has the ability to deal with fixed
and dynamic channels, which gives deep reinforcement learning methods an edge over hand-crafted convex
optimization-based algorithms.

INDEX TERMS MISO-NOMA, power allocation, non-convex optimization, reinforcement learning, robust
design.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) has
been identified as one of the promising multiple access

(MA) techniques for future wireless communications. This
novel multiple access technique has the ability to support
more than one user in the same resource block [1]. In addition,

NOMA utilizes superposition coding (SC) at the transmit-
ter and successive interference cancellation (SIC) at the
receiver. This enables NOMA to offer higher spectral and
energy efficiencies, massive connectivity, and better fair-
ness while meeting the unprecedented requirements of future
wireless networks. It has been demonstrated that NOMA
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can achieve superior performance over orthogonal multiple
access (OMA) by efficiently utilizing the available radio
resources [2], [3].

NOMA systems with multiple antennas have been sub-
ject to extensive studies recently, thanks to their additional
degrees of freedom over single antenna systems [4], [5], [6],
[7], [8]. Several contributions have been made for various
system objectives including transmit power minimization [9],
max-min rate optimization and sum-rate maximization [10].
In [10], Hanif et al. proposed an iterative algorithm to solve
the sum-rate maximization problem for downlink multiple-
input single-output (MISO)-NOMA system.

Recently, intelligent reflecting surfaces (IRS) have been
identified as another promising technology to combat the
effects of channel fading, which improves the reliability of
wireless systems [11]. The IRS consists of multiple passive
elements with programmable phase-shift surfaces which can
redirect incoming signals towards the desired direction [12].
The beamforming design for IRS-assisted multiple-antenna
NOMA systems with various objectives has been developed
in [13], [14], and [15].

The non-convex nature of many resource allocation prob-
lems inmultiple antennaNOMA systemsmakes conventional
convex optimization approaches less attractive, especially for
real-time applications with stringent delay requirements.

Artificial intelligence-driven algorithms, on the other hand,
have shown great potential in solving various challenging
problems in wireless communications. A deep learning-based
beamforming framework was proposed in [16] which can be
applied to ultra-low latency communication systems. How-
ever, since deep learning models require training data and
labelled solutions to effectively learn the problem, they are
restricted to problems solved a priori, using hand-crafted
optimization algorithms. Deep reinforcement learning (DRL)
which combines RL with deep learning, on the other hand,
can be leveraged to solve hard optimization problems that
have not been solved beforehand, i.e., it does not require
labelled data for training and learning. Instead, it gener-
ates its own policy and training data by interacting with
the environment. Therefore, DRL methods are not simply
mimicking agents, but active agents which aim to maximize
their reward in a given environment through trial and error.
In [17], Meng et al. proposed a DRL-based solution for
sum-rate maximization in multi-cell networks. Xiao et al.
proposed a deep deterministic policy gradient (DDPG) based
solution to jointly optimize the beamforming and phase shifts
of IRS elements for sum-ratemaximization in an IRS-assisted
MISO-NOMA system [18]. In [19], Gao et al. proposed
a deep Q-network (DQN) based algorithm to jointly opti-
mize IRS phase shifts and cluster power allocation in a
NOMA system using the zero forcing approach. Multi-agent
DRL-based design was proposed in [20] for solving the
resource allocation problem in IRS-assisted semi-grant-free
NOMA transmissions. Furthermore, Benfaid et al. proposed
a resource allocation framework for unmanned aerial vehicles

(UAV)-NOMA systems based on DQN [21]. In [22], Ding
et al. applied a DDPG agent to maximize the long-term sum-
rate for energy-constrained cognitive radio NOMA networks
by optimizing the transmit power and the time-sharing coeffi-
cient of the system. More recently, authors in [23] proposed a
DDPG-based solution to jointly optimize the IRS phase shifts
and power allocation for a single antenna NOMA systemwith
the assumption of imperfect SIC at the receivers. However,
in all aforementioned studies, it is assumed a perfect channel
state information at the transmitter (CSIT), which is seldom
the case in practice. While the assumption of perfect CSIT is
useful to derive upper bounds on the performance of different
schemes, it often leads to overly optimistic results.

In this paper, we propose a robust design for the downlink
of an IRS-assisted MISO NOMA system. By taking into
account the channel uncertainties, the beamformers at the
base station (BS) and phase shifts at IRS elements are jointly
designed based on the twin delayedDDPG (TD3). This robust
design is developed based on the worst-case approach. Both
partial and full uncertainty models are considered. In the
partial model, the errors are only considered for the links
through IRS elements (cascaded channels) whereas the full
uncertainty model considers the errors in both the direct and
the cascaded channels. To the best of the authors’ knowledge,
this is the first work on the TD3-based robust design for a
downlink MISO-NOMA system. The contributions of this
work are summarized as follows:
• We consider the partial and full channel uncertainty
models, where the true channels lie within a bounded
error region around the estimated CSIT. This type
of channel uncertainty is due to quantization errors.
We then formulate the original robust design as an
optimization problem. The objective of the optimization
problem is to maximize the long-term system sum-rate
under a set of QoS, total power, IRS amplitude and phase
shift constraints.

• The original robust design problem is not convex jointly
in terms of the beamformers and the phase shifts.
Therefore, we reformulate the problem into an RL
environment such that a TD3 agent can learn the envi-
ronment and solve the original robust design problem.
This reformulation allows for utilizing DRL agents to
solve the challenging non-convex problem. Since RL
agents cannot perform constrained optimization, we use
normalization to ensure that actions taken by the agent
fall within the feasible region of the original problem.
In order to formulate the problem as an RL environ-
ment, the state, action and reward functions are defined
appropriately. Then, we propose a TD3-based algorithm
to solve the original non-convex joint robust optimiza-
tion problem for the IRS-assistedMISO-NOMA system.
By incorporating multiple error bounds within the orig-
inal worst-case bound during training, the agent learns
to design robust beamforming and IRS phase shifts for
any error bound within the bounded error region. This
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enhances the sum-rate performance in the case of chang-
ing feedback quality during deployment.

• Unlike the conventional optimization approaches, the
proposed novel design distributes the computational
complexity of solving the joint design problem between
the training and learning stages. Therefore, the result
is a trained agent that generates competitive solu-
tions with much lower complexity compared to the
conventional optimization techniques. Such an advan-
tage becomes particularly important in the case of
highly dynamic-channels environments where conven-
tional schemes need to execute the whole algorithm
for each new channel realization, leading to increased
system latency and computational overhead at the BS.

• We provide extensive numerical simulation results to
demonstrate the performance of the proposed TD3-
based robust design. These results confirm the superior
convergence properties of the proposed TD3-based
algorithm. In addition, we benchmark the proposed
agent against the baseline DDPG used in the literature,
and the random algorithm for fixed and dynamic channel
scenarios. The proposed agent outperforms the bench-
mark schemes in terms of achieved system sum-rates
and robustness for both fixed and dynamic channel
cases.

The rest of the paper is organized as follows. Section II
presents the systemmodel and the channel uncertaintymodel,
and formulates the original robust design into an optimization
problem. In Section III, brief overviews of RL and DRL
agents are provided focusing on the TD3 agent. In addition,
the original problem is reformulated as a DRL environment
and an algorithm is developed to solve the original robust
design problem. Section IV presents numerical results to
demonstrate the superior performance of the proposed TD3
algorithm. Section V concludes this paper.
Bold upper case and lower case letters are used to represent

matrices and vectors, respectively. Standard normal letters
denote scalar quantities. xH is the hermitian transpose of vec-
tor x. ∥.∥2 and | . | represent the Euclidean norm of a vector
and the absolute value of a complex number, respectively.
||.||F and ||.||2 denote the Frobenius norm and the L2 norm,
respectively. Card(x) refers to the cardinality of vector x. R
denotes the set of real numbers, whereas C represents the set
of complex numbers.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a downlink transmission of an IRS-assisted
MISO-NOMA system, in which a BS equipped with T trans-
mit antennas serves N single antenna user equipment (UEs).
The IRS consists of M reflecting elements. Furthermore, the
effect of inter-cell interference is assumed to be either absent
or accounted for in the noise at the receiver end. Such a system
model setup can be utilized for various wireless communi-
cation systems in future wireless networks [24], [25], [26].
As shown in Figure 1, the BS establishes communications

with UEs through a direct link and an indirect link through
the IRS. In this NOMA system, the transmitted signal from
the BS can be written as

x =
N∑
i=1

wisi, ∀i ∈ N , (1)

where si is the information-bearing symbol for UEi, wi ∈

CTx1 is the beamforming vector designed for UEi, and N =
{1, . . . ,N } is the set of all active UEs in the system. The
power of the symbol is assumed to be 1, i.e., E{sis∗i } = 1.
Assuming flat fading channel conditions, the received signal
at UEi can be represented as

yi = hHi x+ gHi ϒHx+ zi, ∀i ∈ N , (2)

where hi ∈ CTx1 is the direct link channel vector between the
BS and the UEi. gi ∈ CMx1 represents the channel between
the IRS and UEi and ϒ = diag(v1, . . . , vM ) ∈ CMxM is
a diagonal matrix that represents the phase shifts of IRS
elements. The phase shift of each IRS element is modelled
by vm = αmejθm , m ∈ M, where M is the set of all
IRS elements, αm ∈ [0, 1] and θm ∈ [0, 2π ], represent
the amplitude and the phase shift of the m-th IRS element,
respectively.Furthermore,m ∈MWe assume an ideal reflec-
tion with no energy losses by considering only the first-order
reflection, i.e., |vm|2 = 1,∀m ∈ M . The phase shift values
are determined at the BS and then communicated to the IRS
through a feedback link [27]. H ∈ CMxT is the channel
matrix between the BS and the IRS. Note that we assume that
the IRS is located on a fixed base (on top of a building for
example) and therefore, the distance between the BS and IRS
is a constant. We further assume that there exist line-of-sight
(LoS) paths from the BS to the IRS, as well as from the IRS to
the N UEs [28]. The zi is the noise experienced by UEi and is
modelled as an additive white Gaussian noise (AWGN) with
zeros mean and variance σ 2

i . The received signal in (2) can
be written in a more compact form as follows:

yi =
(
hHi + vHQi)x+ zi, ∀i ∈ N , (3)

yi = h̃ix+ zi, ∀i ∈ N , (4)

where v = vec(ϒ) ∈ CMx1 and Qi = diag(gHi )H ∈ CMxT is
the reflected (cascaded) channel matrix for UEi.
Since NOMA utilizes SIC at the receiver end in the down-

link [9], [10], determining an adequate decoding order is
crucial in order to unlock the full potential benefits of NOMA.
Channel strength is usually used as the criterion for decid-
ing a decoding order that is optimal in the single antenna
case, which is not the case for the multiple-antenna NOMA
systems [9], [29]. Nevertheless, we will adopt the channel
strength-based decoding order here, as optimal decoding
order design is beyond the scope of this paper. According
to channel strength-based decoding order, the UE with the
strongest channel (referred to as the strongest UE), will be
able to successively decode and subtract other UEs’ signals,
then proceed to decode its own signal. The UE with the
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FIGURE 1. IRS-assisted Downlink MISO-NOMA system.

weakest channel (referred to as the weakest UE), will directly
decode its signal while considering interference from other
UEs’ signals as noise. To further clarify this decoding order,
suppose that there are N users in the system and their esti-

mated channels at the BS are || ˆ̃h1||22 ≥ ||
ˆ̃h2||22 ≥ . . . ≥

||
ˆ̃hN ||22, where

ˆ̃hi is the estimated version of h̃i at the BS;
then, the decoding order set is ζ = {1, 2, . . . ,N } where
UE1 decodes UE2, . . . ,UEN signals before decoding its own,
UE2 decodes UE3, . . . ,UEN signals before decoding its own
signal while treating UE1’s signal as noise, and so on. The
weakest user, UEN , will not carry out any SIC operations and
will directly decode its own signal while treating interference
from other UEs as noise [9], [10], [29].

A. CHANNEL UNCERTAINTY MODEL
Channel uncertainties are inevitable in wireless communica-
tions due to channel estimation and quantization errors. These
two main sources of imperfect CSIT are, in fact, modelled
differently. Channel estimation errors are unbounded and
normally expressed using statistical models [30]. The error
vectors from this type of error form a normal distribution with
a known mean and covariance matrix. Quantization errors,
on the other hand, originate from imperfect CSI reporting
from the receiver side. A good example where quantization
errors are encountered is in frequency division duplex (FDD)
systems where the receiver uses a rate-limited feedback
channel to report its channel information after quantization.
However, given the constrained resolution quantizers used in
UEs, additional errors are introduced in the estimated sig-
nal during quantization. The quantized channel coefficients
transmitted by the UE through the uplink feedback link are
affected by some quantization errors. Assuming the UE is
using a uniform quantizer, the quantization errors can be

modelled using a bounded error model [31], [32], [33], [34],
[35]. In this paper, we aim to study the effects of imperfect
CSIT due to quantization errors on the beamforming design at
the BS, and consequently, on the achievable system sum-rate.
In particular, we develop a worst-case beamforming design
approach that guarantees the minimum rates requested by
the UEs for any value of errors within the bounded region.
Furthermore, since there are two links from the BS to the
UEs, namely, a direct link and a reflected link through the
IRS elements, we consider the following two error models:

1) Partial error model: In this error model, we assume
that the direct link between the BS and UEi,∀i, has
negligible quantization error effects, while the reflected
link is plagued by quantization errors. This scenario
is motivated by the fact that the reflected channel is
more challenging to obtain than the direct channel due
to the passive elements of the IRS [35], [36]. The true
reflected channel Qi, can be modelled as

Qi = Q̂i +1Qi, ∀i ∈ N , (5)

where Q̂i is the reflected CSI estimate at the BS and
1Qi is the unknown error.

2) Full error model: In this model, we consider a full
uncertainty scenario where both the direct and the
reflected links are plagued by quantization errors. The
true reflected channel expression is the same as in (5),
while the true direct channel can be expressed as
[5] and [35]

hi = ĥi +1hi, ∀i ∈ N , (6)

where ĥi is the estimate of direct CSI at the BS and1hi
is the unknown error.

The unknown errors are norm-bounded such that ||1Qi||F ≤

ei,r , ||1hi||2 ≤ ei,d , for the reflected and the direct channels,
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FIGURE 2. Norm bound of uncertainty region versus the number
of IRS elements for different system parameters.

respectively. The error bounds ei,r , ei,d of UEi are known at
the BS and expressed as [35]

ei,r =

√
β2i,r 0

−1
2MT

2
, ∀i ∈ N , (7)

ei,d =

√
β2i,d 0

−1
2T

2
, ∀i ∈ N , (8)

where β2i,r = λ2r ||qi||
2
2, qi = vec(Q̂i) ∈ CMTx1 and β2i,d =

λ2d ||ĥi||
2
2 are the variances of 1Qi and 1hi, respectively.

λr , λd ∈ (0, 1] are scalars that indicate the relative value
of the error boundaries. 0−12MT , 0

−1
2T are the inverse of the

cumulative distribution function (CDF) for the Chi-square
distribution with 2MT , 2T degrees of freedom for the
reflected and the direct links, respectively. As seen from (7),
the error boundary of the reflected channel ei,r is a function
of the number of transmit antennas T , the number of IRS
elements M , and the quality of the reflected CSI feedback
represented by λr . According to (8), the error boundary of the
direct channel ei,d is only related to the number of transmit
antennas T and λd . Figure 2 illustrates how different system
parameters of (7) have an impact on the error bounds of the
uncertainty region.

Note that we assume perfect channel state information at
the receiver (CSIR), and thus, ideal SIC at the receivers, there
is no contradiction between these assumptions and the error
model considered in this work. To elaborate, we consider
the imperfect CSIT to be due to feedback errors, not due to
channel estimation errors, as we show in the next subsection.
Therefore, the SINR expressions above do not account for
any SIC residuals.

B. SINR AND ACHIEVABLE RATE EXPRESSIONS
Taking into account the error model and the decoding order
discussed in the previous subsections, we can now proceed

to the signal-to-interference-plus-noise (SINR) expressions.
Without loss of generality, the SINR of UEi’s signal at UEj is
expressed as [9]

γ
j
i =

|h̃Hj wi|
2∑i−1

j=1 |h̃
H
j wj|

2 + σ 2
j

, ∀j ∈ Bi, (9)

where Bi is the set of interfering users with higher decoding
order ranks than UEi according to their channel strengths.
Therefore, the received SINR of UEi when decoding its own
signal can be expressed as [10]

γ ii =
|h̃Hi wi|

2∑i−1
j=1 |h̃

H
i wj|

2 + σ 2
i

, ∀j ∈ Bi. (10)

To guarantee the smoothness of the SIC operation at stronger
UEs, UEi’s SINR is [9]

γi = min
(
γ
j
i , . . . , γ

i
i
)
, ∀j ∈ Bi. (11)

As a result, the achievable rate at UEi can be written as

Ri = log2
(
1+ γi

)
, ∀i ∈ N . (12)

Note that despite the beamforming vectors and the phase
shifts of the IRS elements being designed at the BS based on

the estimated channel ˆ̃hi, the SINR expressions in (9) and (10)
are evaluated using the true channel h̃i, which contains the
unknown norm-bounded error elements [5], [35]. Hence, the
considered robust beamforming design is more challenging
to the BS in this case due to the unknown errors. The next
subsections discuss the robust design problem in detail.

C. IMPLICATIONS OF ERROR MODEL ON NOMA
SYSTEMS
In the previous section, we explained the bounded error
model we consider in this work. However, it is worthwhile
to explain the implications of using bounded and unbounded
error models on the SINR expressions. In the case of a
bounded error model, the CSIT imperfection is caused by
the quantization errors in the uplink CSI report transmitted
by the UE, not channel estimation errors. The quantization
error region can therefore be approximated by a ball [31],
[37]. Channel estimation error, on the other hand, is mod-
elled statistically where the error vector is drawn from a
complex Gaussian distribution with a known mean vector
and covariance matrix [30], [35]. Therefore, considering a
channel estimation error model leads to taking into consid-
eration imperfect SIC as well, since there is going to be an
SIC residual when the stronger UE is trying to decode the
weaker UE’s signal. Hence, the assumption of a bounded
error model because of channel uncertainty is inconsistent
for NOMA systems, as channel estimation and SIC errors are
described using an unbounded error model [38]. In this work,
however, we focus on imperfect CSIT due to quantization
errors. Therefore, the assumptions of CSIR and ideal SIC do
not conflict with the channel uncertainty model we use.
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D. PROBLEM FORMULATION
In this paper, we consider a robust design to maximize the
long-term sum-rate of an IRS-assisted MISO-NOMA system
under minimum QoS requirements. This robust design is
developed based on the worst-case performance approach.
In other words, the robust design should meet the required
QoS regardless of the experienced channel uncertainties.
We define the beamforming matrix W = [w1, . . . ,wN ],
where W ∈ CTxN , which containts the beamforming vectors
of all UEs. The original long-term robust design can be
formulated as the following optimization problem:

max
ϒ,W

E
{ ∞∑
t=1

N∑
i=1

δt−1Rti
∣∣πt , st} (13a)

s.t.

∣∣∣(ĥHj +1hHj + vH(Q̂j +1Qj)
)
wi

∣∣2∑i−1
j=1

∣∣∣(ĥHj +1hHj + vH(Q̂j +1Qj)
)
wj

∣∣2 + σ 2
j

≥ 2R
min
i − 1, ∀||1Ui||l ≤ ei,k , ∀i ∈ N , (13b)

N∑
i=1

||wi||
2
2≤ Pmax , (13c)

|vm|2= 1, ∀m ∈M, (13d)

0 ≤ θm≤ 2π, ∀m ∈M. (13e)

where E
{ ∑

∞

t=1
∑N

i=1 δ
t−1Rti

∣∣πt , st} denotes the expected
value of long-term system sum-rate, given the policy and the
state of the agent, and δ is the discount factor. These entities
are explained in the next section. The constraint in (13b)
ensures the successful implementation of SIC and that the
required minimum QoS at UEi is achieved regardless of the
channel uncertainties, where Ui ∈ {Qi,hi}, l ∈ {F, 2} and
k ∈ {r, d} [39]. The constraint in (13c) takes into account
the available maximum transmit power at the BS, while
constraints (13d) and (13e) are related to the IRS elements
to guarantee ideal reflection and appropriate phase shifts,
respectively.

The above optimization problem is non-convex in terms
of the beamforming vectors W and phase shifts ϒ . In addi-
tion, it is an NP-hard problem in general due to the coupled
optimization variables in (13a) and (13b). Note that the
problem is still non-convex even in the absence of (13d)
and (13e) as highlighted by [10]. Therefore, solving this
problem using a convex optimization approach will require
transforming the problem into convex form using differ-
ent approximation methods and obtaining solutions based
on iterative algorithms. Such iterative algorithms are highly
complex in general. In particular, the algorithm should be
executed for each new set of channels. In other words,
the optimization problem needs to be solved for each new
set of channels. To further demonstrate the complexity of
the optimization problem in (13a), the work in [40] which
solved the weighted sum-rate maximization (WSR) problem
by proposing a centralized solution based on semidefinite
programming (SDP) for optimizing the IRS phase shifts, and

using the maximum-ratio transmission (MRT) for beamform-
ing design. However, the existing work in the literature does
not consider the power allocation problem in MRT, which
is non-trivial and challenging to optimize optimally [16],
[41]. The same work proposed an iterative algorithm in an
alternating manner to optimize the IRS phase shifts and
the beamforming vectors. The work in [42] proposed a
distributed solution based on fractional programming and
the alternating direction method of multipliers (ADMM)
algorithm to iteratively solve theWSR optimization problem.
However, both the centralized methods which utilize the
SDP and the iterative methods are still expensive in terms
of latency and computational complexity, especially when
the number of inputs is high. It is also worth mentioning
that such algorithms are hand-crafted for OMA, and not for
NOMA systems. It is well-known that NOMA introduces
additional constraints to the optimization problem to ensure
the smoothness of the SIC operation at the receivers which is
an essential part of the NOMA principle [10]. Therefore, the
aforementioned conventional optimization approaches can-
not be applied directly to the problem considered in this work.

To address these issues with iterative solution approaches,
we propose a DRL-based robust design. Since RL agents
are designed to optimize a long-term objective in a given
environment, we can reformulate the problem as an RL envi-
ronment and develop an RL-based algorithm where the agent
solves the challenging optimization problem. In particular,
we develop an approach to solve this robust design using the
TD3 agent, which is an enhanced version of DDPG. There
are mainly three main motivations for considering this DRL-
based approach. First, using a DRL-based algorithm allows
for solving the original problem, not an approximated version
of it, which means that any feasible solution is guaranteed to
solve the problem with no additional assumptions or condi-
tions. This holds for both fixed and varying channels. The
second relates to the computational complexity of trained
DRL models. As we will see in the next section, the time
complexity of obtaining a feasible solution from the trained
network is almost trivial, which makes it more attractive
to latency-sensitive applications. Finally, the fact that TD3
converges to a deterministic policy which is also the case
for DDPG. However, TD3 is more stable and robust against
policy-breaking issues found in the baseline DDPG as we
explain in the next section.

III. PROBLEM REFORMULATION AS A RL
ENVIRONMENT
In this section, we briefly summarize the basic concepts of RL
focusing on the TD3 agent. Then, we reformulate the original
optimization problem in (13a)-(13e) as an appropriate RL
environment to efficiently solve by a TD3 agent.

A. RL AND DRL
Tabular RL methods like Q-learning and SARSA are lim-
ited to solving problems with discrete action and state
spaces [43]. DRL methods, on the other hand, utilize the
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function approximation capabilities of deep neural networks
(DNN), which makes them applicable to a wider variety of
problems. DRLmethods can be classified primarily into three
categories; value-based methods, such as DQN [44] which
can handle continuous state space but only support discrete
action space. Policy-based methods such as the Reinforce
algorithm [45] which optimize the policy directly through
an actor network. Actor-critic methods such as DDPG and
TD3 [46], [47], are recent off-policy agents that train deter-
ministic policies. The actor takes actions and optimizes the
policy of the agent while the critic evaluates the action taken
by the actor with regards to the current state and returns a
Q-value. Through these interactions, actor-critic agents opti-
mize the policy of the agent until it converges to an optimal
or near-optimal policy. Furthermore, actor-critic agents can
handle continuous action and state spaces which widens their
applicability to a larger set of problems in wireless commu-
nications. Note that any actor-critic agent with continuous
actions and state spaces can be applied to solve the robust
design problem using the reformulation provided. However,
we utilize the TD3 agent because it is an off-policy agent
with higher sample efficiency due to the use of a replay buffer
which allows for reusing past experiences. Furthermore, the
TD3 agent optimizes a deterministic policywhich is generally
easier to implement compared to stochastic policies.

B. BRIEF OVERVIEW OF TD3
TD3 is an off-policy actor-critic DRL agent that is capable
of handling continuous action and state spaces. A TD3 agent
consists of two main parts, an actor and a critic. The actor
is a DNN responsible for generating actions. It takes in the
current state as input and generates an action based on its
current policy. The critic’s DNN is responsible for generating
the corresponding Q-value for the action taken by the actor.
As a result, the critic’s DNN has two inputs, the current
state and the current action taken by the actor. Note that
training in the context of RL is not the same as in deep
learning. In the case of RL, the agent learns in an online
fashion, which has two important implications; training-data
generation and learning are carried out simultaneously, and
that training targets are constantly changing according to the
agent’s current policy. In order to stabilise learning, both the
actor and the critic use a delayed copy of their current DNNs
called target networks. Target networks stabilise learning by
fixing the target value when optimizing actor’s and critics’
DNNs. Experience replay buffer is utilized by the majority
of off-policy DRL agents and TD3 is no exception [48].
Previous interactions with the environment defined as tuples
of {s, a, r, s′}, are saved in the replay buffer D. The buffer
is then sampled to obtain training data. Replay buffer with
larger memory makes data more independent and identically
distributed (iid), which reduces the DNN variance during
training. The critic of the DDPG agent can be considered as
a modified DQN that takes in the action performed by the
actor and outputs a scalar Q-value. To mitigate the problem

of overestimating the Q-value in DDPG, TD3 uses two (or
more) critics and selects the smallest estimate of the target
Q-value. Given that the next state s′ is not the terminal state,
the target can be expressed as [47].

y(r, s′) = r + δ min
i=1,2

Qφi,η (s′, µψη (s′)), (14)

whereQφi,η is the target network for the critic’s DNN φi, i =
1, 2, δ is the discount factor (current value) for future rewards,
and µψη is the actor’s target network which provides the next
action a′ given a next state s′. Then, the two critics learn
the Q-function by minimizing their respective objectives as
follows [47]:

L(φ1,D) = E
(a,s,r,s′)∼D

[(
Qφ1 (s, a)− y(r, s

′)
)2]

,

L(φ2,D) = E
(a,s,r,s′)∼D

[(
Qφ2 (s, a)− y(r, s

′)
)2]

. (15)

The actor in TD3 aims to optimize the policy. This is achieved
by adjusting the weights of its DNN µψ to maximize the
corresponding Q-value, which is defined by optimizing the
following objective [46]:

max
ψ

E
s∼D

[
Qφ1

(
s, µψ (s)

)]
, (16)

which is identical to the DDPG actor. Unlike DDPG, TD3
updates its policy using (16) less frequently than its Q-values
to reduce variance during the training. Hence, the policy
update in (16) is not executed in each training step. When
it does, the policy, however, gets updated by (16). The target
networks for both the critics and the actor are updated at a
much slower rate than their main counterparts using

φη,i = ρφi + (1− ρ)φη,i, i = 1, 2,

ψη = ρψ + (1− ρ)ψη, (17)

where 0 < ρ ≤ 1 is the target networks’ smoothing factor.
Algorithm 1 summarizes the key steps of how the TD3’s actor
and critics process one experience. Note that in practice, these
steps are carried out in batches instead of single experiences
to increase computational efficiency.

Overall, TD3 theoretically outperforms DDPG by utiliz-
ing double Q-learning to reduce overestimation effects and
updating its policy less frequently to reduce variance. Fur-
thermore, it employs target policy smoothing by adding noise
to actor actions, and target actions as well to prevent the
agent from exploiting errors in Q-value estimations [47].
Figure 3 shows the interactions between the internal com-
ponents of the agent interact with each other to produce
an optimal or near-optimal policy that maps states to the
best possible actions. Despite that these upgrades may seem
simple, combined together with hyperparameter tuning, they
are the driving factor for any additional gain of TD3 over
DDPG. Simulation results presented in section IV confirm
the additional gain of TD3.
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Algorithm 1 TD3 Actor and Critic Training

1 A tuple {s, a, r, s′} is randomly sampled from the
replay buffer D;

2 The current state s is fed to actor’s DNN µψ to
generate current action a;

3 Both s and a are fed to the critics’ DNNs to generate
Qφ1 (s, a) and Qφ2 (s, a);

4 The next state s′ is fed to the actor’s target DNN µψη
to generate the next action a′;

5 The critics’ target DNNs Qφi,η (s, a), i = 1, 2, are fed
with s′ and a′ to calculate the target using (14);

6 The critics are trained using (15);
7 The actor is trained using (16);
8 Target networks are updated using (17);

FIGURE 3. TD3 agent blocks.

C. ROBUST DESIGN PROBLEM AS TD3 ENVIRONMENT
In order to solve the original robust problem using TD3, three
entities must be clearly defined, namely, action space, state
space, and reward. In this work, we define these entities as
follows
• Since the optimization variables are the beamforming
vectors and the phase shifts of IRS elements, these will
be chosen as the agent’s action. Therefore, the action
vector of the agent at time-step t during training is
expressed as

at =
[
wt
1, . . . ,w

t
N , v

t
1, . . . , v

t
M

]T
. (18)

where at ∈ CNT+M .
• The state vector is defined with four important pieces
of information about the environment, the power of the
beamforming vectors from the previous time-step, the
achieved rates including rates at which stronger UEs
decode weaker UEs’ signals, and random error bounds
within the maximum error bound. Furthermore, to assist
the agent in evaluating itself, we include the previous
action at−1 as part of the state. Therefore, we can express

the state vector for our TD3 agent as follows:

st =
[
||wt−1

1 ||
2
2, .., ||w

t−1
N ||

2
2, e1, .., eN ,

Rt−11 ,R1,t−12 , ..,RN−1,t−1N ,RN ,t−1N , at−1
]T
, (19)

where the error values in the state vector are directly
mapped to the reflected error bound in the case of the
partial error model, while the error bounds correspond
to the sum of the direct and reflected error bounds in the
case of the full uncertainty error model. Therefore, st ∈
C2N+N (N+1)

2 +NT+M ,N ≥ 2, where N (N+1)
2 determines

the number of all possible rates in the consideredMISO-
NOMA system.
Note that both beamforming vectors and phase shifts are
complex-valued design parameters and they are part of
the action and state spaces. However, since we will be
using real-valued neural networks for building the DRL
agent, each complex vector is mapped to two separate
real vectors where one represents the real values while
the other represents the imaginary values of the original
complex-valued vector [16], [49]. Therefore, the beam-
forming vector (or any complex vector for that matter)
wi ∈ CTx1 is mapped to Re(wi) ∈ RTx1 representing
the real part of wi, and Im(wi) ∈ RTx1 representing the
imaginary part of wi. This is also true for the complex
value phase shifts of the IRS elements, where each scalar
complex phase shift value is mapped to two real scalars
representing the real and complex parts of the original
element. Note that this technique basically doubles the
size of input and output layers for the critic and the
actor DNNs. However, it unlocks the potential for using
neural networks to deal with a wider range of problems
such as the one considered in this paper. To reconstruct
the complex-valued beamformers and IRS phase shift
elements obtained from the action vector, we simply
reverse the mapping process explained earlier. There-
fore, the at ∈ R2NT+2M , st ∈ R2N+N (N+1)

2 +2NT+2M are
corresponding real-only action and state space vectors,
respectively.

• Finally, as the objective is to maximize the long-term
sum-rate of the system, we choose the sum-rate at time-
step t as the reward. Thus, the reward can be expressed
as

r t =
N∑
i=1

Rti , ∀i ∈ N . (20)

It is important to highlight that the agent will only be
rewarded the sum-rate of the step if its action satisfies all con-
straints of the original optimization problem. However, since
RL agents are only interested in maximizing their rewards,
they cannot solve convex optimization problems directly. For
this reason, we force the agent to meet the constraints by
normalizing its actions to fall within the feasible region.
First, we start with the maximum transmit power constraint.
Since the objective is an increasing function of the transmit
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power, at the optimal conditions, the transmitter will use all
the available transmit power (i.e., Pmax). Therefore, we can
rewrite the transmit power constraint (13c) as follows:

N∑
i=1

||wi||
2
2 = Pmax, ∀i ∈ N . (21)

The total power at time-step t can be expressed as

Pttotal =
N∑
i=1

||wt
i ||

2
2, ∀i ∈ N . (22)

We can then write the normalization coefficient as

κ t =

√
Pmax

Pttotal
. (23)

Finally, the constraint-satisfying beamforming vectors can be
written as

fti = κ
twt

i , ∀i ∈ N . (24)

A similar process is carried out for the IRS elements. Since
the angle θ can be mapped directly to a value in the feasi-
ble region, only amplitudes of the IRS elements need to be
normalized as

vtm
|vtm|

, ∀m ∈M. (25)

With the normalized action, we then decide to either reward
the agent with the sum-rate in (20) if the QoS requirements
are satisfied under the channel uncertainty, otherwise, the
agent is punished with a negative reward. Any negative
reward will work as the agent will try to avoid such action
in the future. We will use the sum of the rate deficit across
all users as the negative reward [18]. The set ε contains users
j = 1, .., J , ε ∈ N whose QoS are not satisfied at time-step t .
Thus, we define the sum of the rate deficit across all users as

r td =
J∑
j=1

(
Rtj − R

min
j

)
, ∀j ∈ ε. (26)

Therefore, if at satisfies the QoS constraints under some
bounded error region, the agent will be given a positive
reward according to (20), otherwise, it will be punished with
the negative reward in (26). Algorithm 1 summarizes the
proposed TD3-based algorithm for solving the original robust
design problem. Note that Algorithm 2 summarizes the train-
ing process for the proposed agent. However, once the agent
has been trained successfully, the actor network is the one
we deploy in practice. The trained actor network can then be
integrated into the BS hardware to be used to generate the
solutions. To implement the proposed solution, in a practical
IRS-assisted MISO-NOMA system, the BS receives the CSI
reports in the uplink band. The BS then queries the trained
actor network by using the obtained channels, i.e., executing
steps 7 − 11. The resulting IRS vector is transmitted to the
IRS via a feedback link, while the beamforming vectors are
used for transmission.

Algorithm 2 TD3-Based Robust Beamforming and
Phase Shift Design

1 Initialize TD3 target and training parameters, empty
replay buffer D and initialize the Gaussian random
process A;

2 Set φη,1← φ1, φη,2← φ2, ψη ← ψ ;
while Episode ≤ Total Episodes do

3 Acquire training channels based on the system
parameters N ,M ,T ;

4 Calculate 1Qi,∀i, according to (7) for the partial
error model, adding 1hi,∀i, according to (8) for
the full error model;

5 Initialize the beamforming vectors and the phase
shift elements randomly;

while t ≤ Time steps do
6 Observe the current state st and obtain an

action from the actor network using
at = clip(µψ (s)+ ϵ, alow, ahigh), ϵ ∈ A,
normalize action values using (23), (24)
and (25);

7 Recover the complex value beamforming
vectors and the IRS elements from step 6;

8 Using vector v generated in the previous step,

build the final estimated channels ˆ̃hi,∀i,
according to (3);

9 Decide a descending decoding order ζ such

that || ˆ̃h1||22 ≥ ||
ˆ̃h2||22 ≥ . . . ≥ ||

ˆ̃hN ||22, based

on the estimated channels ˆ̃hi,∀i;
10 Build the true channels h̃i,∀i, using vector v

and random errors based on (3), (5) and (6);
11 Evaluate the SINR values and calculate the

corresponding rates Ri,∀i;
if Ri ≥ Rmini , ei, ∀i ∈ N then

12 Use reward in (20);
else

13 Use reward in (26);
end

14 Obtain next state st+1. Save tuple
{st , at , r t , st+1} to replay buffer D;

15 Randomly sample replay buffer using a batch
of size b to calculate the target according
to (14) and train the two critic networks
φ1, φ2 using (15);
if time to update policy then

16 Update policy with one step using (16);
end

17 Update target networks using (17);
18 t = t + 1;
19 Set st = st+1;

end
20 Episode = Episode+ 1;

end
21 Output: Obtain {f∗1, . . . , f

∗
N , v
∗

1, . . . ., v
∗
m}
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TABLE 1. Numerical time-complexity.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, we define the computational complex-
ity of the proposed TD3-based algorithm. Similar to other
deep learning models, the complexity of the proposed DRL
framework can be divided into two categories: offline com-
plexity, which is associated with training the actor network
by plugging in critics and the replay buffer, and online com-
plexity which is associated with inference or deployment
of the actor’s network. Calculating the best and the worst
case run times for offline training of neural networks is still
an open issue due to the complexity associated with the
implementation of backpropagation and other hyperparam-
eters in DNNs [16], [50]. Furthermore, we assume that the
offline complexity of this model can be afforded. Never-
theless, we include empirical comparisons for four different
profiles with different hardware specifications in Table 1.
The specification of each hardware platform and the system
parameters used for each case are provided in Tables 5, 6 in
the appendix.

For estimating the time complexity of inference, which
is the cost of a feed-forward pass through the trained actor
DNN, big O notation is a common method of measuring
the worst-case run time of an algorithm. Since all modern
libraries and deep learning frameworks use matrix notation
to perform calculations through DNNs, it is straightforward
to conclude that a matrix-vector multiplication operation,
zl = 9cl , where 9 is the weights matrix, cl is the input
vector, and zl is the output vector from the l-th hidden layer,
is performed for each hidden layer. The output vector z is then
passed through an activation layer as bl = g(zl), where bl

is the activated vector that is fed to the next hidden layer in
the DNN. Since the activation is an element-wise operation,
it has a time complexity of O(ℵl), where ℵl is the number of
neurons in the l-th hidden layer. According to the proposed
actor’s architecture shown in Figure 4, there are three weight
matrices in total, 91 ∈ RℵxCard(st ), linking the input to the
first hidden layer, 92 ∈ Rℵ2 , between the two hidden layers,
assuming ℵ1 = ℵ2 = ℵ, and 93 ∈ RCard(at )xℵ, linking the
second hidden layer to the output layer. Therefore, we can

write the total run-time asO
(
T ′

(
ℵ·Card(st )+ℵ2+Card(at )·

ℵ + 2ℵ + Card(at )
))

, where T ′ highlights the fact that the

action space is part of the state space. Moreover, since the
action vector is part of the state vector, then Card(st ) >
Card(at ) always holds. Therefore, we can approximate the
worst-case run time for evaluating the actor’s DNN as

FIGURE 4. TD3 Actor DNN.

FIGURE 5. TD3 Critic DNN.

O
(
ℵ · max

(
ℵ,Card(st )

))
. To define the complexity of the

proposed DRL algorithm in context, we provide a complexity
review for related works in the literature. The worst-case
complexity for the iterative algorithm proposed in [10], which
only solves the beamforming design problem, is O(N 7) per
iteration. The SDP-based algorithm for optimizing the IRS
phase shifts proposed in [40] has a worst-case complexity
of O(M6), while the iterative algorithm proposed in [42]
reduced the IRS phase shifts optimization complexity to
O(M3) using ADMM. Furthermore, the worst-case run-time
for the proposed algorithm scales linearly with the system
parameters for a fixed number of neurons, while the worst-
case run-time of the model-based algorithms is cubic at
best. Therefore, compared to the complexities of the existing
methods, the proposed algorithm has a significant advantage
in terms of run times, while still maintaining competitive
performance.

IV. TRAINING, SIMULATION AND NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
TD3-based algorithm with different system models.

A. AGENTS STRUCTURE AND HYPERPARAMETERS
To evaluate the performance of the proposed robust design,
we train a TD3 agent with one actor and two identical critics.
Note that despite the two critics being identical in terms of
layer type and size, the random initialization of their respec-
tive DNNs makes them behave differently, and therefore,
produce different Q-value estimates. The architecture of the
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TABLE 2. Actor and critic layers.

TABLE 3. Hyperparameters of the TD3 agent.

actor and critics DNNs are shown in Fig. 4 and 5, respectively.
Table 2 describes the structure and size of the actor and critics
networks. We set the number of hidden nodes to 300 for each
hidden layer, irrespective of the input and output sizes, the
ReLU activation function, f (x) = max(0, x), is used for acti-
vating the hidden layers in both actor and critics’ networks.
The Tanh function, f (x) = ex−e−x

ex+e−x , is used as an activation
function for the output in the actor’s network. The ADAM
optimizer is used for both actor’s and critics’ DNNs as it is
more robust than other optimizers, and more appropriate for
non-stationary objectives [51]. Table 3 provides a summary
of hyperparameters used to train the agent for both fixed and
dynamic channel cases. The reward discount factor is set to
0.99 to steer the agent towards a long-term optimal reward
policy. Generally, the hyperparameters chosen for the TD3
agent in this paper are more on the conservative side. Such an
approach favours training stability over faster convergence,
which is recommended for the agent to form a more robust
policy against channel uncertainties. Furthermore, since the
optimal hyperparameter selection is an exhaustive search
problem, the performance of the proposed algorithm can be
considered the average performance in the context of the
selected hyperparameters.

B. SYSTEM PARAMETERS
In terms of system parameters, we consider an IRS-assisted,
downlink MISO-NOMA system, where T = N = 2, 3, 4,
which is one of the cases where NOMA has the most
advantage over OMA [10]. Table 4 summarizes the system

parameters used in the simulations. Because of the high
computational complexity associated with SIC receivers, the
maximum number of UEs is limited to N = 4 where
the strongest UE will perform 3 SIC operations. Increas-
ing the number of UEs requires pairing the UEs into clusters,
which is beyond the scope of this paper. For the channel
model, both small-scale and large-scale fading are taken into
account. The large-scale fading is a function of the distance
from the BS and the IRS, for the direct and the reflected
channels, respectively. The small-scale fading is modelled
by Rician and Rayleigh fading for the reflected and direct
channels, respectively. The channel coefficients for direct and
reflected paths are drawn from a complex Gaussian distribu-
tion with zero mean and unit variance. The first part of the
reflected channels from the BS to the IRS is modelled as

H =
1√

dαb→irs
irs

(√
K

1+ K
HLoS +

√
1

1+ K
HnLoS

)
, (27)

where K is the Rician factor that indicates the strength of the
LoS component and is assumed to be 1, dirs is the distance
between the BS and the IRS and is fixed to 70 m. Similarly,
the channel coefficients from the IRS to UEi are expressed as

gi =
1√

dαirs→u
i

(√
K

1+ K
gLoS +

√
1

1+ K
gnLoS

)
, (28)

where di is the distance between the IRS and UEi. The direct
channels hi between the BS and the UEi are modelled as hi =

hi√
d
αb→u
id

, where did is the distance between the BS and UEi.

To fairly assess the performance of the proposed algorithm,
we use the following benchmark algorithms
• DDPG: The DDPG agent has been widely adopted in
the DRL literature. DDPG is included as a DRL bench-
mark to showcase the performance gain of the proposed
TD3-based design in terms of convergence, system sum-
rate, and robustness.

• Baseline 1: This benchmark scheme is based on SDP.
More specifically, an SDP is used to solve the IRS
optimization subproblem [40], and then the best possible
rates are achieved for the given maximum available
power through solving the transmit power minimization
problem [16], [41]. Note that this scheme has pro-
hibitively high complexity and is therefore used as an
analytical benchmark.

• Baseline 2: This scheme is based on the well-
known zero-forcing (ZF) principle as a solution
to the beamforming design subproblem. However,
since the multi-user power allocation problem is
non-trivial in the ZF beamforming case, a fixed power
allocation strategy is assumed for this scheme. There-
fore, this is a non-robust scheme. The IRS optimization
subproblem is solved using SDP [40].

• Baseline 3: This is a random benchmark scheme, i.e., the
IRS phase shifts and the beamforming vectors are ran-
domly generated. Such a scheme is included to show that
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TABLE 4. Summary of system parameters.

the agent has derived a competitive policy that adapts to
the environment.

In the following subsections, we provide simulation results
generated by the agent for two system scenarios. The first is
a fixed-channel scenario, where the channels are assumed to
be fixed throughout the training period. The other scenario
is a more realistic one where the channels are assumed to be
dynamic, i.e., the UEs are randomly deployed such that did ∈
[10, 200] m changes during both training and testing. Note
that this translates to varying large-scale fading for each UE,
which is more practical and more challenging to solve.

C. FIXED-CHANNEL SCENARIO
For the fixed-channel case, both partial and full error models
are considered. The agent is trained for 200 episodes, with
200 time-steps per episode. The UEs are assumed to be
separated by a distance of at least 30 m from each other.
In each new episode, the agent is fed with new error values
within their error bounds as part of the state vector.

Figures 6 and 7 present the convergence of the agent
during training for the two extreme cases of IRS elements,
M = 16 and M = 128, respectively. These convergence
plots suggest that both agents are able to converge faster
in the case of M = 16, compared to the other case with
M = 128. This is expected, as M is directly related to the
length of the state and the action vectors, and the error bound,
making faster convergence in the case of M = 128 more
challenging for the agents. Note that in both cases, the TD3
agent shows amore stable and consistent behaviour compared
to that of the DDPG agent, thanks in part to the additional
critic used by TD3. As seen in Figures 6 and 7, the TD3
agent requires around 40 episodes of training to reach an
average reward level of greater than 400 in the first case,
while other case requires around 130 episodes to achieve the
same reward. The DDPG shows a similar performance in the

FIGURE 6. The reward of the proposed robust TD3, and DDPG
agents for 200 training episodes, with fixed channels, M = 16,
Rmin = 1b/s/Hz.

FIGURE 7. The reward of the proposed robust TD3, and DDPG
agents for 200 training episodes, 200 time-steps per episode
with fixed channels, M = 128, Rmin = 1b/s/Hz.

case M = 16. However, Figure 7 shows the DDPG requires
much higher training episodes to determine a high reward
policy when N = 2, 4. Overall, both agents require more
training episodes to achieve convergence in the case of the full
error model than in the partial error model. This is expected,
as the robust beamforming design with a larger error bound
is more challenging than the one with a small error bound.
To demonstrate the potential capabilities of the TD3 agent
in maximizing system sum-rate, Figures 8, 9 and 10 show
the performance gains of the proposed TD3 agent. These
simulation results are generated by taking the average rates of
the agents when they are tested for a total of 1, 000 episodes,
with 10 steps per episode. The achievable system sum-rates
are higher in the partial error case across the three plots. The
proposed TD3 agent outperforms the benchmarking DDPG
and random schemes with variable margins. The most sig-
nificant TD3 gains over DDPG are achieved in the cases of
N = T = 4,M = 64 and N = T = 3,M = 128,
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FIGURE 8. The achieved system sum-rate of the proposed robust
design versus the number of IRS elements for N = T = 2,
Rmin = 1b/s/Hz.

with 3.2 b/s/Hz, 5.4 b/s/Hz, for the partial and full error
cases, respectively. This clearly shows that the proposed TD3
agent is able to derive a more accurate and higher rewarding
policy than the DDPG agent. Another interesting observation
from the achieved system sum-rates is that there are different
peak rates for different numbers of UEs. In Figure 8, where
N = T = 2, the maximum system sum-rate is achieved with
M = 64, while in the case of N = T = 3, the sum-rate
is achieved with M = 128, and in the case N = T = 4 it
reaches with M = 32. This suggests that in each case, there
is a sweet spot between having the ideal number of IRS
elements to maximize the sum-rate, and having a manageable
error region. It also suggests that, unlike many studies in the
literature, increasing the number of IRS elements does not
always result in an increased system sum-rate. In fact, when
considering a robust design, increasing the number of IRS
elements beyond a certain number may result in a degraded
performance for the fixed channel case. Compared to the
benchmark schemes, the TD3 agent generally outperforms
the ZF baseline, even when the full error model is used. The
performance gap in terms of the achieved system sum-rates
between the proposed TD3-based design and the upper-bound
baseline is marginal at best, with 1.9 b/s/Hz and 2.5 b/s/Hz for
the partial and full error models, respectively. In terms of
achieved rates of UEs, Figure 11 presents UE1 andUE4 rates
for both error models achieved by both agents, which rep-
resent the strongest and the weakest UEs in the system,
respectively. The figure shows that UE1 achieves higher rates
when using the TD3 agent’s policy. As for UE4, both agents
were able to consistently achieve the target rate required by
the weakest UE for both error models. The apparent high
variance in UE1’s rate for baseline 2 is caused by channel
errors during testing since it is a non-robust scheme. This is
also evident by the casual dips in UE1’s rate as shown in the

FIGURE 9. The achieved system sum-rate of the proposed robust
design versus number of IRS elements for N = T = 3,
Rmin = 1b/s/Hz.

FIGURE 10. The achieved system sum-rate of the proposed
robust design versus number of IRS elements for N = T = 4,
Rmin = 1b/s/Hz.

same figure. Furthermore, to rigorously assess the robustness
of both agents, Figure 12 demonstrates the performance of
the agents for different target rates. The figure shows that
the TD3 agent is able to achieve a perfect score up to the
training target rate, and after. In particular, the TD3 agent with
M = 128 for the partial error model is able to attain a target
rate of 1.5 b/s/Hz with a robustness score of 88%, which is
impressive considering it was trained on a lower target rate
of 1 b/s/Hz. The performance of the DDPG agent, on the
other hand, is degraded in the case of full channel uncertainty,
achieving a score of 89% withM = 16 as its worst case.

D. DYNAMIC-CHANNEL SCENARIO
In the previous scenario, the channels were assumed to be
fixed. While this may be the case for stationary devices or
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FIGURE 11. The achieved individual user rate of the proposed
robust design across 100 testing episodes for N = T = 4,
Rmin = 1b/s/Hz.

FIGURE 12. The robustness performance of the proposed agent
versus the target rate with fixed channels, for N = T = 4,
Rmin = 1b/s/Hz.

low-mobility UEs, fixed channel models cannot be used for
high-mobility situations where channels change drastically.
To solve this dynamic channel problem, we train the TD3
agent on a small dataset of distinctively different channels.
Also, we use the full error model for the varying channel case
as we focus more on the practical implementation aspects
of this design. Therefore, the TD3 agent is trained for a
total of 2, 000 episodes and 300 steps per episode. At the
beginning of each episode, a different set of channels ran-
domly sampled from a dataset of 10 channels is selected.
These training channels are generated based on a uniform
sampling of the distance between the BS and the maximum
cell radius. This uniform sampling is chosen to ensure that the
training channels reflect the variance of the channels across
the entire cell. Corresponding error bounds for direct and
reflected links are also fed to the agent for each new episode

FIGURE 13. The reward of the proposed robust TD3, and DDPG
agents for 2,000 training episodes, with dynamic channels,
M = 128, Rmin = 0.3b/s/Hz.

during training as part of the state vector. Furthermore, to
prevent the optimization problem from becoming infeasible
due to higher channel variations, we reduce the target rate to
0.3 b/s/Hz for the dynamic channels scenario. To evaluate the
performance of the agent in a dynamic-channel environment,
we use a total of 250 randomly generated channels with did ∈
[10, 200] m as a testing set. Also, the agent is simulated for
1, 000 episodes, with 10 steps per episode for testing, to deter-
mine the average achieved sum-rates. The convergence of
the agent is shown in Figure 13 for the two extreme cases
N = T = 2, 4,M = 128, where relatively higher training
variance is apparent. This is expected since the channels
are inherently different, and consequently, the reward will
also have a higher variance. From Figure 13, we can see
that there is a significant difference in terms of stability and
consistency between the TD3 and the DDPG agents, where
TD3 shows superior convergence properties. This is further
evident by the relatively lower variance of the TD3 agent
compared to the higher training variance of DDPG. Instability
during training often leads to performance degradation due
to the inadequately derived policy. Figures 14, 15 and 16
illustrate the achieved system sum-rates for different system
parameters. The TD3 agent shows marginal gains compared
to the DDPG agent, with the most significant gain being
2.14 b/s/Hz, achieved in the case N = T = 3,M = 64.
For the dynamic channel case, we can see that increasing the
number of IRS elements is exploited by both agents, leading
to a slight increase in terms of sum-rate. The TD3 agent is able
to achieve a gain of 2.1 b/s/Hz in the system sum-rate for the
case N = T = 3,M = 64. However, despite the addition
of 64 IRS elements, the system sum-rate has not increased as
much between M = 64 and M = 128, which further proves
the point that the number of IRS elements may be utilized by
the agent up to a certain number before starting to degrade
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FIGURE 14. The achieved system sum-rate of the proposed
robust design versus the number of IRS elements with dynamic
channels, for N = T = 2, Rmin = 0.3b/s/Hz.

FIGURE 15. The achieved system sum-rate of the proposed
robust design versus the number of IRS elements with dynamic
channels, for N = T = 3, Rmin = 0.3b/s/Hz.

the performance. Compared to the benchmark schemes, the
proposed TD3 agent achieves a similar sum-rate performance
to the ZF baseline scheme on average, while the sum-rate gap
between the upper-bound baseline and the proposed agent has
increased in the varying channels case with an average gap of
3.3 b/s/Hz. In terms of achieved individual rates, Figure 17
illustrates the rate for each UE for the dynamic channels case,
with N = T = 4,M = 128. This Figure shows some
casual drops of UE4’s rate below the 0.3 b/s/Hz mark by both
the TD3 and the DDPG agents. This is expected due to the
dynamic channels used for testing. Another observation is
that DDPG achieved a higher rate for UE1 at the expense of
not satisfying the target rate required by UE4, which is the
result of converging to a non-optimal policy.

FIGURE 16. The achieved system sum-rate of the proposed
robust design versus the number of IRS elements with dynamic
channels, for N = T = 4, Rmin = 0.3b/s/Hz.

Finally, to evaluate the limits of the TD3 agent’s derived
policy in terms of robustness, we tested the trained agent for
a set of target rates for N = T = 4. Figure 18 shows the
robustness of the agent in satisfying each of the target rates.
As expected, there is a trade-off between target rates and the
robustness of the agent. Despite the dynamic channels used
for testing, TD3 is able to maintain a robustness performance
of at least 65%. Furthermore, with M = 64; the agent
maintained a competitive score up to 0.5 b/s/Hz, which is
66% higher than the target rate used during training. While
both agents achieve similar system sum-rates as highlighted
by Figures 14, 15 and 16, DDPG is less robust to channel
uncertainties. The seemingly enhanced robustness score for
baseline 2 is not related to the algorithm itself. Instead,
it is due to the lower target rates used for dynamic-channels
testing.

Overall, the TD3 agent outperforms the DDPG agent in
every category, with marginal gain in some cases and sig-
nificant in others. Furthermore, the results from the dynamic
channels scenario suggest that the TD3 agent is more robust
to channel uncertainties.

V. CONCLUSION
In this paper, we proposed a DRL-based robust design for an
IRS-assisted downlink MISO-NOMA system with imperfect
channel feedback. In particular, a TD3 agent is developed
to jointly optimize the beamforming vectors and the phase
shifts of IRS elements to satisfy the required QoS with chan-
nel uncertainties. Through numerical simulations, we have
shown that the proposed robust TD3 agent was able to main-
tain its robustness against channel uncertainties and achieved
competitive performance in both fixed and dynamic channel
cases. We showed that, unlike conventional convex optimiza-
tion methods, the proposed robust TD3-based design solved
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FIGURE 17. The achieved individual user rate of the proposed
robust design across 100 testing episodes, with dynamic
channels for N = T = 4, Rmin = 0.3b/s/Hz.

FIGURE 18. The robustness performance of the proposed agent
versus the target rate with dynamic channels, for N = T = 4,
Rmin = 0.3b/s/Hz.

the original non-convex problem, not an approximation of it.
Furthermore, the agent only needed to converge to a good pol-
icy once. After being trained successfully, the agent was able
to generate robust vectors and IRS phase shifts by perform-
ing a simple forward pass through its actor network, which
was shown to have a low time complexity. This drastically
reduces the latency in DRL-based designs and expands their
applicability to low-latency systems. Conventional algorith-
mic methods, on the other hand, need to solve the problem
each time a change occurs in the system state, causing higher
system latency. We also showed that while additional IRS
elements may improve the system sum-rate, it is not always
the case that a higher number of IRS elements leads to sum-
rate gains, especially when channel uncertainty is taken into
account.

TABLE 5. Hardware profiles.

TABLE 6. System parameters for run-time testing.

APPENDIX
To ensure that MATLAB is able to exploit the maximum
amount of computational resources on each of these hardware
platforms, no other applications were running in the back-
ground during the testing period. Therefore, the empirical
results provided in Table 1 reflect the best performance that
these machines can sustain.
Profile 1 is equipped with state-of-the-art CPU, GPU and
RAM units, which demonstrates the superior performance of
this platform.
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