
Received 14 August 2023; revised 22 December 2023; accepted 5 February 2024.
Date of publication 14 February 2024; date of current version 22 February 2024.

The associate editor coordinating the review of this article and approving it for publication was C. Shen.

Digital Object Identifier 10.1109/TMLCN.2024.3366501

Getting the Best Out of Both Worlds:
Algorithms for Hierarchical

Inference at the Edge

VISHNU NARAYANAN MOOTHEDATH 1, JAYA PRAKASH CHAMPATI 2 (Member, IEEE),
AND JAMES GROSS 1 (Senior Member, IEEE)

1Department of Intelligent Systems, KTH Royal Institute of Technology, 11428 Stockholm, Sweden
2Edge Networks Group, IMDEA Networks Institute, Leganes, 28918 Madrid, Spain

CORRESPONDING AUTHOR: V. N. MOOTHEDATH (vnmo@kth.se)

This work was supported in part by the Verket för Innovationssystem (VINNOVA) Competence Center for Trustworthy Edge Computing
Systems and Applications (TECoSA) at KTH Royal Institute of Technology, in part by the Vetenskap Radet (VR)–Optimal Sampling for
Interactive Networked Applications under Grant 2022-03922, and in part by the European Union through Marie Skłodowska-Curie

Actions - Postdoctoral Fellowships (MSCA-PF) Project ‘‘DIME: Distributed Inference for Energy-efficient Monitoring at the Network Edge’’
under Grant 101062011.

ABSTRACT We consider a resource-constrained Edge Device (ED), such as an IoT sensor or a microcon-
troller unit, embeddedwith a small-sizeMLmodel (S-ML) for a generic classification application and an Edge
Server (ES) that hosts a large-size ML model (L-ML). Since the inference accuracy of S-ML is lower than
that of the L-ML, offloading all the data samples to the ES results in high inference accuracy, but it defeats the
purpose of embedding S-ML on the ED and deprives the benefits of reduced latency, bandwidth savings, and
energy efficiency of doing local inference. In order to get the best out of both worlds, i.e., the benefits of doing
inference on the ED and the benefits of doing inference on ES, we explore the idea of Hierarchical Inference
(HI), wherein S-ML inference is only accepted when it is correct, otherwise the data sample is offloaded
for L-ML inference. However, the ideal implementation of HI is infeasible as the correctness of the S-ML
inference is not known to the ED. We thus propose an online meta-learning framework that the ED can use to
predict the correctness of the S-ML inference. In particular, we propose to use the probability corresponding
to the maximum probability class output by S-ML for a data sample and decide whether to offload it or not.
The resulting online learning problem turns out to be a Prediction with Expert Advice (PEA) problem with
continuous expert space. For a full feedback scenario, where the ED receives feedback on the correctness of
the S-ML once it accepts the inference, we propose the HIL-F algorithm and prove a sublinear regret bound√
n ln(1/λmin)/2 without any assumption on the smoothness of the loss function, where n is the number

of data samples and λmin is the minimum difference between any two distinct maximum probability values
across the data samples. For a no-local feedback scenario, where the ED does not receive the ground truth
for the classification, we propose the HIL-N algorithm and prove that it has O

(
n2/3 ln1/3(1/λmin)

)
regret

bound. We evaluate and benchmark the performance of the proposed algorithms for image classification
application using four datasets, namely, Imagenette and Imagewoof, MNIST, and CIFAR-10.

INDEX TERMS Hierarchical inference, edge computing, regret bound, continuous experts.

I. INTRODUCTION

EMERGING applications in smart homes, smart cities,
intelligent manufacturing, autonomous internet of vehi-

cles, etc., are increasingly using Deep Learning (DL)
inference. Collecting data from the Edge Devices (EDs)
and performing remote inference in the cloud results in

bandwidth, energy, and latency costs as well as reliabil-
ity (due to wireless transmissions) and privacy concerns.
Therefore, performing local inference using embedded DL
models, which we refer to as S-ML (Small-ML) models,
on EDs has received significant research interest in the recent
past [1], [2], [3]. These S-ML models range from DL models

280


 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2024

https://orcid.org/0000-0002-2739-5060
https://orcid.org/0000-0002-5127-8497
https://orcid.org/0000-0001-6682-6559


Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

that are optimised for moderately powerful EDs, such as
mobile phones, to tinyML DL models that even fit on micro-
controller units. However, S-ML inference accuracy reduces
with the model size and can be potentially much smaller
than the inference accuracy of large-size state-of-the-art DL
models, which we refer to as L-ML (Large-ML) models, that
can be deployed on Edge Servers (ESs). For example, for an
image classification application, an S-ML can be a quantized
MobileNet [4] with a width multiplier of 0.25, that has a
memory size of 0.5 MB and an inference accuracy of 39.5%
for classifying ImageNet dataset [5], whereas CoCa [6], an
L-ML, has an accuracy of 91% and amemory size in the order
of GBs.

One may choose to achieve the accuracy of L-ML model
while utilising the computational capabilities of EDs using
the well-known DNN partitioning techniques, e.g., see [7],
[8], and [9]. Note that such partitioning techniques require
processing time and energy profiling of the layers on EDs as
well as on ESs to decide the optimal partition points. Early
Exit is yet another technique that introduces side branches
in between the layers of DL models to trade-off accuracy
with latency [10]. In contrast to these techniques, in this
work, we explore the novel idea of Hierarchical Inference
(HI). Consider that an ED is embedded with an S-ML and
an L-ML1 is deployed on an ES (to which the ED enlists to
get help for doing inference). In HI, we propose that an ED
first observes the S-ML inference on each data sample and
offloads it to L-ML only if S-ML inference is incorrect.

Clearly, the ambition of HI is to maximise the use of S-ML
in order to reap the benefits of reduced latency, bandwidth
savings, and energy efficiency while not losing inference
accuracy by offloading strategically to L-ML, thus achiev-
ing the best benefits out of the two worlds: EDs and ESs.
However, the central challenge is that the incorrect inferences
are inherently unknown at the ED, and a decision under
uncertainty needs to be taken. Thus, for each sample, we ask
the question: should the ED accept the inference from S-ML
or offload for inference from L-ML? In this work, we focus
on the pervasive classification applications and address the
above question as an online sequential decision problem by
proposing a novel HI meta-learning framework, shown in
Fig. 1. This framework facilitates the ED in deciding in real
time whether an S-ML inference for a given sample should
be accepted or rejected, where in the latter case the sample is
offloaded for an accurate inference by the L-ML.

In our framework, for each sample, the HI learning
algorithm observes p, the maximum probability value in the
probability distribution over classes output by the S-ML. In a
DNN for example, a softmax function such as sigmoid in the
last layer outputs these probabilities.

It then decides to offload, receiving a fixed cost 0 ≤ β <

1, or not to offload, receiving a cost 0 if the inference is
correct, and a cost 1, otherwise. We will show later that this

1Both S-ML and L-ML are trained ML models deployed for providing
inference and HI does not modify these models.

FIGURE 1. Schematic of the HI meta-learning framework.

FIGURE 2. Classification of Imagenette by a small-size quantized
MobileNet using width multiplier 0.25 [4].

cost structure facilitates HI by maximising the offloading of
samples with incorrect inference and minimising offloading
the samples with correct inference. We will also argue in
Section III that any other arbitrary costs could be transformed
into this particular cost structure. Here, the offload cost can be
considered as the cost incurred for communication, latency,
resource usage, etc., and the fluctuations in these from sample
to sample could be captured using an average.We also assume
that S-ML accepts the inference of L-ML as the ground truth
implying that the top-1 accuracy of L-ML is 100%. We use
this only for simplicity and is not necessary for our results.
We will further discuss this assumption in Section III and also
present the analysis without it later in Appendix E.

Intuitively, if the maximum probability p is high, then
accepting S-ML inference will likely result in cost 0 and
thus, it is beneficial to do so. However, if p is low, the cost
will likely be equal to 1, and thus offloading with cost β is
beneficial. This can be seen from Fig. 2, where we present
the number of misclassified and correctly classified images
of the dataset Imagenette [11] by the classifierMobileNet [4].
Observe that, for p ≥ 0.45 (approximately) it is beneficial to
accept the inference of MobileNet in the simple sense that
there are more images correctly classified, and offloading is
beneficial for p < 0.45. For specific costs, this can be easily
done offline using a simple search if similar histograms are
available, which is not the case in any real-time scenario.
To provide an intuitive idea, one can visually find out this
optimum threshold (for β = 0.5) by simply finding a point
such that the total number of incorrectly classified images
(i.e., the brown bars) below it is equal to the total number of
images (i.e., the brown and blue bars) above it. The problem

VOLUME 2, 2024 281



TABLE 1. List of abbreviations.

that we pose is finding the optimum threshold in an online
manner.

The above problem falls in the domain of Prediction with
Expert Advice (PEA) [12]. However, given the continu-
ous expert space (or action space) for θ , as elaborated in
Section IV, the standard Exponentially Weighted Average
Forecaster (EWF) cannot be used here. Additionally, another
challenge is that the local cost is unobservablewhen the S-ML
inference is accepted due to the unavailability of the ground
truth at ED. This situation characterizes a no-local feedback
scenario. For simplify the solution, we initially consider a full
feedback scenario assuming local feedback is available, and
then adapt the solution to the more realistic no-local feedback
scenario, resulting in algorithms designated as HIL-F and
HIL-N for the full feedback and no-local feedback scenarios,
respectively.

A novel aspect of our algorithms is that they use the
structural properties of the HI learning problem at hand to
find a set of non-uniform intervals obtained by doing dynamic
and non-uniform discretisations and use these intervals as
experts, thereby transforming the problem from a continuous
to a discrete domain without introducing any error due to this
discretisation. To the best of our knowledge, our work is the
first attempt to extend the concept of continuous experts to
the no-local feedback scenario and find regret bounds for the
same. We summarise our main contributions below.

• We propose a novel meta-learning framework for HI
that decides whether a data sample that arrived should
be offloaded or not based on S-ML output. For the full
feedback scenario, we prove that O

(√
n log n

)
is the

lower bound for the regret bound that can be achieved
by any randomised algorithm for a general loss function,
where n is the number of data samples.

• Wepropose the HIL-F (HI Learningwith Full Feedback)
algorithm that uses exponential weighting and dynamic
non-uniform discretisation. We prove that HIL-F has
√
n ln(1/λmin)/2 regret bound, where λmin is the min-

imum difference between any two distinct p values
among the n samples.

• We propose HIL-N (HI Learning with no-local feed-
back) algorithm, which on top of HIL-F, uses an
unbiased estimate of the loss function. We prove a regret
bound O

(
n2/3 ln1/3(1/λmin)

)
. We discuss the ways to

approximate λmin and find the optimal values of the
parameters used.

• We show that the computational complexity of our algo-
rithms in round t is O

(
min(t, 1

λmin
)
)
.

• Finally, we evaluate the performance of the proposed
algorithms for an image classification application using
four datasets, namely, Imagenette and Imagewoof [11],
MNIST [13], and CIFAR-10 [14], [15]. For the first two,
we use MobileNet, for MNIST, we implement a linear
classifier, and for CIFAR-10, we use a readily available
CNN. We compare with four baselines – the optimal
fixed-θ policy, one that offloads all samples, one that
offloads none, and a hypothetical genie algorithm that
knows the ground truth.

In our recent work [16], we have provided a more general
definition of HI and provided multiple use cases, and also
compared HI with existing DL inference approaches at the
edge. However, in [16], we used a fixed threshold for offload-
ing without the online learning aspects that we do in this
work. Further, unlike [16], in this work we rely heavily on
analytical results and discuss how close the solution is to an
offline optimum.

This paper is organised as follows: In Section II we go
through the related research and explain the novelty in the
contributions. In Section III, we describe the system model
followed by some background information and preliminary
results in Section IV. Sections V and VI details HIL-F and
HIL-N, derive their regret bounds, and Section VII discuss
their computational complexity. Finally, we show the numer-
ical results in Section VIII and conclude in Section IX.

We summarise some important abbreviations in TABLE 1.

II. RELATED WORK
A. INFERENCE OFFLOADING
Since the initial proposal of edge computing in [17], sig-
nificant attention was given to the computational offloading
problem, wherein the ED needs to decide which jobs to
offload and how to offload them to an ES. The majority of
works in this field studied offloading generic computation
jobs, e.g., see [18], [19], and [20]. In contrast, due to the
growing interest in edge intelligence systems, recent works
studied offloading data samples for ML inference both from
a theoretical [21], [22], [23] and practical [24], [25] per-
spectives. In [21], offloading between a mobile device and a
cloud is considered. The authors account for the time-varying
communication times by using model selection at the cloud
and by allowing the duplication of processing the job at the
mobile device. In [22], the authors considered a scalable-size
ML model on the ED and studied the offloading decision
to maximise the total inference accuracy subject to a time
constraint. All the above works focus on dividing the load of
the inference and do not consider HI and online learning. Our

282 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

work is in part motivated by [23], where the authors assumed
that the energy consumption for local inference is less than
the transmission energy of a sample and studied offloading
decision based on a confidence metric computed from the
probability distribution over the classes. However, in contrast
to our work, the authors do not consider the meta-learning
framework and compute a threshold for the confidencemetric
based on the energy constraint at the ED.

B. ON-DEVICE INFERENCE
Several research works focused on designing S-ML models
to be embedded on EDs that range from mobile phones to
microcontroller units. While optimisation techniques such
as parameter pruning and sharing [26], weights quantisa-
tion [27], and low-rank factorisation [28] were used to design
the S-ML models, techniques such as EarlyExit were used
to reduce the latency of inference. For example, [29] studied
the use of DNNs with early exits [10] on the edge device,
while [30] studied the best DNN selection on the edge
device for a given data sample to improve inference accuracy
and reduce latency. These works do not consider inference
offloading and in turn HI.

C. DNN PARTITIONING
Noting that mobile devices such as smartphones are embed-
ded with increasingly powerful processors and the data
transmitted between intermediate layers of a DNN is much
smaller than the input data in several applications, the authors
in [7] studied partitioning DNN between a mobile device
and cloud to reduce the mobile energy consumption and
latency. Following this idea, significant research work has
been done that includes DNN partitioning for more general
DNN structures under different network settings [8], [31] and
using heterogeneous EDs [9], among others. In contrast to
DNN partitioning, under HI, ED and ES may import S-ML
and L-ML algorithms from the pool of trainedML algorithms
available on open-source libraries such as Keras, TFLite, and
PyTorch. Furthermore, HI doesn’t even require that S-ML and
L-ML be DL models but rather can even be signal processing
algorithms. On the one hand, there is significant research by
the tinyML community for building small-size DNNs that
can be embedded on micro-controllers and also in designing
efficient embedded hardware accelerators [2]. On the other
hand, abundant state-of-the-art DNNs are available at edge
servers that provide high inference accuracy. Our work is
timely as HI will equip ML at the edge to reap the benefits of
the above two research thrusts. To the best of our knowledge,
we are the first to propose an online meta-learning framework
for HI.

D. ONLINE LEARNING
The problem of minimising the regret, when the decision is
chosen from a finite expert space falls under the well-known
Prediction with Expert Advice (PEA) or Multi-Armed Bandit
(MAB) problems [12], [32].Wewill explainmore about these

problems in Section IV. We will see that we cannot directly
use these problems due to the uncountable nature of the expert
space in our problems which we will elaborate in III. We will
also explain why some of the existing literature on continuous
extensions of PEA andMAB are not suited or sub-optimal for
our specific problem.

E. CLASSIFICATION WITH REJECTION
In the machine learning community, classification with rejec-
tion methods, which accept only the confident inferences and
reject (equivalent to ‘offload’ in our problem) the rest, has
been well studied in the literature. In the survey paper [33],
the authors elaborate on these methods in detail and discuss
several confidence metrics. One could potentially use an
S-ML model with a rejection option to directly facilitate the
offloading decision. However, S-ML models with a reject
option come at the expense of higher resource requirements.
For example, training a multi-class classifier with m classes
with a reject option requires trainingm binary classifiers [34].
For applications like image classification which have a large
number of classes (e.g. ImageNet has 1000 classes) loading
such a model with the rejection option will be prohibitive for
resource-constrained devices. In contrast, we use the basic
confidence metric p for offloading or accepting decisions.
Our framework is quite flexible in that, any off-the-shelf ML
models can be used as the S-ML. Further, unlike classification
with rejection mode, our online learning approach for p will
potentially benefit the decisions even when the samples are
generated out-of-distribution.

In [35], it was shown that the probability of the maximum
probability class is a very strong confidence metric for the
detection of potential errors. As mentioned already, we use
this metric p throughout the paper. However, one could also
use other metrics such as the difference between the first
and the second largest probabilities [36], [37]. In [33], the
authors also discuss calibrated models where the maximum
probability also reflects the actual likelihood of correctness
of the corresponding class. Note that in our HI framework, S-
ML need not be calibrated, and the proposed algorithm and
analysis apply to any confidence metric.

III. SYSTEM MODEL AND PROBLEM STATEMENT
We consider the system shown in Fig. 1, with an ED enlisting
the service of an ES for data classification applications. For
the EDs, we focus on resource-constrained devices such as
IoT sensors or microcontroller units. The ED is embedded
with an S-ML which provides lower inference accuracy, i.e.,
the top-1 accuracy, whereas the ES runs an L-ML with higher
accuracy. For example, for an image classification applica-
tion, an S-ML can be a quantized MobileNet [4] with a width
multiplier of 0.25; its memory size is 0.5MB and has an infer-
ence accuracy of 39.5% for classifying ImageNet dataset [5],
whereas CoCa [6], an L-ML, has accuracy 91% and has
memory size in the order of GBs. The only assumption that
we make on the algorithms is that the L-ML is significantly
more accurate and costlier than the S-ML. In this paper,

VOLUME 2, 2024 283



the S-ML or the L-ML algorithms can be any classification
algorithm including regression algorithms, SVMs, random
forests, and DNNs.

Given an arbitrary sequence of n data samples ariving
over time at the ED. We assume that each sample first goes
through local inference and the decision is made according
to the inference results and parameters. This is an essential
assumption to facilitate HI, otherwise, the ED cannot infer
anything about the sample. As stated earlier in Section I,
we assume that all the offloaded images will be correctly
classified by the L-ML. This assumption is not necessary,
and we provide an extended analysis in Appendix E without
this assumption where we consider an imperfect L-ML and
include a cost of incorrect inferences at L-ML. The assump-
tion, however, is justified in practice because the ED doesn’t
have the ground truth and there is no meaningful method for
ED (or ES) to check whether the L-ML inference is correct
or not. Therefore, it is reasonable that it aims to achieve an
inference accuracy as close as possible to that of L-ML by
treating the output of the L-ML as the ground truth.

A. SYSTEM COSTS AND FEEDBACK SETTINGS
Let t denote the index of a data sample (e.g., an image),
or simply a sample, that arrives t th in the sequence. Let pt
denote the maximum probability in the probability distribu-
tion over the classes output by S-ML for the sample t and
the class corresponding to pt is declared as the true class for
computing the top-1 accuracy, which is very typical in a wide
variety of classifier algorithms.2 Let binary random variable
Yt denote the cost representing the ground truth that is equal
to 0 if the class corresponding to pt is the correct class and
is equal to 1, otherwise. Clearly, given an S-ML model, Yt
depends on pt and the sample.

Let β ∈ [0, 1) denote the cost incurred for offloading
the image for inference at the ES. This cost, for example,
may include the costs for the transmission energy and the
idle energy spent by the transceiver till the reception of the
inference. Note that, if β ≥ 1, then accepting the inference
of S-ML, which incurs a cost at most 1, for all samples
will minimise the total cost. This particular cost structure of
{0, β, 1} is chosen for easy computations. However, note that
any other set of arbitrary costs can be transformed into this
form by ignoring the common and hence non-optimisable
costs and properly scaling the rest. To understand this, assume
the cost of correct S-ML Inference, the cost of offload, and the
cost of incorrect inference are C0,Cβ , and C1, respectively.
Also assume that C0 < Cβ < C1, and that the cost of
S-ML inference C0 is a common component that is incurred
irrespective of the decision and inference outcome. Thus,
subtracting this common component and then dividing by
C1−C0 gives us a zero cost for correct local inference, a unit
cost for local incorrect inference, and a cost of β ∈ (0, 1) for

2Our framework allows other confidence metrics besides pt and it does
not involve any further modification in the remainder of this work.

offload given by

β =
Cβ − C0

C1 − C0
. (1)

Throughout this paper, we consider the offload cost β to be a
constant known apriori. However, it turns out that a varying
beta, βt , t = 1, 2, . . . , could also provide similar results, with
β replaced with the expectation of the sequence {βt }. This is
elaborated as a remark at the end of Appendix E.

As explained in Section I, in round t , we use the following
decision rule Dt based on the choice of threshold θt ∈ [0, 1]:

Dt =

{
Do not offload if pt ≥ θt ,

Offload if pt < θt .
(2)

Given pt , choosing threshold θt thus results in a cost/loss
l(θt ,Yt ) at step t , where we omit the variable pt from the
function for simplicity in notations. This is given by

l(θt ,Yt ) =

{
Yt pt ≥ θt ,

β pt < θt .
(3)

We use boldface notations to denote vectors. Let Y t =
{Yτ }, θ t = {θτ }, and pt = {pτ }, τ = 1, 2, . . . , t ≤ n.
Further, let Y := Yn, θ := θn and p := pn for convenience.
Finally, we define λmin as the minimum difference between
any two distinct probability values in the sequence pn. Define
the cumulative cost L(θ ,Y ) as L(θ ,Y ) =

∑n
t=1 l(θt ,Yt ).

1) FEEDBACK SETTINGS
Recall that the ground truth, available at the ES by virtue of
the perfect L-ML, is fed back to the ED for all offloaded
samples. However, at the ED, the ground truth (Yt ) is not
accessible, requiring further modifications and/or assump-
tions to learn the accuracy of S-ML. In this paper, we con-
sider two scenarios: full feedback and no-local feedback.
The no-local feedback scenario, realistic without additional
assumptions, utilises the exploration-exploitation tradeoff to
acquire ground truth, by offloading a subset of the samples
where a decision to accept the S-ML inference is made.

Primarily serving as an analytical precursor to the subse-
quent discussion, we also present the full feedback scenario,
assuming the ground truth’s availability at the Edge Device
(ED) without any exploration. We start the analysis with this
scenario, helping the reader in comprehending the solution
approach and subsequently extending the understanding to
the more realistic no-local feedback scenario with relative
ease. It is worth noting that one may still imagine scenarios
that closely resembles a full feedback scenario. Hypothetical
examples include the system acting as an assistant to a human
user in classification, allowing for a binary inference on
classification correctness, or a delayed provision of ground
truth due to latency or privacy concerns.

B. PROBLEM STATEMENT
We are interested in devising online algorithms for learning
the optimal threshold that strikes a balance between reducing

284 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

TABLE 2. List of symbols.

the number of offloaded images and improving inference
accuracy, thereby enhancing the responsiveness and energy
efficiency of the system. Let θ∗ = {θ∗, θ∗, . . . }, a vector of
size nwith all values θ∗, denote an optimal fixed-θ policy and
L(θ∗,Y ) denote the corresponding cost. Then,

L(θ∗,Y ) =
n∑
t=1

l(θ∗,Yt ),

where θ∗ need not necessarily be unique and is given by

θ∗ = argmin
θ∈[0,1]

n∑
t=1

l(θ,Yt ).

Given a sequence Y , define the regret as

Rn = Eπ [L(θ ,Y )]− L(θ∗,Y ), (4)

where the expectation Eπ [·] is with respect to the distribution
induced by an arbitrary algorithm π .
We aim to develop HIL-F (HI Learning with full feedback)

and HIL-N (HI Learning with no-local feedback) algorithms
for the two scenarios, each with a sublinear upper bound (i.e.,
a bound approaching 0 as n goes to ∞) on EY [Rn] – the
expected regret over the distribution of all possible sequences
Y . We refer to this bound as an expected regret bound.
Note that a regret bound applicable to any given sequence Y
extends to the expected regret (or even the maximum regret)
over all possible sequences of Y . Consequently, for simplic-
ity, we restrict the analysis to a given Y in the upcoming
sections. However, in the numerical section, we will present
results with the expected average regretEY [ 1nRn] =

1
nEY [Rn]

and the expected average cost 1nEY ,π [L(θ ,Y )]. The averaging
over the number of samples n normalizes the maximum to 1,
facilitating easy comparison and removing the dependency
on the size of different datasets.

We summarise all the relevant notations in TABLE 2.

IV. BACKGROUND AND PRELIMINARY ANALYSIS
A. LEARNING PROBLEMS
The HI learning problem falls into the category of PEA [12]
problems. In the standard PEA problem, N experts (or
actions) are available for a predictor – known formally as a
forecaster. When the forecaster chooses an expert, it receives
a cost/reward corresponding to that expert. If the cost is only
revealed for the chosen expert, then this setting is the MAB.
In contrast to the standard PEA, we have an uncountable
expert space where the expert θt belongs to the continu-
ous space [0, 1]. Continuous action space is well studied in

MAB settings, e.g., see [38], [39], and [40], where the main
technique used is to discretise the action space and bound
the regret by assuming that the unknown loss function has
smoothness properties such as uniformly locally Lipschitz.
However, the problem at hand does not assume any smooth-
ness properties for the loss function.

As discussed briefly in Section I, one well-known fore-
caster for standard PEA is the exponential weighted average
forecaster (EWF). For each expert, EWF assigns a weight
that is based on the cost incurred for choosing this expert.
During each prediction, EWF selects an expert with a proba-
bility computed based on these weights. It is known that for
n predictions, EWF achieves a regret

√
n lnN/2. However,

the continuous nature of the expert space renders EWF not
directly usable for solving the problem at hand. An extension
of EWFwas considered in [41], and a regret bound for convex
losses is obtained for continuous experts, conditioned on a
hyperparameter γ > 0. Later, a particular γ is proposed
to get the optimum regret bound of 1 +

√
n ln n/2. We,

on the other hand, do not require any hyperparameter and,
more importantly, do not assume any convexity for the loss
function. In addition, [41] does not describe how to compute
the integral required for computing the weights. Furthermore,
the solution in [41] is only applicable to HIL-F with full
feedback, but not to HIL-N inwhich case ours is the first work
to the best of our knowledge.

One may discretise [0, 1] with a uniform interval length 1

and use the standard EWF, where a straightforward sub-
stitution of the number of experts N = 1/1 results in a
regret bound of

√
n ln(1/1)/2. However, to not sacrifice the

accuracy due to this discretisation, one has to take 1 small
enough such that no two probability realisation pt falls within
an interval. This is to make sure that the cumulative loss
function is constant within each interval, which will be more
clear after Lemma 1. Thus, if λmin is the minimum separation
between any two distinct probabilities pt , 1 ≤ t ≤ n, the
best attainable regret bound of a standard EWF using uniform
discretisation is

√
n ln(1/λmin)/2 with N = 1/λmin. We will

soon see that these regret bounds are similar to what we get
using our proposed algorithms, but the added complexity with
a large number of experts from the first round onwards makes
it sub-optimal.

In this paper, we start with the continuous experts and
then use the structure of the problem to formulate it in a dis-
crete domain. We propose a non-uniform discretisation that
retains the accuracy of a continuous expert while reducing
the complexity to the theoretical minimum with at most

VOLUME 2, 2024 285



n + 1 experts after nth round. Note that, due to the non-
uniform discretisation, the proposed HIL does not involve 1,
but instead involves λmin, where 1/λmin acts similar to N in
the regret bound. In Section V, we provide simple methods to
approximate λmin.

B. PRELIMINARY ANALYSIS
To choose a good threshold θt in round t , we take a hint
from the discrete PEA [12] where a weight for an expert
is computed using the exponential of the scaled cumulative
losses incurred. We extend this idea and define continuous
weight function wt (θ ) as follows:

wt+1(θ ) = e−η
∑t

τ=1 l(θ,Yτ )

= e−η
∑t−1

τ=1 l(θ,Yτ )e−ηl(θ ,Yt ) (5)

= wt (θ )e−ηl(θ,Yt ). (6)

Wt+1 =

∫ 1

0
wt+1(θ ) dθ. (7)

Here, η > 0 is the learning rate and W is the normalisation
factor. At each round t , the normalised weights give the
probability distribution for choosing the next threshold θt+1,
and thus they can be used to learn the system. However,
it comes with two challenges – (i) finding a (set of) thresholds
that follow this distribution and (ii) computing the integral.
Although these challenges can be solved using direct numer-
ical methods, they incur a large amount of computational
cost. For instance, the inverse transformation method can
generate a random sample of the threshold with this distri-
bution. Instead, we use the facts from (2) and (3) that our
final decision (to offload or not) depends solely on the relative
position of θt and pt , but not directly on θt . Thus, using the
distribution given by the normalised weights, we define qt as
the probability of not offloading, i.e., the probability that θt
is less than pt , where

qt =

∫ pt
0 wt (x) dx

Wt
. (8)

Thus, the decision Dt from (2) boils down to do not offload
and offload with probabilities qt and (1− qt ), respectively.

Having addressed the first challenge, our focus shifts
to finding efficient methods for computing the integral
in (8). It’s worth noting that the cumulative loss function,
L(θ t ,Y t ) =

∑t
τ=1 l(θτ ,Yτ ), can potentially take 3t different

values (due to 0, 1, or β cost in each step) without a neces-
sary pattern, making direct analytical integration impractical.
To overcome this challenge, we utilize Lemma 1 and trans-
form the integral into a summation by discretizing the domain
[0, 1] into a finite set of non-uniform intervals.

The non-uniform discretisation suggested by the lemma is
incremental and a new interval is (potentially) added in each
round. Let’s look at the structure of the weight function after
n rounds. Let p0 = 0 and pN = 1, where N is the number of
intervals formed in [0, 1] by the sequence of probabilities pn.
Here, we haveN ≤ n+1 because of the repeated probabilities
that do not result in the addition of a new interval. We denote

these intervals by Bi = (p[i−1], p[i]], 1 ≤ i ≤ N , where
p[i] denotes the ith smallest distinct probability in pn. Let
mi, 1 ≤ i ≤ N be the number of times p[i] is repeated in pn.
For instance, N = n + 1 and p[i] = pi iff mi = 1∀i. Finally,
let Y[i], i = 1, 2, . . . n be the ith element in the ordered set
of local inference costs ordered according to the increasing
values of the corresponding probability pi. Note that, i in Y[i]
goes up to n while i in p[i] goes only up to N because any
two local inference costs Yj and Yk associated with repeated
probability values pj = pk are two different but i.i.d random
variables.
Lemma 1: The function L(θ ,Y ) is a piece-wise constant

function with a constant value in each interval Bi. Further-
more, if there are no repetitions in the sequence pn, then

L(θ∗,Y ) = min
1≤i≤n+1

{
(i− 1)β +

n∑
k=i

Y[k]

}
.

Proof: By definition, pt falls on the boundary of Bi, ∀t ,
for some i. Hence, Bi is a subset of either (0, pt ] or (pt , 1].

⇒ l(θt ,Yt ) =

{
Yt , ∀θ : θt ∈ Bi ⊂ (0, pt ], and
β, ∀θ : θt ∈ Bi ⊂ (pt , 1].

(9)

Thus, ∀ i ≤ N , l(θ,Yt ) := l(Bi,Yt ),∀θ ∈ Bi. That is, the
cost for all θ within an interval Bi takes a constant value of
l(Bi,Yt ), and this value depends on whether p[i] (the upper
boundary of Bi) is greater than pt or not. To prove the second
part, note that L(θ,Y ) =

∑n
t=1 l(Bi,Yt ) : θ ∈ Bi.

⇒ L(θ∗,Y ) = min
θ∈[0,1]

L(θ,Y ) = min
1≤i≤N

n∑
t=1

l(Bi,Yt ).

n∑
t=1

l(Bi,Yt ) =
n∑
t=1

[β 1(pt < p[i])+ Yt 1(pt ≥ p[i])]

= β

i−1∑
j=1

mj +
n∑

k=1+
∑i−1

j=1 mj

Y[k]

⇒ L(θ∗,Y ) = min
1≤i≤N

{
β

i−1∑
j=1

mj +
n∑

k=1+
∑i−1

j=1 mj

Y[k]
}

(10)

When there are no repetitions, we can substitute mj = 1,∀j
in the above expression to complete the proof.
From Lemma 1, we infer that the weight function is con-

stant within the intervals defined by pt for any t , and we
can compute the integral in (8) by adding multiple rectan-
gular areas formed by the length of each interval Bi and the
corresponding constant weight within it. Thus, by converting
the integral of wt (θ ) in a continuous domain to a summation
of areas of rectangles with non-uniform bases, we not only
reduce the complexity but also do that without sacrificing
the accuracy of the results. We will discuss more on the
computational complexity later in Section VII. It is worth
noting that the property of the piece-wise nature – given by
the first part of Lemma 1 – is not only valid for the particular
loss function l(θt ,Yt ), but also for any other loss functionwith

286 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

a single decision boundary (as in (3)) and discrete costs on
either side of this boundary. This becomes important whenwe
use a modified loss function for finding the optimum decision
boundary θ∗ for the HIL-N case in Section VI.
Consider the scenario where pn is known a priori. We can

then use the standard EWF with N intervals with the cost
corresponding to interval Bi as defined in (9). The following
Corollary states the regret bound for this algorithm.
Corollary 1: If the sequence pn is known a priori, an EWF

that uses the intervals Bi as experts achieves
√
n lnN/2 regret

bound. Consequently, given that N = O(n), the regret bound
of EWF is O(

√
n ln n).

Note that, for the standard PEA with N experts,
√
n lnN/2

is the lower bound for the regret bound for any randomised
algorithm [42]. Thus, Corollary 1 implies that for the prob-
lem at hand, under a general loss function, no randomised
algorithm has regret bound lower than O(

√
n ln n). Clearly,

the lower bound O(
√
n ln n) is much higher than the lower

bound of PEA, where the number of experts is independent
of n. This establishes the hardness of our problem, which is
imparted due to the dynamic and increasing nature of the
number of experts. Adding to the difficulty, O(

√
n ln n) can

only be achieved if pn is known a priori, which is not the case
in practice.

With all preliminaries covered, we now present the
HIL algorithms and their regret bounds for full feedback
and no-local feedback scenarios in Sections V and VI,
respectively.

V. FULL FEEDBACK
In this section, we consider the full-feedback scenario, where
the algorithm receives the ground truth Yt for all the samples,
including those that are not offloaded by accepting the S-ML
inference. For this scenario, we present the HIL-F algorithm
in Algorithm 1. Some algorithmic rules for the parameter
updates are given later in Section VII. As explained in the
previous section, given pt , we compute qt , the probability of
not offloading. Once the decision is made using qt , the costs
are received and theweights are updated using (6) and (7). For
simplicity, we denote the expected cost received by HIL-F in
round t by l̄(Yt ) and is given by

l̄(Yt ) = EQt [l(θt ,Yt )] = Ytqt + β(1− qt ),

where the expectation is with respect to the probability dis-
tribution dictated by qt . Also, let L̄(Y ) =

∑n
t=1 l̄(Yt ) denote

the total expected cost after n rounds. In the theorem below,
we provide a regret bound for HIL-F.
Theorem 1: For η > 0, HIL-F achieves the following

regret bound:

Rn = L̄(Y )− L(θ∗,Y ) ≤
1
η
ln

1
λmin
+
nη
8

. (11)

Proof: Proof of Theorem 1 is given in Appendix A.
Here, η is the learning rate of the algorithm. To find η∗, the

η that minimises the above regret bound, we differentiate the

Algorithm 1 The HIL-F Algorithm for Full Feedback
1: Initialise: Set w1(θ ) = 1,∀θ ∈ [0, 1] and N = 1.
2: for every sample in round t = 1, 2, . . . do
3: S-ML outputs pt .
4: Compute qt using (7) and (8), and generate Bernoulli

random variable Qt with P(Qt = 1) = qt .
5: if Qt = 1 then
6: Accept the S-ML inference and receive cost Yt .
7: else
8: Offload the sample and receive cost β.
9: end if
10: Find the loss function using (3).
11: if pt is not a repetition then
12: Update the intervals by splitting the interval contain-

ing pt , at pt . Increment N by 1.
13: end if
14: Update the weights for all intervals using (6), based on

the interval positions with respect to pt .
15: end for

regret Rn in (11) to obtain

η∗ =

√
8 ln(1/λmin)

n
. (12)

Substituting (12) in (11), we get Rn =
√
n ln(1/λmin)/2.

What remains is to find an approximation for λmin, which is
possible through various methods. For instance, one can use
the precision of the probability outputs, i.e., if the probability
outputs are truncated to 6 decimal places, then we know that
λmin ≥ 10−6. Further, some datasets and/or S-ML models
come with specific λmin. For example, the probability output
by MobileNet on the Imagenette dataset is 8-bit and hence
the probabilities are integer multiples of 1/256. Even in cases
where all these methods fail, we see that a decent approxima-
tion for λmin is λ̂min = 1/(n+ 1).

VI. NO-LOCAL FEEDBACK
Under no-local feedback, the cost is unknown once the infer-
ence of the S-ML is accepted. For this scenario, we use
the randomisation idea used for label efficient prediction
problem [43], which is a variant of the PEA, where the costs
in each round are not revealed, unless they are inquired for,
and there can only be at most m inquires that can be made.
For this variant, EWF is modified as follows: in each round,
a Bernoulli random variable Z is generated with probability
ϵ. If Z = 1, then feedback is requested and the costs
are revealed. However, for our problem, the algorithm for
the label-efficient prediction problem is not applicable due
to the aspect of continuous expert space. Further, we do not
have the notion of inquiring about the costs at the ED. Instead,
when Z = 1, the sample has to be offloaded to the ES with
cost β irrespective of the original decision made using qt .
These samples provide the EDwith the inference using which
the ED computes the cost Yt .

VOLUME 2, 2024 287



Algorithm 2 The HIL-N Algorithm
1: Initialise: Set w1(θ ) = 1,∀θ ∈ [0, 1] and N = 1.
2: for t = 1, 2, . . . do
3: S-ML outputs pt .
4: Compute qt using weights from (14) and (15) and

generate Bernoulli random variables
Qt and Zt with P(Qt = 1) = qt and P(Zt = 1) = ϵ.

5: if Qt = 1 and Zt = 0 then
6: Accept the S-ML inference and receive cost Yt

(unknown).
7: else
8: Offload the sample and receive cost β.
9: end if
10: Find the pseudo loss function using (13).
11: if pt is not a repetition then
12: Update the intervals by splitting the interval contain-

ing pt at pt . Increment N by 1.
13: end if
14: Update the weights for all intervals using (14), based

on the interval positions with respect to pt .
15: end for

To address the above aspects we follow the design prin-
ciples of HIL-F and use non-uniform discretisation of the
continuous domain and propose the HI algorithm for no-local
feedback (HIL-N), which is presented in Algorithm 2. Even
though HIL-N and HIL-F have a similar structure, the design
of HIL-N is significantly more involved and has the following
key differences with HIL-F. Firstly, in line 5 of Algorithm 2,
a Bernoulli random variable Zt is generated with probability
ϵ. If Zt = 1, then the sample is offloaded even if Qt = 1,
and thus Yt is realised in this case. This step is used to control
the frequency of additional offloads carried out to learn the
ground truth Yt . Secondly, instead of the loss function, the
weights are updated using a pseudo loss function l̃(θt ,Yt )
defined as follows:

l̃(θt ,Yt ) =


0 pt ≥ θt ,Zt = 0; [Do Not Offload]
Yt
ϵ

pt ≥ θt ,Zt = 1; [Offload]

β pt < θt . [Offload]

(13)

We also update the equations (6), (7) and (8) as follows:

wt+1(θ ) = wt (θ )e−ηl̃t (θ,Yt ), (14)

Wt+1 =

∫ 1

0
wt+1(θ ) dθ, and (15)

qt =

∫ pt
0 wt (x) dx

Wt
. (16)

We emphasise that the pseudo loss function l̃(θt ,Yt ) is used
only as part of the HIL-N algorithm, and is not the actual cost
incurred by the ED. The actual cost remains unchanged and it
depends only on the offloading decision and the correctness
of the inference if not offloaded. However, this actual incurred

cost or the corresponding loss function l(θt ,Yt ) is unknown
for the no-local feedback scenario, whenever the sample is not
offloaded and the local inference is accepted. This is precisely
the reason to introduce the pseudo loss function l̃(θt ,Yt )
which is known in each t , and can be used in the HIL-N
algorithm to update the weights. Recall from Section V that
in HIL-F, the cost incurred and the cost used to update the
weights are the same, and the incurred cost is β if and only if
pt < θt . However in HIL-N, we use the pseudo cost to update
the weights, and thus the actual cost incurred can be equal
to β even if pt ≥ θt . However, we designed the pseudo-loss
function such that

EZ

[
l̃(θt ,Yt )

]
= l(θt ,Yt ). (17)

Therefore, the pseudo loss function is an unbiased estimate
of the actual loss function, a fact that we will facilitate our
analysis. Further, with the addition of a random variable Q,
the regret for HIL-N can be rewritten as

Rn = EQZ [L(θ ,Y )]− L(θ∗,Y ), (18)

where EQZ [·] is expectation with respect to random variables
{Q1,Q2, . . . ,Qn} and Bernoulli random variable Z .
Theorem 2: For η, ϵ > 0, HIL-N achieves the regret

bound

Rn ≤ nβϵ +
nη
2ϵ
+

1
η
ln(1/λmin). (19)

Proof: Proof of Theorem 2 is given in Appendix B.
The bound in Theorem 2 neatly captures the effect of ϵ on

the regret. Note that the term nβϵ is a direct consequence of
offloading sample t , when Zt = 1. Additionally, it is notewor-
thy that the bound for HIL-N in Theorem 2 exhibits similarity
to the previously obtained bound for HIL-F in Theorem 1.
Both bounds share a comparable relationship with dependent
parameters such as n, η, λmin, among others. The additional
terms in the HIL-N bound, rendering it a looser bound, result
from the exploration aspect, where the correctness of the
inference is available only for a subset of rounds determined
by the Bernoulli parameter ϵ.

We now minimise this bound for HIL-N and find the
parameters that render the bound to be sublinear in n. Denote
the bound in Theorem 2 by g(ϵ, η). We have,

g(ϵ, η) = nβϵ +
nη
2ϵ
+

1
η
ln(1/λmin). (20)

Lemma 2: The function g(ϵ, η) defined in (20) has a global

minimum at (ϵ∗, η∗), where η∗ =
(
2 ln2(1/λmin)

βn2

)1/3
and ϵ∗ =√

η
2β . At this minimum, we have,

g(ϵ∗, η∗) = 3n2/3
(

β ln(1/λmin)
2

)1/3

.

Proof: Proof of Lemma 2 is given in Appendix C.
Substituting the optimum parameters given by the above

Lemma in (20), we obtain a sublinear regret bound for
HIL-N. This is given in the following corollary.

288 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

Corollary 2: With η =

(
2 ln2(1/λmin)

βn2

)1/3
and ϵ =

min{1,
√

η
2β }, HIL-N achieves a regret bound sublinear in n:

Rn ≤ 3n2/3
(

β ln(1/λmin)
2

)1/3

Proof: Proof of Corollary 2 is given in Appendix D.
Remarks: It is worth noting the following:

1) The proof steps in Theorem 1 closely follow some
analysis of the standard EWF for PEA with the added
complexity to account for the continuous experts and
non-uniform discretisation. The analysis for HIL-N is
novel. In particular, the design of the unbiased estima-
tor, steps 1 and 3 in the proof of Theorem 2, and the
proof of Lemma 2 have new analysis.

2) The computational complexity of HIL-N is of the same
order as that of HIL-F due to the similar interval gen-
eration steps.

3) We can remove the dependency of η on λmin and n by
using a sequence of dynamic learning rates: ηt = 1

√
t+1

.
Sublinear regret bounds can be obtained for such a
modification but we omit the analysis due to space
constraints.

VII. ALGORITHM IMPLEMENTATION AND
COMPUTATIONAL COMPLEXITY
Recall from Lemma 1 that cumulative loss is a piece-wise
constant function. We use this fact to compute the continuous
domain integral in (8) efficiently by splitting the function into
multiple rectangular areas of nonuniform base and then sum-
ming them up, where we do not make any discretisation error
but compute the exact value of the integral. In each round t ,
we increase the number of intervals by at most 1 as we split
the interval containing pt at pt . After receiving pt , we thus
have N ≤ t + 1 intervals with boundaries given by p[0] = 0,
p[i], 1 ≤ i ≤ t , and p[N ] = 1. The weight wi,t , i ≤ t+1 of the
interval i in round t is then updated based on, 1) the weights in
round t − 1, and 2) the position of the interval with respect to
pt . Note that in lines 12 of HIL-F and HIL-N, we state that the
interval containing pt should be split and in line 14 we state
that the weights should be computed, but without givingmore
details. Below, we present four algorithmic rules that can be
used to compute the probability qt , interval boundaries {p[i]}
and weights {wi,t }, which needs to be computed in order. Let j
be the interval strictly below pt and dup be a Boolean variable
denoting duplicate pt .

(i) j ← max{i : p[i] < pt }.

(ii) dup ← FALSE, if pτ ̸=pt , ∀τ < t, TRUE otherwise.

(iii) qt ←

∑j
i=1 wi,t (p[i] − p[i−1])+ wj+1,t (pt − p[i])∑N

i=1 wi,t (p[i] − p[i−1])

(iv) N ←

{
N (dup = TRUE),
N + 1 (dup = FALSE).

(v) p[i] ←


p[i] i ≤ j or (dup = TRUE)
pt i = j+ 1 and (dup = FALSE)
p[i−1] j+ 1 < i ≤ N and (dup = FALSE)

(vi) wi,t ←



wi,t−1e−ηβ p[i] > pt , (dup = TRUE)
wi−1,t−1e−ηβ p[i] > pt , (dup = FALSE)
wi,t−1e−ηYt p[i] ≤ pt ,HIL-F
wi,t−1e−ηYt/ϵ p[i] ≤ pt ,Zt = 1,HIL-N
wi,t−1 p[i] ≤ pt ,Zt = 0,HIL-N.

In every round of computation, we need a certain constant
number of additions, multiplications, and comparisons per
interval, irrespective of the number of samples already pro-
cessed. Thus, the computational complexity in each round is
in the order of the number of intervals present in that interval.
Now consider a set of n input images. In our proposed algo-
rithms, the number of intervals in round t is upper bounded
by t + 1. Thus, the worst-case computational complexity of
HIL-F in round t is O(t). Further, when λmin is the minimum
difference between any two probabilities, the maximum num-
ber of intervals is clearly upper bounded by 1/λmin, which
reduces the complexity to O (min{t, 1/λmin}).
Proposition 1: The computational complexity of HIL-F

and HIL-N in round t is O (min{t, 1/λmin}).
Note that there can be many intervals with lengths larger
than λmin, and thus the number of intervals can typically be
less than 1/λmin, which reduces the complexity in practice.
As discussed earlier, one might approximate λmin to 1/n in
some datasets, which gives us a complexity of O (min{t, n})
in terms of the number of images. Also note that the above
complexities are that of round t , and to get the total complex-
ity of the algorithm, one has to sum it overall t .

Finally, we note that there can be datasets where λmin <

1/n and for such cases the complexity from Proposition 1 will
be O(t). For instance, this is the case for the MNIST dataset
but is not applicable for the Imagenette dataset with λmin =
1

256 . In this regard, we propose a practical modification to
the algorithms by limiting the interval size to a minimum
of 1min > λmin, where 1min is a parameter chosen based
on the complexity and cost tradeoffs. One then considers
any different probabilities that lie within 1min of each other
as duplicates while generating new intervals in line 12 of
HIL-F and HIL-N, which further reduces the complexity
to O (min{t, 1/1min}). We observed by choosing different
values of λmin (including 1

n ) that over a range of values, there
is a notable reduction in algorithm runtime, with negligible
difference in the expected average costs.

VIII. NUMERICAL RESULTS
In this section, we evaluate the performance of the proposed
algorithms HIL-F and HIL-N by comparing them against
each other as well as further benchmarks. Our evaluation
scenario consists of two different classifiers and four different
datasets. Firstly, we use 8-bit quantised MobileNet [4], [44],
with width parameter 0.25, to classify the Imagenette and
Imagewoof datasets [11].We use 0.25 for thewidth parameter

VOLUME 2, 2024 289



as it reduces the number of filters in each layer drastically,
and the resulting MobileNet has a size of 0.5 MB, suitable to
fit on an IoT sensor. Imagenette and Imagewoof are derived
from Imagenet [5] and each contains a mixture of 10 different
image classes with approximately 400 images per class. Out
of the two, Imagewoof is a tougher dataset for classification
as it contains 10 different breeds of dogs. Next, we use the test
set of MNIST dataset [13], which contains 10000 images of
handwritten digits from 0 through 9. For this dataset, we train
a linear classifier (without regulariser), as the S-ML model.
We convert the labels into vectors of size 10. For label l,
i.e., digit l, we use all zero vectors except in l th location,
where the value is 1. After training the classifier, we scale the
output to obtain a probability distribution over the 10 labels.
The top-1 accuracy we obtain is 86%. Finally, for CIFAR-
10 [14], [15], we use a readily available trained CNN [45]
with accuracy 84% as the S-ML model. Note that for all the
simulations, we invoke the assumption that the L-ML models
have accuracy 1.

As explained in Section III, we choose the expected
average regret 1

nEY [Rn] and expected average cost
1
nEY ,π [L(θ ,Y )] as the metrics to compare the performance.
Recall that these metrics are upper bounded by 1, which is the
maximum cost in a single round. For simplicity, we refer to
them by average regret and average cost, respectively. For
the simulations, we take 100 randomisations of the input
sequence Y and for each of these randomisations we repeat
the simulations 100 times. The randomisation is for the statis-
tical convergence across the sequences of Y (i.e., EY [.]), and
the repetitions are for the convergence over the randomised
decisions based on qt made in line 4 of the algorithms (i.e.,
Eπ [.]). We also checked with higher numbers of randomisa-
tions and repetitions and verified that 100 × 100 iterations
are sufficient for statistical convergence. We use η and ϵ

from (12) and Lemma 2, unless mentioned otherwise.
We use the following four baseline algorithms (i.e., poli-

cies) to compare the performance of HIL-F and HIL-N.

1) Genie – a non-causal policy, where only those images
that are misclassified by S-ML are offloaded.

2) θ∗ – an optimal fixed-θ policy. We compute this cost
by running a brute-force grid search over all θ .

3) Full offload – all images are offloaded to the ES.
4) No offload – all images are processed locally.

Before we go to the figures, we show the number of images
offloaded and the number of imagesmisclassified by different
policies for the Imagenette dataset with a total of 3925 images
in TABLE 3. These results are basically the data point with
β = 0.5 from Fig. 3a (explained later). We can immediately
infer from the table that HIL-F achieves an offloading rate
and misclassification rate very close to that of the optimum
fixed-θ policy. Further, HIL-F offloads approximately the
same number of images as the optimum fixed-θ policy and
achieves a top-1 accuracy of 92.3%. Contrast this with amuch
lower accuracy output of 43.2% by the chosen MobileNet
as the S-ML. This also asserts that our framework with the

TABLE 3. Number of images offloaded and misclassified for
different policies on imagenette with β = 0.5 and optimal η, ϵ.

cost structure β and Y indeed facilitates HI by reducing the
number of offloaded images that are correctly classified by
S-ML. Note that HIL-N also achieves high accuracy 95.2%,
but it achieves this at the cost of offloading more images,
18% more than θ∗. This is because HIL-N can only get
feedback from L-ML and chooses to offload more images to
learn the best threshold. Note that a β of 0.5 corresponds to
minimising the total number of errors and offloads and the
results can be related to what we can visually infer from Fig. 2
in Section I. The optimum threshold lies around 0.45 which
is the minimum threshold above which one can expect to get
a correct classification more often than not.

In Fig. 3, we compare the two proposed algorithms HIL-F
and HIL-N with the baselines for all four datasets by plot-
ting the average cost vs. β. Here, Fig. 3a through Fig. 3d
correspond to Imagenette, Imagewoof, MNIST, and CIFAR-
10 datasets, respectively. Observe that HIL-F performs very
close to θ∗, having at most 6% higher total cost than θ∗

among all four figures irrespective of the absolute value of
the cost or the dataset considered. In Fig. 3a we have also
added an inset where we have enlarged a portion of the figure
to highlight the distinction between the proposed policies and
θ∗. The vertical difference between these two corresponds to
the corresponding regret. We can see that HIL-F achieves a
cost very close to that of θ∗, having at most 4.5% higher
total cost than θ∗ throughout the range of β. For instance
for the Imagenette dataset with β = 0.5, this increase is
less than 1.4%. HIL-N on the other hand is more sensitive
to the properties of the considered dataset. It performs much
better than the Full offload policy and also follows a similar
trend as that of the HIL-F. However, for larger values of β

the comparative performance of HIL-N with the No offload
policy deteriorates. This is because even when offloading is
not optimum, HIL-N is offloading with a fixed probability
ϵ > 0, to learn the ground truth Y . Furthermore, we can see
by comparing the four figures that lower the accuracy of S-
ML – for instance in Fig. 3b – larger will be the range of β for
which HIL-N performs better than both No offload and Full
offload policies.

In Fig. 4, we show the dependency of the algorithm on
the learning rate parameter η by plotting the average regret
obtained by the proposed algorithms vs. the number of images
for β = 0.7 and different values of η. We show the plots for
theoretical bound-optimising η, and for HIL-F we also show
the plots with a few other η for comparison. First, note that the
HIL-N learns slower compared to HIL-F, which is an intuitive
behaviour because HIL-N cannot learn from those images
that are not offloaded. Also, note that the difference in regret

290 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

FIGURE 3. Average cost incurred by various offloading policies vs. β for different datasets. The bound optimising η and ϵ are
used assuming a prior knowledge of λmin. Note that the curves corresponding to θ∗ and HIL are very close to each other.

FIGURE 4. Average regret vs. Number of images for
β = 0.7 using HIL-F and HIL-N on the Imagenette database with
various η.

incurred by using λ̂min = 1/(n + 1) as an approximation of
λmin is minimal – in the order 10−3. Recall that the optimum
η that we proposed is an optimum for the regret bound,
but not necessarily for the regret itself. Hence, it is worth
noting that, while using a larger η is slightly beneficial in
this particular dataset, this turns out to be deleterious for the
regret bound, which is valid for any given dataset. Further,
too large an η will give too large weights to the thresholds
that achieved lower costs in the past, making the algorithm
resemble a deterministic algorithm that cannot guarantee per-
formance [12].

IX. CONCLUSION
We considered an ED embedded with S-ML and an ES
having L-ML and explored the idea of HI, where the ED
can benefit from only offloading samples for which S-ML
outputs incorrect inference. Since an ideal implementation of
HI is infeasible, we proposed a novel meta-learning frame-
work where the ED decides to offload or not to offload after
observing the maximum probability p in the probability mass
function output by S-ML. For the full feedback scenario,
we proposed HIL-F, which assigns exponential weights to
decision thresholds θ ∈ [0, 1] based on past costs and
probabilistically chooses a threshold, based on p, to offload
or not. For the no-local feedback scenario, we proposed
HIL-N, which uses an unbiased estimator of the cost and
generates an additional Bernoulli random variable Z and
always offloads if Z = 1. A novel and unique aspect of
the proposed algorithms is that we use non-uniform discreti-
sation, i.e., create new intervals in each round based on p
and use these intervals as experts. We proved that HIL-F
and HIL-N have sublinear regret bounds

√
n ln(1/λmin)/2

and O
(
n2/3 ln1/3(1/λmin)

)
, respectively, and have runtime

complexity O (min{t, 1/λmin}) in round t . Here, it is worth
noting that the term 1/λmin acts similarly to the number of
experts in PEA as far as regret bounds are concerned and we
have explained simple methods to approximate it. For verify-
ing the results, we generated values of p for four datasets,

VOLUME 2, 2024 291



namely, Imagenette, Imagewoof, MNIST, and CIFAR-10,
and compared the performance of HIL-F and HIL-N with
four different baseline policies, including the fixed-θ policy.
The cost achieved by the proposed algorithms is always lower
compared to the Full offload and the No offload policies and
is close to the cost achieved by the optimumfixed-θ policy for
a wide range of β. More importantly, the algorithms achieve
much higher accuracy compared to S-ML while offloading
a marginally higher number of images compared to the opti-
mum fixed-θ policy.

There are multiple directions to which this work can be
extended in the future. The major part of the ongoing work
is the extension of the algorithm to make a preliminary
decision before observing the S-ML output. The envisioned
algorithm uses HI as proposed in this work with some minor
parameter modifications. Another part of our ongoing work
involves modifying the algorithm by replacing certain static
parameters with dynamic ones, thereby potentially improving
the performance. An example of one such parameter is the
learning rate η. We also envision that a future direction where
this work would be extended is to consider multiple layers of
offload decision, for instance, from device to edge and then
edge to cloud.

APPENDIX A
PROOF OF THEOREM 1
We will restate Theorem 1 and prove it.
Theorem 1: For η > 0, HIL-F achieves the following regret

bound:

Rn = L̄(Y )− L(θ∗,Y ) ≤
1
η
ln

1
λmin
+
nη
8

.

Proof: Recall fromLemma 1 that p[i],Bi = (p[i−1], p[i]],
and l(Bi,Yt ) are the ith smallest probability, intervals formed
by them, and the constant loss function within that inter-
val at round t , respectively. Also, λi = p[i] − p[i−1] and
N ≤ n + 1 correspond to the length of the intervals i and
the total number of intervals, respectively. Finally, λmin =

min1≤i≤N λi. Substituting t = 0 in (7), we have W1 = 1.
Thus, taking logarithm of Wn+1

W1
gives,

ln
Wn+1

W1
= ln

∫ 1

0
e−η

∑n
t=1 l(x,Yt ) dx

= ln
N∑
i=1

λie−η
∑n

t=1 l(Bi,Yt )

≥ ln max
1≤i≤N

(
λmine−η

∑n
t=1 l(Bi,Yt )

)
= −η min

1≤i≤N

n∑
t=1

l(Bi,Yt )− ln
1

λmin

= −η min
θ∈[0,1]

n∑
t=1

l(θ,Yt )− ln
1

λmin
. (21)

Now, we bound the ratio Wt+1
Wt

.

ln
(
Wt+1

Wt

)
= ln

(∫ 1
0 wt+1(x) dx

Wt

)

= ln
(∫ 1

0

wt (x)
Wt

e−ηl(x,Yt ) dx
)

.

By usingHoeffding’s lemma3 in the above equation, we get

ln
(
Wt+1

Wt

)
≤ −η

∫ 1

0

wt (x)
Wt

l(x,Yt ) dx +
η2

8

= −η

∫ pt

0

wt (x)
Wt

l(x,Yt ) dx − η

∫ 1

pt

wt (x)
Wt

l(x,Yt ) dx +
η2

8

= −η

(
Yt

∫ pt

0

wt (x)
Wt

dx + β

∫ 1

pt

wt (x)
Wt

dx
)
+

η2

8
.

In the above step, we used (3). Now using (8) to replace the
integrals, we get

ln
(
Wt+1

Wt

)
≤ −η (Ytqt + β(1− qt ))+

η2

8

= −ηl̄(Yt )+
η2

8
. (22)

Extending this expression telescopically, we get

ln
(
Wn+1

W1

)
= ln

(
n∏
t=1

Wt+1

Wt

)
=

n∑
t=1

ln
Wt+1

Wt

≤

n∑
t=1

[
−ηl̄(Yt )+

η2

8

]

= −η

n∑
t=1

l̄(Yt )+
nη2

8
. (23)

Using (21) and (23), we obtain

− η min
θ∈[0,1]

n∑
t=1

l(θ,Yt )− ln
1

λmin
≤ −η

n∑
t=1

l̄(Yt )+
nη2

8

⇒ L̄(Y ) ≤ L(θ∗,Y )+
1
η
ln

1
λmin
+
nη
8

⇒ Rn ≤
1
η
ln

1
λmin
+
nη
8

.

In the last two steps above, we rearranged the terms and
divided them with η.

APPENDIX B
PROOF OF THEOREM 2
We will restate Theorem 2 and prove it.
Theorem 2: For η, ϵ > 0, HIL-N achieves the regret bound

Rn ≤ nβϵ +
nη
2ϵ
+

1
η
ln(1/λmin). (24)

3For a bounded random variable X ∈ [a, b], Hoeffding’s lemma states that

ln(E[esX ]) ≤ sE[X ]+ s2(b−a)2
8 .

292 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

Proof: Step 1: Since the costs incurred and the loss
function used for updating the weights are different under
HIL-N, we first find a bound for the difference between
the expected total cost received and the expected total cost
obtained using l̃(θt ,Yt ). From Algorithm 2, we infer that
sample t is offloaded if Qt = 0 or Qt = 1 and Zt = 1, and
it is not offloaded only when Qt = 0 and Zt = 0. Therefore,
we have

EQtZ [l(θt ,Yt )] = β[1− qt + qtϵ]+ qt (1− ϵ)Yt . (25)

From (13), we have

l̃(θt ,Yt ) =
Yt
ϵ
1(θt ≤ pt )1(Zt = 1)+ β 1(θt > pt )

⇒ EQtZ

[
l̃(θt ,Yt )

]
= Ytqt + β(1− qt ). (26)

From (25) and (26), we obtain

EQtZ [l(θt ,Yt )]− EQtZ

[
l̃(θt ,Yt )

]
= βϵqt − Ytϵqt .

⇒ EQZ [L(θ ,Y )]−
n∑
t=1

EQZ

[
l̃(θt ,Yt )

]
= βϵ

n∑
t=1

qt − ϵ

n∑
t=1

Ytqt

≤ nβϵ − ϵ

n∑
t=1

Ytqt

⇒ −

n∑
t=1

EQZ

[
l̃(θt ,Yt )

]
≤ −EQZ [L(θ ,Y )]+ nβϵ. (27)

In the last step above, we have used qt ≤ 1, for all t .
Step 2: Using the same analysis to derive (21), we obtain

ln
(
Wn+1

W1

)
≥ −η min

θ∈[0,1]

n∑
t=1

l̃(θ,Yt )− ln
1

λmin

Note that, here we have l̃(θ,Yt ) instead of l(θ,Yt ). Now,
using the fact that the expectation over the minimum is upper
bounded by the minimum over expectation, we get

⇒EZ

[
ln
(
Wn+1

W1

)]
≥−η min

θ∈[0,1]

n∑
t=1

EZ

[
l̃(θ,Yt )

]
− ln 1

λmin

⇒EZ

[
ln
(
Wn+1

W1

)]
≥−ηL(θ∗,Y )− ln 1

λmin
. (28)

Step 3: In the following we find a bound for ln(Wt+1
Wt

).

ln
(
Wt+1

Wt

)
= ln

(∫ 1
0 wt+1(x) dx

Wt

)

= ln
(∫ 1

0

wt (x)
Wt

e−ηl̃(x,Yt ) dx
)

(using (14))

≤ ln
(∫ 1

0

wt (x)
Wt

(
1− ηl̃(x,Yt )+

η2

2
l̃(x,Yt )2

)
dx
)

.

In the above step, we used the fact that e−x ≤ 1− x + x2/2.
Rearranging the terms, we get

ln
(
Wt+1

Wt

)
= ln

(
1+

∫ 1

0

wt (x)
Wt

(
−ηl̃(x,Yt )+

η2

2
l̃(x,Yt )2

)
dx
)

≤

∫ 1

0

wt (x)
Wt

(
−ηl̃(x,Yt )+

η2

2
l̃(x,Yt )2

)
dx.

The above step follows from the fact that ln(1+x) ≤ x, ∀x >

−1.

⇒ ln
(
Wt+1
Wt

)
≤

∫ 1

0

wt (x)
Wt

(
−ηl̃(x,Yt )+

η2

2ϵ l̃(x,Yt )
)
dx. (29)

In the last step, we have used the fact that l̃(x,Yt ) ∈ [0, 1/ϵ].
Note that the integral above can be rearranged as follows:∫ 1

0

wt (x)
Wt

l̃(x,Yt ) dx

=

∫ pt

0

wt (x)
Wt

l̃(x,Yt ) dx +
∫ 1

pt

wt (x)
Wt

l̃(x,Yt ) dx

=
Yt
ϵ
1(Zt = 1)qt + β(1− qt ).

Therefore, we have

EZ

[∫ 1

0

wt (x)
Wt

l̃(x,Yt ) dx
]
= Ytqt + β(1− qt )

= EQtZ

[
l̃(θt ,Yt )

]
, (30)

where we have used (26). Taking expectation with respect Z
on both sides in (29) and then substituting (30),

EZ

[
ln
(
Wt+1

Wt

)]
≤ −ηEQtZ

[
l̃(θt ,Yt )

]
+

η2

2ϵ
EQtZ

[
l̃(θt ,Yt )

]
≤ −ηEQtZ

[
l̃(θt ,Yt )

]
+

η2

2ϵ
. (31)

Above, we used the fact that EQZ [l̃(θt ,Yt )] ≤ 1. Taking
summation of (31) over t , we obtain

EZ

[
ln

n∏
t=1

(
Wt+1

Wt

)]
≤ −η

n∑
t=1

EQtZ

[
l̃(θt ,Yt )

]
+
nη2

2ϵ

⇒ EZ

[
ln
(
Wn+1

W1

)]
≤ −η

(
EQZ [L(θ ,Y )]− nβϵ

)
+
nη2

2ϵ
.

(32)

In the last step above, we have used (27). Combining (32)
and (28) and rearranging the terms, we obtain

EQZ [L(θ ,Y )]− L(θ∗,Y ) ≤ nβϵ +
nη
2ϵ
+

1
η
ln(1/λmin),

which is the regret Rn for HIL-N given by (18).

VOLUME 2, 2024 293



APPENDIX C
PROOF OF LEMMA 2
We will now restate Lemma 2 and prove it.
Lemma 2: The function g(ϵ, η) defined in (20) has a global

minimum at (ϵ∗, η∗), where η∗ =
(
2 ln2(1/λmin)

βn2

)1/3
and ϵ∗ =√

η
2β . At this minimum, we have,

g(ϵ∗, η∗) = 3n2/3
(

β ln(1/λmin)
2

)1/3

.

Proof: We can easily see the strict convexity of g(ϵ, η) in
each dimension ϵ and η independently, which tells us that any
inflection point of the function will be either a saddle point or
a minima but not a maxima. We equate the first-order partial
derivatives to zero to get a set of points given by the equations

∂g
∂ϵ
= 0⇒ ϵ =

√
η

2β
, (33)

∂g
∂η
= 0⇒ η =

√
2ϵ ln(1/λmin)

n
. (34)

However, it still remains to check if this point is unique and
if this point is indeed a minimum, but not a saddle point.
Seeing the uniqueness is straightforward by noting that these
two expressions correspond to two non-decreasing, invertible
curves in the ϵ–η plane, and thus they have a unique inter-
section. We find this intersection denoted using (ϵ∗, η∗) by
substituting (33) in (34). We obtain

η∗ =

√
2ϵ∗ ln(1/λmin)

n
=

√
2
√

η∗/2β ln(1/λmin)
n

.

We get η∗ and ϵ∗ by simplifying the above equation and then
substituting it back in (33). Finally, to prove that (ϵ∗, η∗) is
indeed a minimum, we verified that the determinant of the
Hessian at (ϵ∗, η∗) is positive, the steps of which are not
presented due to space constraints. Since (ϵ∗, η∗) is a unique
minimum, it should be the global minimum. The proof is
complete by substituting (ϵ∗, η∗) in (20).

APPENDIX D
PROOF OF COROLLARY 2
We will now restate Lemma 2 and prove it.

Corollary 2: With η =

(
2 ln2(1/λmin)

βn2

)1/3
and ϵ =

min{1,
√

η
2β }, HIL-N achieves a regret bound sublinear in n:

Rn ≤ 3n2/3
(

β ln(1/λmin)
2

)1/3

Proof: Note that, if
√

η
2β ≤ 1, then ϵ =

√
η
2β and the

results directly follows from Lemma 2. If
√

η
2β > 1, then we

have ϵ = 1. Substituting η value in
√

η
2β > 1, we obtain

β <

√
√
2 ln(1/λmin)

n
. (35)

Since ϵ = 1, we will have Zt = 1 for all t , i.e., HIL-N will
always offload. Therefore, in this case, the total cost incurred
by HIL-N is equal to nβ. Now, using (35), we obtain

nβ <

√
√
2 ln(1/λmin)

/
n =

√
√
2n ln(1/λmin).

Thus, when (35) holds and we have ϵ = 1, the total cost
itself is O(n

1
2 ) and therefore regret cannot be greater than

O(n
1
2 ). The result follows by noting that O(n

2
3 ) is the larger

bound.

APPENDIX E
IMPERFECT L-ML (ACCURACY < 100 %)
In this appendix, we remove the assumption of a perfect
L-ML and retrace the steps of the original analysis by con-
sidering an additional cost of incorrect inferences at the ES.
Let γ be the normalised cost of incorrect inference at the
L-ML.4 Here, normalisation is done according to the steps
carried out to force the 0, 1 costs for S-ML inference detailed
in Section III; cf. (1). That is, if Cγ is the absolute cost
of L-ML inaccuracy, γ =

Cγ−C0
C1−C0

. Similar to Yt defined in
Section III, define a random variable Xt that takes value 0 or
γ depending on whether the L-ML inference is correct or
not. Let X t = {Xτ }, τ = 1, 2, . . . , t ≤ n and X := Xn.
We make modifications in the definitions to include this
random variable to get

l(θt ,Yt ,Xt ) =

{
Yt pt ≥ θt ,

β + Xt pt < θt .

θ∗ = argmin
θ∈[0,1]

n∑
t=1

l(θ,Yt ,Xt )

L(θ∗,Y ,X) =
n∑
t=1

l(θ∗,Yt ,Xt )

With this modification, we define the modified regret, where
an additional expectation is taken over the set of L-ML infer-
ences X . That is,

Rn = Eπ,X [L(θ ,Y ,X)]− L(θ∗,Y ,X).

A. CHANGES IN LEMMA 1
With this modification, Lemma 1 follows in a very similar
way up to (10). The cost for all θ within an interval Bi takes a
constant value of l(Bi,Yt ,Xt ), which depends on whether p[i]
is greater than pt or not. We get

L(θ∗,Y ,X) = min
1≤i≤N

β

i−1∑
j=1

mj +
n∑

k=1

(
X[k]Ii + Y[k]Īi

),

where Ii and Īi are the short notations of the indicator random
variables Ik≤∑i−1

j=1 mj
and Ik>∑i−1

j=1 mj
, respectively. When there

4γ = 1 for an application that does not differentiate between the errors
made by S-ML and L-ML. In this case Xt ∈ {0, 1}.

294 VOLUME 2, 2024



Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

are no repetitions, we get the following as the counterpart
result of Lemma 1.

L(θ∗,Y ,X) = min
1≤i≤n+1

{
(i− 1)β +

i−1∑
k=1

X[k] +
n∑
k=i

Y[k]

}
.

(36)

B. CHANGES IN THEOREM 1
Recall that we actually do not use the expression in (36) in the
proof of regret bounds, but rather use it to assert that the loss
function is piece-wise constant within the intervals created
by pt . To derive the regret bound, we modify l̄(Yt ) and define
l̄(Yt ,Xt ) as

l̄(Yt ,Xt ) = EQt [l(θt ,Yt ,Xt )] = Ytqt + (β + Xt) (1− qt )

⇒ EXt
[
l̄(Yt ,Xt )

]
= Ytqt + (β + E[Xt ]) (1− qt )

Similar changes apply to the cumulative loss function
L̄(Yt ,Xt ) as well. Note that, EXt

[
l̄(Yt ,Xt )

]
is equivalent to

the l̄(Yt ) in the original problem with a different offload cost
β ′ = β + E[Xt ]. They are the same when E[Xt ] = 0,
or in other words, the L-ML inference is perfect. Given these
modifications, the algorithms and the analysis follow with
one minor caveat: β ′ can be above 1 even if the offload cost
is less than the cost for incorrect S-ML inference and in
such cases, a trivial decision of always choosing the S-ML
inference needs to be taken. For example, assuming that the
misclassification ratio δ of the L-ML is known, β ′ = β +

δγ, ∀t . Then the trivial decision to not offload is made when
δ >

1−β
γ
=

C1−Cβ

Cγ−C0
.

Now, the analysis of Theorem 1 can be carried out in a sim-
ilar fashion with β replaced by β+Xt . Some of the important
steps are given below, where (37) to (39) corresponds to (21)
to (23) from Section V.

ln
Wn+1

W1
≥ −η min

θ∈[0,1]

n∑
t=1

l(θ,Yt ,Xt )− ln
1

λmin
. (37)

ln
(
Wt+1

Wt

)
≤ −η (Ytqt + (β + Xt) (1− qt ))+

η2

8

= −ηl̄(Yt ,Xt )+
η2

8
. (38)

Extending this expression telescopically,

ln
(
Wn+1

W1

)
≤

n∑
t=1

(
−ηl̄(Yt ,Xt )+

η2

8

)

= −η

n∑
t=1

l̄(Yt ,Xt )+
nη2

8
. (39)

Combining (37) and (39), we get

L̄(Y ,X) ≤ L(θ∗,Y ,X)+
1
η
ln

1
λmin
+
nη
8

.

Taking expectations with respect to X (which are i.i.d.),
we get

EX
[
L̄(Y ,X)

]

≤ EX
[
L(θ∗,Y ,X)

]
+

1
η
ln

1
λmin
+
nη
8

⇒ Rn ≤
1
η
ln

1
λmin
+
nη
8

. (40)

Here, the regret is an expectation over the L-ML inferences,
which are assumed to be i.i.d. and carried out without any
information about the S-ML inference.

C. CHANGES IN THEOREM 2
As before, we redo Theorem 2 by simply substituting β + Xt
instead of β in the loss function at time t . Let the pseudo loss
function l̃(θt ,Yt ,Xt ) be defined as follows:

l̃(θt ,Yt ,Xt ) =


0 pt ≥ θt ,Zt = 0,
Yt
ϵ

pt ≥ θt ,Zt = 1,

β + Xt pt < θt .

(41)

Facilitated by the fact that Xt does not depend on Qt , Z or
algorithm π and thus EQtZ [Xt ] = Xt , we can rewrite (25)
and (26) respectively as

EQtZ

[
l(θt ,Yt ,Xt )

]
= (β + Xt) [1−qt+qtϵ]+ qt (1−ϵ)Yt ,

EQtZ

[
l̃(θt ,Yt ,Xt )

]
= Ytqt + (β + Xt) (1−qt ).

Combining the two, we get

EQtZ [l(θt ,Yt ,Xt )]− EQtZ

[
l̃(θt ,Yt ,Xt )

]
= (β + Xt) ϵqt − Ytϵqt .

⇒ EQZ [L(θ ,Y ,X)]−
n∑
t=1

EQZ

[
l̃(θt ,Yt ,Xt )

]
≤ ϵ

n∑
t=1

(β + Xt)− ϵ

n∑
t=1

Ytqt

⇒ −

n∑
t=1

EQZ

[
l̃(θt ,Yt ,Xt )

]
≤ −EQZ [L(θ ,Y ,X)]+ ϵ

n∑
t=1

(β + Xt) . (42)

Note that the above is the counterpart of (27).
The remainder of the steps to modify (28) through (31)

follow similarly, where we get

EZ

[
ln
(
Wn+1

W1

)]
≥ −ηL(θ∗,Y ,X)− ln 1

λmin
,

EZ

[
ln
(
Wn+1

W1

)]
≤ −η

(
EQZ [L(θ ,Y ,X)]− ϵ

n∑
t=1

(β + Xt)

)
+
nη2

2ϵ
.

Combining the above two, we get,

EQZ [L(θ ,Y ,X)]− L(θ∗,Y ,X)

VOLUME 2, 2024 295



≤ ϵ

n∑
t=1

(β + Xt)+
nη
2ϵ
+

1
η
ln(1/λmin).

Taking expectation with respect to X , we get

Rn ≤ nϵ(β + δγ )+
nη
2ϵ
+

1
η
ln(1/λmin). (43)

Remarks:
1) Comparing (11) and (40), we see that for HIL-F, the

regret bound is same with or without a perfect L-ML.
This could be attributed to the fact that the bound is
independent of the offload cost β.

2) The regret for HIL-N in (43) falls back to (19), when
δ = 0, that is when the L-ML is perfect.

3) The regret bound with a varying offload cost βt , t =
1, 2 . . . can be analysed in a very similarmanner.We do
this by substituting β+Xt in the modified loss function
to βt . The results inherit the similarity with β ′ = β +

E[Xt ] = β + δγ replaced by E[βt ].

REFERENCES
[1] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, ‘‘Con-

vergence of edge computing and deep learning: A comprehensive survey,’’
IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 869–904, 2nd Quart.,
2020.

[2] R. Sanchez-Iborra and A. F. Skarmeta, ‘‘TinyML-enabled frugal smart
objects: Challenges and opportunities,’’ IEEE Circuits Syst. Mag., vol. 20,
no. 3, pp. 4–18, 3rd Quart., 2020.

[3] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, ‘‘Model compression and
hardware acceleration for neural networks: A comprehensive survey,’’
Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[4] A. G. Howard et al., ‘‘MobileNets: Efficient convolutional neural networks
for mobile vision applications,’’ 2017, arXiv:1704.04861.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jul. 2009, pp. 248–255.

[6] M. Wortsman, G. Ilharco, S. Gadre, R. Roelofs, R. Gontijo-Lopes, and
A. S. Morcos, ‘‘Model soups: Averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time,’’ in Proc.
39th Int. Conf. Mach. Learn., in Proceedings of Machine Learning
Research, 2022, pp. 23965–23998.

[7] Y. Kang et al., ‘‘Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,’’ in Proc. 22nd Int. Conf. Architect. Support
Program. Lang. Operating Syst., 2017, pp. 615–629.

[8] E. Li, L. Zeng, Z. Zhou, and X. Chen, ‘‘Edge AI: On-demand accelerating
deep neural network inference via edge computing,’’ IEEE Trans. Wireless
Commun., vol. 19, no. 1, pp. 447–457, Jan. 2020.

[9] C. Hu and B. Li, ‘‘Distributed inference with deep learning models across
heterogeneous edge devices,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), 2022, pp. 330–339.

[10] S. Teerapittayanon, B. McDanel, and H.-T. Kung, ‘‘BranchyNet: Fast
inference via early exiting from deep neural networks,’’ in Proc. 23rd Int.
Conf. Pattern Recognit. (ICPR), Jul. 2016, pp. 2464–2469.

[11] J. Howard and S. Gugger, ‘‘Fastai: A layered API for deep learning,’’
Information, vol. 11, no. 2, p. 108, 2020. [Online]. Available: https:
//github.com/fastai/imagenette

[12] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cam-
bridge, U.K.: Cambridge Univ. Press, 2006.

[13] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Database.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[14] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep. 0, 2009.

[15] A. Krizhevsky. (2009). The CIFAR-10 Dataset. [Online]. Available:
https://www.cs.toronto.edu/

[16] G. Al-Atat, A. Fresa, A. P. Behera, V. N. Moothedath, J. Gross, and
J. P. Champati, ‘‘The case for hierarchical deep learning inference at the
network edge,’’ in Proc. 1st Int. Workshop Netw. AI Syst., 2023, pp. 1–6,
doi: 10.1145/3597062.3597278.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEE Pervasive Comput., vol. 8,
no. 4, pp. 14–23, Oct. 2009.

[18] E. Cuervo et al., ‘‘MAUI: Making smartphones last longer with code
offload,’’ in Proc. 8th Int. Conf. Mobile Syst., Appl. Services, 2010,
pp. 49–62.

[19] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, ‘‘Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,’’ IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[20] S. Sundar, J. P. Champati, and B. Liang, ‘‘Multi-user task offloading to het-
erogeneous processors with communication delay and budget constraints,’’
IEEE Trans. Cloud Comput., vol. 10, no. 3, pp. 1958–1974, Jul. 2022.

[21] S. S. Ogden and T. Guo, ‘‘MDINFERENCE: Balancing inference accuracy
and latency for mobile applications,’’ in Proc. IEEE IC2E, Apr. 2020,
pp. 28–39.

[22] A. Fresa and J. Prakash Champati, ‘‘Offloading algorithms for maximiz-
ing inference accuracy on edge device under a time constraint,’’ 2021,
arXiv:2112.11413.

[23] I. Nikoloska and N. Zlatanov, ‘‘Data selection scheme for energy efficient
supervised learning at IoT nodes,’’ IEEE Commun. Lett., vol. 25, no. 3,
pp. 859–863, Mar. 2021.

[24] J. Wang et al., ‘‘Bandwidth-efficient live video analytics for drones
via edge computing,’’ in Proc. IEEE/ACM Symp. Edge Comput. (SEC),
Oct. 2018, pp. 159–173.

[25] J. Wang et al., ‘‘Edge-based live video analytics for drones,’’ IEEE Internet
Comput., vol. 23, no. 4, pp. 27–34, Jul./Aug. 2019.

[26] S. Han, J. Pool, J. Tran, and W. J. Dally, ‘‘Learning both weights and
connections for efficient neural networks,’’ in Proc. 28th Int. Conf. Neural
Inf. Process. Syst., 2015, pp. 1135–1143.

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net: Ima-
geNet classification using binary convolutional neural networks,’’ in Com-
puter Vision—ECCV 2016, vol. 9908. Cham, Switzerland: Springer, 2016,
pp. 525–542.

[28] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploit-
ing linear structure within convolutional networks for efficient evalua-
tion,’’ in Proc. Int. Conf. Adv. Neural Inf. Process. Syst. (NIPS), 2014,
pp. 1269–1277.

[29] Z. Wang, W. Bao, D. Yuan, L. Ge, N. H. Tran, and A. Y. Zomaya, ‘‘SEE:
Scheduling early exit for mobile DNN inference during service outage,’’
in Proc. 22nd Int. ACM Conf. Modeling, Anal. Simulation Wireless Mobile
Syst., Nov. 2019, pp. 279–288.

[30] B. Taylor, V. S.Marco,W.Wolff, Y. Elkhatib, and Z.Wang, ‘‘Adaptive deep
learning model selection on embedded systems,’’ ACM SIGPLAN Notices,
vol. 53, no. 6, pp. 31–43, Jun. 2018.

[31] C. Hu, W. Bao, D. Wang, and F. Liu, ‘‘Dynamic adaptive DNN surgery
for inference acceleration on the edge,’’ in Proc. IEEE Conf. Comput.
Commun., Jul. 2019, pp. 1423–1431.

[32] S. Bubeck and N. Cesa-Bianchi, ‘‘Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,’’ Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[33] X.-Y. Zhang, G.-S. Xie, X. Li, T. Mei, and C.-L. Liu, ‘‘A survey on learning
to reject,’’ Proc. IEEE, vol. 111, no. 2, pp. 185–215, Feb. 2023.

[34] N. Charoenphakdee, Z. Cui, Y. Zhang, and M. Sugiyama, ‘‘Classifi-
cation with rejection based on cost-sensitive classification,’’ in Proc.
ICML, in Proceedings of Machine Learning Research, vol. 139, 2021,
pp. 1507–1517.

[35] D. Hendrycks and K. Gimpel, ‘‘A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks,’’ 2016,
arXiv:1610.02136.

[36] C. De Stefano, C. Sansone, and M. Vento, ‘‘To reject or not to reject: That
is the question-an answer in case of neural classifiers,’’ IEEE Trans. Syst.,
Man, Cybern., C, Appl. Rev., vol. 30, no. 1, pp. 84–94, Feb. 2000.

[37] L. P. Cordella, C. De Stefano, F. Tortorella, and M. Vento, ‘‘A method
for improving classification reliability of multilayer perceptrons,’’ IEEE
Trans. Neural Netw., vol. 6, no. 5, pp. 1140–1147, Sep. 1995.

[38] P. Auer, R. Ortner, and C. Szepesvári, ‘‘Improved rates for the stochastic
continuum-armed bandit problem,’’ in Proc. Int. Conf. Comput. Learn.
Theory. Berlin, Germany: Springer, 2007.

[39] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári, ‘‘X-armed bandits,’’ J.
Mach. Learn. Res., vol. 12, pp. 1655–1695, Jul. 2011.

[40] S. Singh, ‘‘Continuum-armed bandits: A function space perspective,’’ in
Proc. 24th Int. Conf. Artif. Intell. Statist., vol. 130, 2021, pp. 2620–2628.

296 VOLUME 2, 2024

http://dx.doi.org/10.1145/3597062.3597278


Moothedath et al.: Getting the Best Out of Both Worlds: Algorithms for Hierarchical Inference

[41] S. Bubeck, ‘‘Introduction to online optimization,’’ Dept. Oper. Res. Finan-
cial Eng., Princeton Univ., Princeton, NJ, USA, Lect. Notes, 2011, vol. 2,
pp. 1–86.

[42] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth, ‘‘How to use expert advice,’’ J. ACM, vol. 44, no. 3,
pp. 427–485, May 1997.

[43] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz, ‘‘Minimizing regret with
label efficient prediction,’’ IEEE Trans. Inf. Theory, vol. 51, no. 6,
pp. 2152–2162, Jun. 2005.

[44] (Aug. 2022). GitHub Repository, Keras.io. [Online]. Available: https://
keras.io/api/applications/mobilenet/

[45] GitHub Repository. (2021). Retrieving the Predictions in the CIFAR-
10 Dataset. [Online]. Available: https://github.com/TracyRenee61/
CIFAR_10

VISHNU NARAYANAN MOOTHEDATH
received the bachelor’s degree in electrics and
communication engineering from the National
Institute of Technology (NIT), Calicut, in 2012,
and the master’s degree in communication sys-
tems from the Indian Institute of Technology (IIT)
Madras in 2016. He is currently pursuing the Ph.D.
degree with the Department of Intelligent Systems,
School of Electrical Engineering and Computer
Science (EECS), KTH Royal Institute of Technol-

ogy. He was with cellular industry, such as Intel India Pvt. Ltd., and Apple
India Pvt. Ltd., in their respective LTE/5G-NR Base-Band Modem Group,
for five years. His current research is in the area of edge computing and
performance optimization, with a specific focus on improving the energy
efficiency and responsiveness of edge computing systems through optimized
sampling.

JAYA PRAKASH CHAMPATI (Member, IEEE)
received the Bachelor of Technology degree from
the National Institute of Technology, Warangal,
India, in 2008, the Master of Technology degree
from the Indian Institute of Technology (IIT)
Bombay, India, in 2010, and the Ph.D. degree
in electrical and computer engineering from the
University of Toronto, Canada, in 2017. Prior to
joining Ph.D. degree, he was with BroadcomCom-
munications, where he involved in developing the

LTE MAC layer. From 2017 to 2020, he was a Postdoctoral Researcher
with the Division of Information Science and Engineering, EECS, KTH
Royal Institute of Technology, Sweden. He is currently a Research Assistant
Professor with the IMDEA Networks Institute, Madrid, Spain. His general
research interest is in the design and analysis of algorithms for scheduling
problems that arise in networking and information systems. Currently, his
research focus is in edge computing/intelligence, age of information, cyber-
physical systems (CPS), and the Internet of Things (IoT). He was a recipient
of the Best Paper Award at IEEE National Conference on Communications,
India, in 2011.

JAMES GROSS (Senior Member, IEEE)
received the Ph.D. degree from TU Berlin in
2006. From 2008 to 2012, he was with RWTH
Aachen University, as an Assistant Professor and
a Research Associate with the RWTH’s Cen-
ter of Excellence on Ultra-High Speed Mobile
Information and Communication (UMIC). Since
November 2012, he has been with the Electrical
Engineering and Computer Science School, KTH
Royal Institute of Technology, Stockholm, where

he is a Professor of machine-to-machine communications. At KTH, he was
the Director of the ACCESS Linnaeus Centre, from 2016 to 2019, while
he is currently the Associate Director of the newly formed KTH Digital
Futures Research Center, and the Co-Director of the newly formed VIN-
NOVA Competence Center on Trustworthy Edge Computing Systems and
Applications (TECoSA). He has authored over 150 (peer-reviewed) papers in
international journals and conferences. His research interests are in the area
ofmobile systems and networks, with a focus on critical machine-to-machine
communications, edge computing, resource allocation, and performance
evaluation. His work has been awarded multiple times, including the Best
Paper Awards at ACMMSWiM 2015, IEEEWoWMoM 2009, and European
Wireless 2009. In 2007, he was a recipient of the ITG/KuVS Dissertation
Award for the Ph.D. Thesis.

VOLUME 2, 2024 297


