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ABSTRACT In most applications of utilizing neural networks for mathematical optimization, a dedicated
model is trained for each specific optimization objective. However, in many scenarios, several distinct yet
correlated objectives or tasks often need to be optimized on the same set of problem inputs. Instead of
independently training a different neural network for each problem separately, it would be more efficient
to exploit the correlations between these objectives and to train multiple neural network models with shared
model parameters and feature representations. To achieve this, this paper first establishes the concept of
common information: the shared knowledge required for solving the correlated tasks, then proposes a novel
approach for model training by adding into the model an additional reconstruction stage associated with a new
reconstruction loss. This loss is for reconstructing the common information starting from a selected hidden
layer in the model. The proposed approach encourages the learned features to be general and transferable, and
therefore can be readily used for efficient transfer learning. For numerical simulations, three applications are
studied: transfer learning on classifying MNIST handwritten digits, the device-to-device wireless network
power allocation, and the multiple-input-single-output network downlink beamforming and localization.
Simulation results suggest that the proposed approach is highly efficient in data and model complexity,
is resilient to over-fitting, and has competitive performances.

INDEX TERMS Transfer learning, feature learning, mathematical optimization, wireless communications,
information flow.

I. INTRODUCTION

DEEP learning has gained increasing popularity as a flex-
ible and computationally efficient approach for solving

a great variety of mathematical optimization problems, such
as resource allocations [2], [3], [4], [5], detection and sens-
ing [6], [7], [8], [9], and so on. In most literature on applying
deep learning for solving optimization problems, a special-
ized neural network is trained from scratch for each individual
optimization task. Such an approach requires a large number
of training data for obtaining satisfactory performances on
each task, and lacks scalability whenmultiple objectives need
to be optimized. However, in many scenarios, there are often
multiple optimization problems that are based on the same
set of inputs and differ from each other only in terms of their
objective functions. In this paper, we exploit the similarities
between these optimization tasks and purpose a novel deep

learning approach to train neural networks for different tasks
in a highly efficient way, in terms of both data and model
complexity.

In the machine learning literature, researchers have
explored the transfer of knowledge betweenmachine learning
models to tackle similar tasks, known as transfer learning
[10]. In these works, a model is first fully trained from scratch
with abundant training data and computation resources for
one task (i.e. the source task). When a new task corre-
lated to the source task is presented (i.e. the target task)
with only a small amount of data available, the trained
model is further fine tuned based on the limited available
data to solve this new task. Transfer learning is popular
in computer vision (CV) [11], [12], [13], [14], [15], nat-
ural language processing (NLP) [16], [17], [18], [19], and
so on.
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To better understand transfer learning with neural net-
works, we interpret the neural network input-to-output
computation flow as a two-stage process, i.e. a feature learn-
ing stage followed by an optimization stage:
1) Feature learning stage: the stage where the high-level

feature representations are learned.
2) Optimization stage: the stage where the final task-

specific outputs are computed based on the learned
features.

Many transfer learning approaches can be viewed as transfer-
ring the feature learning stage across neural network models,
while each model learns its own task-specific optimization
stage. In the mainstream transfer learning research in applica-
tion fields such as CV and NLP, the inputs in the problems are
typically highly structured, while the outputs (or targets) are
in much lower dimensions. Consequently, it is clear where the
feature learning stage and the optimization stage are within
the neural network computation flow. However, conducting
transfer learning on general mathematical optimization prob-
lems is different. Here, the inputs, the outputs, and their
mappings often lack discernible structures, resulting in no
clear distinction between the feature learning stage and the
optimization stage in the neural network. Consequently, it is
difficult to determine where within the trained model the
transferable knowledge (in the form of features) is computed,
or even if such transferable knowledge exists at all.

A. MAIN CONTRIBUTIONS
In this paper, we propose a novel transfer learning approach to
explicitly enforce the learning of transferable features within
a specific location in the neural network computation flow.
Firstly, we establish the following concept for transfer learn-
ing:
Common Information1: The information required for spec-

ifying and for solving both the source task and the target task.
Although common information may be difficult to identify

in general, in this paper, we make a key observation that
when the source task and the target task share the same
input, the problem input itself always forms a (possibly non-
strict) super-set of the common information. Therefore, in this
paper, we consider transfer learning for problems that share
the same input distribution and propose to use the problem
input as a general choice for common information. Moreover,
this paper also goes beyond using the input as common
information and further considers applications where we can
extract specific common information with lower dimensional
representations. In this case, we can further adopt the pro-
posed approach for these specific representations.

With the concept of common information established, the
proposed transfer learning approach can be described as
follows. When training the neural network model on the
source task, besides the task-specific loss, we introduce an
additional reconstruction loss to be minimized jointly: i.e.,

1The term ‘‘common information’’ has also been used in information
theory as a similarity measurement between two correlated random vari-
ables [20], which is not to be confused with the definition in this paper.

we let the neural network reconstruct the common informa-
tion using features from a specific hidden layer (referred to
as the feature layer) and compute the common information
reconstruction loss. Through minimizing this reconstruction
loss, we encourage the features learned at the feature layer to
be informative about all the correlated tasks that take the same
input distribution. To perform transfer learning on a target
task, we fix the trained model parameters up to this feature
layer as the already-optimized feature learning stage for the
model and further train the remaining model parameters on
the target task.

When the proposed approach utilizes a choice of com-
mon information that is generic (e.g. the problem inputs),
the features learned in the model can be used for all target
tasks that have the same input. Essentially, the proposed
transfer learning approach is target-task agnostic. This is in
contrast to some of the prior transfer learning works [17],
[21], [22], [23] where the training approach is dedicated
to a given source-task and target-task pair. We note that
several works also explore the similar idea of encouraging
input reconstruction from the model’s internal features, e.g.,
in the field of semi-supervised learning [24], [25], multi-
task learning [26], or domain adaptation (a sub-category of
transfer learning where the input distribution changes from
the source to the target domain) [22], [27], [28], [29], [30],
[31]. Nonetheless, these works deal with different problem
setups: in semi-supervised learning, the focus is on obtain-
ing quality features and latent representations of the inputs
with only limited ground-truth labels; in multi-task learning,
the model is trained on multiple task simultaneously using
ample training data; in domain adaptation, the task stays the
same while the input distribution changes. While the input
reconstruction technique in these works all aims to encourage
the neural network models to extract salient features, the
present paper differs in that we focus on transfer learning and
specifically on quick adaptation to new unseen tasks, after the
initial training stage, with only limited further adjustments of
model parameters. Moreover, this paper goes one step further
in expanding the possibilities for the reconstruction target
beyond the problem inputs, through introducing the concept
of common information.

For numerical simulations, we first demonstrate the pro-
posed approach through a classical machine learning appli-
cation: the MNIST handwritten digits classification [32].
We formulate the source task and the target task as cor-
related classification tasks and adopt the fully-connected
neural networks. Furthermore, we treat several important and
challenging classes of mathematical optimization problems
in wireless communications. Although a few works have
explored transfer learning on certain wireless communication
problems [23], [33], [34], the techniques used are specific to
the application settings or objective characteristics. On the
other hand, our approach is more general and readily adapts
to different problems or objectives. We illustrate this by
experimenting over two application scenarios: the power con-
trol utility optimization for device-to-device (D2D) wireless
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networks, as well as the downlink beamforming and local-
ization problems for multiple-input-single-output (MISO)
wireless networks. Specifically, for each of the application
scenario, we explore transfer learning between a pair of
distinct yet correlated objectives: the min rate and sum rate
objectives in the D2D networks; and the beamforming gain
and the localization accuracy in the MISO networks. Opti-
mization results suggest that the proposed approach achieves
better knowledge transfer and mitigates over-fitting on lim-
ited target task data more effectively than the conventional
transfer learning method.

B. PAPER ORGANIZATION AND NOTATIONS
The remaining of the paper is organized as follows. Section II
formulates the general transfer learning problem and estab-
lishes the concept of common information. Section III
introduces the three applications to be studied in details:
the MNIST classification problem, the D2D network power
control problems, and the downlink MISO network beam-
forming and localization problems. Section IV proposes the
novel transfer learning approach for general neural networks,
along with the proper selections of the common information
for the three applications. The performances of the proposed
method over three applications are presented and analyzed in
Section V. Finally, conclusions are drawn in Section VI.
For mathematical symbols, we use lower-case letters

for scalar variables, lower-case bold-face letters for vector
variables, and upper-case bold-face letters for matrix vari-
ables. By default, we regard any vector as a single-column
matrix. We use the superscript (·)H to denote the Hermitian
transpose of a matrix (or a vector regarded as a single-
column matrix). We use CN (0, 6) to denote the zero-mean
circularly-symmetric complex normal distribution, with 6

being the covariance matrix. We use [·]k to denote the k-th
element of a vector.We use |·| to denote the absolute value of a
complex number, and || · ||2 to denote the L2 norm of a vector.
Lastly, we use the operator← to denote the assignment to a
specified variable.

II. TRANSFER LEARNING FORMULATION
We first present the general transfer learning formulation
studied in this paper. This transfer learning formulation is
not restricted to any specific application and is applicable
to various application domains and scenarios. Specifically,
we introduce the novel concept and the precise definition
of common information. At the end of this section, we pro-
vide a discussion on the fundamental learning objectives and
requirements for efficient transfer learning.

A. GENERAL SETUP: SOURCE TASK AND TARGET
TASK OPTIMIZATION
Among many variants of transfer learning formulations,
we focus on the transfer learning setting where the source task
and the target task share the same input distribution but differ
in their respective objectives. LetS denote the source task and

T denote the target task. Consider the optimization problems
summarized by the following components:

• Input parameters p summarizing all environment infor-
mation essential for optimization, which follow the same
distribution in both S and T ;

• Optimization variables for S: xs;
• Objective (or utility) for S: us(xs);
• Optimization variables for T : xt ;
• Objective (or utility) for T : ut (xt ).

If T and S are supervised learning tasks, us(xs) and ut (xt ) are
also dependent on the ground-truth labels, which we omit in
our notations as they are not variables to be optimized.

To optimize for S and T , we utilize neural networks to
compute the optimal values of the optimization variables.
Specifically:

• Let F2s with trainable parameters 2s denote the neural
network mapping for optimizing S:

F2s (p) = xs . (1)

• Let F2t with trainable parameters 2t denote the neural
network mapping for optimizing T :

F2t (p) = xt . (2)

B. COMMON INFORMATION
Under this transfer learning setting, S and T are correlated in
the sense that for optimizing us(xs) and ut (xt), the informa-
tion extracted from p should be similar. To mathematically
formalize this concept, we introduce the concept of common
information, which we denote by I(p), with the following
definition:
Definition 1 (Common Information): Let the input param-

eters p follow the same distribution for the source task S and
the target task T . Let x∗s (p) and x∗t (p) denote the optimal
solution for S and T respectively as follows2:

x∗s (p) = argmax
xs

us(xs) (3)

x∗t (p) = argmax
xt

ut (xt ) . (4)

The common information I(p) is a function of p such that
it satisfies the following:

∃ F1(·), F2(·)

s.t. x∗s (p) = F1
(
I(p)

)
(5)

x∗t (p) = F2
(
I(p)

)
. (6)

Essentially, the common information is the information
required by both S and T . We note that for all (S, T ) pairs,
there exists at least one choice of the common information,
which is the problem input p itself.

2Note that by (1) and (2), both xs and xt are functions of the input p. Thus,
the optimal x∗s and x∗t are also functions of p.
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C. TRANSFER LEARNING PRINCIPLES
Despite the correlations, S and T are still two different tasks.
For a neural network model exclusively trained on one task,
its learned features are not optimal for the other one: some
features learned from optimizing S could be totally irrelevant
or even counter-productive for optimizing T . For successful
transfer learning between S and T , the features need to be
general, i.e., it should contain more knowledge than required
for optimizing just a single task.

Moreover, due to reasons such as the cost and overhead
of data acquisition, the data is assumed to be highly limited
for training 2t on T . This assumption is particularly relevant
for scenarios where the target task T is adapted on the fly
after the model training and deployment. To effectively learn
F2t with limited data, we need to utilize the correlation
between S and T and transfer over the knowledge already
learned inF2s which is also useful for solving T . In essence,
features and representations computed both inF2s and inF2t

should contain the common information I(p) as defined in
Section II-B.

III. APPLICATIONS OF TRANSFER LEARNING
We provide in details three applications under the trans-
fer learning setting described in Section II-A. First,
in Section III-A, we modify the canonical machine learning
problem, the MNIST handwritten digits classification, to a
transfer learning problem. TheMNIST classification task has
long been regarded as a benchmark problem in the machine
learning literature. By exploring a transfer learning task for
this application, we can reveal the potential of the proposed
method for learning rich and complex transferable features.
Then, we present two wireless communication applications:
the D2D power control problem in Section III-B; and the
MISO beamforming and localization problem in Section III-
C. These two wireless communication problems represent
examples of non-convex mathematical optimization prob-
lems, which lack specific structures in the inputs and solution
mappings and therefore are challenging to solve for conven-
tional transfer learning techniques.

A. MNIST HANDWRITTEN DIGITS CLASSIFICATION
MNIST handwritten digits classification [32] is one classi-
cal problem explored by many machine learning algorithms.
Specifically, the MNIST dataset consists of images of
handwritings on single digits from 0 to 9. The original clas-
sification task requires predicting the correct digit from each
handwriting image.

We formulate the following transfer learning problem
based on this original MNIST digit classification problem.
Wemodify the classification objectives to obtain a source task
and a target task. Specifically, let S be the task of identifying
whether the input image represents the digit 1 or not; and
let T be the task of identifying whether the input image
represents the digit 8 or not. We select the input images
(which are the problem inputs p) to only include handwritings

representing 0, 1, or 8, such that for both S and T , the positive
and negative samples are relatively well balanced with a ratio
around 1-to-2.

The reason for the specific number selections is as follows:
as described in Section II-C, S and T should be similar and
at the meantime with significant differences. Both tasks of
identifying the number 1 and identifying the number 8 require
the common information of the complete pixel patterns such
as edges and corners over the entire input image. Nonetheless,
the difference is also apparent, as handwritings of the digit
1 should resemble a linear pattern of pixels throughout the
image, while handwrittings of the digit 8 should resemble
local circular patterns of pixels. As the defined input set only
includes handwrittings of 0, 1, and 8, a machine learning
model exclusively trained for solving S only needs to dis-
cover and rely on a simple high-level feature: whether the
pixels form a global linear pattern or not. Needless to say, the
knowledge in this model would not transfer well to solving
T , as the learned feature is not informative for distinguishing
handwrittings of 8 from 0. Therefore, an effective transfer
learning approach is needed for obtaining transferable fea-
tures from S to T .

Corresponding to the notions in Section II-A, xs and xt are
the neural network predictions on the probabilities that the
handwriting input p represents the respective digit specified
by the corresponding task. Specifically, with S and T both
being binary classification tasks, we have xs ∈ [0, 1] being
the probability of p representing the digit 1; and xt ∈ [0, 1]
being the probability of p representing the digit 8. Let pdigit
be the actual digit the handwriting p represents. The source
task and target task objectives are respectively:

us(xs) =


1, if xs ≥ 0.5 & pdigit = 1
1, if xs < 0.5 & pdigit ̸= 1
0, otherwise

(7)

ut (xt ) =


1, if xt ≥ 0.5 & pdigit = 8
1, if xt < 0.5 & pdigit ̸= 8
0, otherwise

(8)

The definitions in (7) and (8) represent the classification
accuracy, i.e., the average values of us(xs) and ut (xt ) over a set
of samples are the percentages of correct predictions across
that sample set.

B. D2D WIRELESS NETWORK POWER CONTROL
For the first wireless communication application, we study
the power control problem for D2D wireless networks. Con-
sider a wireless network with N D2D links that transmit
independently over the frequency band of bandwidth w with
full frequency reuse. Let G = {gij}i,j∈{1...N } denote the set of
channel gains, with gij being the channel gain from the j-th
transmitter to the i-th receiver. The power control problem
takes the wireless channel state information as the input,
so we have:

p← G = {gij}i,j∈{1...N } . (9)

410 VOLUME 2, 2024



Cui, Yu: Transfer Learning With Reconstruction Loss

Let Pi denote the maximum transmission power for the
i-th transmitter. The problem of power control is to find
the optimal values of the variables x = {xi}i∈{1...N }, where
xi ∈ [0, 1] denotes the percentage of maximum power that the
i-th transmitter transmits at. Under a specific power control
solution x, the i-th link has the following achievable rate:

ri = w log

(
1+

giiPixi∑
j̸=i gijPjxj + σ 2

)
, (10)

where σ 2 denotes the background noise power level.
For the transfer learning problem, we consider two link rate

utility functions that are important under different application
scenarios:
• The sum rate optimization as S:

us(xs) =
N∑
i=1

ri (11)

• The min rate optimization as T :

ut (xt ) = min
i=1...N

ri (12)

where xs and xt are the power control solutions for the
sum-rate optimization S and the min-rate optimization T
respectively.

Examining (11) and (12), they are correlated in the sense
that a set of higher rates over all links leads to a higher
objective value. Both objectives would benefit from proper
interference mitigation. On the other hand, these two objec-
tives differ significantly in term of fairness among links:
(12) ensures complete fairness by optimizing the worst link
rate; (11) largely ignores fairness since the optimal sum rate
might be achieved through heavily utilizing strong links.With
this distinction, conducting transfer learning between (11)
and (12) is challenging, as certain features crucial in opti-
mizing (11) could potentially lead to degraded performance
in (12).

C. MISO WIRELESS NETWORK BEAMFORMING AND
LOCALIZATION
As a second application in wireless communications,
we study the transfer learning from the downlink MISO
beamforming task to the localization task. The source task
aims to design the optimal downlink beamformers based on
the uplink received pilots, while the target task aims to find
the locations of the users. These two seemingly unrelated
tasks nevertheless share the common input as the estimated
channel state information.

Consider a downlink MISO network of M base stations
(BS) collectively serving a single user equipement (UE),
where each BS is equipped with K antennas while the UE is
equipped with a single antenna. We assume that the locations
of all BSs are fixed. We denote the UE location by the
coordinate (xUE, yUE, zUE), with xUE and yUE being unknown
and zUE being fixed, which is usually the case in practical
indoor scenarios where the UE is located on the ground or

at a certain level of known height. We assume reciprocity
of uplink and downlink channels, with the set of channel
coefficients denoted by H = {hm}m∈{1...M}, where hm ∈ CK

is the vector of channel coefficients from the K antennas of
the m-th BS to the UE. We use the Rician fading model for
modeling the wireless channels, with the channels from the
m-th BS to the UE modelled as follows:

hm = ρ(dm)

(√
ϵ

1+ ϵ
hLOSm +

√
1

1+ ϵ
hNLOSm

)
(13)

with dm being the distance from the UE to the m-th BS and
ρ(dm) being the associated pathloss as a function over this
distance, hLOSm ∈ CK and hNLOSm ∈ CK being the channel
coefficients for the line-of-sight (LOS) path and non-line-
of-sight (NLOS) paths respectively, and ϵ being the Rician
factor as the ratio of power between the LOS and NLOS
channel components. Specifically, wemodel the LOS channel
component as:

hLOSm = am(θm, φm) , (14)

where θm and φm are the azimuth and elevation angle-of-
arrival (AoA) respectively from the UE to the m-th BS, and
am ∈ CK is the steering vector, which is a function of θm and
φm. Let δ and λ denote the antenna spacing and the signal
wavelength respectively, the k-th component of am, which
corresponds to the k-th antenna of the m-th BS, is computed
as follows:

[am(θm, φm)]k = e
2πδ
λ [ir (n) sin(θm) cos(φm)+ic(n) cos(θm) cos(φm)] ,

(15)

with ir (n) and ic(n) being the row and column index of the n-th
antenna in the antenna array respectively. As for the NLOS
paths, we use the Rayleigh fading model to model these path
components collectively:

hNLOSm ∼ CN (0, I) . (16)

We assume a maximum transmission power level of PBS
for each BS andPUE for theUE, and a noise level of σ 2 both at
the BSs and at the UE.We use an uplink pilot stage for the BS
to infer the wireless channel, thereby allowing it to perform
downlink beamforming or localization tasks. Specifically, the
UE sends T uplink pilot signals, which each BS measures
through applying a sequence of sensing vectors over its K
antennas. Let c = {ct }t∈{1...T } be the set of uplink pilot signals
sent by UE, and V = {vtm}m∈{1...M}, t∈{1...T } be the set of
sensing vectors employed by all the BSs, where vtm ∈ CK

is the sensing vector adopted by the m-th BS for receiving
the t-th pilot. According to the power constraint, we have
|ct |2 = PUE,∀t . Also, we require ||vtm||

2
2 = 1,∀m, t . For

the t-th uplink pilot the UE transmits, the m-th BS receives
the measurement r tm ∈ C:

r tm = (vtm)
Hhmct + ntm , (17)

where ntm ∼ CN (0, σ 2I) is the noise experienced at the
m-th BS when receiving the t-th uplink pilot transmission
through vtm.
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We study the transfer learning problem between two tasks:
the downlink beamforming task S, and the UE localization
task T , both of which are based on the uplink pilot mea-
surements as the input. Specifically, we assume both the
UE uplink pilots c = {ct }t∈{1...T } and the sensing vectors
adopted at each BS V = {vtm}m∈{1...M}, t∈{1...T } are fixed.
Correspondingly, we have the problem inputs as:

p← {r tm}m∈{1...M},t∈{1...T } . (18)

We now provide detailed descriptions of the source task and
the target task as follows.

1) SOURCE TASK — DOWNLINK BEAMFORMING
The task of downlink beamforming focuses on finding the
optimal digital downlink beamformers at all BSs to collabo-
ratively maximize the signal power received, or equivalently,
the signal-to-noise ratio (SNR), at the UE. Specifically, let
B = {bm}m∈{1...M} denote the set of digital beamformers to
be optimized, where bm ∈ CK is the downlink beamformer
employed by the m-th BS, with ||bm||22 = 1. Corresponding
to the definition in Section II-A, the source-task optimization
variables xs is the set of beamformers B:

xms ← bm ∀m (19)

xs← {xms }m∈{1...M} . (20)

Given the set of optimized beamformers B, the SNR at the
UE for downlink transmission, which is the objective for S,
is computed as follows:

us(xs) =
PBS

∑M
m=1 b

H
mhm

σ 2 . (21)

2) TARGET TASK — LOCALIZATION
The task of UE localization focuses on estimating the
unknown UE location based on the collection of uplink pilot
measurements from all BSs. Specifically, given the problem
inputs {r tm}m∈{1...M}, t∈{1...T }, the optimization variables for
T , i.e., xt , are the estimation of the x-coordinate and y-
coordinate of the UE location, which we denote as x̂UE and
ŷUE. Therefore, we have:

xt ← (x̂UE, ŷUE) . (22)

Naturally, the objective for the localization task is tominimize
the location estimation error. Using the Euclidean distance as
the metric, the utility function is as follows:

ut (xt ) = −
√
(xUE − x̂UE)2 + (yUE − ŷUE)2 . (23)

Note that we define the utility function as the negative value
of the estimation error in Euclidean distance. With this defi-
nition, we will aim to maximize the utility function ut , which
in turn would minimize the localization error and lead to a
high localization accuracy.

IV. TRANSFER LEARNING WITH
RECONSTRUCTION LOSS
We now present the proposed novel transfer learning method,
which is effective for a wide range of problem domains and
is applicable to a variety of deep neural network architec-
tures. The proposed method is target-task agnostic as long
as the target task shares the same problem input. As a result,
it can be applied to arbitrary target tasks on the fly with
minimal additional training. Furthermore, as compared to the
conventional transfer learning approaches, only during the
source task training, the proposed method introduces some
relatively low amount of additional parameter complexity
and computational complexity. During the target task training
and testing or model implementations however, the proposed
method does not introduce any additional parameters or com-
putational complexity.

A. INFORMATION WITHIN NEURAL NETWORK
COMPUTATION FLOW
A neural network consists of consecutive hidden layers of
neurons computing non-linear functions (i.e. activations),
forming a computation flow. For a regular neural network
learning one specific input-to-output mapping, the features
computed at each hidden layer follow a general information
flow pattern: from the input to the output, the amount of
information describing the input gradually reduces layer by
layer, while only the information necessary for predicting the
output is maintained [35], [36], [37]. While being efficient
for learning a single mapping, this information flow pattern
may not be desirable in the transfer learning setting. Instead,
we desire the features learned by the model to be generaliz-
able and retain sufficient information for being transferable to
new target tasks. In other words, the learned model features
need to contain the common information among tasks of
interest in order to be effective for transfer learning.

For transfer learning on CV or NLP applications, it is
relatively clear which features are likely to hold the com-
mon information. Specifically, with highly structured inputs,
the neural network computation flow learned under regular
training is likely to have structures already: the entire flow
can be divided into a feature learning stage and an optimiza-
tion stage. Take convolutional neural networks solving CV
tasks as examples, the feature learning stage includes the
convolution layers that compute general high-level features
which contain the common information for many relevant
CV tasks (such as edge patterns, pixel intensities, or color
gradients over the input image), followed by the optimization
stage consisting of fully connected layers that process these
high-level features and compute the task-specific outputs
(e.g. classification class scores). To conduct transfer learning
over correlated CV tasks, the convolutional layers are shared
among the models as the feature learning stage, while the
fully connected layers of each model are further trained on
a per-task basis [12], [14], [15].
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FIGURE 1. Transfer learning with reconstruction loss.

However, for general mathematical optimization problems,
the inputs lack clear structures in most cases. Under regular
training methods, the resulting neural network computation
flow is not clearly divided by stages, with internal features
gradually becoming more and more task-specific layer-by-
layer. As the result, it is difficult to identify or explicitly
encourage the learning of transferable features, or equiva-
lently, to obtain features that incorporate the desired common
information.

B. SOURCE TASK TRAINING WITH ADDED
RECONSTRUCTION LOSS
To tackle the challenges of transfer learning for mathematical
optimization problems, we propose a novel transfer learning
approach to encourage the learning of transferable features.
Specifically, we first identify a proper selection of the com-
mon information for the source task and the target task.When
training the neural network model on the source task, on top
of the regular task-based loss, we introduce in addition a loss
term for the common information reconstruction.

Fig. 1 illustrates the proposed transfer learning approach.
We adopt the most general fully-connected neural network
architecture. Within the neural network, we select a hidden
layer as the feature layer wherewe encourage the transferable
features to be computed. Correspondingly, the part of the
neural network computation flow from the input layer to the
feature layer forms the feature learning stage, while the part of

the computation flow from the feature layer to the output layer
forms the optimization stage. There is no particular constraint
on which hidden layer to select as the feature layer, as long
as there is sufficient transformation capacity (by having a
sufficient number of hidden layers) both from the input layer
to the selected layer and from the selected layer to the output
layer.

From the selected feature layer, we add in a reconstruction
stage as a separate branch in the computation flow, in paral-
lel to the optimization stage. The reconstruction stage aims
to reconstruct the common information I(p) by using the
features in the feature layer. We denote the corresponding
reconstruction loss by LR. Together with the original loss
associated with optimizing the source task utility us(xs),
which we denote by LS , the loss function L that we use to
train F2s is:

L = LS + αLR (24)

where α is the relative weighting scalar between the loss
terms.

With F2s trained on L as in (24), the feature layer
computes features that are pertinent to the source task opti-
mization, while also containing knowledge of the common
information I(p). Therefore, these features are highly general
and transferable to different tasks that are relevant to the
source task. We emphasize that when the choice of I(p)
is generic (e.g., by choosing the problem inputs p as the
common information), the proposed approach is target-task
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agnostic, since no prior knowledge of the target task is needed
throughout the training procedure.

C. TRANSFER LEARNING BY SHARING FEATURE LAYER
After training the neural network F2s on the source task S as
described in Section IV-B, transfer learning on the target task
T is straightforward. We first transfer the subset of the neural
network parameters 2s up to the feature layer as the shared
feature learning stage to the neural network parameters 2t ,
and leave the remaining parameters in 2t unassigned. When
training F2t , we freeze all the transferred parameters so they
would remain unchanged as the already-optimized feature
learning stage. With the proposed transfer learning approach,
through the transferred feature learning stage, the features
computed in the feature layer of F2t are already valuable for
optimizing T before starting any target task training.
For the parameters after the feature layer in 2t , we train

these parameters with the regular loss associated with the
target task utility ut (xt ), which we denote as LT . This further
training leads to the task-specific optimization stage in 2t .
With the number of trainable parameters greatly reduced,
along with the fact that the features from the feature layer
are also optimized for T , only a small amount of additional
training data is needed to obtain a well-performing model
F2t . In essence, the computational complexity of target-task
training is significantly reduced when compared to the con-
ventional transfer learning approach.

We emphasize that the selection of LT is not required dur-
ing the source task training phase specified in Section IV-B.
Instead, we only need to decide the proper T after the target
task T occurs. Therefore, the specification on LT does not
affect the proposed approach on being target-task agnostic.

For the actual testing or implementations on either S or
T , only the feature learning stage and the corresponding
optimization stage of the neural network model need to be
executed. Therefore, the proposed approach does not intro-
duce any additional parameters or computational complexity
into the model for actual inference. In fact, our approach
only increases the model complexity during the source task
training. Since in practical scenarios, as the initial stage of
the model development, training the model on S is usu-
ally done offline with sufficient time and data resources,
the extra complexity from our approach is likely to be
negligible.

D. SELECTING THE COMMON INFORMATION
According to Definition 1, selecting the proper common
information for a given set of tasks is non-trivial. Fortu-
nately, as mentioned in Section II-B, we can always resort
to using the problem inputs p as the common informa-
tion when no alternative selection is apparent (which also
enables the proposed approach to be target task agnostic,
as previously discussed). In the following, we examine the
three applications for numerical simulations and propose a
proper choice for the common information for each of the
applications.

1) MNIST DIGITS CLASSIFICATION
As described in Section III-A, S focuses on identifying the
digit 1 while T focuses on identifying the digit 8, over
images of handwritings for three digits: 0, 1, and 8. With the
inputs p being images as high-dimensional data, the common
information among tasks of identifying different digits is
highly complex and involves detecting various pixel patterns
and their relative locations in the images. Summarizing the
common information in a concise form is difficult if not
impossible. Therefore, we select the original problem inputs
p, i.e. the images of handwritings, as the common information
for this application:

I(p)← p (25)

2) D2D WIRELESS NETWORK POWER CONTROL
With S focusing on the sum-rate maximization and T focus-
ing on the min-rate maximization, both power control tasks
largely depend on the mutual interference among all the N
D2D links. Therefore, the entire set of N 2 wireless channels
(with N direct-link channels and N × (N − 1) cross-link
channels) need to be considered when optimizing both S and
T . Correspondingly, we select all the channel gains G =
{gij}i,j∈{1...N }, which are the problem inputs p, as the common
information for this application:

I(p)← p (26)

3) MISO WIRELESS NETWORK BEAMFORMING AND
LOCALIZATION
Unlike the above-mentioned two applications, the common
information between S and T for this application can be
summarized in a concise form. Both downlink beamforming
and UE localization implicitly require channel estimation.
With the channel model as in (13), apart from the unknown
stochastic NLOS paths as in (16), the downlink channels are
largely determined by the following geometric parameters:
(i) The set of distances from the UE to all M BSs
{dm}m∈{1...M}.

(ii) The set of azimuth AoAs from the UE to all M BSs
{θm}m∈{1...M}.

(iii) The set of elevation AoAs from the UE to al M BSs
{φm}m∈{1...M}.

For the source task S on downlink beamforming, the opti-
mal beamformers that maximize (21) are the beamformers
designed to be perfectly aligned with the downlink channels.
Since the geometric parameters (i)-(iii) completely deter-
mine the deterministic components within the channels as in
(13)-(15), the optimization for xs is also largely dependent on
the knowledge of these geometric parameters. On the other
hand, for the target task T on the UE localization, the UE
location estimation (x̂UE, ŷUE, ẑUE) can be obtained through
the technique of triangulation from the fixed locations of
the BSs, also by using the geometric parameters (i)-(iii).
Therefore, these geometric parameters collectively can serve
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as a good choice for the common information:

I(p)← {dm, θm, φm}m∈{1...M} . (27)

As explained previously, the common information is only
required at the source task training stage: it is used as the
targets for the reconstruction loss LR in (24), as shown in
Fig. 1. For the target task training, and more importantly, the
actual testing of the model, there is no need for collecting
the common information. Correspondingly, for the MISO
application, we only need to prepare the geometric param-
eters (i)-(iii) in the source task training set.

V. NUMERICAL SIMULATIONS
We present the numerical simulation results of the proposed
transfer learning method on each of the three applications
introduced in Section III. For each application, we intro-
duce two neural network based benchmarks. To illustrate the
effectiveness of the proposed method through comparisons,
the neural network models trained under each of the two
benchmark methods share the identical network architecture
and specification of hidden neurons for the feature learning
stage and the optimization stage as the model trained with
the proposed approach. The two neural network based bench-
mark methods are as follows:

• Conventional Transfer Learning: Train F2s for the
source task on the loss LS , then transfer all the param-
eters in 2s up to the feature layer to 2t , followed by
training the parameters after the feature layer in 2t on
LT .

• Regular Learning: TrainF2s andF2t on the lossLS and
LT respectively, without any knowledge transfer (i.e.
parameters sharing) in between.

In the following, we refer to the proposed transfer learning
method as Transfer Learning with Reconstruction. Note that
as discussed earlier in this paper, the first benchmark method
listed above, which we refer to as the conventional transfer
learningmethod, is the most popular transfer learningmethod
adopted in the literature [12], [14], [15], [16], [17], [18], [19].

We emphasize that by definition, both the conventional
transfer learningmethod and the regular learningmethod lead
to the same training updates on 2s in the source task training
(since both methods update the entire set of 2s through gra-
dient descents solely on LS ). Thus, the model performances
on the source task utility us would be the same for these two
methods. Correspondingly, for the simulation results below,
we present just one value of us as the performance achieved
by both benchmark methods.

One notable advantage of applying transfer learning, and
especially the proposed transfer learning approach, is to mit-
igate over-fitting during training on limited target task data.
On the other hand, early stopping [38] based on validation
loss is also a popular technique for combating over-fitting,
which however requires a sufficiently large validation set that
is often not available for the target task. Nonetheless, for our
simulations, we reserve large validation sets on T and employ

TABLE 1. MNIST data set specifications.

early stopping when training each competing neural network
model. Correspondingly, each model is evaluated at its best
possible performance for each training method, and thus the
performance margins fully demonstrate the effectiveness of
the knowledge transfer by the proposed method.

A. TRANSFER LEARNING MNIST DIGITS CLASSIFICATION
1) SIMULATION SETTINGS
We take the original MNIST training and evaluation data sets,
and keep only the images of handwritings on the digit 0, 1,
or 8, as discussed in Section III-A. To better understand the
target task training data efficiency from each method (which
shows how effective the transfer learning is), we conduct
training and testing under two data-set specifications: a data
set specification with highly limited target task training data,
referred to as Data-Spec A, and a data set specification with
significantly more target task training data (around 10-times
the size of that in Data-Spec A), referred to as Data-Spec B.
For Data-Spec A, we divide all the training data according to
a 95%-5% split for data used in S and T respectively. Fur-
thermore, we adopt a 70%-30% training-validation split for
data in S, and a 10%-90% training-validation split for data in
T . For Data-Spec B, we divide all the training data according
to a 90%-10% split for data used in S and T respectively.
Furthermore, we adopt a 70%-30% training-validation split
for data inS, and a 50%-50% training-validation split for data
in T . These data split ratios used in two data set specifications
result in the data set sizes shown in Table 1. The unusual
training-validation split ratios on T in both Data-Spec A
and Data-Spec B are chosen for two reasons: to cater to the
assumption that the training data is usually limited in the
target task and to ensure a sufficiently large validation set for
accurate early stopping in the target task training.

As already mentioned in Section IV-A, with image inputs,
convolutional neural networks naturally form computation
flows that have clear structural distinction between the fea-
ture learning stage and the optimization stage. However, for
more general mathematical optimization problems, there is
no established neural network architecture that learns and
provides computation flows with such clear distinctions,
which is the challenge that the proposed method aims to
address. As this MNIST digit classification problem is used
for illustrative purpose, the image inputs of the problem are
treated as general inputs without clear spatial structures to be
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TABLE 2. MNIST neural network architecture.

exploited directly. Specifically, we flatten the image inputs
into one-dimensional vectors3 and adopt the fully-connected
neural network architecture for all neural network models.

The same overall neural network specification is used by
all the competing methods, as shown in Table 2. We use
the same specification for the feature learning stage in 2t
and 2s to support the transfer of trained parameters. Fur-
thermore, in this application, since xs and xt have the same
dimension (i.e. a single scalar output), we also use the same
specification for the optimization stage in2s and2t . We note
that 25 features are used in the feature layer for each neural
network model. Furthermore, each neural network outputs a
single value between 0 and 1 (enforced by the sigmoid non-
linearity), as the probability of the input handwriting image
representing the digit 1 for T or the digit 8 for S.
In terms of the selections of the source-task loss function

LS and the target-task loss function LT , directly optimizing
us or ut as in (7) or (8) is not feasible, since (7) (or (8)) is
not a differentiable function over xs (or xt ), and therefore no
gradient can be derived for neural network model parameter
updates. Instead, we use the popular cross-entropy function as
the task-based loss functions. With pdigit being the true digit
for p, the (supervised-learning) loss functions for both tasks
are as follows:

LS = −1(pdigit = 1) log(xs)− 1(pdigit ̸= 1) log(1− xs) ,

(28)

LT = −1(pdigit = 8) log(xt )− 1(pdigit ̸= 8) log(1− xt ) ,

(29)

where 1(·) denotes the standard binary indicator function.
We use α = 5 in (24) for the loss L, which provides the
best performance for the proposed approach in the process
of hyper-parameter tuning.

2) TRANSFER LEARNING PERFORMANCES
We present the results of the classification accuracy by all the
competing methods, trained and evaluated under both data-
set specifications, in Table 3. First, the performances of all
the methods are about the same on S (under both data-set

3We down-sample each image to 10× 10 pixels before flattening them to
vectors for maintaining manageable dimensions. Simulation results suggest
that such down-sampling only mildly affect the classification performances
from all methods.

specifications), indicating that with the proposed method, the
source task performance trade-off due to optimizing the extra
reconstruction loss LR is minimal. At this very small cost,
the performance advantages that our approach achieves on the
target task are significant as evident by the noticeable margins
obtained on the classification accuracies on T .
We next examine the evaluation performances on T under

Data-Spec A: the proposed approach achieves the best per-
formance at a 97.4% prediction accuracy, with a 4.4% and
2.4% performance margins over two benchmark methods.
To understand the significance of these margins, we further
compare the evaluation results on T across two data-set
specifications. As shown in Table 3, the performance of the
proposed approach under Data-Spec A matches that of the
two benchmarkmethods underData-Spec B. Essentially, with
the number of training samples in T being 92 and 926 under
Data-Spec A and B respectively, the results show that to reach
the same prediction accuracy that our approach achieves
with less than 100 samples, a 10-fold increase of training
data on the target task is needed for the two benchmark
methods. This comparison result validates the significance
of the reported performance margins under Data Spec A,
and suggests that our approach indeed achieves high data
efficiency in training as a result from effective knowledge
transfer from S to T . Lastly, focusing on the classification
accuracies on T under Data-Spec B, with increased available
training data, the conventional transfer learning approach has
already lost its edge against the regular learning method,
while our proposed approach still produces the best result.
Overall, these results indicate that the proposed approach
indeed effectively addresses the challenge of transfer learning
when the neural network lacks structures in its information
flow, through explicitly enforcing the learning of transferable
features.

B. TRANSFER LEARNING ON D2D WIRELESS
NETWORK POWER CONTROL
1) SIMULATION SETTINGS
We simulate each wireless network containing N = 10 links
randomly deployed in a 150m×150m region. We first gen-
erate the locations of the transmitters uniformly within the
region, and then generate the locations of the receivers such
that the direct-channel transceiver distances follow a uniform
distribution in the interval of 5m∼25m. We impose a min-
imum of 5m distance between any interferring transmitter
and receiver. We assume each transmitter has the maximum
transmission power of 30dBm with a direct-channel antenna
gain of 6dB, while the noise level is -150dBm/Hz.We assume
an available bandwidth of 5MHz with full frequency reuse
across the entire wireless network.
To simulate wireless channels, we assume that the channel

gain of each channel is determined by three components:

• Path-Loss: modeled by the short-range outdoor model
ITU-1411.
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TABLE 3. MNIST transfer learning performances.

TABLE 4. D2D transfer learning neural network architecture
(N: number of links).

• Shadowing: modeled by the log-normal distributionwith
8dB standard deviation.

• Fast Fading: modeled by Rayleigh fading with i.i.d cir-
cular Gaussian distribution of unit variance.

We collect N 2 channel gains for each layout into a N 2-
dimensional vector as the input p. Similar to Section V-A,
we utilize the same neural network specification in 2s and
2t for both the feature learning stage and the optimization
stage (since xs and xt have the same dimension as the number
of links N ). The same overall neural network specification is
used by all the competingmethods, as summarized in Table 4.
With N = 10, the total numbers of trainable parameters
for all three stages in the neural network computation flows
(including both weights and biases) are as follows:
• Feature Learning Stage (2s or 2t ): 52900 parameters;
• Optimization Stage (2s or 2t ): 5070 parameters;
• Reconstruction Stage (only for 2s trained by our pro-
posed approach): 40300 parameters.

As the optimization stage only has a small number of parame-
ters, training models on T via transfer learning requires little
data.

To train each neural network, we formulate the
(unsupervised-learning) loss functions LS and LT directly
based on the task utility values of both tasks as follows:

LS = −us(xs) , (30)

LT = −ut (xt ) , (31)

with us(xs) and ut (xt ) defined as (11) and (12) respectively.
Note that we define the loss functions by negating the utility
functions, such that the utility functions are maximized while

TABLE 5. D2D wireless networks data set specifications.

the loss functions are minimized. Furthermore, to train F2s

with our approach, we use α = 3 in (24) for the loss L,
which provides the best performance in the process of hyper-
parameter tuning.

In terms of the data used for training under all competing
methods, we utilize the data set specification listed in Table 5.
Each sample of a D2D wireless network is generated accord-
ing to the wireless network simulation settings mentioned
earlier. We note that the data set sizes in Table 5 are smaller
than the number of neural network trainable parameters,
especially for the training data on T . Similar to Section V-A,
we select these small data sets to illustrate that new tar-
get tasks can be adapted on-the-fly with minimal training
overhead, as well as to show that the proposed approach is
effective in knowledge transfer and is robust to over-fitting.
We use relatively large validation sets to ensure accurate
early stopping when training the model under each method.
However, wemay not have sufficient data for validation when
training the model on T in realistic scenarios. Therefore,
in Section V-B.2, we also include simulation results where no
early stopping is performed during target task training under
each method.

For the test data set (on which both utilities us and ut
are evaluated), we generate 2000 new samples of D2D wire-
less networks to obtain performance statistics over all the
methods.

2) TRANSFER LEARNING PERFORMANCES
Besides the two neural network based benchmarks, we also
include the following traditional mathematical optimiza-
tion algorithms serving as performance upper-bound base-
lines (with the cost of having much higher computational
complexities):

• Geometric Programming (GP) [39]: mathematical
algorithm for solving the min-rate optimization.
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• Fractional Programming (FP) [40]: mathematical
algorithm for solving the sum-rate optimization.

We train and evaluate each neural network based method
under the transfer learning direction: Sum Rate S → Min
Rate T , while only evaluating FP on S and GP on T .

We present both S and T performances, averaged over
all 2000 test wireless networks, in Table 6. As a first obser-
vation from the results, the conventional transfer learning
approach performs worse than even the regular learning
method, indicating that this D2D power control optimiza-
tion application indeed poses as a challenging problem for
transfer learning. Therefore, the proposed approach is much
needed for achieving knowledge transfer on such general
mathematical optimization problems. We then focus on the
results with early stopping, obtaining which requires addi-
tional data reserved as the validation set on T . Shown by the
numerical results, when the training data on the target task is
limited (1000 samples as in Table 5), the transfer learning-
with-reconstruction approach achieves the best target-task
performance among the neural network based methods, with
a 11% improvement over the regular learning approach, and
a 17% improvement over the conventional transfer learning
approach. The proposed approach achieves these improve-
ments while sacrificing minimal source-task performance as
the trade-off: a 1% reduction on the sum-rate results as com-
pared to both neural network based benchmarks. This slight
loss of the performance on T is expected since our approach
utilizes the training loss as in (24) that does not exclusively
target at optimizing the source-task utility.

3) LEARNING DYNAMICS AND OVER-FITTING
To understand the training dynamics that lead to the presented
results and to visualize if and how the over-fitting occurs
for each method, we provide the training curves on S and
T for all the methods in Fig. 2. Note that for the proposed
approach, we have plotted two losses on S: the source task
based loss shown by the solid line (LS in (24)), and the
total loss shown by the dotted line (L in (24)). As evident
by the validation curves on T (in the bottom-right figure),
while both the conventional transfer learning and the regular
learning approaches plateau early in validation loss and then
regress noticeably due to over-fitting, our approach enables
the model to learn at a much more sustainable pace from the
very limited training data set of 1000 samples, without any
noticeable over-fitting.

The effects of over-fitting are shown more clearly from
the simulation results when no early stopping is performed
during training on T . Examining again Table 6, as shown
by the results without early stopping, our approach maintains
its performance on ut (indicating the model does not over-fit
throughout training) and enjoys larger margins on T , with
13% and 25% improvements over the regular learning and
conventional transfer learning approach respectively. As this
set of results are achieved without needing a large validation

set on T , the performance comparison results are more rele-
vant to practical implementations.

C. TRANSFER LEARNING ON MISO DOWNLINK
WIRELESS NETWORKS
1) SIMULATION SETTINGS
For the MISO downlink wireless network application,
we simulate each wireless network within a 3-dimensional
confined region with dimensions of 100m×100m×50m.
We set up M = 3 BSs, located at the fixed locations at
the top level of the region: (0m, 0m, 50m), (0m, 100m,
50m), (100m, 0m, 50m). Each BS is equipped with K =
16 antennas, arranged in a 4× 4.2-dimensional array in par-
allel to the x-y plane. These BS configurations stay the same
across all instances of MISO wireless networks generated.
In eachMISO network, the UE is located at an unknown loca-
tion uniformly generated within the planar region (50±40m,
50±40m, 0m). We assume a maximum transmission power
level of PBS = 40 dBm for each BS and PUE = 30 dBm
for the UE. We also assume a background noise level at
-150 dBm/Hz.

For wireless channel specifications, we use the following
pathloss model in the decibel (dB) scale to model the pathloss
components of the channels (ρ(dm) in (13)):

ρ(dm)dB = −32.6− 36.7 log10(dm). (32)

Without loss of generality, we assume antenna spacing δ

and signal wavelength λ values such that 2πδ
λ
= 1. The

Rician factor ϵ = 10 is used. For channel estimation, the
UE transmits T = 4 uplink pilots. To receive the four
uplink pilots, each BS employs four sensing vectors. The
uplink pilots and the digital sensing vectors are all randomly
generated by sampling from circularly-symmetric complex
normal distribution, and then normalize to the proper power
levels. Specifically, the pilots are generated as follows:

ct
′

∼ CN (0, I) (33)

ct =
√
PUE

ct
′

|ct ′ |
∀t , (34)

while the sensing vectors are generated as follows:

v′m ∼ CN (0, I) (35)

vm =
v′m
||v′m||2

∀m, t . (36)

As mentioned in Section III-C, we use a fixed set of pilots
{ct }t∈{1...T } and sensing vectors over all BSs {vm}m∈{1...M}
over all the training and testing MISO wireless network
instances, and therefore the models can implicitly learn the
knowledge about these pilots and sensing vectors and further
estimate the varying wireless channels H by using only the
inputs {r tm}m∈{1...M},t∈{1...T } as in (17).

As specified in (27), we select the three sets of geometric
parameters as the common information: the set of distances
{dm}m∈{1...M}, the set of azimuth AoAs {θm}m∈{1...M}, and
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TABLE 6. D2D wireless networks transfer learning performances.

FIGURE 2. Training curves for transfer learning in D2D wireless network optimizations (the top two figures provide
training and validation curves for the source task; the bottom two figures provide training and validation curves for
the target task).

the set of elevation AoAs {φm}m∈{1...M}. In the actual imple-
mentation, we make the observation that in (15), {θm} and
{φm} occur in the terms sin(θm) cos(φm) and cos(θm) cos(φm).
Therefore, in our simulations, we collect the following values
as the common information:

I(p)← {dm, sin(θm) cos(φm), cos(θm) cos(φm)}m∈{1...M}.

(37)

Although the common information in (37) is not as concise
as in (27), the simulation results suggest that using (37) as
the common information in our proposed approach is still
effective in obtaining highly competitive transfer learning
performances.

We provide in Table 7 and Table 8 the specifications
for data sets and the neural network architecture used by
all the competing methods. We reiterate that for the MISO
downlink transmission application, xs and xt are solutions
for the optimal beamformers and the UE location estimation
respectively. Therefore, unlike the previous two applications

in Section V-A and V-B, the optimization variables xs and xt
have different dimensions: xs ∈ R2MK contain the real and
imaginary parts of the M beamformers {bm}m∈{1...M}; while
xt ∈ R2 contain the location coordinate estimation (x̂UE, ŷUE)
for the UE. Correspondingly, we construct the optimization
stages in 2s and 2t using different specifications as shown
in Table 8. We also note that for the common information
as in (37), three values are collected for each of the M BSs.
Therefore, the dimension of the common information, which
is also the output dimension for the reconstruction stage,
is 3M = 9. Specifically, the numbers of trainable parame-
ters for all three stages in the neural network computation
flows (including weights and biases), in 2s and 2t , are as
follows:

• Feature Learning Stage (2s or 2t ): 64150 parameters;
• Optimization Stage in 2s: 29896 parameters;
• Optimization Stage in 2t : 36702 parameters;
• Reconstruction Stage (only for 2s trained by our pro-
posed approach): 8059 parameters
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TABLE 7. MISO wireless networks data set specifications.

TABLE 8. MISO transfer learning neural network architecture
(M: number of BSs; N: number of antennas per BS).

As shown above, with carefully crafted low-dimensional
common information, the number of extra parameters intro-
duced by our approach as the reconstruction stage is relatively
low in the source-task training.

In terms of the selection for LS , unlike in Section V-B,
we have discovered through simulations that training models
by formulating the source-task loss function as the utility
value us (as in (21)) does not lead to as strong performances
as compared to training with supervised learning targets. For
the source task T on downlink beamforming, we have the
training targets being the perfect beamformers, which are
the beamformers perfectly aligned with the wireless chan-
nels from each BS to the UE, which we denote by B∗ =
{b∗m}m∈{1→M}, obtained as follows:

b∗m =
hm
||hm||2

∀m , (38)

where hm is the set of actual channels from them-th BS to the
UE, as described in Section III-C. With B∗ being the target
labels, we formulate the source-task loss function LS as the
squared-error loss (which is a popular choice of loss function
for regression tasks):

LS =
M∑
m=1

||bperfectm − xms ||
2
2 , (39)

where xms is the optimized beamformers for the m-th BS as
defined in (19). With the target task T being the downlink

localization task, it is naturally formulated as a regression task
with the true UE location being the target. Correspondingly,
we use the squared-error loss function LT :

LT = (xUE − x̂UE)2 + (yUE − ŷUE)2 , (40)

with x̂UE and ŷUE being the UE location estimations as the
model’s output xt , as specified in (22). To train F2s with our
approach, we use α = 4 in (24) for the loss L, which pro-
vides the best performance in the process of hyper-parameter
tuning.

2) TRANSFER LEARNING PERFORMANCES
For the downlink beamforming task S, we provide several
baselines in addition to the two neural network based bench-
marks, as follows:
• Perfect Beamformers: assuming that accurate knowl-
edge of all wireless channels H is available, the beam-
formers are designed to align with the channels from
each BS to the UE, computed as in (38).

• RandomBeamformers: randomly generate beamformers
by firstly generate entries from circularly-symmetric
complex normal distribution and then apply normaliza-
tion to ensure unit beamformer power.

We test all the methods over 2000 newly generated testing
MISO wireless networks, and present results on S and T
in Table 9, where we report the average of the SNR values
as us(xs) in (21) and the average of the localization errors
as ut (xt ) in (23). Similar to Section V-B.2, we have also
included in Table 9 the target task performances by each
method when no early stopping is performed during training.
Furthermore, we also present in Fig. 4 the CDF curves over
2000 testing MISO wireless networks for the localization
errors ut .
As suggested by the performance statistics in Table 9, the

proposed transfer learning with reconstruction loss approach
achieves a better target task localization performance, with
a 15% improvement over the regular learning method and
a 8% improvement over the convetional transfer learning
method. To visualize the performance margins, we pro-
vide in Fig. 5 visualizations of the localization results by
all the methods in two testing MISO wireless network
samples.

3) LEARNING DYNAMICS AND OVER-FITTING
To show how the proposed approach excels, we provide in
Fig. 3 the training and validation curves on both S and T
by all the methods. Under limited target task training data
(500 samples as specified in Table 7), as clearly shown
by the validation loss curves in Fig. 3, the model trained
with the proposed approach shows little overfitting and
maintains a much more sustainable and effective learning
progress compared to the other two methods. These observed
target-task learning dynamics validate the fact that the pro-
posed approach effectively addresses the over-fitting issue in
transfer learning.
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TABLE 9. MISO downlink wireless networks transfer learning performances.

FIGURE 3. Training curves for transfer learning in MISO wireless network optimizations (the top two figures
provide training and validation curves for the source task; the bottom two figures provide training and
validation curves for the target task).

FIGURE 4. CDF for MISO network downlink localization errors
(the more to the left the curve locates, the lower the localization
errors are).

The effects from over-fitting are further reflected in the
comparison between the localization performances with

and without early stopping under each method, as shown
in Table 9. Similar to the previous two applications, the
proposed method achieves the better target task perfor-
mances with minimal performance tradeoff on the source
task.

4) CONCISE REPRESENTATION OF COMMON
INFORMATION
We would also like to emphasize that these performance
gains are achieved with the common information in a concise
representation tailored specifically to the tasks as in (27)
or (37). Benefited from such low-dimensional common
information, the additional reconstruction stage, which is
introduced into 2s by the proposed approach only during
training for S, also enjoys low parameter and computational
complexities relative to the feature learning stage and the
optimization stage of the model. This application illustrates
the effectiveness of the proposed method when the domain
knowledge is applied on selecting the task-specific common
information.
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FIGURE 5. Visualization of localization results in two randomly selected testing samples of MISO networks.

VI. CONCLUSION
Transfer learning has great potential and wide applicability in
general mathematical optimization problems. However, when
using neural networks to learn such optimization mappings,
it is challenging to learn or to identify the transferable features
within the neural network computation flows, due to the lack
of structures in the inputs and in the computation flows. This
paper proposes a novel transfer learning approach for learning
general and transferable features at specified locations within
neural networks. We first establish the concept of common
information in correlated tasks, the choice of which can
be generic or problem-specific. We then introduce a recon-
struction stage in the neural network model starting from a
pre-specified hidden layer, i.e., the feature layer. By enforcing
the reconstruction of the common information based on the
features from the feature layer, these learned features are gen-
erally descriptive of all the correlated tasks, and therefore can
be transferred among multiple task optimizations. Simulation
results on the MNIST classification problem and two wire-
less network utility optimization problems suggest that the
proposed approach consistently outperforms the conventional
transfer learning method and is robust against over-fitting
under limited training data. We hope this work could help
open up further exploration on bridging together transfer
learning and general mathematical optimizations.
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