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ABSTRACT In recent years data-driven machine learning approaches have been extensively studied to
replace or enhance traditionally model-based processing in digital communication systems. In this work,
we focus on equalization and propose a novel neural network (NN-)based approach, referred to as SICNN.
SICNN is designed by deep unfolding a model-based iterative soft interference cancellation (SIC) method.
It eliminates the main disadvantages of its model-based counterpart, which suffers from high computational
complexity and performance degradation due to required approximations. We present different variants of
SICNN. SICNNv1 is specifically tailored to single carrier frequency domain equalization (SC-FDE) systems,
the communication system mainly regarded in this work. SICNNv2 is more universal and is applicable as
an equalizer in any communication system with a block-based data transmission scheme. Moreover, for both
SICNNv1 and SICNNv2, we present versions with highly reduced numbers of learnable parameters. Another
contribution of this work is a novel approach for generating training datasets for NN-based equalizers,
which significantly improves their performance at high signal-to-noise ratios. We compare the bit error
ratio performance of the proposed NN-based equalizers with state-of-the-art model-based and NN-based
approaches, highlighting the superiority of SICNNv1 over all other methods for SC-FDE. Exemplarily,
to emphasize its universality, SICNNv2 is additionally applied to a uniqueword orthogonal frequency division
multiplexing (UW-OFDM) system, where it achieves state-of-the-art performance. Furthermore, we present
a thorough complexity analysis of the proposed NN-based equalization approaches, and we investigate the
influence of the training set size on the performance of NN-based equalizers.

INDEX TERMS Equalization, neural networks, single carrier frequency domain equalization, soft interfer-
ence cancellation, training set generation.

I. INTRODUCTION

D IGITAL communications at the physical layer level
is traditionally a quite model-based discipline. That

is, especially for the receiver processing blocks of dig-
ital communication systems, most algorithms have been
developed based on physical and statistical models of the
communication chain. With this established approach well
interpretable methods can be obtained, their performance
bounds can often be specified, and usually algorithms achiev-
ing optimal performance for the given models can be
derived. Besides these advantageous properties, model-based

approaches also have some downsides. Performance-optimal
methods can in some cases exhibit an infeasible computa-
tional complexity, requiring the application of suboptimal
algorithms in practice. Further, modeling errors, wrong (or
oversimplified) assumptions, or insufficient model knowl-
edge may lead to a considerable performance degradation.
Since with data-driven machine learning methods many of
the drawbacks of model-based approaches can be resolved,
currently intensive research is conducted on machine learn-
ing approaches for several applications in communications
engineering. This includes possible future scenarios like
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communications assisted by reconfigurable intelligent sur-
faces (RISs) [2], molecular communications [3], or integrated
sensing and communication [4]. However, also in tradi-
tional wireless communication systems promising results can
be achieved by means of machine learning. This involves
completely abandoning the block-based paradigm of cur-
rent digital communication system design with the help of
end-to-end learning [5], [6], or replacing / enhancing indi-
vidual blocks of a standard communication chain [7], [8],
[9]. The latter includes machine learning approaches for
channel estimation [10], [11], channel decoding [12], and
self-interference cancellation [13], [14], [15]. In this work,
we regard another important processing block at the receiver,
namely equalization. Equalization, also referred to as data
estimation, is the task of reconstructing transmitted data –
distorted during transmission over a channel – at the receiver
side of a communication system. Typically, equalization is
conducted by model-based methods. However, also with
machine learning methods auspicious results have already
been demonstrated [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25]. In current publications on machine learn-
ing approaches for data estimation, mainly neural networks
(NNs) are employed. NNs are known to be universal function
approximators [26] and thus are expected to approximate the
optimal data estimators. Many of the presented results are
promising, but there are also some new challenges arising.
More specifically, standard NNs like a fully-connected feed-
forward NN (FCNN) are black-box approaches, i.e., their
inference is not interpretable, performance bounds can hardly
be derived, and domain knowledge is not exploited. Espe-
cially due to the latter fact most NNs suffer from requiring
large amounts of training data and a high inference com-
plexity. Optimally, one can fuse model-based and data-driven
approaches by, e.g., incorporating existing model knowledge
into NNs, which is expected to lead to less complex and
better performing NNs than the standard black-box NNs. One
possibility of incorporating model knowledge into NNs is to
design their layer structure accordingly, which leads to NNs
we refer to as model-inspired NNs. Currently, one of the most
promising and most popular approaches for obtaining NNs
with a model-inspired layer structure is deep unfolding [27].
The idea of deep unfolding is to take a model-based iterative
algorithm, which is conceived for finding the solution of an
optimization problem, fix its number of iterations, and unfold
every iteration to a layer of an NN. Depending on the aspired
abstraction level of the NN (i.e., the similarity between the
model-based algorithm and the NN), only a few parameters of
themodel-based iterative algorithm (e.g., its step size) or even
whole parts are replaced by learnable parameters or modules,
respectively. Those can then be optimized with tools known
from NN optimization by utilizing available training data.
A number of NN-based data estimators, e.g., the NNs in [18],
[20], [22], [23], [24], and [25] are designed by employing
deep unfolding. In this work, we also apply deep unfolding
for the design of our proposed NN-based equalizers.

Most NN-based data estimators are currently proposed
for equalization in multiple-input multiple-output (MIMO)
communication systems, often assuming data transmission
over an uncorrelated Rayleigh fading channel. In this work,
the developed NN-based equalizers are mainly evaluated
for single carrier frequency domain equalization (SC-FDE)
systems [28], [29]. In an SC-FDE system, a single car-
rier transmission scheme is utilized, but the payload data
is transmitted in a block-wise manner with guard intervals
between successive blocks, as it is the case in orthogonal fre-
quency division multiplexing (OFDM) systems. The received
blocks are transformed to frequency domain before conduct-
ing matched filtering, downsampling, and equalization. This
allows an efficient receiver implementation [29] and results
in a system model similar to that of an OFDM system. In this
work, we regard employing both a cyclic prefix (CP) and a
so-called unique word (UW), which is a known deterministic
sequence, as guard interval. The UW can advantageously
be utilized, e.g., for synchronization purposes [30], how-
ever, at the cost of equalization complexity. For a CP guard
interval, the optimal linear equalizer is a low-complex single-
tap equalizer, while for a UW guard interval, in turn, the
optimal linear equalizer is more complex. In contrast to
CP-OFDM systems, for SC-FDE optimal performance can
only be obtained with computationally highly demanding
nonlinear equalizers. This motivates developing NN-based
data estimators for SC-FDE systems. Employing NN-based
equalizers for SC-FDE systems necessitates, in contrast to
MIMO systems over uncorrelated Rayleigh fading channels,
an additional pre-processing step. As extensively described
in [31], for the application of NN-based equalizers in SC-
FDE systems a data normalization scheme is required for a
well-behaved NN training and thus a satisfying performance
of the NN equalizers. We also briefly review the necessary
data normalization scheme in this work.

CONTRIBUTION
In this work, we propose the NN-based data estimators SIC-
NNv1 and SICNNv2, which are designed by unfolding an
iterative soft interference cancellation (SIC)method [32]. The
main idea of iterative SIC is that in each iteration every single
data symbol in the transmitted data vector is estimated on its
own, by considering the influence of all other data symbols in
the data vector as interference. This interference can be miti-
gated by incorporating estimates of the data symbols from the
previous into the current iteration. By that, the data symbol
estimates are refined from iteration to iteration. Although also
DeepSIC [23] is inspired by the same iterative SIC method,
SICNNv1 and SICNNv2 are fundamentally different from
this NN. The idea of SIC is adopted by DeepSIC concerning
its structure. That is, DeepSIC consists of multiple stages,
where each stage is comprised of as many sub-FCNNs as
there are data symbols in the transmitted data vector. Each
of the sub-FCNNs is utilized to estimate one data symbol,
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whereby the input data of a sub-FCNN is made up of the
received vector as well as of estimates provided by the
sub-FCNNs for the remaining data symbols from the last
stage. All estimates are refined stage by stage. That is, Deep-
SIC has similarities with the model-based SIC method only
by refining the estimates of the posterior data symbol prob-
abilities, but neither interference cancellation is conducted
in a stage, nor model knowledge is utilized. In contrast,
our proposed NN-based equalizers are far more similar to
the underlying model-based method. More specifically, with
SICNNv1 – an adapted version of an NN-based equalizer
called SICNN proposed in our previous work [1] – we try to
resemble themodel-based iterative SICmethod closely. How-
ever, we replace numerically demanding, computationally
intensive operations, for which also approximations have to
be made in the model-based approach, by low-complex NNs.
This NN-based approach achieves significantly better perfor-
mance than the corresponding model-based method, while
exhibiting lower complexity. We tailor SICNNv1 for being
employed as an NN-based equalizer in an SC-FDE system
by exploiting some properties of this communication system
in the NN architecture design. SICNNv2, in turn, is more
abstracted from the model-based iterative SIC method, i.e.,
less model knowledge is utilized for the NN architecture
design. However, it is more universal and can also be
applied as an equalizer in any communication system with
a block-based data transmission scheme. A further difference
between DeepSIC and the proposed SICNNv1 and SICNNv2
is their generalization ability regarding different channels.
As it is the case for, e.g., MMNet [21] or ViterbiNet [33],
DeepSIC is trained for one specific channel. This generally
allows lower complex NNs, but requires retraining as soon
as the channel changes. SICNNv1 and SICNNv2 belong, like
DetNet [18] or OAMP-Net [20], to the group of NN-based
data estimators, which are trained with different channels
sampled from a statistical channel model, and use the actual
channel realization as an input. These NNs generally require
an extensive offline training, and exhibit a higher compu-
tational inference complexity, but they do not have to be
retrained as long as the specified statistical channel model is
valid for the operating environment.

Since in every stage1 of SICNNv1/SICNNv2 the same task
has to be fulfilled, namely to refine estimated posterior data
symbol probabilities, we additionally introduce two modified
versions of SICNNv1 and SICNNv2. While in SICNNv1 and
SICNNv2 for every stage different sub-NNs are utilized to
estimate posterior data symbol probabilites, in SICNNv1Red
and SICNNv2Red every stage uses the same sub-NNs, which
drastically reduces the number of parameters to be trained.

We compare the proposed NN-based equalizers with
state-of-the-art model-based and NN-based data estimators
concerning achieved bit error ratio (BER) performance, and

1In order to avoid any misunderstandings, we refer to one unfolded itera-
tion of themodel-based iterative SICmethod as stage of SICNNv1/SICNNv2
instead of layer.

regarding their computational complexity during inference.
The evaluation is conducted for SC-FDE systems, either
employing a UW or a CP as a guard interval, for both
quadrature phase shift keying (QPSK) and 16-QAM (quadra-
ture amplitude modulation) alphabets, and with perfect and
imperfect channel knowledge at the receiver. We investigate
the required amount of training data for achieving satisfying
performance of selected NN-based equalizers, pointing out
the advantage of reducing the number of learnable parameters
of an NN. Further, we demonstrate the universal applicability
of SICNNv2 by presenting its achieved performance for a
communication system employing the so-called UW-OFDM
signaling scheme.

As another important contribution of this paper, we present
a novel approach to generate training sets for NN-based
equalizers. In this approach, only those sample data transmis-
sions are included in the training set for which the number of
data symbol estimation errors made by a baseline equalizer
exceeds a specified quantity. This greatly enhances the per-
formance of NN-based data estimators at high signal-to-noise
ratios (SNRs).

The remainder of this paper is structured as follows.
In Sec. II, we review the SC-FDE signaling scheme and
data transmission model, and we discuss state-of-the-art
model-based equalizers, including in particular the itera-
tive SIC method our NN-based equalizers are inspired by.
In Sec. III, the novel NN-based equalizers are introduced and
discussed in detail. Further, we propose a novel approach
for generating training datasets for NN-based data estimators
in Sec. IV. We present BER performance results, and an
in-depth analysis of the computational complexity of the
regarded model-based and NN-based equalizers in Sec. V.

NOTATION
Throughout this paper, we use lower-case bold face letters x
for vectors and upper-case bold face lettersX for matrices, xk
for the kth element of x, [X]kj for the element of X in row k
and column j, and [X]k∗ for the kth row of X. Further, (.)T ,
(.)H , and (.)∗ indicate transposition, conjugate transposition,
and conjugation respectively, while |X| is the determinant
of the matrix X. We denote the probability density function
(PDF) of a continuous random variable as p(.), the probability
mass function (PMF) of a discrete random variable as p[.],
a conditional PMF of a random variable a given b as p[a|b],
and a PMF evaluated at the value ã as p[a = ã]. We describe
the expectation operator averaging over the PDF/PMF of a
random variable a as Ea[.], where the subscript of the expec-
tation operator is omitted when the averaging PDF/PMF is
clear from context.

II. PRELIMINARIES
In this section, we describe the system model for SC-FDE,
and state-of-the-art model-based equalization approaches.
Further, we discuss an iterative SIC approach for data esti-
mation, and we highlight some properties of this method.
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A. SINGLE CARRIER FREQUENCY DOMAIN
EQUALIZATION
In an SC-FDE communication system [28], [29], [34], [35],
a single carrier modulation scheme is employed for data
transmission. At the transmitter, the data symbols to be trans-
mitted, which are drawn from a modulation alphabet S (in
this work, we mainly use QPSK as a modulation alphabet),
are grouped into blocks of length Nd. These blocks of data
symbols, which we refer to as data vectors d ∈ SNd , are
strung together to generate a transmit data burst, whereby
they are separated by guard intervals of length Ng. As a guard
interval, in this work we consider using either a CP or a UW,
which is a deterministic sequence known by the receiver.
Depending on the employed guard interval, some process-
ing steps in the receiver are different, which are described
later in this section. The transmit data burst is upsampled
and pulse shaped with a root-raised-cosine (RRC) filter, fol-
lowed by transmitting the resulting signal over a multipath
channel, which is additionally disturbed by additive white
Gaussian noise (AWGN). At the receiver, the first processing
step depends on the employed guard interval. While for a
UW guard interval every received data vector including its
succeeding guard interval is transformed individually to fre-
quency domain, for a CP guard interval the CPs are removed
first before transforming the remaining received data vectors
individually to frequency domain. In frequency domain, the
further processing steps matched filtering, downsampling,
and equalization are conducted. Independent of the employed
guard interval, the general model2 of the transmission of a
data vector up to the input of the equalizer in the equivalent
complex baseband can be written as [36]

yr = H̃FN ′x+ w . (1)

Here, yr ∈ CN ′ is the received vector after matched filtering
and downsampling in frequency domain, where N ′ depends
on the employed guard interval and is being specified later
in this section. H̃ ∈ RN ′×N ′ is a diagonal matrix con-
taining the sampled frequency response of the cascade of
upsampler, pulse shaping filter, multipath channel, matched
filter, and downsampler on its main diagonal. Note, that H̃
is a real-valued matrix since we conduct optimal matched
filtering in frequency domain, i.e., the filter is matched to the
channel distorted transmit pulse (for further details on opti-
mal matched filtering in SC-FDE systems, we refer to [37]
and [38]). Furthermore,FN ′ ∈ CN ′×N ′ is theN ′-point discrete
Fourier transform (DFT) matrix and w ∼ CN (0,N ′σ 2

n H̃) is
circularly symmetric complex AWGN, with σ 2

n being the
variance of the AWGN in time domain. The structure of the
transmitted vector x ∈ CN ′ as well as the final system model
differ for UW and CP guard intervals, which we further detail
in the following.

2Here we assume sufficiently long guard intervals such that each data
block can be processed individually and independently of all other trans-
mitted data blocks.

1) UNIQUE WORD GUARD INTERVAL
As already mentioned, in case of a UW guard interval [34],
[35], at the receiver both a received data vector and its
succeeding UW are transformed to frequency domain for
the further processing steps. Hence, the vector x ∈ CN ′

in (1) has the form x = [dT ,uT ]T , where d ∈ SNd is the
transmitted data vector to be estimated, u ∈ CNg is the UW,
and N ′ = N = Nd + Ng. Inserting into (1) leads to

yr = H̃FN

[
d
u

]
+ w . (2)

By assuming perfect channel knowledge on receiver side, the
influence of the known UW u on the received vector yr can
be removed according to

yr − H̃M′u = H̃Muwd+ w , (3)

with FN = [MuwM′], where Muw ∈ CN×Nd and M′ ∈
CN×Ng are built by the first Nd columns and the remaining
Ng columns of FN , respectively.

2) CYCLIC PREFIX GUARD INTERVAL
In case of a CP guard interval [28], [29], the guard intervals
are removed at the receiver before transforming the received
blocks of data to frequency domain, which means that x
in (1) is realized as the transmitted data vector d ∈ SNd ,
and N ′ = Nd. Consequently, for a CP guard interval, the data
transmission is modeled as

yr = H̃FNdd+ w . (4)

3) SYSTEM MODEL FOR SINGLE CARRIER FREQUENCY
DOMAIN EQUALIZATION
As elaborated above, the model for data transmission in an
SC-FDE system is given by (3) for a UW guard interval and
by (4) for a CP. For the ease of notation, in the remainder of
this work the SC-FDE system model is given for both guard
intervals by

y = H̃Md+ w = Hd+ w , (5)

with y ∈ CN ′ ,M ∈ CN ′×Nd , andH = H̃M, where we employ
for a
• UW guard: N ′ = N = Nd + Ng, y = yr − H̃M′u,
M =Muw.

• CP guard: N ′ = Nd, y = yr,M = FNd .

4) MODEL-BASED EQUALIZATION
Based on (5), data estimation can be conducted for a given
received vector y and a channel matrixH. As thoroughly elu-
cidated in [39], depending on the optimality criterion, there
exist different optimal equalizers. The bit-wise maximum a-
posteriori (MAP) estimator yields for every transmitted bit
the bit value featuring the highest posterior probability. It is
known to be the optimal estimator regarding the bit error
probability. The vector MAP, in turn, is optimal regarding
the error probability of the data vector estimate. However,
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the computational complexity of both of the aforementioned
estimators grows exponentially with the data vector length
Nd, which makes them in general prohibitive for practical
applications. Hence, one usually has to resort to suboptimal
linear or nonlinear estimation methods.

The best linear estimator in the Bayesian sense is the linear
minimum mean square error (LMMSE) estimator, which is
given by [40]

d̂ =
(
MH H̃M+

Nσ 2
n

σ 2
d

I
)−1

MHy = ELMMSEy , (6)

with I and σ 2
d being the identity matrix with appropriate

dimensions and the variance of the symbol alphabet, respec-
tively. In case of a CP guard interval (M = FNd ), (6) can be
simplified to [35]

d̂ =
1
N ′

MH
(
H̃+

σ 2
n

σ 2
d

I
)−1

y =
1
N ′

MHELMMSE,dgy , (7)

where ELMMSE,dg =
(
H̃ + σ 2

n
σ 2
d
I
)−1 is a diagonal matrix, and

thus also the inversion required to compute this estimator
matrix can be realized efficiently. Typically, instead of multi-
plying by 1

N ′M
H , an inverse DFT is conducted. Note, that this

low-complex equalizer can also be employed for a UW guard
interval when applying LMMSE estimation to (2) instead
of (3), i.e., the known UW u is not being removed before
data estimation, but is estimated as well. Compared to the
LMMSE estimator (6), this approximate3 LMMSE estimator
allows a lower-complex equalization, however, at the cost of
performance degradation [35].

A popular suboptimal nonlinear estimator is the decision
feedback equalizer (DFE), which is an iterative method.
There, in every iteration LMMSE estimation of the data
symbol with the smallest error variance is conducted, fol-
lowed by removing the influence of the hard decision data
symbol estimate on the received vector. However, in case
of wrong data symbol estimates, this method suffers from
error propagation deteriorating the estimation performance.
For more details, we refer to [39], where the DFE is elab-
orated for a so-called unique word orthogonal frequency
division multiplexing (UW-OFDM) system. In the following,
we address another suboptimal nonlinear method, namely
iterative soft interference cancellation (SIC), in more detail,
since the proposed NN-based equalizers are deduced from
this model-based approach.

B. ITERATIVE SOFT INTERFERENCE CANCELLATION
The idea of the iterative SIC method proposed in [32] is to
estimate each data symbol dk , k ∈ {0, . . . ,Nd−1}, in the data
vector d separately, and refine the estimates from iteration to
iteration. For the estimation of the kth data symbol dk , all
other data symbols dl , l ̸= k , are treated as interference, and
thus their influence on the received vector y is cancelled as

3By neglecting the knowledge about the UW, only an approximate
LMMSE estimator is obtained.

Algorithm 1Model-Based Iterative SIC for SC-FDE

1: function IterativeSoftIC_SC-FDE(H, y, σ 2
n , σ

2
d )

2: d̂ (−1)k ← 0, e(−1)k ← σ 2
d ∀k = 0, . . . ,Nd − 1

3: for q = 0, . . . ,Q− 1 do
4: for k = 0, . . . ,Nd − 1 do
5: Compute y(q)ic,k according to (11)

6: Compute C(q)
vv,k following (12) for q = 0,

or (14) for q > 0
7: Evaluate posterior PMF p[dk |y

(q)
ic,k ]

8: Update soft information: d̂ (q)k using (18) and
e(q)k via (19)

9: end for
10: end for
11: return d̂(Q−1)

12: end function

far as possible. Since the data symbols dl are unknown, their
currently available estimates d̂l are utilized for interference
cancellation. Interference cancellation reduces the unknown
variable to be estimated from an Nd-dimensional data vector
d to a single data symbol dk , and thus nonlinear minimum
mean square error (MMSE) estimation – which is generally
computationally infeasible for estimating d – can easily be
applied for estimating dk . In order to prevent error propa-
gation, instead of using hard decision data symbol estimates
for interference cancellation, soft information of every data
symbol estimate from the previous iteration is utilized in form
of the MMSE estimate, which is the posterior mean, and
the corresponding conditional mean square error (MSE). The
soft estimates are refined iteratively. In [32], this approach is
proposed for a MIMO system where all entries of the channel
matrix H are independent of each other (all entries of the
channel matrix are modeled as independent random variables
following a normal distribution). This allows for simplifica-
tions in the iterative SIC method that cannot be applied in
general. In the following, we present the iterative SICmethod
following the approach proposed in [32]. However, we adapt
this method, which is also summarized in Algorithm 1, for
an SC-FDE system, where the assumption of independent
elements of H is not fulfilled.
Let us regard the qth iteration, q = 0, . . . ,Q − 1, of Q

total iterations of the iterative SIC method. We assume that
for every data symbol dk , k ∈ {0, . . . ,Nd−1}, a soft estimate
from the previous iteration (q − 1) is available, namely, the
MMSE data symbol estimate, which is the posterior mean

d̂ (q−1)k = E
dk |y

(q−1)
ic,k

[
dk

∣∣y(q−1)ic,k

]
, (8)

and the corresponding MSE given y(q−1)ic,k

e(q−1)k = E
dk |y

(q−1)
ic,k

[∣∣dk − d̂ (q−1)k

∣∣2∣∣y(q−1)ic,k

]
. (9)

Here, y(q−1)ic,k is the received vector without the interference of
all but the kth data symbol estimates in iteration (q− 1). For
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the estimation of a data symbol dk , one can reformulate the
system model (5) to

y = hkdk + H̄k d̄k + w , (10)

where H̄k isH after removing the kth column hk , and d̄k is the
data vector without the kth data symbol dk . The term H̄k d̄k
denotes the interference caused by all but the kth data symbol
in the data vector, which should ideally be removed from y
for the estimation of dk . SIC can be conducted by removing
H̄k
ˆ̄d(q−1)k from y, leading to

y(q)ic,k = y− H̄k
ˆ̄d(q−1)k = hkdk −H̄k δ̄

(q−1)
k + w︸ ︷︷ ︸
v(q)k

, (11)

where ˆ̄d(q−1)k consists of all but the kth data symbol estimates

from iteration (q− 1), and δ̄
(q−1)
k =

ˆ̄d(q−1)k − d̄k contains the
(unknown) data symbol estimation errors from the previous
iteration step. For estimating dk based on (11), the statistics of
the total noise vector v(q)k , which is composed of the Gaussian
noise vector w and the noise due to data symbol estimation
errors, have to be specified. We start by considering the noise
statistics for the first iteration (q = 0). As we will elaborate
later in this section, initializing the data symbol estimates
with the mean of the symbol alphabet is a rational choice,
i.e., ˆ̄d(−1)k = 0, leading to y(0)ic,k = y and δ̄

(0)
k = −d̄k .

Assuming independent and identically distributed (i.i.d.) data
symbols with uniform prior probability and reasonably large
Nd, following central limit theorem arguments, H̄k d̄k can be
considered to follow a circularly symmetric complex Gaus-
sian distribution with zero mean, and to be independent of
w. Hence, v(0)k approximately also follows a circularly sym-
metric complex Gaussian distribution with zero mean and a
covariance matrix

C(0)
vv,k = E

[
v(0)k v(0)Hk

]
= σ 2

d H̃M̄kM̄H
k H̃+ Nσ 2

n H̃ , (12)

where M̄k is the matrixMwithout the kth column. For all fur-
ther iterations (q > 0), we start by specifying the type of the
statistical distribution of the vector r(q−1)k = H̄k δ̄

(q−1)
k . Based

on central limit theorem arguments and unbiased MMSE
estimates (cf. Appendix I), r(q−1)k can be approximated to
follow a circularly symmetric complex Gaussian distribution
with zero mean, and thus the same assumption holds for v(q)k .
As shown in Appendix I, the noise covariance matrixC(q)

vv,k is
given by

C(q)
vv,k = H̄k Ẽ

(q−1)
k H̄H

k + Nσ 2
n H̃

− H̄kE(
d̄k |y,d̂(q−2)

)
,w

[
δ̄
(q−1)
k wH ]

− E(
d̄k |y,d̂(q−2)

)
,w

[
wδ̄

(q−1)H
k

]
H̄H
k , (13)

where Ẽ(q−1)
k = Ed̄k |y,d̂(q−2)

[
δ̄
(q−1)
k δ̄

(q−1)H
k

∣∣y, d̂(q−2)] is the
conditioned error covariance matrix. For the off-diagonal
entries of Ẽ(q−1)

k and for the third and the fourth term

in (13) no exact closed form solution is available. A possible
workaround is to employ the approximation

C(q)
vv,k ≈ H̄kE

(q−1)
k H̄H

k + Nσ 2
n H̃ , (14)

whereE(q−1)
k = diag

([
e(q−1)0 , . . . , e(q−1)k−1 , e(q−1)k+1 , . . . , e(q−1)Nd−1

])
,

i.e., correlations between the data symbol estimates as well
as correlations between the estimation errors and the AWGN
noise are neglected. However, this may lead to inaccuracies
in the estimation process. Especially at high SNRs, for deep
fading channels, and when q is increasing (then the e(q−1)k are
usually becoming smaller),C(q)

vv,k can become ill-conditioned,
which is – in combination with the occurring approximation
errors – an issue for computing its inverse required for the
next steps in the estimation process.

For computing a data symbol estimate d̂ (q)k , the posterior
PMF p

[
dk |y

(q)
ic,k

]
is needed, which can be obtained via the

Bayesian rule by utilizing the likelihood function p
(
y(q)ic,k

∣∣dk).
Given the noise covariance matrix C(q)

vv,k , the likelihood func-
tion follows to

p
(
y(q)ic,k

∣∣dk) = 1

πN |C(q)
vv,k |

exp
(
− x(q)Hk C(q)−1

vv,k x(q)k
)

= α
(q)
k f (q)k (dk ) , (15)

with x(q)k = y(q)ic,k − hkdk , a scaling factor

α
(q)
k =

1

πN |C(q)
vv,k |

exp
(
− y(q)Hic,k C(q)−1

vv,k y(q)ic,k

)
, (16)

which is independent of dk , and a function

f (q)k (dk ) = exp
(
d∗k h

H
k C

(q)−1

vv,k y(q)ic,k + y(q)Hic,k C(q)−1

vv,k hkdk
)

· exp
(
− d∗k h

H
k C

(q)−1

vv,k hkdk
)

(17)

depending on dk . With the above stated results at hand, the
MMSE data symbol estimate d̂ (q)k and its correspondingMSE
e(q)k can then be computed as

d̂ (q)k = E
[
dk |y

(q)
ic,k

]
=

∑
s′∈S

s′p
[
dk = s′

∣∣y(q)ic,k

]
=

∑
s′∈S s

′p
(
y(q)ic,k

∣∣dk = s′
)∑

s′∈S p
(
y(q)ic,k

∣∣dk = s′
) = ∑

s′∈S s
′f (q)k (s′)∑

s′∈S f
(q)
k (s′)

(18)

and

e(q)k = E
[∣∣dk − d̂ (q)k

∣∣2|y(q)ic,k

]
=

∑
s′∈S

∣∣s′ − d̂ (q)k

∣∣2f (q)k (s′)∑
s′∈S f

(q)
k (s′)

,

(19)

where a uniform prior PMF p[dk ] is assumed.
Updating the data symbol soft estimates concludes one

iteration. The succeeding iteration starts with conducting SIC
following (11).
A quite interesting and not obvious result is verified in

Appendix II, namely, that when using a zero vector as ini-
tialization for the estimated data symbol vector, after one
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iteration the iterative SIC exhibits the same hard decision bit
error probability as the LMMSE estimator. Hence, we employ
the zero vector, which is also the prior mean of the data vector
(since we assume a symmetric modulation alphabet and uni-
formly distributed data symbol probabilities), as initialization
of the iterative SIC method.

III. SOFT INTERFERENCE CANCELLATION INSPIRED
NEURAL NETWORK EQUALIZERS
As already mentioned in Sec. II-B, the model-based SIC
method suffers from the issue that the computation of the
inverse noise covariance matrix C(q)−1

vv,k , also known as preci-
sion matrix, is computationally and numerically demanding
while approximations have to be made in addition. With our
proposed NN equalizers SICNNv1 and SICNNv2, whose
layer structures are inspired by the iterative SIC method,
we aim to overcome the weaknesses of the model-based SIC
method. However, the SIC operation from the model-based
method is preserved in the developed NNs, which is expected
to help SICNNv1 and SICNNv2 to provide reliable soft
estimates (required, e.g., to compute log-likelihood ratios in
case of channel coded transmission), and allows to obtain
interpretable intermediate quantities / variables inside the
NN-based equalizers. While the structure of SICNNv1 is
very similar to the model-based method and is specifically
designed for SC-FDE communication systems, SICNNv2
is more general and can be applied for any communica-
tion system, where the system model can be formulated as
in (5) with any matrix H. For both SICNNv1 and SICNNv2,
we additionally present a version with a reduced number of
learnable parameters, since we exploit the knowledge that
every stage of SICNNv1/SICNNv2 has to provide estimates
of the posterior data symbol probabilities, given the esti-
mates of the previous stage and the received vector, and thus
should work with the same set of learnable parameters. The
parameter-reduced versions are referred to as SICNNv1Red
and SICNNv2Red.

A. SICNNv1
The NN architecture is deduced by deep unfolding [27] the
iterative SIC method described in Sec. II-B to Q stages
of SICNNv1. That is, every iteration of the model-based
SIC method (the outer loop of Algorithm 1), corresponds to
one stage of SICNNv1. The steps conducted in one stage
of SICNNv1, which is schematically shown in Fig. 1, are
very similar to those of the model-based method described
in Algorithm 1, however, the model-based computations in
line 6 and line 7 of Algorithm 1, are accomplished using
data-driven FCNNs. Let us describe the structure of stage
q of SICNNv1, q ∈ {0, . . . ,Q− 1}, in more detail, starting
at its input. The inputs of stage q are the received vector y,
the sampled frequency response diag(H̃), the noise variance
σ 2
n , and the vectors p̂(q−1)k =

[
p̂(q−1)Tk,Re , p̂(q−1)Tk,Im

]T , p̂(q−1)k ∈

[0, 1]2|S
′
|, k ∈ {0, . . . ,Nd − 1}, where S′ = Re{S} = Im{S}

(assuming a symmetric alphabet S). The elements p̂(q−1)k,Re,l and

p̂(q−1)k,Im,l of the vectors p̂
(q−1)
k,Re and p̂(q−1)k,Im , respectively, are the

estimates of stage (q− 1) for the data symbol posterior prob-
abilities p

[
Re{dk} = sl |y

(q−1)
ic,k

]
and p

[
Im{dk} = sl |y

(q−1)
ic,k

]
,

respectively, where sl ∈ S′ are the uniquely numbered sym-
bols of S′, l ∈ {0, . . . , |S′| − 1}. For the inputs of the first
stage (q = 0), p̂(−1)k,Re = p̂(−1)k,Im =

1
|S′|1 is chosen, i.e., the esti-

mated posterior probabilities are initialized uniformly, which
represents the prior data symbol probability distribution. The
values of the elements of p̂(q)k,Re and p̂

(q)
k,Im are updated in every

stage following the procedure described below.
Similar to the model-based method, in the first step (① in

Fig. 1) of the qth stage

d̂ (q−1)k,Re =

|S′|−1∑
l=0

sl p̂
(q−1)
k,Re,l , d̂ (q−1)k,Im =

|S′|−1∑
l=0

sl p̂
(q−1)
k,Im,l ,

(20)

and

e(q−1)k =

√(
e(q−1)k,Re

)2
+

(
e(q−1)k,Im

)2
, (21)

with the estimated MSEs

e(q−1)k,Re/Im =

|S′|−1∑
l=0

(
sl − d̂

(q−1)
k,Re/Im

)2p̂(q−1)k,Re/Im,l , (22)

are computed, where e(q−1)k is utilized as a reliability measure
of the corresponding data symbol estimate. Note that these
quantities can be computed independently for every data
symbol index k , and thus the blocks ① are drawn isolated
from each other in Fig. 1.
In a second step (② in Fig. 1), model-based interference

cancellation is carried out by computing

y(q)ic,k = y− H̄k
ˆ̄d(q−1)k , (23)

using the data symbol estimates ˆ̄d (q−1)k,l = d̂ (q−1)l,Re + jd̂ (q−1)l,Im ,
l ∈ {0, . . . , k − 1, k + 1, . . . ,Nd − 1} from stage (q − 1)
for ˆ̄d(q−1)k .

Instead of computing (an approximate of) the precision
matrix C(q)−1

vv,k in a model-based fashion, we estimate it by
utilizing fully-connected feedforward layers, which we also
refer to as sub-NNs. A straightforward approach is to estimate
the real and the imaginary part of the N 2 elements of C(q)−1

vv,k .
We exploit two observations for both reducing the number
of parameters to be estimated by a sub-NN and ensuring
that the estimated precision matrix satisfies the properties
implied by its definition. Firstly, the covariance matrixC(q)

vv,k ,
and thus also its inverse, has to be a Hermitian, positive
definite matrix. That is, C(q)−1

vv,k can be decomposed into the

matrix product C(q)−1

vv,k = B(q)H
k B(q)

k , where B(q)
k is the matrix

to be estimated by the sub-NNs. Secondly, our empirical
investigations showed, that for the regarded SC-FDE commu-
nication system a precision matrix C(q)−1

vv,k exhibits significant
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FIGURE 1. Schematic structure of one stage of SICNNv1.

non-zero values only on the major and the first few minor
diagonals, and thus can be approximated as a band matrix.
In the initial version of SICNNv1 described in [1] (where
it is simply referred to as SICNN), we specify B(q)

k to be a
lower triangular matrix containing non-zero values only on
the main diagonal and the first nmd minor diagonals, where
nmd ∈ N0 is a hyperparameter of SICNN, which tremen-
dously reduces the number of non-zero elements of B(q)

k to
be estimated. The non-zero elements of the complex-valued
matrix B(q)

k are to be estimated by two separate sub-NNs,
using one sub-NN for the real part and one for the imaginary
part. As stated in [1], hyperparameter optimization turns
out that the best equalization performance is achieved with
nmd = 0, i.e., the precision matrix is assumed to be a diagonal
matrix. This insight motivates an adaption of the architecture
of SICNN for the structure of SICNNv1. As depicted in
Fig. 1, a single sub-NN FCNN 1 is employed to estimate
the major diagonal of C(q)−1

vv,k . To ensure positive definite-

ness, the final estimates of the major diagonal of C(q)−1

vv,k
are obtained by squaring the outputs of FCNN 1. FCNN
1 has nL,C hidden layers with nH,C neurons per hidden layer,
ReLU activation functions, and a batch norm layer after the
input layer. For determining the required inputs of FCNN 1,
we reconsider the computation of C(q)

vv,k in (13) and the
quantities involved there. Besides the terms describing cor-
relations between w and ˆ̄d(q−1)k , only terms consisting of σ 2

n ,
H̃, and M̄k Ẽ

(q−1)
k M̄H

k occur in (13). When replacing Ẽ(q−1)
k

by its approximation E(q−1)
k , the latter term can be expressed

as M̄kE
(q−1)
k M̄H

k =
∑Nd−1

i=0,i̸=k e
(q−1)
i mimH

i =: A
(q)
k , with mi

as the ith column of M. A(q)
k is a Hermitian Toeplitz matrix,

consequently it is already fully described by its first row
a(q)Hk =

[
A(q)
k

]
0∗ =

∑Nd−1
i=0,i̸=k e

(q−1)
i mH

i , where we exploit

mi,0 = 1 for all i in the last step. The vectors a(q)Hk , which
are computed in block ③, are concatenated in block ④ with
σ 2
n and diag

(
H̃

)
to the input vector of FCNN 1

g(q)k =
[
σ 2
n , diag

(
H̃

)
, Re

{
a(q)Hk

}
, Im

{
a(q)Hk

}]
. (24)

With a given estimated precision matrix Ĉ(q)−1

vv,k , the pos-

terior PMF p
[
dk |y

(q)
ic,k

]
should be estimated. Experiments,

where the posterior PMF is computed as described in Sec. II-
B in a model-based fashion did not lead to satisfying
performance. We assume a major reason for this issue is
that the estimate Ĉ(q)−1

vv,k provided by FCNN1 is not precise
enough to be treated as the exact precision matrix. Hence,
we utilize another sub-NN (FCNN 2 in Fig. 1), which is
trained (jointly with FCNN1) to estimate the posterior PMF
p
[
dk |y

(q)
ic,k

]
and can cope with inaccuracies in the estimated

precision matrix. More specifically, the output of FCNN2 is
the vector p̂(q)k =

[
p̂(q)Tk,Re, p̂

(q)T
k,Im

]T (which is also the output
of the qth SICNNv1 stage), containing estimates for the data
symbol posterior probabilities, as introduced earlier in this
section. To specify the required input quantities of FCNN
2 for estimating the posterior PMF p

[
dk |y

(q)
ic,k

]
, let us consider
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its representation

p
[
dk |y

(q)
ic,k

]
=

p(y(q)ic,k |dk )∑
s′∈S p(y

(q)
ic,k |s

′)
=

f (q)k (dk )∑
s′∈S f

(q)
k (s′)

, (25)

by applying the Bayesian rule and assuming a uniform prior
data symbol probability, where f (q)k (.) is defined in (17). Due
to the definition of f (q)k (.), the posterior PMF p

[
dk |y

(q)
ic,k

]
depends only on hHk C

(q)−1

vv,k y(q)ic,k , its complex conjugate, and

hHk C
(q)−1

vv,k hk . Therefore, the input vector of FCNN 2 is chosen
to be

s(q)k =
[
Re

{
hHk Ĉ

(q)−1

vv,k y(q)ic,k

}
, Im

{
hHk Ĉ

(q)−1

vv,k y(q)ic,k

}
,

hHk Ĉ
(q)−1

vv,k hk
]T

, (26)

where the elements of s(q)k are computed in block ⑤. FCNN
2 consists of nL,Pr fully-connected hidden layers with nH,Pr
neurons per hidden layer, ReLU activation functions between
each hidden layer, and a batch norm layer after the input layer.
Further, two independent softmax functions are utilized as
output activation functions to obtain p̂(q)k,Re and p̂(q)k,Im, which
are concatenated to the stage output p̂(q)k .

An investigation of the inputs of sub-NN FCNN 2 as
defined in (26) reveals a large variation of the values of s(q)k ,
which depends on both the data symbol index k and the
SICNNv1 stage index q. Hence, in the qth SICNNv1 stage we
suggest to multiply y(q)ic,k and hk by ||y(q)ic,k ||

−1/2
2 , which turns

out to lead to a more robust training procedure.
In one stage, we use the same sub-NNs for estimating the

precision matrix and the posterior data symbol probabilities
for all Nd data symbols to be estimated. However, different
sub-NNs are utilized from stage to stage, i.e. their learnable
parameters are in general different to those of the sub-NNs
of the remaining stages, whereby the hyperparameters of the
sub-NNs are the same for all stages.

We optimize the parameters of SICNNv1 by employing a
custom loss function based on the cross entropy loss, which
can be computed as

fCE(α, β) := −
1
D

D−1∑
d=0

αd ln(βd ) ,

with any vectors α, β ∈ [0, 1]D and
∑

d αd =
∑

d βd = 1.
More specifically, instead of utilizing only the final output
of SICNNv1 for computing the loss value, the custom loss is
based onQ partial cross entropy losses of allQ stage outputs,
which are weighted by the corresponding stage index q. That
is, the employed custom loss function is given by

ℓ(doh, P̂) =
1

QNd

Q−1∑
q=0

Nd−1∑
k=0

wq
(
fCE(doh,k,Re, p̂

(q)
k,Re)

+ fCE(doh,k,Im, p̂(q)k,Im)
)
, (27)

where P̂ :=
{
{p̂(q)k,Re/Im}

Nd−1
k=0

}Q−1
q=0 is the collection of all stage

outputs, wq = (q+ 1)/
∑Q−1

q=1 q is the weighting factor of the

partial losses, and doh,k,Re and doh,k,Im are one-hot vectors
corresponding to the real and imaginary part of a data symbol
dk , respectively. This custom loss function is inspired by the
loss function employed for training DetNet [18] and by the
auxiliary classifiers of GoogLeNet [41], and should lead to a
faster converging training.

B. SICNNv2
The first operations conducted in a stage of SICNNv2 are
equivalent to those in a stage of SICNNv1. That is, given
the estimated posterior probabilities p̂(q−1)k from the previ-
ous stage (q − 1), the corresponding data symbol estimates
d̂ (q−1)k,Re/Im and estimatedMSEs e(q−1)k,Re/Im are computed according
to (20) and (22), respectively. With the data symbol estimates
d̂ (q−1)k,Re/Im for all data symbols in the data vector at hand, inter-
ference cancellation is conducted as a next step according
to (23) to obtain y(q)ic,k . However, as shown in Fig. 2, the
remaining structure of a stage of SICNNv2 differs from the
stage structure of SICNNv1. Specifically, while the further
inference steps conducted in a stage of SICNNv1 to obtain
the stage output are similar to the steps of the model-based
algorithm, in an SICNNv2 stage an FCNN is employed for
directly estimating the posterior data symbol probabilities
using the input vector

z(q)k =
[
ρ
(q)
k Re{y(q)Tic,k }, ρ

(q)
k Im{y(q)Tic,k }, ρ

(q)
k Re{hTk },

ρ
(q)
k Im{hTk }, e

(q−1)
k,Re , e(q−1)k,Im , ρ

(q)
k

2
σ 2
n
]T

,

with a normalization factor ρ(q)
k = ||y

(q)
ic,k ||

−1/2
2 . The estimated

posterior data symbol probabilites are contained in the output
vector p̂(q)k =

[
p̂(q)Tk,Re, p̂

(q)T
k,Im

]T of the FCNN, which is also
the output of the qth stage of SICNNv2. The FCNN has nL
hidden layers, nH neurons per hidden layer, a batch norm
layer after the input layer and every third hidden layer, and
ReLU activation. SICNNv2 is trained with the same loss
function (27) as SICNNv1.

The architecture of SICNNv2 is solely based on the idea
of SIC, and is more universal than that of SICNNv1 since
no properties of an SC-FDE system are utilized. Hence,
SICNNv2 can be employed for equalization in other com-
munication systems like, e.g., general MIMO systems or
UW-OFDM systems. However, for SC-FDE we expect a
higher equalization complexity and maybe a worse BER per-
formance of SICNNv2 compared to SICNNv1 as less model
knowledge is incorporated.

C. PARAMETER REDUCTION: SICNNv1Red and
SICNNv2Red
For reducing the number of parameters to be trained,
we exploit the fact that in every stage of SICNNv1 and
SICNNv2 the same task is fulfilled, namely, the posterior
data symbol probabilities are to be estimated given the
estimated posterior data symbol probabilities from the pre-
vious stage, the received vector, the channel matrix, and
the noise variance. Hence, we employ the same sub-NNs in

392 VOLUME 2, 2024



Baumgartner et al.: SICNN: SIC Inspired NN Equalizers

FIGURE 2. Schematic structure of one stage of SICNNv2.

every stage of the NN-based equalizers, leading to the cor-
responding parameter-reduced versions SICNNv1Red and
SICNNv2Red. These parameter-reduced NNs can also be
viewed as a single stage where its output is fed back
Q times.
This NN architecture distinctly reduces the number of

parameters to be optimized, which reduces the computational
effort for training, and is also supposed to lead to a more
robust training procedure and a smaller amount of training
data to be required. However, it turns out that the employed
loss function for training the parameter-reduced NNs has to
be slightly altered for obtaining a good performance. More
specifically, the outputs of the stages with higher stage index
q are given a higher importance by changing the weights
wq of the loss function (27) for training SICNNv1Red and
SICNNv2Red to

wq =
(q+ 1)r∑Q−1
q=1 q

r
, (28)

where r is a hyperparameter, which we choose for SC-FDE
systems to be r = 4.

IV. TRAINING SET GENERATION AND DATA
NORMALIZATION
In this section, we describe a novel approach for generat-
ing training sets for NN-based equalizers. For the regarded
SC-FDE systems, this approach considerably improves the
performance of NN-based equalizers at high SNRs. Further,
we briefly describe a data normalization scheme specifi-
cally tailored for SC-FDE, which was already presented
in [31].

A. TRAINING SET GENERATION
The achieved BER performances of model-based and NN-
based equalizers are generally evaluated in a specified
Eb/N0 interval, where Eb is the mean bit energy and N0 is the
noise power spectral density on receiver side, i.e., Eb/N0 is a
measure for the SNR. To generate the training set for NN-
based equalizers, typically sample data transmissions over
channel realizations4 drawn from a statistical channel model
are conducted, where Eb/N0 for the data transmission is
selected randomly with a uniform distribution within a spec-
ified range, short training SNR range. The upper and lower
limits of the training SNR range are typically hyperparam-
eters, which are to be selected carefully, since they have a
significant influence on the performance of trained NN-based
equalizers [39], [42], [43]. Despite a careful selection of the
training SNR range, the issue of ‘‘flattening out’’ BER curves
can occur. That is, although NN-based equalizers perform
well for a wide Eb/N0 range, at higher Eb/N0 values, and
thus low BERs (of, e.g., 10−5 or 10−6), their BER curves do
not fall as steeply as those of many model-based equalizers.
Although this issue occurs for most NN-based equalizers
(shown, e.g., in [44] and [31]), interestingly, there are only
very few works like [43], where proper training of NN-based
equalizers is addressed. In this work, we propose a novel
approach for the generation of training sets for NN-based
equalizers. By training NN-based data estimators with these
specifically generated training sets, the issue of flattening out
BER curves at high SNRs can be mitigated significantly.

4These channel realizations are not used for evaluation, but the same
statistical channel model is used to generate channels used for evaluation.
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Typically, even low complex equalizers like the LMMSE
equalizer achieve low BERs at high SNRs (as it can be seen,
e.g., in Fig. 4, where the LMMSE estimator achieves a BER
of 5 · 10−5 at Eb/N0 = 14 dB). In other words, the decision
boundaries of the baseline LMMSE equalizer and the optimal
bit-wise MAP equalizer differ only slightly. That is, by ran-
domly generating data transmissions for the training set at
high SNRs, for those data transmissions even with the base-
line LMMSE estimator only very few data symbol estimation
errors occur. However, the NN-based equalizers are expected
to approximate the optimal bit-wise MAP estimator. Hence,
for NN training, exactly those few received data symbols
are of interest, where with the baseline LMMSE estimator a
wrong estimate is obtained for the corresponding transmitted
data symbol, while the optimal estimator still achieves a cor-
rect data symbol estimate. Since only a few of those important
received data symbols are contained in the training set when
generating the training data randomly, their influence on the
training loss of the NN is small, leading to the aforementioned
issue of flattening out BER curves. With the aforementioned
observations in mind, we suggest the following method for
generating the training set of NN-based equalizers for SC-
FDE systems: instead of randomly selecting an SNR value
within the SNR training range for the transmission of every
data burst that is contained in the training set, we define
an evenly spread grid on the SNR training range (on a lin-
ear scale). The number of grid points coincides with the
number of channels over which data transmissions are to
be conducted to generate the training set. For every SNR
grid point, a channel realization is drawn from the assumed
statistical channel model, and a burst of Nburst data vectors d
is transmitted over this channel. The corresponding received
vectors y are equalized using a baseline LMMSE estimator.
Instead of including all data vectors of the transmitted burst
in the training set, only those are retained where the baseline
equalizer produces at least Nepd errors per data vector. Since
particularly at higher SNRs the number of retained data vec-
tors is generally far lower than Nburst, another burst of data
vectors is generated and transmitted over the same channel,
again followed by keeping only the data vectors where at
least Nepd errors per data vector are produced by the baseline
estimator. This procedure is repeated until Nburst data vectors
are found for the specific channel, which are then included
in the training set. However, for flat channels, even with the
baseline equalizer no or too few errors occur such that no data
vectors are found which could be included in the training set.
Therefore, a stopping criterion has to be introduced, where
after Ncheck burst generations the number of retained data
vectors is checked. If the number of retained data vectors is
smaller than, e.g., 0.1 Nburst, the current channel realization
is discarded. While keeping the SNR value corresponding
to the specified SNR grid point, a new channel realization
is drawn from the statistical channel model, and the same
data vector selection process as described above is carried
out. The parameters for the training set generation depend
on the communication system setup for which the NN-based

equalizers are trained, and thus they are specified in Sec. V-A
individually for every setup.

B. DATA NORMALIZATION
Normalizing the input data of NNs is generally considered
to be very important for training convergence when opti-
mizing their learnable parameters via backpropagation [45],
[46]. While in many current publications on NN-based data
estimation in MIMO systems over uncorrelated Rayleigh
fading channels no normalization of the NN input data is
applied (cf., e.g., [17], [18], [19]), we showed in [39] and [47]
that for a so-called UW-OFDM communication system a
proper data normalization is of major importance for the
performance of NN-based equalizers (for a visualization of
the influence of data normalization on the performance of
NN-based equalizers for UW-OFDM, we refer to [47]). With
the same idea as for UW-OFDM in mind, namely to apply a
normalization scheme leading to variances of the elements
of the noise vector that are independent of the multipath
channel, we implement a data normalization scheme for SC-
FDE systems. This data normalization scheme for SC-FDE
is elucidated in [31], and thus we repeat here only the result.
To obtain channel-independent noise variances var(wi), the
system model (5) has to be multiplied byK = κH̃−1/2, where

κ =

√
tr{H̃}/tr{H̃MMH H̃} . (29)

The normalization of the input data of the NN-based equaliz-
ers is implemented by multiplying both y and H̃ by K as part
of pre-processing, and is neglected in the remainder of this
paper for the sake of readability.

V. RESULTS
In this section, we investigate the proposed versions of
SICNN thoroughly by means of simulations of data trans-
mission in an indoor frequency selective environment.
To demonstrate the wide applicability the proposed NN-
based approaches, we evaluate them for a number of different
SC-FDE communication system setups. We show simula-
tion results for SC-FDE systems with both UW and CP
guard intervals. Besides simulations with aQPSKmodulation
alphabet, also results for a 16-QAM alphabet are provided.
Most of the simulations are conducted assuming perfect chan-
nel knowledge on receiver side. The robustness of the pro-
posed NN-based data estimators in case of imperfect channel
knowledge, is proven by simulating their performance for
estimated channel impulse responses. Further, we highlight
the performance improvements of NN-based equalizers when
being trained on a training set generated with our proposed
approach, presented in Sec. IV-A.We compare SICNNv1 and
SICNNv2, and their corresponding parameter-reduced ver-
sions SICNNv1Red and SICNNv2Red, with state-of-the-art
model-based and NN-based equalizers in terms of both their
achieved BER performance over a specified SNR range and
their computational complexity. More specifically, for com-
parison with model-based equalizers, we use the LMMSE
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estimator [35], the iterative DFE (implemented in the same
way as described in [47] for UW-OFDM systems), and
the iterative SIC method, where the approximation (14) is
employed. We compare the proposed NNs with the state-
of-the-art NN-based data estimators OAMP-Net2 [19] and
DetNet [18], whereby we do not use DetNet as proposed
in [18] for MIMO systems, but a better performing ver-
sion that is adapted for SC-FDE systems [31]. Moreover,
we show the BER performance and computational complex-
ity of KAFCNN from [31], which is an FCNN that is designed
for equalization in SC-FDE systems by using a layer con-
ducting an inverse DFT as a last layer, i.e., the knowledge
that the data symbols being defined in time domain are to
be estimated given a received vector in frequency domain is
incorporated.

Moreover, for an SC-FDE systemwith aUWguard interval
we present the influence of a limited training set size on
the BER performance of selected NN-based equalizers to
investigate the ‘‘data hunger’’ of an NN depending on its
number of learnable parameters.

Finally, we also present performance results for SIC-
NNv2 being employed as an equalizer in communication
system utilizing the so-called UW-OFDM signaling scheme.
With these results we want the highlight the wide appli-
cability and the versatility of the proposed NN-based
equalizers.

A. SIMULATION SETUP AND NEURAL NETWORK
TRAINING
The shown simulation results are obtained by simulating data
transmission without channel coding. Apart from Sec. V-D,
all simulation settings, results, interpretations, and conclu-
sions in this work are given for SC-FDE systems. The
simulation setup and the results for the simulation of SIC-
NNv2 as an equalizer in a UW-OFDM system are detailed
in Sec. V-D. For SC-FDE communications with a UW guard
interval, simulations are conducted with the SC-FDE system
parameters Nd = 20, Ng = 12 (i.e., N = 32), RRC roll-off
factor α = 0.25, a baseband sampling time Ts = 52 ns.
Further, unless noted otherwise, a QPSKmodulation alphabet
is employed, and perfect channel knowledge is assumed on
receiver side. The parameters of the simulations of SC-FDE
systems with a CP guard interval differ from those with a UW
guard interval by the data vector length Nd = 32, all other
parameters are maintained.

The achieved BER performances of the different equalizers
are plotted in a specified Eb/N0 interval. The presented BER
performances for SC-FDE systems are averaged results over
7000 different multipath channel realizations, which aremod-
eled as described in [48] in form of tapped delay lines with
uniformly distributed phase, Rayleigh distributed magnitude,
and an exponentially decaying power profile with a root mean
square delay spread of τRMS = 100 ns. The data transmission
is conducted in form of data bursts containing 1000 blocks
of payload data per burst, where the channel is assumed to

TABLE 1. Parameters of the training set generation approach for
different sc-fde system settings.

be stationary for one burst and changes independently of its
previous realizations for every burst.

For training the NN-based equalizers, we generate training
sets with the proposed approach described in Sec. IV-A. The
selected parameters of the training set generation method
Nepd and Nburst, the training Eb/N0 range, as well as the
employed baseline equalizer for selecting the data vectors
for the training set are summarized for all SC-FDE system
setups in Tab. 1. Unless stated otherwise, every training set
consists of data transmissions over 30000 different channels.
For training of all NNs early stopping is used. That is, the
BER performance on a validation set is evaluated after every
epoch, and the set of learnable NN parameters achieving the
best validation performance is chosen after training for a
pre-defined maximum number of epochs.

The hyperparameters of the NN-based equalizers are
found using the hyperparameter optimization framework
Optuna [49]. For SICNNv1, the best hyperparameter settings
found are given in Tab. 2, and we train it for 25 epochs at
most. For SICNNv1Red, the same hyperparameters as for
SICNNv1 are used apart from a learning rate ηSICNNv1Red.
The hyperparameters of SICNNv2 are also given in Tab. 2,
and we train it for a maximum of 25 epochs. The hyerpa-
rameters of SICNNv2Red differ from those of SICNNv2 only
by ηSICNNv2Red. For DetNet, OAMP-Net2, and KAFCNN the
best hyperparameter found are shown in Tab. 3. Moreover,
DetNet and KAFCNN are trained for 60 epochs at most, and
OAMP-Net2 for a maximum of 15 epochs.

B. BIT ERROR RATIO PERFORMANCE FOR SC-FDE
1) UNIQUE WORD GUARD INTERVAL, QPSK
We start with investigations on an SC-FDE system with
UW guard interval and QPSK modulation alphabet. First,
we investigate the influence of the number of iterations Q
of the model-based iterative SIC method as well as the
number of stages Q of SICNNv1 on the achieved BER per-
formance to highlight similarities and differences between the
model-based and the NN-based approach. As shown in Fig. 3,
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TABLE 2. Hyperparameter settings of the proposed NN equalizers. The hyperparameters of the parameter-reduced NNs SICNNv1Red
and SICNNv2Red differ from the hyperparameters of SICNNv1 and SICNNv2 only by the learning rate ηSICNNv1Red and ηSICNNv2Red,
respectively.

TABLE 3. Hyperparameter settings of the State-of-the-art NN equalizers used for comparison. Similar to the original publication [18],
for DetNet η denotes the learning rate, L the number of layers, dh the number of hidden neurons in the single-hidden-layer FCNN, dv
the dimension of the auxiliary variable passing unconstrained information thourgh the network, and β the residual weighting factor.
For OAMP-Net2 [19], η is the learning rate, and T is the number of layers. For KAFCNN [31], η is the learning rate, L the number of
layers, dh the number of neurons per hidden layer, and β the residual weighting factor.

our simulation result validates the proof of the equivalence
of the bit error probabilities of the LMMSE hard decision
estimates and the estimates of the iterative SIC method after
one iteration. Moreover, the BER performance of the itera-
tive SIC method considerably improves when conducting a
second iteration (Q = 2), outperforming the DFE over a
wide Eb/N0 range. For Q ≥ 3, two interesting effects are
visible. Firstly, the BER performance flattens out at higher
Eb/N0 values. Secondly, although more iterations lead to an
improvement of the BER performance at lower Eb/N0 values
(which is, however, rather small), at higher Eb/N0 values the
performance even slightly degrades the more iterations are
conducted, which can be explained by the error caused by
approximating the covariance matrix C(q)

vv,k . For SICNNv1,
more stages than iterations of the model-based method are
required to obtain good BER performance, however, for Q =
7 stages, the iterative SIC method is considerably outper-
formed by SICNNv1.

Next, we compare the proposed NN-based data estima-
tors SICNNv1, SICNNv2, SICNNv1Red and SICNNv2Red
with the aforementioned state-of-the-art model-based and
NN-based equalizers in terms of achieved BER performance.
Their training and hyperparameter optimization is conducted
with the same training set as used for the proposed NN-
based equalizers. As shown in Fig. 4, SICNNv1 is the best
performing equalizer for a wide Eb/N0 range, followed by
SICNNv2 and OAMP-Net2. The parameter-reduced variant
SICNNv1Red exhibits approximately the same performance
as DetNet. All of the aforementioned NN-based equalizers
can outperform or perform similarly as the model-based
equalizers considered for comparison. SICNNv2Red, in turn,

FIGURE 3. BER performance of the iterative SIC method and
SICNNv1 for different numbers of iterations / stages Q (SC-FDE
with UW guard, QPSK).

is the worst performing among the proposed NN-based
equalizers, but still has a far better BER performance than
KAFCNN. From this simulation result we can conclude
that using the same sub-NNs in all stages of the proposed
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FIGURE 4. BER performance of NN-based and model-based
equalizers for SC-FDE with a UW guard interval and QPSK
alphabet.

NN-based equalizers leads to a reduction of the number of
learnable parameters at the cost of a performance decrease.
However, since fewer parameters have to be optimized, the
reduction of learnable parameters decreases the computa-
tional effort for training the NNs.

For an SC-FDE system with a UW guard interval and
QPSK modulation alphabet, we also show the influence of
our proposed approach for training set generation, described
in Sec. IV-A, on the BER performance of trained NN-based
equalizers. Exemplary for SICNNv1, SICNNv2, and Det-
Net, we compare their performance when being trained on
a dataset generated with our approach with the case that
they are trained with randomly generated training data. For
the randomly generated training data, the Eb/N0 values of
the sample transmissions contained in the training set are
chosen randomly (with uniform distribution on the linear
Eb/N0 scale) in the range [3 dB, 14 dB], which is a state-
of-the-art approach for the training of NN-based equalizers.
As shown in Fig. 5, particularly at high Eb/N0 values, the
performance of the aforementioned NN-based equalizers can
be significantly improved by training them on a training set
generated by our proposed method. As elucidated in Sec. IV-
A, we assume that the main reason for this performance
improvement is, that at high SNRs distinctly more training
samples lying close to the decision boundaries of the optimal
equalizer are available, allowing the NNs to approximate the
optimal decision boundaries. For all following results, the
NNs are trained with datasets that are generated with our
proposed method.

FIGURE 5. BER performance comparison of NN-based equalizers
for SC-FDE with a UW guard interval and QPSK alphabet, when
being trained with randomly generated training data (rand. tr.
data), or on a training set generated by the proposed approach.

2) UNIQUE WORD GUARD INTERVAL, 16-QAM
To show that the proposed NN-based equalizers can also
cope with higher order modulation alphabets, we present
BER performance results for an SC-FDE system with a UW
guard interval and 16-QAM modulation alphabet. As shown
in Fig. 6, SICNNv1 is also the best performing among all
considered equalizers for this system setup. Similar as for
a QPSK modulation alphabet, the best performing equalizer
behind SICNNv1 are SICNNv2 and OAMP-Net, outper-
forming the model-based DFE in lower Eb/N0 regions and
performing similarly in higher Eb/N0 regions. SICNNv1Red,
SICNNv2Red, DetNet, and KAFCNN, in turn, exhibit a sig-
nificantly worse performance, where KAFCNN is the worst
performing among all considered NN-based equalizers.

3) IMPERFECT CHANNEL KNOWLEDGE
We investigate the influence of imperfect channel knowledge
on the performance of NN-based andmodel-based equalizers.
To this end, the channel, which is assumed to be stationary for
one transmitted data burst, is estimated as described in [50]
using a known preamble. This preamble is transmitted prior
to the data burst and contains two identical pilot vectors xp.
Based on the two corresponding received pilot vectors yp,
the channel frequency response is estimated with the best
linear unbiased estimator (BLUE) [40]. For further details on
the estimation of the channel frequency response, we refer
to [50].

For this evaluation, the NN-based equalizers are trained in
the same manner as for perfect channel knowledge, however,
as an input a channel matrix is employed which is computed
using the estimated channel frequency response. As shown
in Fig. 7 for SICNNv1, SICNNv2, and OAMP-Net2,
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FIGURE 6. BER performance of NN-based and model-based
equalizers for SC-FDE with a UW guard interval and 16-QAM
alphabet.

FIGURE 7. BER performance of NN-based and model-based
equalizers for SC-FDE with a UW guard interval, QPSK
alphabet, and with perfect and imperfect channel knowledge.

an imperfect channel knowledge has a similar influence
on the BER performance as for model-based equalizers,
demonstrating their robustness in terms of imperfect channel
knowledge at the receiver.

4) CYCLIC PREFIX GUARD INTERVAL, QPSK
For all the previously shown results we have employed a UW
as a guard interval. In this section, we investigate the influ-
ence of using a CP as a guard interval on the performance of
the regarded NN-based and model-based equalizers. As pre-
sented in Fig. 8, SICNNv1 is also the best performing
equalizer for this system setup, where its performance is very

FIGURE 8. BER performance of NN-based and model-based
equalizers for SC-FDE with a CP guard interval and QPSK
alphabet.

similar to that of OAMP-Net2. SICNNv2 and SICNNv1Red
exhibit a very similar BER performance and can clearly
outperform DetNet, which achieves similar BER results as
SICNNv2Red. The worst performing NN-based equalizer is
KAFCNN, still outperforming the model-based DFE. The
LMMSE equalizer performs worst, however, as mentioned
in Sec. II-A, stands out due to its very low complexity for
SC-FDE communications with CP guard intervals.

C. INFLUENCE OF A REDUCED TRAINING SET SIZE
In this section, we investigate the influence of a limited train-
ing set size on the BER performance of selected NN-based
data estimators. That is, while for the BER performance
results shown in Sec. V-B the NN-based equalizers are trained
utilizing sample data transmissions over 30 000 different mul-
tipath channels, the regarded NNs are trained with training
sets consisting of 10 000 or 3 000 channels. We evaluate the
influence of a reduced training set size on the BER per-
formance of selected NN-based equalizers for an SC-FDE
systemwith UW-guard interval and QPSKmodulation alpha-
bet. The hyperparameters of the NN-based equalizers are the
same as stated in Sec. V-A, apart from the number of training
epochs which is adapted appropriately such that the number
of update steps of the learnable NN parameters remains the
same for all training set sizes.

We regard SICNNv1, its parameter-reduced variant SIC-
NNv1Red, the OAMP-Net2, and the KAFCNN for per-
formance comparison, whereby these NNs have for the
chosen hyperparameter settings 135 590, 19 370, 32, and
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FIGURE 9. BER performance comparison for different training
set sizes (SC-FDE with UW guard, QPSK alphabet).

746 628 learnable parameters, respectively. As shown in
Fig. 9, the performance of SICNNv1 and SICNNv1red
slightly degrades in case of a reduced training set size of
10 000 or 3 000 channels. The BER performance of OAMP-
Net2 barely changes when reducing the training set size,
while the performance of KAFCNN decreases most and is
even worse than that of the LMMSE estimator when being
trained with 3 000 different channels. That is, the fewer learn-
able parameters an NN contains, the less it suffers from a
limited training set size. This result emphasizes the impor-
tance of parameter reduction, e.g., by incorporating model
knowledge into the layer architecture of an NN.

D. BIT ERROR RATIO PERFORMANCE OF SICNNV2 FOR
UW-OFDM
As mentioned in Sec. III-B, the layer architecture of SIC-
NNv2 is inferred by deep unfolding iterative SIC, but
no properties of any specific communication system are
exploited. Hence, we expect SICNNv2 to be universally
applicable for any communication system with system mod-
els similar to the system model (5) of SC-FDE systems.
To demonstrate this claim, we apply SICNNv2 as an equalizer
in a UW-OFDM system [51], [52], [53]. The data transmis-
sion in UW-OFDM systems can be modeled as [51], [52], and
[39]

y = H̃G︸︷︷︸
H

d+ w , (30)

where d ∈ SNd is the transmitted data vector of length
Nd to be estimated, y ∈ CNd+Nu the received vector at
the input of the equalizer, and Nu the length of the UW

guard interval. Further, H̃ ∈ C(Nd+Nu)×(Nd+Nu) denotes a
diagonal matrix containing the sampled channel frequency
response of the channel (excluding at positions of OFDM
zero-subcarriers) on the main diagonal,G ∈ C(Nd+Nu)×Nd the
so-called generator matrix, which is a full, rectangular matrix,
and w ∼ NC(0, (Nd + Nu)σ 2

n I), where σ 2
n is the variance of

AWGN in time domain. For further details on UW-OFDM
we refer to [51] and [52]. That is, the models of UW-OFDM
and SC-FDE systems are very similar, allowing to employ
SICNNv2 unaltered for UW-OFDM, apart from the used data
normalization, which is described in [39]. We train (exactly
in the same manner as all other state-of-the-art NNs used for
comparison) and evaluate SICNNv2 for a UW-OFDM system
referred to as system I in [39], whereNd = 8,Nu = 4, and the
modulation alphabet is QPSK. The best hyperparameter com-
bination found is a learning rate η = 5 · 10−4, Q = 6 stages,
nL = 2 hidden layers of the sub-NNs, and nH = 200 neurons
per hidden layer of the sub-NNs. SICNNv2 is compared to
the state-of-the-art NN-based equalizers OAMP-Net2 [19],
RE-MIMO [17], DetNet [18], and an improved version of
DetNet, that employs a preconditioner in its layers [39]. Due
to the small dimension of system I, even the optimal BER
performance can be computed by applying the bit-wise MAP
estimator. For all further details on the simulation setup,
on the NNs used for comparison, or their training, we refer
to [39]. As shown in Fig. 10, SICNNv2 can outperform
the NN-based equalizers OAMP-Net2, DetNet in its original
form [18], and performs similar as RE-MIMO. Further, its
performance is very close to that of the improved version
of DetNet and to the optimal BER performance achieved
by the bit-wise MAP estimator. This result demonstrates
the applicability of the proposed SICNN idea for different
communication systems.

E. COMPUTATIONAL COMPLEXITY
Besides the BER performance of the regarded equalizers,
also their computational complexity is an important aspect.
We compare the inference complexity of the model-based
and the NN-based equalizers regarded in this work in terms
of the number of real-valued multiplications required for the
equalization of a received vector, where four real-valued mul-
tiplications and two real-valuedmultiplications are accounted
for a product of two complex values and a real and a complex
value, respectively, and divisions are counted as multiplica-
tions. Since NN training can be carried out offline, we do not
regard their training complexity. We assume that both H̃ and
H = H̃M are already available and thus the complexity of
computing H is not considered for the following complexity
analysis. Unless stated otherwise, we derive the computa-
tional complexities for a general matrixM and a length N ′ of
the received vector, where, as described in Sec. II-A.3, both
have to be replaced by the appropriate quantitiesMuw and N ,
or FNd and Nd, when using a UW or a CP as a guard interval,
respectively.

We start by investigating the complexity of the proposed
SICNNv1. Let us first consider the operations conducted
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FIGURE 10. BER performance comparison for UW-OFDM (system
I from [39]).

in a single stage q for estimating the data symbol dk . The
computation of d̂ (q)k,Re, d̂

(q)
k,Im, e

(q)
k , y(q)ic,k , a

(q)
k , takes

|S′|︸︷︷︸
d̂ (q)k,Re

+ |S′|︸︷︷︸
d̂ (q)k,Im

+ 4|S′| + 2︸ ︷︷ ︸
e(q)k

+ 4N ′(Nd − 1)︸ ︷︷ ︸
y(q)ic,k

+ 2N ′(Nd − 1)︸ ︷︷ ︸
a(q)k

real-valued multiplications, and the inference of FCNN 1 has
a complexity of

2(3N ′ + 1)︸ ︷︷ ︸
batch norm.

+(3N ′ + 1)nH,C + (nL,C − 1)n2H,C + nH,CN
′ .

Squaring the outputs of FCNN 1 takes another N ′ multiplica-
tions. For the terms hHk Ĉ

(q)−1

vv,k y(q)ic,k and h
H
k Ĉ

(q)−1

vv,k hk , hHk Ĉ
(q)−1

vv,k

is computed first and multiplied by y(q)ic,k and hk subsequently,
leading for these two terms in total to a complexity of

2N ′︸︷︷︸
hHk Ĉ

(q)−1
vv,k

+ 4N ′︸︷︷︸
·y(q)ic,k

+ 4N ′︸︷︷︸
·hk

.

The inference of FCNN 2 and the normalization of y(q)ic,k and
hk require another

6+ 3nH,pr + (nL,pr − 1)n2H,pr + 2nH,pr|S′|

and 8N ′ + 1 multiplications, respectively. Consequently, for
estimating a single data symbol in a stage, in total

MSICNNv1,kq = n2H,pr(nL,pr − 1)+ nH,pr(2|S′| + 3)

+ n2H,C(nL,C − 1)+ nH,C(4N ′ + 1)

+ 19N ′ + 6|S′| + 6N ′Nd + 11 (31)

For data normalization, another

4NdN ′ + 1︸ ︷︷ ︸
κ

+ N ′︸︷︷︸
κH̃

+ 2N ′︸︷︷︸
Ky

+ N ′︸︷︷︸
KH̃

real-valued multiplications are required, leading to a total
complexity of SICNNv1

MSICNNv1 = QNdMSICNNv1,kq + 4NdN ′ + 4N ′ + 1 , (32)

with MSICNNv1,kq as specified in (31).
For SICNNv2, the approach for deriving its complexity is

similar. As already stated for SICNNv1, the total complexity
for computing d̂ (q)k,Re, d̂

(q)
k,Im, e

(q)
k,Re, e

(q)
k,Im, and y(q)ic,k is given by

6|S′| + 4N ′(Nd − 1). For computing the scaling factor ρ
(q)
k ,

scaling the quantities contained in z(q)k (and squaring ρ
(q)
k ),

and the inference of the FCNN, another

4N ′︸︷︷︸
ρ
(q)
k

+ 4N ′ + 4︸ ︷︷ ︸
scaling

+
(
1+

⌊nL
3

⌋)
(6N ′ + 2)︸ ︷︷ ︸
batch norm.

+(4N ′ + 3)nH

+ (nL − 1)n2H + 2nH|S′|

multiplications are required. Consequently, the complexity of
SICNNv2 follows to

MSICNNv2 = QNdMSICNNv2,kq + 4NdN ′ + 4N ′ + 1 , (33)

with

MSICNNv2,kq =

⌊nL
3

⌋
(6N ′ + 2)+ n2H(nL − 1)+ 4N ′Nd

+ 10N ′ + nH(4N ′ + 2|S′| + 3)+ 6|S′| + 6 .

(34)

The complexity of DetNet can be derived similarly as for
UW-OFDM, which has been conducted in [39]. For all oper-
ations conducted for SC-FDE specific pre-processing and for
the inference of DetNet, we refer to [31]. Here, we only state
the final result for the inference complexity of DetNet. In the
qth DetNet layer inference of a single hidden layer FCNN,
one-hot demapping of the data vector estimate in the qth layer,
and applying weighted residual connections are conducted,
which entails

MDetNet,q = 4N 2
d + 6Nd + 2dh(Nd(|S′| + 1)+ dv)

+ 2Nd|S′| + dv (35)

real-valued multiplications, where dh is the number of neu-
rons in the hidden layer of the FCNN, and dv is the dimension
of an auxiliary variable passing unconstrained information
from DetNet layer to DetNet layer [18], [31], [39]. In total,
the inference complexity of DetNet is

MDetNet = LMDetNet,q − 2Nd|S′| + 4NdN ′ + 4N ′ + 1︸ ︷︷ ︸
data normalization

+ 6NdN ′ + 4N 2
dN
′
+ 2N ′︸ ︷︷ ︸

input pre-processing

, (36)

where the subtracted term accounts for no one-hot demapping
in the last DetNet layer, L is the number of DetNet layers,
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and for the input pre-processing the quantitiesMH H̃1/2M and
MH H̃−1/2y are computed (cf. [31]).
The KAFCNN [31] with weighted residual connections

and a multiplication by a partial inverse DFT matrix in the
last layer requires

MKAFCNN =
(
3N ′ + (nL − 1)nH + 2N ′|S′| + (nL − 2)

)
nH

+ 4N ′Nd|S′| + 2Nd|S′|︸ ︷︷ ︸
part. IDFT + symb. scaling

+ 4NdN ′ + 4N ′ + 1︸ ︷︷ ︸
data normalization

(37)

The OAMP-Net2 layer structure [19] also stems from
unfolding an iterativemodel-based algorithm, such that deter-
mining its inference complexity is conducted in a similar
fashion as for DetNet or SICNNv1/SICNNv2. For the matrix
inverse that has to be computed in every layer of OAMP-Net2,
we assume that a Cholesky decomposition [54] is employed
for accomplishing this task. The computational complexity
of OAMP-Net2 can thus be specified as (using the notation
from [19])

MONet2

= T
(
8NdN ′ + 2Nd︸ ︷︷ ︸

rt

+ 4N 2
d (2N

′
+ 1)+ 8NdN ′ + 5︸ ︷︷ ︸

τ 2t

+
14
3
N ′ 3 + 8N ′ 2(2Nd + 1)+ 8Nd(N ′ + |S′| +

1
2
)+ 2︸ ︷︷ ︸

x̂d,t+1

+ 2Nd(2N ′ + 1)+ 1︸ ︷︷ ︸
v2t

)
+ 4NdN ′ + 4N ′ + 1︸ ︷︷ ︸

data normalization

(38)

Let us now consider the complexity of the model-based
equalizers. For the LMMSE estimator, one has to distinguish
between UW and CP guard intervals. We start by regarding
its complexity in case of a UW guard interval. Here, we first
regard its complexity for determining the LMMSE estimator
matrix ELMMSE, which is independent of the received vector
y and thus has to be computed only once per data burst (the
channel is assumed to be stationary for the whole data burst).
By assuming that the inverse in (6) is computed utilizing a
Cholesky decomposition [54],

MLMMSE,burst = 4N 2
d (Nd + Ng)︸ ︷︷ ︸

MHH

+
14
3
N 3
d + 4N 2

d︸ ︷︷ ︸
inverse (Cholesky)

+ 4N 2
d (Nd + Ng)︸ ︷︷ ︸
·MH

=
38
3
N 3
d + 8N 2

dNg + 4N 2
d (39)

real-valued multiplications are to be carried out for comput-
ing ELMMSE. Given ELMMSE, the complexity of equalizing
one received vector is

MLMMSE,eq = 4Nd(Nd + Ng) . (40)

In case of a CP guard interval, equalization becomes for
the LMMSE estimator far less complex. As given in (7), the
matrix for which an inverse has to be computed is a diagonal
matrix. Hence, obtaining the estimator matrix ELMMSE,dg
requires 4Nd real-valued multiplications, which is already the
number of multiplications that have to be carried out per burst

MLMMSE,burst = 4Nd . (41)

For equalization of a single received data vector, a multi-
plication with the diagonal estimator matrix ELMMSE,dg is
required, followed by conducting an inverse DFT, leading to
a complexity of

MLMMSE,eq = 4Nd + 2Nd log2(Nd)︸ ︷︷ ︸
IDFT

, (42)

real-valued multiplications.
For the DFE, using a CP guard interval does not reduce the

complexity as for the LMMSE, since in every iteration the
LMMSE error variances (which are the diagonal elements of
the LMMSE error covariance matrix) have to be computed.
We distinguish between operations to be carried out only
once every data burst and those to be accomplished for every
received vector. For a derivation of the complexity of the DFE
we refer to [39], where an in-depth complexity analysis of the
DFE for a similar system, namely a UW-OFDM system is
conducted. Here, we only state the final results. The number
of real-valued multiplications to be conducted once per data
burst is

MDFE,burst =
7
6
N 4
d +

11
3
N 3
d +

19
6
N 2
d + 6N 2

dN
′

+
2
3
Nd + 2NdN ′ −

14
3

, (43)

while the inference complexity per received vector is given
by

MDFE,eq = 8NdN ′ . (44)

For the iterative SIC method, the same steps have to
be conducted Q times, where – as for the LMMSE esti-
mator – a Cholesky decomposition is utilized for inverting
the (approximated) covariance matrices C(q)

vv,k in every iter-

ation. We assume that the estimated data symbols d̂ (q−1)k
are multiplied by the corresponding column of H only once
per iteration, being available for interference cancellation
required for estimating any data symbol dk . Hence, the com-
putational complexity of the iterative SIC method with Q
iterations is

MitSIC = QNd

(
6|S′| + 2︸ ︷︷ ︸
d̂ (q)k ,e(q)k

+ (Nd − 1)(2N ′ + 4N ′ 2)+ 4N ′︸ ︷︷ ︸
C(q)
vv,k

+
14
3
N ′ 3 + 4N ′ 2︸ ︷︷ ︸
Cholesky

+ 4N ′ 2 + 8N ′ + 4︸ ︷︷ ︸
f (q)k (.)

+ 4N ′︸︷︷︸
hk d̂

(q−1)
k

)

= QNd

(14
3
N ′ 3 + 4N ′ 2Nd + 4N ′ 2 + 2N ′Nd
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TABLE 4. Number of required real-valued multiplications (Rounded to Hundreds) of evaluated equalizers for different SC-FDE system
setups.

+ 14N ′ + 6|S′| + 6
)

(45)

The numerical results of the complexities of the equaliz-
ers for the SC-FDE system setup specified in Sec. V-A are
given in Tab. 4. For all system setups considered, DetNet
and KAFCNN are the lowest complex NN-based equalizers.
The inference complexity of SICNNv1 is distinctly lower
than that of SICNNv2 and OAMP-Net2, and also than the
model-based iterative SIC method it is deduced from. How-
ever, the LMMSE estimator and the DFE exhibit by far the
lowest complexity.

VI. CONCLUSION
In this work, we proposed novel NN-based equalizers,
called SICNNv1 and SICNNv2, inspired by a model-based
soft interference cancellation scheme. SICNNv1 is tailored
for an SC-FDE communication system, while SICNNv2
is also applicable for other communication systems with
block-based data transmission. In addition, we presented
a novel approach for generating training sets for NN-
based equalizers, which considerably helps to improve their
performance at high SNRs. We evaluated the proposed
NN-based equalizers for a number of different SC-FDE sys-
tem setups, and investigated their robustness with respect
to imperfect channel knowledge at the receiver. In partic-
ular SICNNv1 exhibits a superior BER performance over
all regarded state-of-the-art model-based and NN-based
equalization approaches for all SC-FDE system setups con-
sidered. To highlight the universal applicability of SICNNv2,
we exemplarily presented its state-of-the-art performance for
a UW-OFDM system. Further, we investigated the influence
of the size of the dataset used to train the NN-based equaliz-
ers, and we presented an in-depth complexity analysis.

APPENDIX I. NOISE STATISTICS IN A SOFT
INTERFERENCE CANCELLATION STEP
Let us consider the system model (11) for estimating the kth
data symbol dk , k ∈ {0, . . . ,Nd − 1}, for any but the first

iteration (q = 0), i.e., 0 < q < Q,

y(q)ic,k = y− H̄k
ˆ̄d(q−1)k = hkdk −

r(q)k︷ ︸︸ ︷
H̄k δ̄

(q−1)
k +w︸ ︷︷ ︸
v(q)k

, (46)

which we repeat here for readability. Following central limit
theorem arguments, the total noise v(q)k is assumed to fea-
ture a multivariate Gaussian distribution, i.e., p(v(q)k ) =
CN

(
µ
(q)
v,k ,C

(q)
vv,k

)
, where µ

(q)
v,k and C(q)

vv,k are to be specified.

We start by computing the statistics of δ̄
(q−1)
k , followed by

those of r(q)k to obtain finally the distribution of v(q)k . It is
important to note, that for computing noise statistics in iter-
ation q, the estimation errors from the previous iteration
(q−1) have to be specified, whereby the interference canceled
vectors y(q−1)ic,k are fixed and available, i.e., the PDFs/PMFs of

v(q)k , r(q)k , and δ̄
(q−1)
k are not unconditional, but are conditioned

on a given y(q−1)ic,k .

A data symbol estimation error δ
(q−1)
k = d̂ (q−1)k − dk ,

where y(q−1)ic,k is given, can only attain a finite number of
different values (as many as the cardinality |S| of the sym-
bol alphabet), and thus its statistics is described by a PMF
p
dk |y

(q)
ic,k

[
δ
(q−1)
k

∣∣y(q−1)ic,k

]
. In order to compute the statistics of

an estimation error δ
(q−1)
k = d̂ (q−1)k − dk , we start by recon-

sidering the MMSE estimate of the preceding iteration

d̂ (q−1)k = E
dk |y

(q−1)
ic,k

[
dk

∣∣y(q−1)ic,k

]
=

∑
s′∈S

s′p
[
dk = s′

∣∣y(q−1)ic,k

]
. (47)

Since

y(q−1)ic,k = y− H̄k
ˆ̄d(q−2)k , (48)

we can reformulate p
[
dk

∣∣y(q−1)ic,k

]
as p

[
dk

∣∣y(q−1)ic,k

]
=

p
[
dk

∣∣y, ˆ̄d(q−2)k

]
, where we consider ˆ̄d(q−2)k to be a fixed vector
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in iteration (q− 1), which does not feature a statistical distri-
bution. It can be observed from the systemmodel for iteration
step (q− 1)

y(q−1)ic,k = y− H̄k
ˆ̄d(q−2)k = hkdk − H̄k δ̄

(q−2)
k + w (49)

that the PMF p
[
dk

∣∣y, ˆ̄d(q−2)k

]
does not depend on the esti-

mate d̂ (q−2)k for a given y and ˆ̄d(q−2)k . Hence, d̂ (q−2)k can be

included in the condition of p
[
dk

∣∣y, ˆ̄d(q−2)k

]
without altering

the PMF, i.e., p
[
dk

∣∣y, ˆ̄d(q−2)k

]
= p

[
dk

∣∣y, ˆ̄d(q−2)k , d̂ (q−2)k

]
=

p
[
dk

∣∣y, d̂(q−2)]. Consequently, the MMSE estimate d̂ (q−1)k
and its corresponding conditional MSE can be rewritten as

d̂ (q−1)k = E
dk |y

(q−1)
ic,k

[
dk

∣∣y(q−1)ic,k

]
= Edk |y,d̂(q−2)

[
dk

∣∣y, d̂(q−2)] (50)

and

e(q−1)k = E
dk |y

(q−1)
ic,k

[∣∣dk − d̂ (q−1)k

∣∣2∣∣y(q−1)ic,k

]
= Edk |y,d̂(q−2)

[∣∣dk − d̂ (q−1)k

∣∣2∣∣y, d̂(q−2)] , (51)

respectively. Hence, the conditional PMF of an estimation
error δk can be written as

p
dk |y

(q−1)
ic,k

[
δ
(q−1)
k

∣∣y(q−1)ic,k

]
= pdk |y,d̂(q−2)

[
δ
(q−1)
k

∣∣y, d̂(q−2)] ,

and the PMF of δ̄
(q−2)

as pd̄k |y,d̂(q−2)
[
δ̄
(q−1)
k

∣∣y, d̂(q−2)].
Following central limit theorem arguments, we assume the

distribution of r(q)k to be multivariate Gaussian. The mean of
r(q)k follows to

µ
(q)
r,k = Ed̄k |y,d̂(q−2)

[
H̄k

(
ˆ̄d(q−1)k − d̄k

)∣∣y, d̂(q−2)]
= H̄k

(
ˆ̄d(q−1)k −

ˆ̄d(q−1)k

)
= 0 . (52)

Its covariance matrix, in turn, is given by

C(q)
rr,k = Er(q)k

[
r(q)k r(q)Hk

]
= H̄k Ed̄k |y,d̂(q−2)

[
δ̄
(q−1)
k δ̄

(q−1)H
k

∣∣y, d̂(q−2)]︸ ︷︷ ︸
Ẽ(q−1)
k

H̄H
k . (53)

For computing an element in the mth row and the nth column
of Ẽ(q−1)

k , m, n ∈ {0, . . . ,Nd − 2}, let us first consider to
which data symbol di and dj in the data vector d, i, j ∈
{0, . . . ,Nd−1}, thematrix element

[
Ẽ(q−1)
k

]
mn belongs. Since

δ̄
(q−1)
k contains the deviations of the data symbol estimates to
the corresponding true data symbols for all but the kth data
symbols in the data vector, the index mapping follows to

i =

{
m m < k
m+ 1 m ≥ k

and j =

{
n n < k
n+ 1 n ≥ k

.

An off-diagonal element of Ẽ(q−1)
k can be written as[

Ẽ(q−1)
k

]
mn = Ed̄k |y,d̂(q−2)

[
δ
(q−1)
i δ

(q−1)
j

∗ ∣∣y, d̂(q−2)]

= Edi,dj|y,d̂(q−2)
[
did∗j |y, d̂

(q−2)]
− Edi,dj|y,d̂(q−2)

[
di d̂

(q−1)
j

∗

|y, d̂(q−2)
]

− Edi,dj|y,d̂(q−2)
[
d̂ (q−1)i d∗j |y, d̂

(q−2)]
+ Edi,dj|y,d̂(q−2)

[
d̂ (q−1)i d̂ (q−1)j

∗

|y, d̂(q−2)
]

= Edi,dj|y,d̂(q−2)
[
did∗j |y, d̂

(q−2)]
− Edi,dj|y,d̂(q−2)

[
di|y, d̂(q−2)

]
d̂ (q−1)j

∗

− d̂ (q−1)i Edi,dj|y,d̂(q−2)
[
d∗j |y, d̂

(q−2)]
+ d̂ (q−1)i d̂ (q−1)j

∗

= Edi,dj|y,d̂(q−2)
[
did∗j |y, d̂

(q−2)]
− d̂ (q−1)i d̂ (q−1)j

∗

,

and a diagonal element of Ẽ(q−1)
k has the value[

Ẽ(q−1)
k

]
mm = Ed̄k |y,d̂(q−2)

[
δ
(q−1)
i δ

(q−1)
i

∗ ∣∣y, d̂(q−2)]
= Edi|y,d̂(q−2)

[
δ
(q−1)
i δ

(q−1)
i

∗ ∣∣y, d̂(q−2)]
= e(q−1)i .

With the above results at hand, v(q)k can be specified to be
a zero mean Gaussian distributed vector with a covariance
matrix

C(q)
vv,k = Ev(q)k

[
v(q)k v(q)Hk

]
= Er(q)k ,w

[
r(q)k r(q)Hk − r(q)k wH

− wr(q)Hk + wwH ]
= C(q)

rr,k − H̄kE(
d̄k |y,d̂(q−2)

)
,w

[
δ̄
(q−1)
k wH ]

− E(
d̄k |y,d̂(q−2)

)
,w

[
wδ̄

(q−1)H
k

]
H̄H
k + Cww

= H̄k Ẽ
(q−1)
k H̄H

k − H̄kE(
d̄k |y,d̂(q−2)

)
,w

[
δ̄
(q−1)
k wH ]

− E(
d̄k |y,d̂(q−2)

)
,w

[
wδ̄

(q−1)H
k

]
H̄H
k + Nσ 2

n H̃ , (54)

with Ẽ(q−1)
k containing

[
Ẽ(q−1)
k

]
mn =


e(q−1)i m = n

Edi,dj|y,d̂(q−2)
[
did∗j

∣∣y, d̂(q−2)]
− d̂ (q−1)i d̂ (q−1)j

∗ m ̸= n

in the mth row and nth column, and the index mapping as
defined above.

APPENDIX II. ESTIMATES OF ITERATIVE SOFT
INTERFERENCE CANCELLATION METHOD AFTER
FIRST ITERATION
We show for a QPSK modulation alphabet that the bit error
probability of a hard decision estimate produced by the itera-
tive SIC method described in Sec. II-B after the first iteration
is equivalent to the bit error probability of an LMMSE hard
decision estimate when initializing all data symbol estimates
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of the iterative SIC method with 0, i.e., d̂ (−1)k = 0, k ∈
{0, . . . ,Nd−1}. To this end, we show that the decision criteria
of both estimation methods for the jth bit bjk of the kth data
symbol, k ∈ {0, . . . ,Nd − 1}, j ∈ {0, . . . , log2(|S|) − 1},
being 0 or 1 are the same, and thus also their bit error
probability must coincide. The QPSK bit-to-symbol mapping
(b1kb0k ) 7→ dk is assumed to map b0k to the real part and b1k
to the imaginary part of dk . The bit values 0 and 1 are mapped
to the symbol values−ρ and ρ, respectively, with ρ = 1/

√
2

being an energy normalization factor.
Let us start with the LMMSE data estimator. The SC-FDE

system model is given by (cf. (5))

y = Hd+ w , (55)

where w ∼ CN (0,Nσ 2
n H̃), and the corresponding LMMSE

data estimator follows to

d̂ = σ 2
dH

H (
σ 2
dHHH

+ Nσ 2
n H̃

)−1y , (56)

which is expressed in a different way as in (6), but can
be shown to be mathematically equivalent. Based on the
LMMSE estimates d̂k , the hard decision estimate for bit b0k is

b̂0k =

{
1 Pr(b0k = 1|d̂k ) > Pr(b0k = 0|d̂k )
0 otherwise

. (57)

It can be shown [55] that for the LMMSE estimator (56)
and the model (55) Pr(b0k = 1|d̂k ) = κPr(b0k = 1|y) and
Pr(b0k = 0|d̂k ) = κPr(b0k = 0|y), where κ is a proportional-
ity constant. Hence, the condition on d̂k in criterion (57) can
be replaced by a condition on y, leading to a decision criterion

b̂0k =

{
1 Pr(b0k = 1|y) > Pr(b0k = 0|y)
0 otherwise

. (58)

By using the Bayesian rule and assuming a uniform prior
PMF p[dk ], we can rearrange the criterion in (58) to

Pr(b0k = 1|y) > Pr(b0k = 0|y)∑
s′∈S(1)

0

p[dk = s′|y] >
∑
s′∈S(0)

0

p[dk = s′|y]

∑
s′∈S(1)

0

p(y|dk = s′) >
∑
s′∈S(0)

0

p(y|dk = s′) , (59)

where S(0)
0 and S(1)

0 are the sets of data symbols containing
a bit with value 0 and 1 at the 0th position, respectively. For
determining the PDF p(y|dk = s′), we reformulate (55) as

y = H̄k d̄k + hkdk + w . (60)

Due to central limit theorem arguments, H̄k d̄k can be
assumed to be Gaussian distributed, and thus p(y|dk ) is
approximated to be a multivariate complex Gaussian PDF,
i.e.,

p(y|dk ) = ζy|dk exp
(
− (y− µy|dk )

HC−1yy|dk (y− µy|dk )
)
,

(61)

with the scaling factor ζy|dk =
1

πN |Cyy|dk |
, the conditional

mean

µy|dk = E[y|dk ] = hkdk , (62)

and the conditional covariance matrix

Cyy|dk = Ck = E
[
(y− µy|dk )(y− µy|dk )

H
|dk

]
= E

[
(H̄k d̄k + w)(H̄k d̄k + w)H |dk

]
= σ 2

d H̄kH̄H
k + Nσ 2

n H̃ . (63)

Since Cyy|dk = Ck does not depend on the realization of dk ,
the scaling factor ζy|dk is a constant for any symbol s′ ∈ S.
Consequently, by inserting (61) into (59) we arrive at the
LMMSE hard decision criterion

b̂0k =


1

∑
s′∈S(1)

0

g(s′) >
∑
s′∈S(0)

0

g(s′)

0 otherwise

, (64)

with

g(s′) = exp
(
− (y− hks′)HC−1k (y− hks′)

)
(65)

and Ck as defined in (63).
Let us now consider the iterative SIC method, starting with

the system model in its first iteration (q = 0), which is given
by

y = hkdk + v(0)k , (66)

where v(0)k = H̄k d̄k+w is assumed to be zero mean Gaussian
noise with a covariance matrix C(0)

vv,k = σ 2
d H̄kH̄H

k + Nσ 2
n H̃.

The MMSE estimate for data symbol dk is the mean of the
posterior PMF Edk |y[dk |y] for the model (66), which is given
by (cf. (18))

d̂k =

∑
s′∈S s

′p
(
y
∣∣dk = s′

)∑
s′∈S p

(
y
∣∣dk = s′

) (67)

Considering the QPSK bit-to-symbol mapping defined
above, the MMSE hard decision estimate for bit b0k is

b̂0k =

{
1 Re{d̂k} > 0
0 otherwise

. (68)

Since the denominator of the MMSE estimate given in (67)
is always positive, the MMSE hard decision estimate b̂0k is
estimated to be 1 if

0 < Re
{ ∑
s′∈S

s′p
(
y
∣∣dk = s′

)}
=

∑
s′∈S

Re{s′}p
(
y
∣∣dk = s′

)
=

∑
s′∈S(+)

Re{s′}p
(
y
∣∣dk = s′

)
+

∑
s′∈S(-)

Re{s′}p
(
y
∣∣dk = s′

)
= ρ

∑
s′∈S(+)

p
(
y
∣∣dk = s′

)
− ρ

∑
s′∈S(-)

p
(
y
∣∣dk = s′

)
, (69)
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or, equivalently formulated, if∑
s′∈S(+)

p
(
y
∣∣dk = s′

)
>

∑
s′∈S(-)

p
(
y
∣∣dk = s′

)
, (70)

with S(+)
⊂ S and S(−)

⊂ S being the sets of symbols
containing solely symbols with positive and negative real
part, respectively. For the given QPSK bit-to-symbol map-
ping, these two sets of symbols S(+) and S(−) coincide with
the sets S(1)

0 and S(0)
0 as defined above, respectively. The PDF

p(y|dk ) for the system model (66), in turn, is given by

p(y|dk ) = ζv(0)k |dk
exp

(
− (y− hkdk )HC

(0)−1
vv,k (y− hkdk )

)
,

(71)

with ζv(0)k |dk
=

1
πN

∣∣C(0)
vv,k

∣∣ being constant for every data symbol

realization and C(0)
vv,kCk = σ 2

d H̄kH̄H
k + Nσ 2

n H̃. Combin-
ing (68), (70), and (71) leads to the MMSE hard decision
criterion

b̂0k =


1

∑
s′∈S(1)

0

g(s′) >
∑
s′∈S(0)

0

g(s′)

0 otherwise

, (72)

with g(s′) as defined in (65). This is the same decision
criterion as that of the LMMSE (64), which concludes the
proof.
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