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ABSTRACT The exponential increase in the demand for high-performance services such as streaming video
and gaming by wireless devices has posed several challenges for Wireless Local Area Networks (WLANs).
In the context of Wi-Fi, the newest standards, IEEE 802.11ax, and 802.11be, bring high data rates in dense
user deployments. Additionally, they introduce new flexible features in the physical layer, such as dynamic
Clear-Channel-Assessment (CCA) thresholds, to improve spatial reuse (SR) in response to radio spectrum
scarcity in dense scenarios. In this paper, we formulate the Transmission Power (TP) and CCA configuration
problem with the objective of maximizing fairness and minimizing station starvation. We present five main
contributions to distributed SR optimization using Multi-Agent Multi-Armed Bandits (MA-MABs). First,
we provide regret analysis for the distributed Multi-Agent Contextual MABs (MA-CMABs) proposed in this
work. Second, we propose reducing the action space given the large cardinality of action combinations of TP
and CCA threshold values per Access Point (AP). Third, we present two deepMA-CMAB algorithms, named
Sample Average Uncertainty (SAU)-Coop and SAU-NonCoop, as cooperative and non-cooperative versions
to improve SR. Additionally, we analyze the viability of using MA-MABs solutions based on the ϵ-greedy,
Upper Bound Confidence (UCB), and Thompson (TS) techniques. Finally, we propose a deep reinforcement
transfer learning technique to improve adaptability in dynamic environments. Simulation results show that
cooperation via the SAU-Coop algorithm leads to a 14.7% improvement in cumulative throughput and a
32.5% reduction in Packet Loss Rate (PLR) in comparison to non-cooperative approaches. Under dynamic
scenarios, transfer learning mitigates service drops for at least 60% of the total users.

INDEX TERMS 802.11ax, 802.11be, deep transfer reinforcement learning, multi-agent multi-armed ban-
dits, spatial reuse, Wi-Fi.

I. INTRODUCTION

THE exponential increase in the use of wireless technol-
ogy is forecast to reach 71% of the global population

with some kind of wireless service. In the group of Wireless
Local Area Networks (WLANs), Wireless Fidelity (Wi-Fi)
technology presents a growth of up to 4-fold over 5 years
from 2018 to 2023 [1]. The current Wi-Fi standard, IEEE-
802.11ax, also known as Wi-Fi 6 and its ‘‘Extended’’ version
Wi-Fi 6E, are expected to form 75% of all Wi-Fi chipset

shipments by early 2024. Moreover, Wi-Fi 6E is forecast to
represent the 32% of all Wi-Fi chipset shipments by 2025
[2]. Additionally, the IEEE standardization body has recently
been working on a new standard, namely IEEE 802.11be (or
Wi-Fi 7), which is scheduled to be released by May 2024
[3]. This standard will replace IEEE 802.11ax in the years
to come.

Spatial reuse (SR) has been of interest for more than
20 years in the wireless community, as it contributes to the
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FIGURE 1. Typical operational scenario: Access Points (APs)
adjust their Transmission Power and CCA threshold towards an
efficient spatial reuse.

reduction of collisions among stations in medium access
control [4]. As the number of dense WLAN deployments
increases, SR becomes more challenging in the context of
Carrier Sense Multiple Access (CSMA) technology, as used
in Wi-Fi [5]. Firstly, Wi-Fi 6 was introduced to address
diverse challenges, such as the increasing number of Wi-Fi
users, dense hotspot deployments, and the high demand
for services like Augmented, Mixed, and Virtual Reality.
It included additional features, such as dynamic adjustment
of the Clear Channel Assessment (CCA) threshold and Trans-
mission Power (TP). Before Wi-Fi 6, the CCA threshold
configuration was a static value per Access Point (AP),
causing inefficient channel utilization in dense Wi-Fi deploy-
ments [6]. Additionally, adjusting TP allows the reduction
of interference among the APs and consequently maximizes
network performance [7]. Thus, SR and network performance
can be positively improved by adjusting CCA and TP. How-
ever, the complex interactions between CCA and TP call for
intelligent configuration of both. As part of the forthcoming
IEEE 802.11be standard, Coordinated Spatial Reuse (CSR)
has become one of several proposals to improve the cur-
rent 802.11ax. Unlike the uncoordinated version introduced
in 802.11ax, CSR requires inter-AP feedback to combat
interference with neighboring APs [8]. Additionally, Wi-Fi
7 will enable to widening of the channel bandwidth to a
substantial 320 MHz, elevating the modulation rate to an
impressive 4096 QAM, Multi-Link Operation (MLO), and
Multiple Resource Units (MRU) capabilities.

To this end, data scarcity and data access are key for
any Machine Learning (ML) method [9]. Recently, AI-based
wireless networks have attracted researchers in both Wi-
Fi [10], [11], [12] and 5G domains [13]. However, the
proposed solutions usually require complete availability of
the data. In reality, data access is not always feasible due
to privacy restrictions. Recent wireless network architectures
have started to shift towards a more open and flexible design.
In 5G networks, as well as in the O-RAN Alliance architec-
ture, AI support is provided to orchestrate primary network
functions [14]. In the context of Wi-Fi, OpenWiFi [15],
released by Telecom Infra as a novel project to divide the
Wi-Fi technology stack by utilizing open-source software for

the cloud controller and an AP firmware operating system.
These paradigm changes enable the development of many
applications in the area ofML, andmore specifically, in Rein-
forcement Learning (RL) applications.

In this paper, we intend to optimize TP and CCA thresh-
olds to improve SR and overall network Key Performance
Indicators (KPIs). More importantly, we aim to investigate
whether cooperation significantly impacts SR by running a
thorough requirement analysis for the newly proposed fea-
tures such as CSR in Wi-Fi networks. To do so, we formulate
the TP and CCA configuration problem with the objective of
maximizing product network fairness and minimizing station
starvation. We model our proposed solution as a distributed
multi-agent decision-making problem and use a Multi-Agent
Multi-Armed Bandit (MA-MAB) approach to solve it. This
work differs from the existing solutions in the literature with
the following five contributions:

1) We present the regret analysis for the distributed
non-cooperative contextual MA-MAB (MA-CMAB)
version of Sample Average Uncertainty-Sampling
(SAU). SAU builds on a deep Contextual MAB.

2) We reduce the inherently huge action space given the
possible combinations of TP and CCA threshold values
per AP. We derive our solution via worst-case interfer-
ence analysis.

3) We analyze the performance of the network KPIs
of well-known distributed MA-MAB implementations
such as ϵ-greedy, UCB, and Thompson on the selection
of the TP and CCA values in cooperative and non-
cooperative settings.

4) We introduce an MA-CMAB in cooperative and
non-cooperative settings along with a thorough perfor-
mance analysis.

5) To the best of our knowledge, for the first time in the
literature, we propose a deep transfer learning-based
solution to adapt TP and CCA parameters efficiently
in dynamic scenarios.1

With these contributions, our simulation results show that
the ϵ-greedy MAB solution improves throughput by at least
44.4%, provides a 12.2% improvement in terms of fairness,
and achieves a 94.5% reduction in Packet Loss Ratio (PLR)
over typical configurations when a reduced set of actions is
known. Furthermore, when compared with non-cooperative
approacheswith a full set of actions, the SAU-Coop algorithm
is shown to improve the throughput and PLR by 14.7%
and 32.5%, respectively. Moreover, our proposed transfer
learning-based approach reduces service drops by at least
60%.

The rest of the paper is organized as follows. Section II
presents a summary of recent work that uses Machine
Learning to improve SR in Wi-Fi. Section III covers the
basics of Multi-Armed Bandits, including deep contextual

1In this work, the term dynamic scenarios is used to define settings where
variations occur in the user load per AP. The user load refers to the number of
users communicating to one AP. Thus, we aim to mimic real-life situations.
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bandits, an analysis of the regret of the proposed algorithm,
and an introduction to deep transfer reinforcement learning.
In Section IV, we present our system model along with
an analysis to reduce the action space via worst-case inter-
ference. Section V presents the proposed schemes, and the
results are discussed in Section VI. Finally, Section VII con-
cludes the paper.

II. RELATED WORK
Reinforcement learning-based spatial reuse has been of
interest in recent literature. The studies have focused on dis-
tributed solutions with no cooperation or centralized schemes
of multi-armed bandits. These studies are summarized below.

In [16], the authors present a comparison among
well-known MABs such as ϵ-greedy, UCB, Exp3, and
Thompson sampling in the context of decentralized spatial
reuse via Dynamic Channel Allocation (DCA) and Transmis-
sion Power Control (TPC) in WLANs. The results showed
that ‘‘selfish learning’’ in a sequential manner presents better
performance than ‘‘concurrent learning’’ among the agents.

Additionally, [17] presents a centralizedMAB that consists
of an optimizer based on a modified Thompson Sampling
(TS) algorithm and a sampler based on the Gaussian Mixture
(GM) algorithm to improve spatial reuse in 802.11ax Wi-
Fi. More specifically, to cope with the large action space
that consists of TP andOverlapping BSS/Preamble-Detection
(OBSS/PD) thresholds, the authors utilize a MAB variant,
namely the Infinitely Many-Armed Bandit (IMAB). Further-
more, a distributed solution based on Bayesian optimizations
of Gaussian processes to improve spatial reuse is proposed
in [18].

Other solutions not related to reinforcement learning can
be found in the literature with the aim of improving spatial
reuse in WLANs. For instance, in [19], the authors propose
a distributed algorithm where the APs decide their Transmis-
sion Power based on their Received Signal Strength Indicator
(RSSI). Moreover, in [20], the authors present an algorithm
to improve spatial reuse by utilizing diverse metrics such as
SINR, proximity information, RSSI, and Basic Service Set
(BSS) color and compare it to the legacy algorithms. The
ultimate goal of the previous algorithm is the selection of the
channel state (IDLE or BUSY) at the time of an incoming
frame given the previous metrics. Finally, the authors in [21]
present a supervised federated learning approach for spatial
reuse optimization.

In all of the above works, the authors employ either central-
ized or decentralized schemes with no cooperation to address
SR optimization in Wi-Fi. In this paper, we aim to bridge
this gap via a coordination-based MA-MAB. Additionally,
we tackle some of the issues previously encountered in other
works, such as the size of the action space due to the set of
possible values of TP and CCA. Finally, to the best of our
knowledge, we propose to address SR adaptation in dynamic
environments by utilizing deep transfer learning for the first
time.

III. BACKGROUND
In this section, we present background information on
Multi-Armed Bandits, including ϵ-greedy, Upper Confidence
Bound, Thompson sampling bandits, and an introduction to
contextual MABs with a focus on a neural network-based
contextual bandit. Additionally, we introduce MABs to the
multi-agent setting, and we conclude with background infor-
mation on deep transfer reinforcement learning.

Multi-Armed Bandits (MABs) are a widely used RL
approach that addresses the exploration-exploitation trade-
off problem. Their implementation is usually simpler when
compared with full RL off-policy or on-policy algorithms.
It is important to note that there is some overlap between
bandit algorithms and RL algorithms. In fact, multi-armed
bandit problems can be seen as a simpler case of RL prob-
lems. One of the main differences is concerned with the
exploration-exploitation dilemma. Indeed, both deal with this
problem, but bandits typically focus solely on this trade-
off, whereas RL algorithms often deal with more complex
environments where the agent can learn from the conse-
quences of its actions. Another important characteristic is the
sequential decision-making nature of both algorithms. Bandit
algorithms typically rely on independent, one-shot decisions,
without taking into account long-term consequences. This
is a quite convenient feature in scenarios where learning
must be performed rapidly. In RL, the agent’s decisions can
have long-term consequences and influence the subsequent
states and rewards it encounters. Finally, bandit algorithms
are simpler complexity-wise, which makes them appealing in
scenarios where computational resources are scarce, as con-
sidered in our work. However, simplicity often comes at the
expense of suboptimal solutions [22].

The basic model of MABs corresponds to the stochastic
bandit, where the agent has K possible actions to choose,
called arms, and receives a certain reward R as a consequence
of pulling the k th arm over T environment steps [23]. In [24],
the author classifies MABs according to their rewards by
asking the following question: where do the rewards come
from? The rewards can be modeled as independent and iden-
tically distributed (i.i.d), adversarial, constrained adversarial,
or random-process rewards. Out of these four models, the
following two are more commonly found in the literature:
the i.i.d and the adversarial models. In the i.i.d model, each
pulled arm’s reward is drawn independently from a fixed
but unknown distribution Dk with an unknown mean µ∗k .
On the other hand, in the adversarial model, each pulled arm’s
reward is randomly sampled from an adversary or an alien
to the agent (such as the environment) and is not necessarily
sampled from any distribution [25].
The performance of MABs is measured in terms of cumu-

lative regret R(T ) or total expected regret over the T steps.
Regret quantifies the missed opportunity in a multi-armed
bandit problem, computed as the difference between the
expected reward attainable by an oracle that selects the opti-
mal arm at each time step and the actual reward obtained by
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a given policy. Thus, the regret for an MAB can be formally
defined as,

R(T ) = µ∗T −
K∑
k>1

µkE[nk (T )], (1)

where µk is the mean of the Dk random reward distribution,
µ∗ = max{µ1, . . . , µK }, and nk (t) is the number of times
the k th arm has been chosen at time t . The utmost goal of
the agent is to minimize R(T ) over the T steps, such that
limT→∞ R(T )/T = 0, which means the agent will identify
the action with the highest reward within such limit.

A. ϵ-GREEDY, UPPER-CONFIDENCE-BOUND (UCB), AND
THOMPSON SAMPLING MAB
The ϵ-greedy MAB is one of the simplest MABs, and as
the name suggests, it is based on the ϵ-greedy policy. In this
method, the agent selects greedily the best arm most of the
time, and once in a while, with a predefined small probability
(ϵ), it selects a random arm [26].

The UCB MAB tackles some of the disadvantages of the
ϵ-greedy policy at the moment of selecting non-greedy arms.
Instead of drawing randomly, the UCB policy measures how
promising non-greedy arms are close to optimal. In addition,
it takes into consideration the rewards’ uncertainty in the
selection process. The selected arm is obtained by draw-
ing the action from argmaxa

[
Qt (a)+ c

√
ln t/Nt (a)

]
, where

Nt (a) corresponds to the number of times that action a via the
k th arm has been chosen, and Qt (a) is the Q-value of action a
[26], [27].

Finally, Thompson Sampling MAB action selection builds
on the Thompson Sampling algorithm. Thompson sampling
or posterior sampling is a Bayesian algorithm that con-
stantly constructs and updates the distribution of the observed
rewards given a previously selected action. This allows the
MAB to select arms based on the probability of how optimal
the chosen arm is. The parameters of the distribution are
updated based on the selection of the distribution class [28].

B. DEEP CONTEXTUAL MULTI-ARMED BANDITS
Contextual Multi-Armed Bandits (CMABs), as a variant of
MABs, observe a series of features (i.e., context) before
selecting an arm [22]. Fig. 2 depicts the difference between
the stateless MAB and CMAB. Different from the stateless
MAB, a CMAB is expected to relate the observed context
with the feedback or reward obtained from the environment
in T episodes and consequently predict the best arm given the
received features [25]. Thus, context plays a crucial role in
contextual bandits because it provides valuable information
that can help the algorithm make more informed decisions
and ultimately lead to better rewards. Diverse CMABs have
been proposed throughout the literature, such as LinUCB,
Neural Bandit, Contextual Thompson Sampling, and Active
Thompson Sampling [22]. More recently, a deep neural
contextual bandit named SAU-Sampling has been presented
in [29], where the context is related to the rewards using

FIGURE 2. MAB vs. contextual MAB.

neural networks. The details of SAU-Sampling will be dis-
cussed in the following sections.

C. MULTI-AGENT MULTI-ARMED BANDITS (MA-MABs)
In this subsection, we intend to formally introduce the Multi-
Agent Multi-Armed Bandit (MA-MAB) problem. An MA-
MAB is the multi-agent variant of an MAB where several
agents pull their arms and obtain feedback from the envi-
ronment [30]. MA-MABs can be modeled as centralized
or distributed. In centralized settings, the actions of the
agents are taken by a centralized controller, and in distributed
settings, each agent independently chooses its actions. Dis-
tributed decision-making settings scale more effectively [31]
and naturally deal easily with a large set of arms (K ) when
compared to centralized settings that suffer from the cardi-
nality explosion of K arms.

In this work, we consider a distributed scenario defined as
follows. Let us consider a contextual K -armed bandit with
N players or agents that form a team. It is worth noting that
we use M to denote the number of APs, and consequently
N = M . However, in this section, we use N to describe
the number of agents in any MA-MAB problem. Xn,k (t)
denotes the reward obtained by the nth agent by pulling its
k th arm. Additionally, let µn,k denote the mean of Xn,k (t).
If only one agent is considered, it can be assumed that
the reward yields to Xn,k (t) = Yn,k (t), where Yn,k (t) is a
random variable that models the reward of the environment.
We assume a non-collision scheme [32], [33], [34] where
if more than two agents play the same arm k at time t the
yielded reward is not affected by that specific condition.
Unlike the work in [35] where channel access is studied, our
problem becomes non-trivial since agents can select the same
spatial reuse parameters and still have viable performance.
Thus, we assume that the decisions of the agents may or may
not lead to a conflict, and the perceived reward can change
according to the action decision of the team. Thus, Xn,k (t) =
Ŷn,k (t), where Ŷn,k (t) is a random variable that models the
reward obtained from the environment when multiple agents
are interacting with the environment. All agents choose their
arms concurrently in this setting. Let us define the action
taken by agent n at time t by kn(t) ∈ A := {1, ..,K }. In addi-
tion, the context of each agent observed by agent n at time t is
defined by cn(t) ∈ C := {C1, ..,CQ}, where Q is the number
of contextual attributes used in the CMAB. Consequently,
the history seen by agent n at time t corresponds to Hn(t) =
{kn(1), cn(1),Xn,kn(1) (1), . . . , kn(t), cn(t),Xn,kn(t) (t)}. The final
policy for agent n corresponds to πn : Hn(t) → A where
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πn = (kn(t))∞t=1. Finally, the action system vector can be
defined as bipartite matching k∗ = {(k1, . . . , kN ) : kn ∈
A}. The end goal is to maximize the system reward in two
distributed approaches: non-cooperative and cooperative. The
expected sum of rewards corresponds to Eπ [

∑T
t=1 Xπ (t)(t)].

If the meansµn,k are known, the set of actions can be selected
by picking a bipartite matching as,

k∗∗ ∈ argmax
k∈k∗

N∑
n=1

µn,kn , (2)

where k∗∗ is the optimal but not unique bipartite matching.
The solution to the proposed problem would be finding

a maximum weight matching on a labeled bipartite graph
between the number and actions of the agents. A bipartite
matching in this context refers to a set of edges in the bipartite
graph such that no two edges share a common vertex. In this
case, actions are chosen by selecting a specific arm in each
of the N agents comprising the MA-MAB. Since each action
is taken concurrently by all agents, the condition of bipartite
matching is always fulfilled. The selection of the bipartite
matching can be represented as a combinatorics problem
where the permutation of each arm in a multi-agent scenario
is mapped as,

k∗(t) ∈ [1,P(K ,N )], (3)

where k∗(t) is the bipartite matching selected at time t and
P(K ,N ) corresponds to the number of permutations given
K arms and N agents. Finally, the expected regret of a
MA-MAB can be defined as,

R(T ) = Tµk∗∗ − Eπ

[
T∑
t=1

Xπ (t)(t)

]
, (4)

where µk∗∗ corresponds to the optimal team policy to select
k∗∗ bipartite matching.

D. ANALYSIS OF REGRET
The expected regret of a single agent obtained with the
SAU-Sampling algorithm has a logarithmic nature (Proof:
See [29, Appendix A.8]) as its counterparts TS and UCB,
and shows an improvement in comparison to the linear regret
nature of the ϵ-greedy MAB [24]. Building on and extending
thework of [29] and [35] alongwith the considerations in [36]
and [37], we can obtain the expected regret for our distributed
SAU-Sampling MA-CMAB algorithm as follows:
Theorem 1: If SAU-Sampling MA-CMAB is run on a

distributed K-armed N-agents bandit problem (K ≥ 2, N ≥
1) having an arbitrary reward distribution X1,1, · · · ,XN ,K
with support in [0, 1], then its expected regret after n number
of plays is at most2:

R(T ) ≤ N 2K1k∗∗

(
96 log n

12
k∗∗
+

1
1+ N

)
, (5)

2A proof of Theorem 1 is provided in Appendix A.

TABLE 1. Notations.

where n is the number of times each agent in SAU-Sampling
MA-CMAB chooses an action. Finally, 1k∗∗ is defined as
1k∗∗ = µn,k∗∗n − µn,kn .
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Corollary 1: The upper bound of the regret in the dis-
tributed and non-cooperative solution is polynomial in K and
N , respectively, and exhibits logarithmic behavior in the time
domain.

According to Corollary 1, the regret will suffer a polyno-
mial and logarithmic increase, which is highly problematic,
especially if K or N grows. This motivates subsection IV-A,
where we reduce the P(K ,N ) by analytically finding a
reduced set of arms to alleviate the poor performance of such
regret. On the other hand, we define the expected regret for
the cooperative scenario by,

R(T ) = TXk − Eπ

[
T∑
t=1

Xπ (t)(t)

]
+ E[Cost], (6)

where E[Cost] is the expected cost of communication among
agents. To further obtain the upper bounds in the cooperative
case, a similar procedure should be followed as in [31] and
[38], where agents can communicate an estimate of their
reward. However, we leave the derivation of this regret out-
side the scope of this work due to its lengthy characteristic and
empirically prove cooperation superiority when compared
to the non-cooperative case. The goal in both scenarios is
to find the set of policies for each agent in the distributed
algorithm to minimize the regrets presented in Eq. (4) and
Eq. (6). In this work, we consider two main approaches:
distributed non-cooperative and cooperative MA-MABs with
adversarial rewards. According to [24] adversarial rewards
can be defined as ‘‘rewards can be arbitrary as if they are
chosen by an adversary that tries to fool the algorithm.
The adversary may be oblivious to the algorithm’s choices,
or adaptive thereto.’’ The distributed, arbitrary nature and
the reward dependency of a single agent of others make our
rewardmodel inherently adversarial. Next, we introduce deep
transfer learning techniques and their application in this work.

E. DEEP TRANSFER REINFORCEMENT LEARNING
Transfer learning or knowledge transfer techniques improve
learning time efficiency by utilizing prior knowledge. Typi-
cally, this is done by extracting the knowledge from tasks of
one or multiple sources and then applying such knowledge in
a target task [39]. If the tasks are related in nature and the tar-
get task benefits positively from the acquired knowledge from
the source, then it is called inductive transfer learning [40].
This type of learning is not uncommon and it is used by the
human brain on a daily basis. However, a phenomenon called
negative transfer can occur if the target task performance is
negatively affected following the knowledge transfer [41].
In the realm of transfer learning, we can findDeep Transfer

Learning (DTL). DTL is a subset of transfer learning that
studies how to utilize knowledge in deep neural networks.
In the context of classification/prediction tasks, large volume
of data is required to properly train the model of interest [42].
In many practical applications where training time is essential
to respond to new domains [43], retraining with a large vol-
ume of data is not always feasible and possibly catastrophic

FIGURE 3. Network-based transfer learning: hidden layers of the
neural network source task are re-utilized in the target network.

in terms of performance. ‘‘What to transfer?’’ defines one of
the main research questions in transfer learning. Specifically,
in the case of deep transfer learning, four categories have
been broadly identified: instance-based transfer, where data
instances from a source task are utilized; mapping-based
transfer, where a mapping of two tasks is used on a new target
task; network-based transfer, where the network pre-trained
model is transferred to the target task; and adversarial-based
transfer, where an adversarial model is employed to find
which features from diverse source tasks can be transferred
to the target task [44]. In this work, we utilize the DTL form
called network-based transfer learning to adapt efficiently TP
and CCA parameters in dynamic scenarios. An example of
a network-based transfer learning technique is presented in
Fig. 3. Such a technique is utilized in deep transfer rein-
forcement learning as part of a transfer learning type called
policy transfer [45]. In particular, policy transfer takes a
set of source policies πS1 , . . . , πSK that are trained on a
set of source tasks and uses them in a target policy πT in
a way that is able to leverage the former knowledge from
the source policies to learn its own. More specifically, the
weights and biases that comprise each of the hidden layers
of the source policies are the elements transferred to the
target policies. Note that in practice policies are modeled
as neural networks. Furthermore, we take advantage of the
design of a contextual multi-armed bandit presented in [29]
and apply policy transfer to improve the agent’s SR adaptabil-
ity in dynamic environments. The results and observations
of applying DTRL are discussed in section VI-E. In the
next section, we discuss the details of the system model and
present an analysis of reducing the cardinality of the action
space in the proposed SR formulation.

IV. SYSTEM MODEL AND PROBLEM FORMULATION
In this work, we consider an infrastructure mode Wi-Fi
802.11ax network N with NS = |S| + |M| nodes where
S is the set of stations with {x1, x2, . . . , x|S|} ∈ R2 positions
andM is the set of APs with {y1, y2, . . . , y|M|} ∈ R2 posi-
tions. We can assume that |M| APs positions correspond to
cluster centers and the stations will attach to their closest AP.
In addition, the list of notations utilized in this work can be
found in Table 1.

In this paper, we improve SR via maximization of the
linear product-based fairness andminimization of the number
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of stations under starvation by configuring TP and CCA
parameters.

Max
(

fairness
avg. station starvation complement

)
(7a)

s.t. Throughput, (7b)

var . Transmission power and CCA threshold,

Idle and success transmission indicators,

EDCA Idle and success transmission duration.

(7c)

Each sth STA is defined by a set of binary variables of
transmission properties to their mth AP, where φs,mp :=

{u(s,m)IDLE , u
(s,m)
SUCC , ξ

(s,m)
CCA , ξ

(s,m)
ED }. Let us define the binary vari-

able u(s,m)IDLE of an STA being idle in a BSS as:∑
m∈M

u(s,m)IDLE = 1 ∀s ∈ S, (8)

where u(s,m)IDLE = 1 if sth STA is idle with respect to its AP
and u(s,m)IDLE = 0, otherwise. In addition, we proceed to define
the binary variable u(s,m)SUCC in which an STA will successfully
transmit a packet as,∑

s∈S
u(s,m)SUCCu

(s,m)
IDLEξ

(s,m)
CCA ξ

(s,m)
ED ≤ 1 ∀m ∈M, (9)∑

m∈M
ξ
(s,m)
CCA = 1 ∀s ∈ S, (10)∑

m∈M
ξ
(s,m)
ED = 1 ∀s ∈ S, (11)

where ξ (s,m)CCA = 1 if the sensed energy signal of a packet sent
by the sth STA to the mth AP is below the CCA threshold
(Pmcs), otherwise becomes zero. Here, ξ (s,m)ED = 1 if the sensed
energy signal of a packet sent by the sth STA to the mth AP is
below the Energy Detection (ED) threshold (Pmed ), otherwise
becomes zero. Additionally, we consider Pmcs = Pmed .

The CCA threshold is a predefined signal strength level
that a channel must fall below for a device to consider the
channel clear and decide to transmit. Pragmatically speak-
ing, if the signal strength on a channel is above the CCA
threshold, a device assumes that the channel is busy, and it
refrains from transmitting to avoid interference with ongoing
transmissions. On the other hand, if the signal strength falls
below the CCA threshold, the device assumes that the channel
is clear and proceeds with transmission. The rationale for
this threshold is to help avoid collisions and interference
by ensuring that a device does not transmit when it detects
ongoing transmissions on the channel.

While CCA is primarily used to assess whether the channel
is clear for the initiation of Wi-Fi transmissions, the ED
threshold is used to detect the overall energy level on a
channel, including bothWi-Fi and nonWi-Fi signals. Devices
use energy detection to determine if a channel is busy or idle.
If the energy level is above the ED threshold, the channel

is assumed to be busy, and devices may defer their trans-
missions. If the energy level is below the ED threshold, the
channel is assumed to be clear, and devices may proceed with
transmissions. In dynamic channel selection scenarios, where
Wi-Fi networks may change channels dynamically to avoid
interference, the ED threshold is used tomake decisions about
channel switching. Even though ED and CS thresholds are
different in terms of what type of energy they track, both min-
imize interference, avoid collisions, and improve the overall
reliability and performance of wireless communication by
managing channel access and transmission.
Pmed by definition has a higher value than Pmcs since it is

firstly checked by the AP to set an STA on IDLE status
when compared to the received power. Afterwards, the AP
checks Pmcs. Thus, we could assume that for all APs at least the
condition Pmcs ≤ P

m
ed holds and consequently we can simplify

our analysis with equality.
As indicated in [46], two procedures can be defined when

stations are using ECDA. The first one indicates the duration
of a successful EDCA transmission whereas the second one
indicates the duration of a collision. The first procedure can
be generally described as:

T sEDCA = TTXOP + SIFS + TP + ACK + AIFS, (12)

where TTXOP defines the transmission duration, SIFS corre-
sponds to the short inter-frame space, ACK denotes the time
to send an acknowledgment signal, AIFS represents the arbi-
tration inter-frame space, and TP stands for the propagation
delay. On the other hand, we can define the second procedure
as the duration of a collision. The previous event can be
calculated as:

T cEDCA = TTXOP + TP + AIFS. (13)

All of the variables in Eqs. (12) and (13) are in theµs order
with exception of TTXOP which falls in the order of ms. Thus,
with the following approximation, T cEDCA ≈ T sEDCA, we can
denote both values as TEDCA.

As indicated by [47], the expected conditional length of the
general time-slot E(Tg) and the expected conditional trans-
mitted information E(Ig) by the sth STA to mth AP can be
expressed as:

E(T (s,m)
g |u(s,m)IDLE ) = δ

(s,m)u(s,m)IDLE

+ u(s,m)IDLETECDA ∀m ∈M, s ∈ S, (14)

E(I (s,m)g |u(s,m)SUCC ) = u(s,m)SUCCD
(s,m)
l TTXOP ∀m ∈M, s ∈ S,

(15)

where D(s,m)
l denotes the link data rate, TEDCA is a vari-

able that corresponds to the time required for a successful
Enhanced Distributed Channel Access (EDCA) transmission
and δ(s,m) represents the duration of an idle time slot. The
link data rate adaptively depends on SNR [48] and is mapped
based on the SNR/BER curves [49]. The received SNR can be
defined as Pmtxg

(s,m)/σ 2 where Pmtx is the transmission power,
g(s,m) is the channel power gain and σ 2 is the power noise.
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According to Bianchi’s work that is commonly used as a
reference study [50], the value of the throughput R can be
calculated as follows:

R =
E[payload information transmitted in a slot time]

E[length of a slot time]
.

(16)

Analogously, we can define the throughput of the sth sta-
tion attached to the mth AP as:

R(s,m)T =
E(I (s,m)g |u(s,m)IDLE )

E(T (s,m)
g |u(s,m)SUCC )

=
u(s,m)SUCCD

(s,m)
l TTXOP

δ(s,m)u(s,m)IDLE + u
(s,m)
IDLETEDCA

. (17)

Additionally, let us define the average linear product-based
network fairness and average station starvation in a dis-
tributed setting by,

P̄fair (t) ≤ 1, (18)∑
s∈S

ξ
(s,m)
STA (t) = 1 ∀m ∈M, (19)

P̄fair (t) =
1
|M|

∑
m∈M

∏
s∈S

R(s,m)T (t)

R(s,a)A

, (20)

Ū (t) =
1
|M|

∑
m∈M

1
|S|

∑
s∈S

ξ
(s,m)
STA (t), (21)

where R(s,a)A is the achievable throughput of the sth station
attached to the mth AP. In practice, the value of R(s,a)A is
set by running simulations with one STA and gathering
the corresponding throughput upper bound. Additionally,
ξ
(s,m)
STA = 1 if sth station’s throughput is greater than ωR(s,a)A
where the station starvation ratio, ω ∈ (0, 1], otherwise
becomes zero, in which case the station is considered in
starvation. ξSTA measures the number of starving stations at
t time. It uses throughput that behaves as a random variable
due to many factors such as congestion, packet loss, and
varying levels of network activity. Due to the property of
induced randomness, ξSTA takes the form of a randomvariable
as well.

The considered problem is a multi-objective problem and
can be addressed with the weighted sum approach. Thus,
in each time step, the problem can be formulated as,
Problem 1:

max
Ptx,Pcs

B1P̄fair (t)+ B2(1− Ū (t)) (22)

s.t. (8)-(19), (23)

Pmtx ∈ [Pmintx ,P
max
tx ],Pmcs ∈ [Pmincs ,P

max
cs ] ∀m ∈M,

(24)

where B1 and B2 are the importance coefficients associ-
ated to the variables P̄fair and the complement of Ū (t),
respectively.

As specified in equation (22), Problem 1 requires resolu-
tion in each time slot t . The parameters chosen in a given

time slot and their outcomes are contingent not only on the
selected transmission power and CCA threshold at time t
but also on decisions made in the past and uncertain future
events. Consequently, we can conceptualize this problem as a
sequential decision problem, wherein actions optimizing per-
formance are taken across a sequence of steps. This behavior
is dictated by our setup, where each AP independently selects
its parameters, sharing varying degrees of information or no
information at all. Due to the dynamic nature of the scenario,
the binary variables of each STA φ

(s,m)
p have a probabilistic

nature, requiring an additional step to map them to EDCA
parameters [47]. Instead, we simplify our analysis by utilizing
a network simulator to model such dynamics. We propose to
solve the previousmixed fractional and stochastic polynomial
problem by using an MA-CMAB solution, as described in
Section V.

A. OPTIMAL ACTION SET VIA WORST-CASE
INTERFERENCE
Motivated by subsection III-D, we aim to find a reduced
action set via worst-case interference analysis. Wi-Fi typ-
ical scenarios consist of APs and stations distributed non-
uniformly. Contrary to the analysis presented in [51], we aim
to obtain an optimal subset of TP and CCA threshold values
to further reduce the action space size that is utilized in the
optimization of SR. In this analysis, we only consider the
Carrier Sense (CS) threshold term as a form of the CCA
threshold.

First, let us consider the worst-case interference scenario
in an arrangement with NS ≥ 2. For the sake of simplicity,
we use the path-loss radio propagation model:

Prrx =
Pmtx
dr,mθ

, (25)

where Pmtx and P
r
rx are the TP at the mth transmitter (AP) and

the received signal strength at the r th receiver, respectively.
In addition, dr,m is the distance between the transmitter and
receiver. Finally, θ ∈ [2, 4] corresponds to the path loss
exponent. Thus, from the perspective of the mth AP, the
worst-case interference Im is defined as:

Im =
∑
v∈Fm

+

Pvtx
X (m,v)θ

+ Pstatx
∑
w∈Fm

−

1

X (m,w)θ
, (26)

whereFm
+ is the subset of interference sources |Fm

+ | = |M|−
1, corresponding to APs interfering with the mth AP, and Fm

−

is the subset of non-AP interference sources |Fm
− | = |S|,

corresponding to the stations interfering with the mth AP.
Furthermore, Pvtx is the TP of the vth interference source, and
Pstatx is a constant corresponding to the fixed power assigned to
all the stations, based on the fact that typically stations are not
capable ofmodifying their TP. Additionally,X (m,v) andX (m,w)

correspond to the distance from the mth AP to the vth AP
interference source and mth AP to the wth station interference
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source, respectively. X (m,.) is calculated as,

X (m,.)
=

√
(DmCCA + x

(m,.))2 + d2r,m −
2(DmCCA + x

(m,.))

(dr,m cos ςr,.)−1
,

(27)

where (.) refers either to the AP or non-AP interference
source, DmCCA is the CCA threshold range of the mth AP,
ςr,. is the distance between the receiver to the interference
source (.) and x(m,.) corresponds to the distance between any
(.) interference source and DmCCA.
The corresponding worst-case SINR γ (r,m) at the receiver

is defined as:

γ (r,m)
=

Pmtx
dr,mθ (Im + N0)

. (28)

Let us assume that N0 ≪ Im, thus the equation is reduced to:

γ (r,m)
=

Pmtx
dr,mθ Im

. (29)

By substituting equations (26) and (27) in (29), we obtain
equation (30), as shown at the bottom of the page. The previ-
ous mentioned equation describes γ (r,m) in function of DmCCA
and dr,m. Additionally, we substitute DmCCA =

(
Pmtx/T

m
cs
)1/θ

in equation (30) obtaining,

γ (r,m)
=

Pmtx
dr,mθ∑

v∈F+m

Pmtx

0m+Pstatx
∑K−m

w=1 ι
(m,w)

, (31)

where,

0m =


√√√√[(Pmtx

Tmcs

) 1
θ

+ xm,v

]2
+ d2r,m − H1


θ

,

H1 = 2

[(
Pmtx
Tmcs

) 1
θ

+ xm,v

]
dr,m cos ςr,v,

ι(m,w) =

(√
(�sta + xm,w)2 + d2r,m −

2(�sta + xm,w)
(dr,m cos ςr,w)−1

)−θ
,

�sta =

(
Pstatx
T stacs

) 1
θ

.

Hereafter, we proceed to define the maximum channel
capacity in terms of TP and Carrier Sense (CS) threshold
(Tcs). Given a certain value of SINR, the Shannon maximum
capacity is expressed as:

C (r,m)
= W log2(1+ γ

(r,m)), (32)

FIGURE 4. Network capacity as a function of TP and CS
threshold.

where W is the channel bandwidth in Hz. Then, the cumula-
tive maximum network capacity can be calculated as:

CT =
|M|−1∑
m=1

N∑
r=1

C (r,m). (33)

In Fig. 4, a graph of the network maximum capacity is
shown as a function of TP and CS threshold. As observed,
the network capacity achieves its higher values when a com-
bination of high TP and low CS threshold is utilized. Note
that, prior knowledge of the locations is required.

V. PROPOSED MULTI-AGENT MULTI-ARMED BANDIT
ALGORITHMS
In this section, we present the action space, context definition,
and reward function for the MA-MAB algorithms utilized in
this work.

A. ACTION SPACE
In this work, we consider a discrete action space that corre-
sponds to the number of combinations of Pcs and Ptx . In the
context of MABs, this translates into the number of arms for
each MAB agent. The action space is defined as,

Acs = {Pmin
cs ,P

min
cs +

Pmax
cs − P

min
cs

Lcs − 1
, . . . ,Pmax

cs }, (34)

Atx = {Pmin
tx ,Pmin

tx +
Pmax
tx − P

min
tx

Ltx − 1
, . . . ,Pmax

cs }, (35)

where Pmin
cs , Pmax

cs , Pmin
tx , and Pmax

tx are the minimum and
maximumvalues of the CCA threshold and TP values, respec-
tively. Lcs and Ltx denote the number of levels used to
discretize the CCA threshold and TP values, respectively.
Finally, the number of arms corresponding to the action space
for the mth agent, KAP

m , is given by |Amcs| · |A
m
tx |.

γ (r,m)
=

Pmtx
dr,mθ∑

v∈Fm
+

Pmtx(√
(DmCCA+xm,v)

2+d2m,r−
2(DmCCA+xm,v)

(dr,m cos ςr,.)−1

)θ + Pstatx ∑
w∈Fm

−

1(√
(DmCCA+xm,w)

2+d2r,m−
2(DmCCA+xm,w)

(dr,m cos ςr,w)−1

)θ (30)
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B. REWARD FUNCTION IN DISTRIBUTED
NON-COOPERATIVE SETTINGS
The reward is defined following the optimization problem 1.
Defined in a distributed manner, it resembles the reward pre-
sented in [17], which includes a linear product-based fairness
and the starvation term of a station [17], [20]. A station is
considered to be in starvation when its performance is below
a predefined percentage of its achievable throughput. The
reward is defined as,

rmAP =
|9m

AP|
∏

j∈9m
AP

R(s,m)T

ωR(s,m)A

+ H2

Nm
AP(N

m
AP + 1)

,

H2 = |Nm
AP \9

m
AP|

Nm
AP +

∏
j∈Nm

AP\9
m
AP

R(s,m)T

R(s,m)A

 , (36)

where 9m
AP is the set of starving stations attached to the mth

AP,Nm
AP the set of stations attached to them

th AP.We can also
observe that rmAP ∝ C

(r,m) as defined in Eq. (32).
In the next subsection, we present the definition of the

context considered in our MA-CMAB solution.

C. DISTRIBUTED SAMPLE AVERAGE
UNCERTAINTY-SAMPLING MA-CMAB
In [29], the authors present an efficient contextual multi-arm
bandit based on a ‘‘frequentist approach’’ to compute uncer-
tainty instead of using Bayesian solutions such as Thompson
Sampling. The frequentist approach consists of measuring the
uncertainty of the action-values based on the sample average
rewards just computed, rather than relying on the posterior
distribution given the past rewards. In this work, we introduce
multi-agent cooperative and non-cooperative variants of the
previously mentioned RL algorithm.

Our problem definition describes the context with only the
local observations of the APs:

1) Number of starving stations, |9m
AP|, where m corre-

sponds to themth AP underω fraction of their attainable
throughput during episode t .

2) Average RSSI, SAPm, where m is the mth AP during
episode t .

3) Average Noise, ϒAPm, where m denotes the mth AP
during episode t .

Additionally, the context is normalized as,

ψm
AP = |9

m
AP|/N

m
AP, (37)

smAP =



0, −50 dBm ≤ S
m
AP ≤ −60 dBm,

0.25, −60 dBm ≤ S
m
AP ≤ −70 dBm,

0.5, −70 dBm ≤ S
m
AP ≤ −80 dBm,

0.75, −80 dBm ≤ S
m
AP ≤ −90 dBm,

1, −90 dBm ≥ S
m
AP,

(38)

ϒ̂m
AP = ϒ

m
AP/100. (39)

The SAU-Sampling MA-CMAB algorithm, in its non-
cooperative version (SAU-NonCoop), is described in

Algorithm 1 SAU-Sampling MA-CMAB

1 Initialize network θ̂m, exploration parameters
J2m(t = 0) = 1 and nm(t = 0) = 0 for all actions
k ∈ Km.

2 for environment step t ← 1toT do
3 for agent m do
4 Observe context

xm(t) = [ψm
AP(t), s

m
AP(t), ϒ̂

m
AP(t)]

5 for k = 1, . . . ,Km do
6 Calculate reward prediction

µ̂i,t (t) = µ(xm|θ̂m) and
τ 2m,k (t) = J2m,k/nm,k

7 µ̃m,k ∼ N (µ̂m,k , n
−1
m,kτ

2
m,k )

8 end
9 Compute am(t) = argmaxa({µ̃m,k (t)}a∈Km})

if t > Km, otherwise am(t) ∼ U(0,K );
10 Select action am(t), observe reward rmAP;
11 Update θ̂m,k using SGD with gradients

∂lm/∂θ where lm = 0.5(rmAP − µ̂m,k (t));
12 Update J2m,k ← J2m,k + e

2
m using prediction

error em = rmAP(t)− µ̂m,k (t) and
nm,k ← nm,k + 1;

13 end
14 end

Algorithm 1. The algorithm begins with the initialization of
action-value functions µ(xm|θ̂m) as deep neural networks
and the exploration parameters J2m,k and nm,k for each mth

AP. Here, nm,k represents the number of times action a was
selected in the mth AP, and J2m,k is defined as an exploration
bonus. In each environmental step (Algorithm 1, line 2),
each agent observes its local context and computes the
selected arm based on the reward prediction. In (Algorithm 1,
line 11), each CMAB agent updates θ̂m,k using stochastic
gradient descent on the loss between the predicted reward
and the real observed reward. Finally, the exploration param-
eters are updated accordingly, given the prediction error,
as depicted in (Algorithm 1, line 12).

D. COOPERATIVE SAMPLE AVERAGE
UNCERTAINTY-SAMPLING MA-CMAB
In this section, we present a cooperative version of SAU-
Sampling MA-CMAB named SAU-Coop, which differs
from the non-cooperative version by having the total reward
rmC consider the network Jain’s fairness index in addition to
their local reward rmAP as:

rmC = rmAP + rJ , (40)

where rJ as the overall network Jain’s fairness index is
defined as,

rJ = J (R1, . . . ,RM ) =
(
∑|M|

m=1 R
m)2

|M| ·
∑|M|

m=1(R
m)2

, (41)
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Algorithm 2 Reward-Cooperative ϵ-Greedy MA-
MAB
1 Initialize ϵm(t = 0) = ϵ0, Qm,k (t = 0)← 0,
Nm,k (t = 0)← 0 and β.

2 for environment step t ← 1toT do
3 for agent m do
4 Execute action am(t):
5 am(t) =

argmaxk=1,...,K rk,i(t) with probability
1− ϵm(t)

k ∼ U(0,K ) o.w
6 Calculate reward rmAP(t) based on feedback of

the environment
7 Update Qm,k (t + 1) = Qm,k (t)+ 1

Nm(t)
[(rmAP +

β · 1
M−1

∑M−i
m=1 r

m
AP)− Qm,k (t)]

8 Update Nm← Nm(t)+ 1;
9 Update ϵm←

ϵm(t)√
t

10 end
11 end

where Rm =
∑|Sm|

s=1 R
(s,m)
T is the total throughput of all |Sm|

stations of the mth AP.

E. REWARD-COOPERATIVE ϵ-GREEDY MA-MAB
In addition to the previous cooperative algorithm, we propose
a cooperative approach based on the classical ϵ-greedy strat-
egy [26] that considers a percentage of the average reward of
other agents in the reward update of the action. This procedure
is described in Algorithm 2.

Finally, in the next subsection, we present the details of
the DTRL scheme to improve SR adaptation in dynamic
environments.

F. SAMPLE AVERAGE UNCERTAINTY-SAMPLING
MA-CMAB BASED DEEP TRANSFER
REINFORCEMENT LEARNING
Typically, RL agents learn their best policy based on the feed-
back received from the environment over a T horizon time.
However, in real-world scenarios, environmental conditions
can vary at T + 1, and thus, adapting to the updated environ-
ment is necessary [52]. In such cases, the ‘‘outdated’’ policy
of the agentmay not be optimal to adjust to the new conditions
efficiently. For instance, a modification in the distribution of
the stations over the APs can cause the SR-related parameters
chosen by the ‘‘outdated’’ agent’s policy to affect network
performance.

To address the previous situation, we propose two main
solutions: 1. If the agent detects a change in the environ-
ment indicated by a singularity, it will decide to correct its
configuration via forgetting the policy already learned (for-
get) or 2. adapting the agent’s policy to the new conditions
via a transfer learning technique. A singularity is defined
as an anomalous behavior of the KPIs of interest after the

Algorithm 3 SAU-Sampling MA-CMAB Transfer
Learning
1 Function Detect_Singularity(K) ; // returns True
if anomaly is detected in network KPIs
data K at time t, and False otherwise.

2 Let L = {l|l ∈ N, l > 0} the set of layers of

model θ̂
l
m,k andM ⊂ L the subset of layers to be transferred.

Run algorithm SAU-Sampling MA-CMAB (Algorithm 1)
while environment step t < T do

3 if ¬Detect_Singularity then
4 continue;
5 else
6 Reset exploration parameters S2m,k , nm,k ;
7 Reinitialize weights w and biases b of the lth layer of

8 θ̂
l ̸∈M
m,k via: νl =

(√
|θ̂
l ̸∈M
m,k |

)−1
;

9 θ̂
l ̸∈M
m,k (w, b)→ wl ∼ U(−νl , νl ), bl ∼ U(−νl , νl );

10 Transfer weights and biases via:

11 θ̂
l∈M
m,k (w, b)→ θ̂

l∈M′
m,k (w, b);

12 end
13 end

policy of each CMAB agent has converged. In this work,
we don’t delve into how to detect a singularity, andwe assume
the existence of an anomaly detector in our system [53].
In Algorithm 3, we present the transfer learning algorithm
depicting the second proposed solution. At t = 0, each
SAU-Sampling MA-CMAB agent will reset their weights
and biases and start learning as part of Algorithm 1. At t =
S1, where S1 corresponds to the time when an anomaly is
detected and the transfer procedure is activated (Algorithm 3,
line 7). In our setup, we transfer l = 2 and reset l =
1 (Algorithm 3, line 11), where l corresponds to the
layer of the neural network utilized in the SAU-Sampling
MA-CMAB agent. However, as indicated (Algorithm 3,
line 13), the transfer is not constrained to one layer but
more generally to a set of layers. The set of transferred layers
is considered a hyperparameter to be tuned. Partial trans-
fer of a model avoids negative transfer by giving the agent
room to adapt to the new context since it mitigates model
overfitting.

VI. PERFORMANCE EVALUATION
In this section, we intend to demonstrate the positive impact
on network KPIs of the reduced action set derived in
Section IV-A, as presented in Subsections VI-B and VI-
C. Further in Subsection VI-D, we present a comparison
between the cooperative and non-cooperative versions of
our proposed algorithm along with a comparison against
the two baselines. Furthermore, we leverage a transfer
learning approach to avoid starvation in dynamic envi-
ronments in Subsection VI-E. Finally, in Section VI-F,
we present a complexity analysis of the MA-CMAB
algorithm.
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FIGURE 5. Convergence performance of ϵ-greedy (Eg-NonCoop), Thompson Sampling (Th-NonCoop) and UCB (Ucb-NonCoop)
MA-MABs under non-cooperative and distributed regimen. (A) indicates the usage of the full set of actions.

TABLE 2. Learning hyperparameters.

A. SIMULATION SETTINGS
We consider two scenarios in our simulations. The first
one considers stationary users whereas the second scenario
considers mobile users to model dynamic scenarios (see
Section VI-E). In addition, each station and AP are devices
that are equipped with two antennas supporting up to two
spatial streams in transmission and reception. In this work,
we assume a frequency of 5 GHz with an 80 MHz channel
bandwidth in a Line of Sight (LOS) setting.3 The propaga-
tion loss follows the Log-Distance propagation loss model
with a constant speed propagation delay. We implement our
proposed solutions in ns-3, and we also use OpenAI Gym
to interface between ns-3 and the MA-MAB solution [54].
To ensure the validity of the proposed algorithms, we conduct
simulations using various seed values, resulting in random
deployment positions for all users and affecting the traffic
dynamics in ns-3. We consider an adaptive rate data mode
with UDP downlink traffic, which entails that there is no
guarantee of data delivery, ordering, or duplicate protection.
Thus, users’ packet collisions are also random and governed
by the simulations. Additionally, the time at which each user
starts transmitting is randomly chosen based on the utilized
seed. The number of runs using different seeds is set at 10.
In Table 2 and Table 3, we present the learning hyperparam-
eters and network settings parameters, respectively.

3We assume that all APs are configured to use one channel out of the avail-
able 11. This is a practical selection to create dense deployment scenarios.

TABLE 3. Network settings.

B. REDUCED SET OF ACTIONS VS. ALL ACTIONS
In subsection IV-A, we have presented a mathematical anal-
ysis to obtain a reduced set of optimal actions with the goal
of decreasing exploration time and consequently improving
convergence time. As concluded in Fig. 4, high TP and low
CCA threshold values maximize the network capacity in
the simulation scenario under study. Therefore, we select a
fixed value of CCA threshold (Pcs = −82.0 dBm) and a
reduced set of TP (Ptx ∈ 15, 16, 17, 18, 19, 20, 21 dBm)
and observe the performance against the full set of possible
actions described in V-A.
In Fig. 5, we present the convergence performance of three

MA-MAB algorithms under UDP traffic of 0.056 Gbps under
non-cooperative and cooperative settings (indicated with
‘‘Non-coop’’ and ‘‘Coop,’’ respectively). These algorithms
are to ϵ-greedy (Eg-NonCoop), UCB (Ucb-NonCoop), and
Thompson Sampling (Th-NonCoop) MA-MABs. For each
algorithm, three convergence graphs are plotted to present
fairness, cumulative throughput, and station starvation rep-
resenting the behavior when a reduced set of actions and
the full action set (indicated with (A)) are used, respec-
tively. Under the set of optimal actions, while no remarkable
change in the performance is observed, only a slight improve-
ment is obtained whenMAB-Thompson Sampling is utilized.
A noticeable improvement can be observed under the full
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FIGURE 6. Performance results: ϵ-greedy MAB w/ optimal set vs. default configuration with Pcs ∈ {−62.0, −82.0} dBm.

action set and with the MAB ϵ-greedy algorithm. In [56], the
authors study the unreasonable behavior of greedy algorithms
when K is sufficiently large. They conclude that when K
increases above 27 arms, intelligent algorithms are signifi-
cantly affected by the exploration stage. The former results
validate ours based on the fact that K = |Acs| · |Atx | =
212. Finally, it can be noted that the impact of utilizing
reduced optimal actions in terms of convergence time and
KPI maximization. The set of optimal tasks allows reducing
station starvation when compared to the best performer Eg-
NonCoop by an average of two starving users. However,
to obtain such a set, prior knowledge of stations and the
geographical locations of theAPs is required. In the following
section, we compare the results of ϵ-greedy MA-MAB to a
default typical configuration without machine learning.

C. DISTRIBUTED ϵ-GREEDY MA-MAB VS. DEFAULT
CONFIGURATION PERFORMANCE RESULTS
In this subsection, we present the comparative results and
advantages of utilizing a distributed intelligent solution such
as MAB ϵ-greedy over the default CCA threshold and TP
configuration with no ML. In Fig. 6, we present the per-
formance under four different UDP data traffic regimes:
{0.011, 0.056, 0.11, 0.16} Gbps. We consider two typical
configurations of the CCA threshold: −82.0 dBm and
−62.0 dBm. In both cases, the AP’s TP is 16.0 dBm. It can be
observed that MAB ϵ-greedy achieves significant improve-
ment over the default configuration (Pcs = −82.0 dBm) with
an average gain of 44.4% over all of the considered data rates
in terms of cumulative throughput. Furthermore, it leads to an
improvement of 70.9% in terms of station starvation, 12.2%

in terms of fairness, 138.0% in terms of latency, and 94.5%
in terms of packet loss ratio (PLR). Additionally, a gain over
the default configuration (Pcs = −62.0 dBm)with an average
gain of 53.9% in terms of cumulative throughput, 138.4% in
terms of station starvation, 43.0% in terms of fairness, 84.0%
in terms of latency, and 105.4% in terms of packet loss ratio
(PLR) is shown over all the considered data rates.

D. COOPERATION VS. NON-COOPERATION
PERFORMANCE RESULTS
In the two past subsections, we have shown the results
considering the set of optimal actions. In this subsection,
we assume the absence of stations and APs location infor-
mation and thus, we must rely on the full set of actions.
Consequently, we investigate if cooperation can improve the
KPIs of interest by utilizing the cooperative proposal of
the MAB ϵ-greedy algorithm (Rew-Coop) and the SAU-
Sampling MA-CMAB algorithm (SAU-Coop). Additionally,
we present two non-cooperative algorithms:SAU-NonCoop,
which represents the non-cooperative version of the SAU-
Sampling MA-CMAB, and Eg-NonCoop, which refers to
the MAB ϵ-greedy algorithm utilized in the previous section.

As observed in Fig. 7, simulation results show that SAU-
Coop improves Eg-NonCoop with an average of 14.7%
in terms of cumulative throughput, 21.3% in terms of sta-
tion starvation, 4.64% in terms of network fairness, 36.7%
in terms of latency, and 32.5% in terms of PLR under all
considered data rates. Similarly, SAU-NonCoop presents
an enhanced performance over Eg-NonCoop, indicating
that context is beneficial to solving the current optimiza-
tion problem. Additionally,SAU-Coop exhibits performance
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FIGURE 7. Performance results of cooperative algorithms: ϵ-greedy MA-MAB (Rew-Coop), SAU-Sampling MA-CMAB (SAU-Coop)
and non-cooperative versions of the previous algorithms SAU-NonCoop and Eg-NonCoop under full-set of actions.

TABLE 4. Dynamic scenario load distribution.

improvement over its non-cooperative version, especially
when the data rate increases up to 0.16 Gbps where it leads to
a gain of 14.1% in terms of cumulative throughput, 32.1%
in terms of station starvation, 18.2% in terms of network
fairness, 16.5% in terms of latency, and 4% in terms of PLR.
To sum up, cooperative approaches contribute positively
to the improvement of SR in Wi-Fi over non-cooperative
approaches. Furthermore, in cases where cooperation is not
possible, it is advisable to utilize contextual multi-armed
bandits over stateless multi-armed bandits.

E. DEEP TRANSFER LEARNING IN ADAPTIVE SR IN
DYNAMIC SCENARIOS RESULTS
To model a dynamic scenario, we design a simulation envi-
ronment where the users move across the simulated terrain
and attach to the AP that offers the best signal quality.
Consequently, the user load in each AP varies, reflecting
the dynamics of the environment. We model this scenario
with 3 APs and 15 users, where the load changes twice
throughout the simulation. As depicted in Table 4, the user
load of the mth AP, denoted as Lm, change at two instances in
time: at the 3rd and 6th minutes, respectively.

FIGURE 8. Network response in terms of fairness and station
starvation when utilizing the forget, full transfer, and transfer
strategies.

In Fig. 8, we present the network behavior in terms of
fairness and station starvation under the scenario depicted in
Table 4. In addition to the two methods previously introduced
(forget and transfer), we present the performance of a third
approach called full transfer, where complete transfer of the
model is considered. During the first interval (0 − 3 min),
the performance is similar for all three methods, as expected.
However, following the two changes in the network load,
singularities in each graph become visible in terms of fairness
and starvation.

Specifically, the forgetmethod exhibits the worst behavior,
with a 54.3% decrease in station starvation and an 11.7%
decrease in fairness compared to the transfer method. The
forget method shows peaks at the moments of singularities,
impacting 60% of the total users with a service drop. This
behavior is inherently related to the agents’ process of restart-
ing learning and cannot be avoided. From a quality of service
perspective, such disturbances are highly undesirable.
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Meanwhile, the full transfer method is outperformed by
the transfermethod, resulting in an 18.7% decrease in station
starvation and a 6% decrease in fairness. Notably, in the
second interval under study (3 − 6 min), the forget method
outperforms the full transfermethod by the end of the period.
This is due to the negative transfer effect that results from
transferring the entire model. Partial transfer learning does
not only significantly reduce the peaks in performance of the
forgetmethod but also achieves better adaptation than the full
transfermethod. Under all methods, the cumulative through-
put is similar, but as observed in Fig. 8, station starvation, and
consequently fairness are affected.

F. COMPLEXITY ANALYSIS
The SAU-Sampling MA-CMAB variants (Coop and Non-
Coop) are built upon [29], where it has demonstrated an
empirical reduction in running time and comparable com-
plexity with other MAB techniques such as TS [57]. More
specifically, the SAU metric τ 2k introduced in this work
resembles TS according to Proposition 2, page 5
in [29] with an empirical behavior similar to TS as well. This
may not be an improvement when compared to the TS MAB
from the regret theoretical analysis, but this approach can be
adapted to any action-value function since it does not require
access to the uncertainty of the expected reward as TS does.

Each agent in the SAU-Sampling MA-CMAB consists of
a neural network that predicts the reward given the observed
context. Such a predictor is composed of 2 hidden layers: the
input layer, and the output layer. Consequently, three matrices
are needed to represent the weight relationships of the four
layers: Wab,Wca,Wdc, where a, b, c, d are the number of
nodes of each layer. The propagation from layer a to b can
be written in the following fashion:

Sat = Wab ∗ Zbt , #Propagation from layer a to b

(42)

Zat = f (Sat ). #Activation function (43)

The operation complexity in Eq. (42) corresponds toO(a∗
b ∗ t), meanwhile Eq. (43) is O(a ∗ t), which corresponds
to a total complexity of O(a ∗ b ∗ t). Analogously, we can
proceed with the matricesWca andWdc and obtain a total time
complexity ofO(n ∗ t ∗ (ab+ ca+ dc)), which can be further
reduced toO(ab+ca+dc) since n = t = 1 in ourMA-CMAB
proposal. Thus, this represents a low time complexity with no
implications for the performance of the algorithm.

VII. CONCLUSION
In this paper, we have proposed Machine Learning (ML)-
based solutions to optimize Spatial Reuse (SR) in distributed
Wi-Fi 802.11ax/802.11be scenarios. We have presented a
solution to reduce the huge action space given the possible
values of Transmission Power (TP) and Clear-Channel-
Assessment (CCA) threshold values per Access Point (AP)
and analyzed its impact on diverse well-known distributed
Multi-Agent Multi-Armed Bandit (MA-MAB) implemen-

tations. In distributed scenarios, we have shown that the
ϵ-greedy MA-MAB significantly improves the performance
over typical configurations when the optimal actions are
known. Moreover, the Contextual Multi-Agent Multi-Armed
(MA-CMAB), named SAU-Sampling in the cooperative set-
ting, contributes positively to an increase in throughput and
fairness and a reduction of PLR when compared with non-
cooperative approaches. Under dynamic scenarios, transfer
learning benefits the SAU-Sampling algorithm to overcome
service drops for at least 60% of the total users when utilizing
the forget method. Additionally, we have shown that partial
transfer learning is beneficial when compared to the full
transfer method. In conclusion, the utilization of the coop-
erative version of the MA-CMAB to improve SR in Wi-Fi
scenarios is preferable since it outperforms the presented
ML-based solutions and prevents service drops in dynamic
environments via transfer learning.

APPENDIX A
PROOFS
A. USEFUL PROPERTIES
Let us assume that action 1 refers to the optimal matching
given an optimal team policy µk∗∗ , where µ1 = µk∗∗ and k∗∗

corresponds to the optimal bipartite matching. Similar to [29]
we define rk,1, rk,2, · · · , rk,nk be the random variables refer-
ring to the rewards yielded by action k of successive nk plays.
Also, we fix n and avoid the usage of such subscript. The
notation ‘‘k, j’’ means that the number of plays of action k is
j. Xk is a random variable drawn from the normal distribution
N (µ̂k,nk , τ

2
k /nk ), where

µ̂k,nk =
1
nk

nk∑
j=1

rk,j and τ 2k =
1
nk

nk∑
j=1

(rk,j − µ̂a,j−1)2.

Thus Xk becomes:

Xk = µ̂k,nk + δk,nk , where δk,nk ∼ N (0, τ 2k /nk ). (44)

Gaussian Tail bound: Based on the definition in the
SAU-Sampling algorithm in [29], δk,nk in probability. By the
Gaussian tail bound [58, Definition 2.1], for α > 0,

Pr
{
δk,nk ≥ α|τ

2
k

}
≤ exp

{
−
α2nk
2τ 2k

}
≤ exp

{
−nkα2/2

}
,

(45)

where the second inequality is from that τ 2k ≤ 1. Eq. (45)
follows that

Pr
{
δk,nk ≥ α

}
≤ exp

{
−nkα2/2

}
. (46)

B. PROOF OF THEOREM 1
Proof: Let us define first the team regret based on the

suboptimal selection of bipartite matching k*:

R(n) =
∑

k∗:µk∗<µk∗∗

1k∗∗ [Tk∗(n)]
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= 1k∗∗
∑

k∗:µk∗<µk∗∗
[Tk∗(n)]

≤ 1k∗∗

N∑
i=1

K∑
j=1

[T̃ij(n)] (47)

where T̃ij(n) ∈ RK×N corresponds to a counter that is incre-
mented by 1 when a non-optimal matching is selected by
the SAU-Sampling MA-CMAB algorithm. Additionally, the
tuple (i, j) indicates the jth arm selected by the ith agent.1k∗∗

is defined as 1k∗∗ = µn,k∗∗ (n)− µn,k (n).

With c1,n = N
√

(N+1) log n
n1

and ck,n = N
√

(N+1) log n
nk

, let

P1 = {µ̂1,n1 > µ1 −
1
N c1,n}, and

Pk = {µ̂k,nk < µk+
1
N ck,n} for k = 2, · · · ,K .where P̄1 and

P̄a be the complements ofP1 andPk respectively. Pr
{
P̄1
}
and

Pr
{
P̄a
}
are bounded from the Azuma-Hoeffding inequality

[58, Corollary 2.1]:

Pr
{
P̄1
}
= Pr

{
µ̂1,n1 ≤ µ1 −

1
N
c1,n

}
≤ exp(−2(M + 1) log n) = n−2(M+1) (48)

Pr
{
P̄a
}
= Pr

{
µ̂k,nk ≥ µk +

1
N
ck,n

}
(49)

≤ exp(−2(M + 1) log n) = n−2(M+1).

Defining for η ∈ R:

Qk,nk (η) = Pr(Xk ≥ η).

Following Eq. (47) and taken into account [36], the following
lemma is used:

R(n) ≤
∑

k∗:µk∗<µk∗∗

1k∗∗(Ra + Rb), (50)

where

Ra =
n−1∑
n1=0

[
min

{
1

NQ1,n1 (η)
− 1, n

}]
and

Rb =
n−1∑
nk=0

Pr[NQk,nkη) > 1/n]+ 1.

We set

ηk∗∗ = µk∗∗ +
1k∗∗

2
= µ1 −

1k∗∗

2
. (51)

First, we split Ra into two terms R(1)a and R(2)a and bound
them by applying Theorem [36, Theorem 1]. Now in the
first step we derive the upper bound on R(1)a . Denote n̄k∗∗ =
24N 2 log n

12
k

. Noting Q1,0(ηk ) = 1 and ⌈n̄k∗∗⌉ is the smallest

integer not less than n̄k∗∗.

Ra =
n−1∑
n1=1

[
min

{
1

NQ1,n1 (ηk∗∗)
− 1, n

}]

=

⌈n̄k∗∗⌉−1∑
n1=1

[
min

{
1

NQ1,n1 (ηk∗∗)
− 1, n

}]
(52)

+

n−1∑
n1=⌈n̄k∗∗⌉

[
min

{
1

NQ1,n1 (ηk∗∗)
− 1, n

}]
=: R(1)a + R

(2)
a , (53)

The law of total probability implies that, when n1 ≥ n̄k∗∗,

Q1,n1 (ηk∗∗)
=Pr {X1 > ηk∗∗} = 1− Pr {X1 < ηk∗∗}

=1− Pr(P1)Pr {X1 < ηk∗∗|P1}

− Pr(P̄1)Pr
{
X1 < ηk∗∗|P̄1

}
>1− Pr

{
µ̂1,n1 + δ1,n1 < µ1 −1k∗∗/2|P1

}
− Pr(P̄1)

≥1− Pr
{
δ1,n1 ≤ −1k∗∗/2+

1
N
c1,n

}
− Pr(P̄1)

>1− Pr

{
δ1,n1 ≤ −

√
2
N
c1,n

}
− Pr(P̄1)

≥1− n−(N+1) − n−2(N+1), (54)

where the 1st inequality is from the facts that Pr(P1) <

1 and Pr
{
X1 < ηk∗∗|P̄1

}
< 1, the 2nd inequality is from the

definition of P1, the 3rd inequality is from1k∗∗/2− 1
N c1,n ≥√

2
N c1,n as n1 ≥ n̄k∗∗, and the last inequality is from Eqs. (46)
and (48).

Eq. (54) implies that for n ≥ 3 and N ≥ 1,

R(1)a =
n−1∑

n1=⌈n̄k∗∗⌉

[
min

{
1

NQ1,n1 (ηk∗∗)
− 1, n

}]

=

n−1∑
n1=⌈n̄k∗∗⌉

min
{

1
NQ1,n1 (ηk∗∗)

− 1, n
}

<

n−1∑
n1=⌈n̄k∗∗⌉

1
N (1− n−(N+1) − n−2(N+1))

− 1

< 2N
n−1∑

n1=⌈n̄k∗∗⌉

(n−(N+1) + n−2(N+1)) <
3N

N + 1
, (55)

where the 1st inequality fulfills the condition 1
Q1,n1 (ηk∗∗)

−1 <
1

1−n−(N+1)−n−2(N+1)
− 1 < n, the 2nd inequality is from that

1
1−n−(N+1)−n−2(N+1)

− 1 < 2(n−(N+1) + n−2(N+1)) when n ≥
3 and N ≥ 1.
It follows the calculation of the lower bound of Ra, R

(2)
a

in Eq. (52). A second lower bound can be derived from
Q1,n1 (ηk∗∗) as follows: Let

PL1 = {µ̂1,n1 ≥ µ1}.

Denote P̄L1 be the complements of PL1 , we have:

Pr
{
PL1
}
= 1/2; Pr

{
P̄L1
}
= 1/2 (56)

Similarly as Eq. (54), we have:

Q1,n1 (ηk∗∗)

=Pr
{
X1,n1 > ηk∗∗

}
=1− Pr(PL1 )Pr

{
X1,n1 < ηk∗∗|PL1

}
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− Pr(P̄L1 )Pr
{
X1,n1 < ηk∗∗|P̄L1

}
>1−

1
2
Pr
{
µ̂1,n1 +

1
N
c1,nδ1,n1 < µ1 −

1k∗∗

2
|PL1

}
−Pr(P̄L1 )

≥1/2− 1/2Pr
{
1
N
c1,nδ1,n1 ≤ −1k∗∗/2

}
≥
1
2

[
1− exp

(
−

n112
k∗∗

8N 2 log n

)]
, (57)

where the 1st inequality is from the facts that Pr
{
X1,n1 < ηk∗∗|P̄L1

}
<

1, and the 2nd inequality is from the definition of PL1 and
Eq. (56), and the last inequality is from Eq. (46).

We have that (1) log(1 − 2
n+1 ) ≥

−3
n+1 when n ≥ 4;

(2) −3n+1 ≥
−3
n ; and (3) −

12
k∗∗

8N 2 log n
≤

−3
n+1 when n

log n ≥

24N 2

mink∗∗12
k∗∗

. The three inequalities imply that when n ≥

max{ 24N 2 log n
mink∗∗12

k∗∗
, 4},

1− exp

(
−

12
k∗∗

8N 2 log n

)
≥

2
n+ 1

.

Thus, Eq. (57) follows:

R(1)a =
⌈n̄k∗∗⌉−1∑
n1=1

[
min

{
1

NQ1,n1 (ηk∗∗)
− 1, n

}]

≤

⌈n̄k∗∗⌉−1∑
n1=1

 2

1− exp
(
−

n112
k∗∗

8N 2 log n

) − 1


<

⌈n̄k∗∗⌉−1∑
n1=1

[
4 exp

(
−

n112
k∗∗

8N 2 log n

)
− 1

]
<3n̄k∗∗. (58)

Therefore, inserting Eqs. (55) & (58) into Eq. (52),

R(1)a ≤ 3n̄k + 4. (59)

In the next step, we derive the upper bound on R(2)a . When
nk∗∗ ≥ n̄k∗∗,

1k∗∗/2− ck,n ≥
√
2ck,n. (60)

From the definition of event Pk , the law of total probability
implies:

Pr
{
1
N
Qk,nk (ηk) > 1/n

= Pr (Pk)Pr
{
1
N
Qk,nkηk

)
> 1/n

∣∣∣∣ Pk}
+ Pr

(
P̄a
)
Pr
{

1
N
Qk,nk (ηk) > 1/n

∣∣∣∣ P̄a}
≤ Pr

{
1
N
Qk,nk (ηk) > 1/n

∣∣∣∣ Pk}+ Pr
(
P̄a
)
.

(61)

When nk ≥ n̄k , given event Pk ,

Qk,nk (ηk ) =Pr {Xk > ηk |Pk} = (62)

Pr
{
µ̂a + δk,nk > 1k/2+ µk |Pk

}
≤Pr

{
δk,nk ≥ 1k/2−

1
N
ck,n

}
≤Pr

{
δk,nk ≥

√
2
N
ck,n

}
≤ exp {−(N + 1) log n} = n−(N+1), (63)

where the 1st inequality is from the definition of event Pk ,
the 2nd inequality is from Eq. (60), the 3rd inequality is from
Eq. (46).
Eq. (62) follow that when nk ≥ n̄k ,

Pr
{
1
N
Qk,nk (ηk ) > 1/n|Pk

}
= 0. (64)

Inserting Eq. (64) into Eq. (61),

Pr[
1
N
Qk,nk (ηk ) > 1/n] ≤ Pr(P̄a) ≤ n−(N+1), (65)

where the last step is from Eq. (49). We have:

Rb =
n−1∑
nk=0

Pr[NQk,nk (ηk ) > 1/n]+ 1

≤

⌈n̄k⌉∑
nk=0

Pr[NQk,nk (ηk ) > 1/n]+ 1

+

n−1∑
nk=⌈n̄k⌉

Pr[NQk,nk (ηk ) > 1/n]+ 1

≤ Nn̄k +
n−1∑

nk=⌈n̄k⌉

Pr[NQk,nk (ηk ) > 1/n]+ 1

< Nn̄k + (N + 1)

< N (n̄k + 1)+ 1, (66)

Finally, we substitute Ra and Rb terms in Eq. (50) having:

R(T ) ≤ N 2K1k∗∗

(
96 log n

12
k∗∗
+

1
1+ N

)
(67)
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