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ABSTRACT The Internet of Things (IoT) has revolutionized our lives by generating large amounts of data,
however, the data needs to be collected, processed, and analyzed in real-time. Network Traffic Classification
(NTC) in IoT is a crucial step for optimizing network performance, enhancing security, and improving
user experience. Different methods are introduced for NTC, but recently Machine Learning solutions have
received high attention in this field, however, Traditional Machine Learning (ML) methods struggle with the
complexity and heterogeneity of IoT traffic, as well as the limited resources of IoT devices. Deep learning
shows promise but is computationally intensive for resource-constrained IoT devices. Knowledge distillation
is a solution to help ML by compressing complex models into smaller ones suitable for IoT devices. In this
paper, we examine the use of knowledge distillation for IoT traffic classification. Through experiments,
we show that the student model achieves a balance between accuracy and efficiency. It exhibits similar
accuracy to the larger teacher model while maintaining a smaller size. This makes it a suitable alternative for
resource-constrained scenarios likemobile or IoT traffic classification.We find that the knowledge distillation
technique effectively transfers knowledge from the teacher model to the student model, even with reduced
training data. The results also demonstrate the robustness of the approach, as the student model performs well
even with the removal of certain classes. Additionally, we highlight the trade-off between model capacity and
computational cost, suggesting that increasing model size beyond a certain point may not be beneficial. The
findings emphasize the value of soft labels in training student models with limited data resources.

INDEX TERMS Network traffic classification (NTC), IoT, machine learning, network management,
knowledge distillation, IoT traffic classification.

I. INTRODUCTION

THE Internet of Things (IoT) has transformed the way we
live, work, and interact with the world around us. From

smart homes and wearable devices to industrial equipment
and smart cities, IoT devices are generating vast amounts of
data that must be collected, processed, and analyzed in real
time [1]. One important task in IoT data analysis is Network
Traffic Classification (NTC), which involves identifying the
type of traffic that is being generated by the devices [2]. NTC
is critical for ensuring the smooth functioning of IoT net-
works, enabling efficient resource allocation, and preventing

security threats [3], [4]. This information can be used for
various purposes, such as optimizing network performance,
improving security, and enhancing user experience; However,
IoT traffic classification is a challenging task due to the
complexity and heterogeneity of IoT traffic, as well as the
limited processing and memory resources of IoT devices.
While it is acknowledged that the classification process often
is not directly executed on these resource-constrained IoT
devices [5], the broader IoT infrastructure, especially inter-
mediary layers such as Edge computing, plays a pivotal role.
Here, the demand for resource-efficient, real-time solutions
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FIGURE 1. The IoT ecosystem.

becomes critical. Efficient models not only ensure quicker
response times but also reduce data transmission overheads,
offering better optimization of bandwidth and energy. This
indirectly benefits IoT devices by reducing the computational
load on intermediary layers.

Recently, Machine Learning (ML) solutions for NTC have
received high attention from the community. Traditional ML
methods, such as decision trees and support vector machines,
have been used for traffic classification in the past [6]. How-
ever, these methods are often limited in their ability to handle
the large volumes of data generated by IoT devices and may
not be able to adapt to the rapidly changing traffic patterns [7].
Deep Learning (DL) as a part of ML has emerged as a

promising approach for NTC in IoT networks, leveraging
the power of neural networks to automatically learn rep-
resentations from the data [8]. However, DL models are
mainly computationally expensive and may not be suitable
for deployment on resource-constrained IoT devices [9]. This
has led to an interest in developing efficient and lightweight
DL models that can be deployed on IoT devices [10]. As a
solution, DL methods should be lightened up to be used in
IoT devices resulting in various methods to help DL provide
lighter models.

Figure 1 illustrates the IoT ecosystem, which includes IoT
devices, Edge, and Cloud. It emphasizes that IoT encom-
passes the entire system, from data generation by IoT devices
to processing and decision-making at the intermediary lay-
ers. In other words, while IoT devices generate data, Edge
computing plays pivotal roles in data processing, analytics,
and decision-making. This illustration underscores that IoT
encompasses the entire system, from devices to intermediary
layers, for efficient and real-time operations.

Knowledge distillation is a technique that has been used
to address this issue by compressing large, complex models
into smaller, simpler models [11]. In the expansive realm

of IoT, where immediacy and adaptability are paramount,
knowledge distillation can be transformative. By producing
models that are both lightweight and accurate, it paves the
way for real-time analytics and decision-making, directly on
or closer to IoT devices. This not only alleviates the data
transmission loads on networks but also expedites responses,
making applications like autonomous vehicles, smart health
monitoring, and industrial automation more robust and reac-
tive [11].

Addressing the concern raised about data imbalance and
pattern variations among different IoT devices, as highlighted
in [1], is essential in the context of IoT traffic classification.
Knowledge distillation offers a promising avenue for miti-
gating these challenges. By transferring knowledge from a
larger, more complex model to a smaller one, we enable this
small model to learn from the broader dataset represented by
the large model. This transfer of knowledge helps the student
model capture nuances in IoT traffic patterns, even those
associated with data imbalance and differences among vari-
ous IoT objects. The distilled model inherits insights from the
teacher model’s extensive training, potentially improving its
ability to classify diverse IoT object patterns more effectively.
This adaptive learning process is a key strength of knowledge
distillation and can contribute tomore robust and accurate IoT
traffic classification, as demonstrated in our experiments.

The motivation for this study is to investigate the efficacy
of knowledge distillation for IoT traffic classification. Specif-
ically, we aim to compare the performance of a traditionalML
model (big model) with that of a student model trained using
knowledge distillation (distilled model). We hypothesize that
the student model will be able to achieve comparable or
even better performance than the big model while requir-
ing fewer computational resources (the number of learnable
parameters) and less storage space (the size of the model on
disk). The results of this study could have implications for
the development of more efficient and effective IoT traffic
classification models.

By using knowledge distillation, it is possible to train a
smaller and more efficient model for IoT traffic classification
that can perform as well as or even better than larger andmore
complex models [12], [13]. This could lead to more efficient
and effective IoT traffic classification systems, which help to
improve network performance, enhance security, and provide
a better user experience.

In this study, we seek to respond to this question that how
effective is knowledge distillation for IoT traffic classifica-
tion?

We examine our hypothesis that the student model trained
using knowledge distillation will be able to achieve compara-
ble performance to the traditional bigDLmodel for IoT traffic
classification while requiring fewer computational resources
and less storage space.

To test this hypothesis, we conduct experiments using two
datasets and compare the performance of the models through
various metrics such as accuracy, recall, F1 score, size on the
disk, number of parameters, and training time. The results of
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the experiments strongly supported our hypothesis suggesting
that knowledge distillation is an effective technique for com-
pressing models for IoT traffic classification. This could have
important implications for the development of more efficient
and effective IoT traffic classification systems, which could
help to improve network performance, enhance security, and
provide a better user experience.

The remaining sections of the paper are structured as fol-
lows: Section II presents the background information on the
topic and an overview of the related work. Section III dis-
cusses various aspects of IoT traffic classification. Detailed
information about our method is presented in Section IV-A,
and the results are thoroughly discussed in Section V.

II. BACKGROUND AND RELATED WORK
In this section, we begin by offering the reader essential
context and background information regarding knowledge
distillation. Subsequently, we present an overview of the
latest knowledge distillation approaches employed in traffic
classification, with a specific focus on IoT traffic classifica-
tion.

A. KNOWLEDGE DISTILLATION
Knowledge distillation is a technique of ML that involves
transferring knowledge from one model to another. The idea
is to train a smaller, more lightweight model to mimic the
behavior of a larger, more complex model by learning from
the teacher’s outputs [14], [15]. More specifically, the basic
idea of knowledge distillation is to train the student model
to predict the same outputs as the teacher model, but with
fewer computational resources [16]. This is achieved by using
the teacher model’s outputs as ‘‘soft targets’’, also known as
soft labels, during training, rather than the ‘‘hard labels’’ used
in standard supervised learning. Soft targets are probability
distributions over the possible outputs, rather than the actual
output values themselves. By using these soft targets, the
student model is encouraged to learn a more general and
robust representation of the data.

Knowledge distillation has been used successfully in a
variety of applications, including image classification [17],
object detection [18], and natural language processing [19].
It is particularly useful in scenarios where computational
resources are limited, such as on mobile devices or embedded
systems. Additionally, it has been shown that knowledge dis-
tillation can improve the performance of the student model,
even when the teacher model is not perfect, by helping the
student model learn from the teacher’s mistakes [20].
The basic mathematics of knowledge distillation can be

understood through the following steps:

• Softmax function: The softmax activation function is
used to convert the output of a neural network (logits or
scores) into probabilities. It is defined as follows:

Softmax(zi) =
ezi∑K
j=1 e

zj
(1)

where zi is the input to the ith neuron, K is the total
number of neurons, and e is the base of the natural
logarithm. The softmax function ensures that the output
probabilities sum up to one.

• Temperature parameter: In knowledge distillation, the
teacher model’s output is modified using a tempera-
ture parameter T . The modified output probabilities are
given by:

qi =
ezi/T∑K
j=1 e

zj/T
(2)

where zi is the input to the ith neuron of the teachermodel
and K is the total number of neurons. The temperature
parameter T controls the ‘‘softness’’ of the probabili-
ties. A higher temperature value resulting in a softer
probability distribution, while a lower temperature value
resulting in a sharper distribution.

• Distillation loss: The distillation loss is used to measure
the difference between the output probabilities of the
student model and the modified output probabilities of
the teacher model. The distillation loss is defined as:

Ldist = αT 2
K∑
i=1

qilog
qi
pi

(3)

whereα is a hyperparameter that controls the importance
of the distillation loss, T is the temperature parameter, qi
is the modified output probability of the teacher model
for the ith neuron and pi is the output probability of the
student model for the ith neuron.

• Total loss: The total loss is a weighted sum of the distil-
lation loss and the standard cross-entropy loss between
the output probabilities of the student model and the
ground truth labels. The total loss is defined as:

Ltotal = (1 − α)LCE + αT 2
K∑
i=1

qilog
qi
pi

(4)

where α is a hyperparameter that balances the impor-
tance of the two terms in the loss function, and LCE is
the cross-entropy loss between the output probabilities
of the student model and the ground truth labels. Bymin-
imizing the total loss, the student model learns to mimic
the behavior of the teacher model, resulting in improved
performance.

B. KNOWLEDGE DISTILLATION FOR IoT TRAFFIC
CLASSIFICATION
There are few studies that have investigated the use of
knowledge distillation for compressing models for IoT traffic
classification. For example, in [13] the authors proposed a
framework for compressing deep neural networks for IoT
traffic classification using two-step knowledge distillation.
the study shows that their approach achieved comparable per-
formance to the original deep neural network while requiring
significantly fewer computational resources.
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Another study has been done by Zhanf et al. in [21] pro-
posed a method for the prediction of the space-time industrial
IoT data based on knowledge distillation. The study shows
that their approach achieved significant compression while
maintaining high accuracy through compressing teacher net-
work to multi-student networks.

A recent study by Zhao et al. [12] proposed an Intrusion
Detection (ID) method based on semi-supervised Federated
Learning (FL) and knowledge distillation. The authors pro-
posed to use knowledge distillation to solve the problems
related to FL for ID, such as model parameters transmis-
sion, non-independent and identically distributed (i.i.d) data,
and high communication overhead. Similar work has been
conducted in [22], in which the authors improved the per-
formance of FL in edge settings through self-knowledge
distillation. Indeed, the study proposed to personalize FL to
train models to perform well for individual edge devices.

The study by Zhang et al. [23] provides a comprehensive
survey of various methods and applications for compressing
deep neural networks in the context of IoT. The authors
discuss the motivation behind compressing deep models,
including the need to reduce the memory and computational
requirements of deep neural networks to enable their deploy-
ment on resource-constrained IoT devices. The study then
presents a detailed review of various compression techniques,
such as weight pruning, quantization, knowledge distillation,
and model compression, along with their advantages and
limitations. The authors also provide an overview of various
applications of compact deep learning in IoT, such as image
classification, object detection, and speech recognition.

Thework has been done in [12] proposes a semi-supervised
FL scheme for ID, which leverages knowledge distillation to
improve the performance of the student model. The proposed
scheme addresses the challenges of traditional supervised and
unsupervised approaches to ID by combining the benefits
of semi-supervised learning, FL, and knowledge distilla-
tion. The proposed scheme consists of a server and multiple
clients, where each client has access to its own local data
and a small portion of labeled data from other clients. The
server initiates the training process by sending a pre-trained
teacher model to each client, which is used to generate soft
labels for the local data. The clients then use their labeled and
unlabeled data to train their respective student models, which
are subsequently sent back to the server for aggregation.

Last but not least, the study in [24] provides a review of
the use of knowledge distillation in federated edge learn-
ing, which is a distributed learning approach that involves
extending the FL paradigm to edge devices like smartphones
and IoT devices. The review focuses on previous research
on knowledge distillation in this context and highlights the
potential benefits, challenges, and future directions of the
proposed approaches.

In addition to the aforementioned studies, several recent
works have further contributed to our understanding of net-
work traffic classification methods, especially concerning
malware. The work in [25] reflects the growing trend towards

streamlined and efficient models. This work delineates the
benefits of a broad learning architecture. In doing so, it joins
the conversation on the imperative of creating lightweight,
yet effective models for real-world IoT applications. This
study in [26] stands out for its innovative approach utilizing
domain adaptation and ladder networks. Focusing on enhanc-
ing security in the industrial IoT context, it underscores the
importance of robust and adaptable methodologies in the
ever-evolving realm of IoT. In addition, the authors in [27]
investigate the realm of privacy preservation. This research
introduces an attention mechanism embedded within neural
networks. Such an approach not only champions efficiency
but also underscores the criticality of maintaining privacy
when classifying malware traffic.

These studies further cement the relevance and urgency
of developing efficient methods for network traffic clas-
sification, particularly in the IoT context. Overall, these
works, along with the ones we’ve previously discussed, show
that knowledge distillation (model compression/lightweight
model) is a promising technique for compressing models for
IoT traffic classification. However, there is still a need for fur-
ther research to explore the efficacy of knowledge distillation
across different datasets and scenarios, specifically for NTC,
and to show the performance of the knowledge distillation in
this research area.

While the existing research on knowledge distillation for
IoT traffic classification has shown promising results, there
are still some research gaps that need to be addressed. Here
are some of the main research gaps:

• Limited comparison with other compression tech-
niques: while the research works have shown that
knowledge distillation can effectively compress models
for IoT traffic classification, there is a need for more
comparisons with other compression techniques, such as
quantization, pruning, and low-rank factorization [28].
This would help to determine the strengths and weak-
nesses of knowledge distillation in comparison to other
techniques.

• Lack of standard datasets:Most of the existing studies
on knowledge distillation for IoT traffic classification
have used their own proprietary datasets, which makes
it difficult to compare their results with other studies.
There is a high need for standard datasets that can mimic
the real world to compare the performance of different
compression techniques.

• Limited analysis of the trade-off between compression
and performance: While the studies have shown that
knowledge distillation can effectively compress models
for IoT traffic classification, there is a need for more
analysis of the trade-off between compression and per-
formance. Specifically, it is important to determine the
optimal compression rate that can be achieved without
cruelly sacrificing performance.

• Limited evaluation on edge devices: Most of the exist-
ing studies on knowledge distillation for IoT traffic

224 VOLUME 2, 2024



Abbasi et al.: Unleashing the Potential of Knowledge Distillation for IoT Traffic Classification

classification have focused on evaluating the perfor-
mance of compressed models on high-performance
servers; However, new technologies e.g., edge comput-
ing have other requirements. In this case, there is a
need for more evaluation of less powerful devices, such
as embedded systems and mobile devices, which have
limited computational resources and storage space.

Addressing the aforementioned research gaps would help
to further advance the use of knowledge distillation
for compressing models for IoT traffic classification
and provide a better understanding of its strengths and
limitations.

III. IMPLICATIONS AND REQUIREMENTS OF IoT
TRAFFIC CLASSIFICATION
Traffic classification is the systematic identification and cat-
egorization of data flows originating from network nodes,
including IoT devices [29]. Essentially, the task of traffic
classification can be expressed as a problem of multi-class
classification.

Let X be the set of all network traffic flows generated
by network devices, and let Y = y1, y2, . . . , ym be the set
of m pre-defined classes corresponding to different types of
services, IoT devices, or applications. The goal of traffic
classification is to learn a function f : X → Y that maps
each traffic flow x ∈ X to its correct class label y ∈ Y .
This function is typically learned from a training dataset
D = (x1, y1), (x2, y2), . . . , (xn, yn) of n labeled traffic flows,
where each sample (xi, yi) consists of a traffic flow xi and
its corresponding class label yi. Formally, the problem of
network traffic classification can be stated as follows: given
a training dataset D of labeled traffic, learn a function f that
minimizes the expected classification error on a new, unseen
test dataset Dtest.

Network traffic classification stands as a critical pillar
in the management of today’s intricate digital landscapes.
At its core, it is more than just categorizing data flows; it
is about optimizing sprawling networks that grapple with a
huge amount of data on a daily basis [30]. Through effective
classification, network operators can discern and understand
intricate traffic patterns, enabling them to prioritize spe-
cific data streams, allocate bandwidth with precision, and
ensure the smooth flow of operations. Beyond optimization,
the arena of digital security heavily relies on the robust-
ness of traffic classification. As digital threats continue to
advance, a well-classified network becomes the frontline
defense, allowing operators to detect anomalies and poten-
tial threats promptly, especially vital for devices perpetually
connected to the Internet. Furthermore, in the digital age, not
all data packets hold the same weight. While some demand
swift transmissions, such as in real-time gaming or video
conferencing, others might have more flexibility. This is
where classification comes into play, recognizing the diverse
needs of each packet, and ensuring they are treated based on
their specific latency, bandwidth, and reliability prerequisites.

Finally, in sectors that are bound by rigorous data governance
norms, the importance of classification escalates further.
Whether it is a financial institution dealing with confidential
transactional data or a healthcare entity managing patient
records, a well-structured network traffic ensures unwa-
vering data integrity, privacy, and adherence to regulatory
standards.

A. IoT TRAFFIC CLASSIFICATION
While the foundational principles of traffic classification
remain steadfast, IoT introduces a paradigm shift. Compris-
ing billions of interconnected devices, ranging from smart
thermostats to intricate industrial sensors, IoT not only mag-
nifies the volume of network traffic but also introduces
unparalleled diversity and complexity. Each device, with its
unique operational metrics, contributes to an intricate web
of network traffic, necessitating specialized approaches for
effective management. More specifically, the data sources it
relies upon are notably different. While general traffic clas-
sification often employs network logs or packet captures as
primary data sources, IoT traffic classification is intrinsically
dependent on data amassed directly from IoT devices [31].
These devices, in turn, exhibit a wide array of traffic types
and patterns, diverging from the standard web, email, or mul-
timedia traffic patterns commonly seen in broader network
classifications.

This distinctive nature of IoT traffic is also reflected
in the patterns it exhibits [32]. For instance, traffic
stemming from sensors, actuators, or control systems
remains peculiar to IoT devices, differentiating it from
the commonplace traffic patterns of general network
classifications.

Moreover, ML models employed for IoT traffic classifica-
tion are specifically tailored to address its unique attributes.
Given the high volume, low signal-to-noise ratio, and inherent
variability of IoT traffic, specialized ML models are indis-
pensable. In contrast, traditional network traffic classification
might leverage a more generalized range of models, from
deep neural networks to decision trees or support vector
machines.

Furthermore, the scope of applications for IoT traffic clas-
sification extends beyond just data categorization. It plays
a pivotal role in aspects like network optimization, secu-
rity enhancement, ensuring Quality of Service (QoS), and
maintaining regulatory compliance [33]. Meanwhile, other
network traffic classifications, such as that for video stream-
ing, might predominantly focus on bandwidthmonitoring and
performance assessment.

Lastly, the security landscape for IoT presents its own
set of challenges. With a plethora of connected devices,
the potential threats and vulnerabilities multiply. There is
an ever-present risk of malicious entities aiming to exploit
network vulnerabilities. In such a landscape, precise and
accurate traffic classification becomes a frontline defense,
aiding in the timely detection and mitigation of these looming
threats.
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FIGURE 2. Framework for knowledge distillation.

IV. METHODS
A. KNOWLEDGE DISTILLATION FRAMEWORK
In this study, we use the knowledge distillation framework
presented by Hinton et al. [11]. The goal is to transfer the
knowledge from the larger model to the smaller model so
that it can perform similarly to the larger model but with a
smaller computational footprint. Here is a brief description
of the knowledge distillation framework for IoT traffic clas-
sification (see figure 2).

• Data preprocessing: The first step in the methodology
is to preprocess the IoT traffic data. This stage involves
cleaning the data to remove any irrelevant or corrupted
data samples and converting the raw network traffic data
into a format suitable for the training and testing of ML
models. This step also involves feature extraction to cap-
ture relevant characteristics of the network traffic, such
as packet size, protocol type, and source/destination IP
addresses. Let X be the preprocessed dataset of network
traffic samples with features x1, x2, . . . , xn and their
corresponding true labels y1, y2, . . . , yn, where n is the
number of samples.

• Pre-train the larger model: Train a large and complex
model (teacher) to perform the classification task on the
training data. This larger model would have a higher
accuracy than the smaller model we are going to train.
To investigate different aspects of knowledge distillation
for IoT traffic classification, we use multiple teacher
and student architectures, as we describe in the sequel.
For now, let fT be the teacher model that is trained to
predict the true labels of the IoT traffic data. The output
of the teacher model for a given sample xi is denoted as
piT , which is a probability distribution over the possible
classes or soft labels.

• Generate soft labels: We use the pre-trained larger
model to generate ‘‘soft labels’’ for the training data.
Soft labels are probability distributions over the classes,
rather than ground truth labels. Soft labels provide
more information than ground truth labels and allow the
smaller model to learn from the uncertainty in the larger
model’s predictions.

• Train the smaller model: Train a smaller model (stu-
dent) to learn from the soft labels generated by the larger
model. This process involves minimizing the difference

between the soft labels generated by the larger model
and the soft predictions made by the smaller model.
In this stage, the distillation loss is achieved by minimiz-
ing the difference between the teacher and the student
models. In this study, we utilize the cross-entropy loss
to determine the dissimilarity between the teacher and
student models. Let fS be the student model that is
trained to mimic the predictions of the teacher model.
The output of the student model for a given sample xi is
denoted as piS , which is also the probability distribution
over the possible classes.

• Fine-tune the smaller model: Fine-tune the smaller
model on the training data using the standard ‘‘hard
labels’’, also known as ‘‘hard predictions’’. This process
involves minimizing the cross-entropy loss between the
predicted labels and the true labels.

• Performance evaluation: After the student model is
trained, we evaluate its performance on the test set.
We also compare the performance of the student model
with that of the teacher model and the smaller model
trained from scratch to assess the effectiveness of the
knowledge distillation.

Algorithm 1 provides an algorithmic description of the
knowledge distillation framework for IoT traffic classifica-
tion.

B. DATASET DESCRIPTION
In our experiments, we utilized two widely used, real-world
network traffic datasets that are frequently employed in
research on network traffic classification. These datasets
include the following:

• The University of Cambridge dataset: This dataset was
created by the University of Cambridge, Computer Lab-
oratory and contains ten datasets [34]. Generally, the
University of Cambridge dataset is a widely used and
well-established dataset for traffic classification tasks
and has been used in several previous studies on this
topic (e.g., [35]). Each dataset is unique, with its own
distinct start time, end time, duration, number of traffic
flows, and type of traffic. Note that for the purposes
of our experiment and specific requirements, we have
utilized variousmodified versions of the original dataset.
For example, we may remove a specific traffic label
or change the size of the training dataset. The dataset
covers a wide range of traffic types, such as, such as P2P,
ATTACK, and DATABASE.
To provide a more diverse sample of mixing throughout
the day, the start time for each sample was selected
randomly in this dataset. Each dataset describes a period
captured within the day. The dataset also contains fea-
tures such as median inter-arrival time, maximum packet
inter-arrival time, and variance of control bytes packet
which can be used to classify the traffic.
We split the dataset into training and testing sets, with
70% of the data used for training and 30% used for
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Algorithm 1 :Knowledge distillation IoT traffic classifica-
tion
1: Input: Preprocessed dataset X with features
x1, x2, . . . , xn and true labels y1, y2, . . . , yn;
Hyperparameters: temperature T , α, learning rate
γ , momentum, and number of epochs.

2: Output: Student model fS .
3: Step 1: Define the teacher model fT :

• Initialize fT , a pre-trained neural network model
• Train fT on the dataset X by minimizing the
cross-entropy loss with the stochastic gradient
descent (SGD) optimizer

• Obtain the probability distribution pT for each sam-
ple xi in X using the model fT

4: Step 2: Define the student model fS :
• Initialize the student model fS with a smaller archi-
tecture than fT

• Train fS on the dataset X by minimizing the knowl-
edge distillation loss function with SGD optimizer

• Obtain the probability distribution pS for each sam-
ple xi in X using fS

5: Step 3: Train the student model using the knowledge
distillation technique:

• For each epoch t in [1,N ]:
• For each sample xi in X :
• Compute the logits (scores) sT and sS for fT
and fS , respectively

• Compute the probability distribution qT and qS using
the softmax function and with temperature T : qT =

softmax(sT /T ), qS = softmax(sS/T )
• Compute the cross-entropy loss function LCE (pT , y)
and the knowledge distillation loss Ldist

• Compute the total loss function Ltotal
• Update the weights of fS using the gradient of Ltotal
with respect to the weights and the learning rate γ

6: Step 4: Evaluate the student model
• Evaluate the performance of fS on a held-out test
dataset using various performance metrics such as
accuracy, recall, and F1 score

7: Step 5: Fine-tune the student model
• If the performance of fS is not satisfactory, fine-tune
fS by adjusting its hyperparameters or training it for
longer

8: Step 6: Compare the performance of the student and
teacher models

• Compare the performance of fS with that of fT to
assess the effectiveness of the knowledge distillation
approach in reducing model complexity without sac-
rificing performance

testing. We also performed some data preprocessing,
including normalization and feature selection, to prepare
the data for the ML models.

• CIC-IDS2017 dataset: The CIC-IDS2017 dataset is a
network traffic dataset that was captured in a real-world
IoT network environment. It contains both benign and
malicious traffic, and it includes traffic from several
different IoT devices such as cameras, routers, and
smart thermostats. The dataset was created by the Cana-
dian Institute for Cybersecurity (CIC) and is widely
used for evaluating IDSs for IoT networks [36]. The
dataset includes both raw network traffic (pcap files) and
pre-processed features (CSV files), which can be used
for ML-based classification. The pre-processed features
include statistical features such as mean, standard devi-
ation, and maximum value, as well as domain-specific
features such as HTTP headers and SSL certificates.
The CIC-IDS2017 dataset contains a total of 2.8 million
network flows, of which 1.9 million are benign and
0.9 million are malicious instances. The dataset also
includes different types of attacks, such as botnet, DDoS,
and port scan attacks.
In our experiments, we use a modified version of this
dataset. Each record in the dataset is labeled with a label
from a list of nine different labels, such as BENIGN,
DDoS, PortScan, and SSH-Patator, among others.

C. EXPERIMENTAL DESIGN AND SETUP
In this study, we conduct a series of comprehensive experi-
ments to evaluate the effectiveness of knowledge distillation
in compressing models for IoT traffic classification under
varying conditions. We compared the performance of our
knowledge distillation model with that of traditional learning
models used for this task. For each experiment, we also report
the number of epochs and data used for training purposes.
We trained and evaluated three distinct models using the
datasets:

• Teacher model: The model was constructed using a
multi-layer feedforward neural network, which consists
of multiple linear layers followed by a softmax output
layer for multiclass classification tasks and a sigmoid
output layer for binary classification tasks. We trained
the model using the SGD optimizer with a learning
rate of γ = 0.01 and with a momentum of 0.9. The
model was trained to predict the 9 categories of traf-
fic in the Cambridge dataset and 9 types of traffic in
the CIC-IDS2017 dataset. Each experiment is repeated
five times, and the mean and the standard deviation are
reported.

• Student model: This model has the same architecture as
the teacher but with fewer hidden layers and neurons.
We train the model using the same hyperparameters as
the teacher model.

• A neural network model compressed using knowledge
distillation: We use the big model as the teacher model
and train a student model using knowledge distillation.
To implement knowledge distillation, the student model
is trained using both the input data and the soft labels
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generated by the teacher model. In terms of the hyper-
parameters used for knowledge distillation, we follow
the widely adopted approach ( [11], [37]), using a tem-
perature of T = 4, and the α value of 0.9.

As mentioned, we conducted a series of comprehensive
experiments to evaluate the effectiveness of knowledge dis-
tillation. The architectures of the teacher and student models
play a crucial role in the effectiveness of knowledge dis-
tillation for IoT traffic classification. The architecture of
the teacher and student models can vary depending on the
specific experiments and the datasets used. In this study,
we employ different architectures for both the teacher and
student models, depending on the specific purpose of each
experiment.

We evaluate the models based on their accuracy, recall, and
F1 score on the test set. We also measure the computational
resources required to train and evaluate eachmodel, including
the training time, the number of parameters, and the size.

We conducted the experiments on a machine with an
AMD Ryzen 5000 Series processor, 16 GB of RAM, and an
NVIDIAGeForce RTX 3050 Ti graphics card.We use Python
3.7 and PyTorch to develop the ML models.

By comparing the performance of the different models,
we aim to determine whether knowledge distillation can
effectively compress models for IoT traffic classification
while maintaining high accuracy and reducing computational
resources.

V. RESULTS AND ANALYSIS
A. ACCURACY COMPARISON
We compare the performance of three different models for
IoT traffic classification: a big model, a small model, and a
student model compressed using knowledge distillation. The
big neural network consists of four linear layers. The first
layer has ‘‘input − dim’’ number of inputs and 1024 output
neurons, which means it receives the input traffic dataset with
‘‘input − dim’’ features. We considered 235 features for the
Cambridge dataset, whereas the CIC-IDS2017 dataset was
analyzed with only 73 features. The second layer receives
input from the previous layer with 1024 neurons. This layer
has 1200 output neurons. The third layer has 700 out-
put neurons. It receives input from the previous layer with
1200 neurons. Finally, the fourth and last layer has ‘‘output−
dim’’ number of output neurons. It receives input from the
previous layer with 700 neurons. As previously mentioned,
the size of the ‘‘output − dim’’ for both datasets is nine.
For the small and student model we consider a simple

two-layer feedforward neural network, with an input layer,
a hidden layer, and an output layer. The first layer is a Linear
layer with ‘‘input − dim’’ input neurons and 800 output
neurons. The second layer is a linear layer with 800 input
neurons and ‘‘output − dim’’ output neurons.
The classification results of the Cambridge dataset are pre-

sented in Table 1. Additionally, Figure 3 depicts the confusion
matrix for the evaluation results on the same dataset. We train

the teacher model for 350 epochs, and the small and student
models are trained for 350 epochs each in this experiment.

The teacher model achieved the highest accuracy, F1, and
recall, with an accuracy of 98.51 and an F1 score of 0.981.
However, it also had the highest number of parameters with
2,318,673 parameters, and the size of the trained teacher
model on the disk with 9,060 KB.

The small model achieved a lower accuracy, F1 score, and
Recall than the teacher model, with an accuracy of 97.13, and
an F1 score of 0.971. However, it also had fewer parame-
ters and a faster training time than the teacher model, with
196,009 parameters and a training time of 86.99 S. The size
of the small trained model on the disk is 768 KB, which
is approximately 11.7 times smaller than the teacher model.
Finally, the ML model compressed using knowledge distilla-
tion achieved an accuracy of 98.31 and an F1 score of 0.982,
which is approximately similar to the teacher model but
higher than the smaller model. The student model had con-
siderably fewer parameters compared to the teacher model,
containing only 196,009 parameters and a smaller model size
of 768 KB. Nevertheless, the training time for the student
models is longer than for their counterparts.

We repeated the experiment on the CIC-IDS2017 dataset
using the same settings. As we expected, we achieved almost
the same results as the first dataset. More specifically, the
results indicate that the teacher model is the best-performing
model on the CIC-IDS2017 dataset, followed by the student
and the small models, respectively; However, the trade-off
between the performance and the model size/computation
time should be carefully considered when selecting a model
for a specific use case. Table 2 presents the classification
results of the CIC-IDS2017 dataset. In addition, the eval-
uation results on the same dataset are illustrated by the
confusion matrix shown in Figure 4.

From these observations and the confusion matrices
depicted in the figures, we can conclude that the student
model is a good compromise between accuracy and effi-
ciency, as it has a similar accuracy to the teacher model while
having a smaller size like the small model. Therefore, it can
be a suitable alternative for scenarios where computational
resources are limited, such as mobile or IoT traffic classifica-
tion. However, the longer training time may be a drawback in
certain applications.

B. THE EFFECTIVENESS OF KNOWLEDGE DISTILLATION
WITH EXCLUDED CLASSES
In this experiment, we are exploring the effectiveness of
knowledge distillation in the context of removed classes.
Specifically, we train a student model to predict a subset of
the classes that the teacher model was trained on. To achieve
this, we use a transfer dataset where we exclude all examples
of different traffic labels. In other words, the student model
is trained on a subset of the original dataset. The goal of
this experiment is to evaluate how well the student model
can learn from the teacher model despite the reduced amount
of training data, and whether the knowledge distillation
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TABLE 1. Performance of models on the cambridge dataset (Test, %).

FIGURE 3. Confusion matrix for the evaluation results on the Cambridge dataset.

TABLE 2. Performance of models on the CIC-IDS2017 dataset (Test, %).

FIGURE 4. Confusion matrix for the evaluation results on the CIC-IDS2017 dataset.

technique can effectively transfer the knowledge from the
teacher model to the student model even when some classes
are missing from the training data. In this experiment, we use
the same student and teacher architectures as in the previous
experiment.

• Two classes: In the first experiment, the teacher model
is first trained on the Cambridge dataset with all traffic
labels, and then the student model is trained to predict a
subset of those labels by using a transfer dataset where
two classes have been removed. The removed classes

are ‘‘ATTACK’’ and ‘‘FTP-DATA’’. The small model is
trained on the same transfer dataset as the student model.
Table 3 shows the performance of three different models
on the Cambridge dataset for traffic classification when
two classes are removed from the transfer dataset. The
teacher model achieved an accuracy of 97.51% with an
F1 score and recall of 0.975. Themodel took 356.10 sec-
onds for training and has 2,318,673 parameters. Its size
is 9,060 KB on the disk. This model was also trained
on the full Cambridge dataset with all traffic labels.
The most intriguing aspect of this experiment is the
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performance of the student model, which achieves the
highest accuracy of 97.61%, slightly better accuracy,
and recall than the teacher model with two removed
classes. According to the confusion matrix (Fig. 5), the
student model correctly predicted 397 ‘‘ATTACK’’ and
454 ‘‘FTP-DATA’’ labels. Moreover, it is clear that the
small model performs poorly and provides inadequate
predictions, especially for the two removed labels. How-
ever, the small model has the smallest training time
compared to the other models.
The classes ‘DDoS’ and ‘SSH-Patator’ were excluded
from the CIC-IDS2017 dataset in the second experi-
ment. Table 4 presents the classification performance
of three distinct models applied to the CIC-IDS2017
dataset. Based on the table, the student model has the
highest accuracy of 95.06%, followed by the teacher
model with an accuracy of 94.86%. The small model
has the lowest accuracy of 72.77% ± 0.32%. Both
the teacher and student models have almost similar
classification performance. The teacher model took the
longest time to train, at 1,555 seconds, while the small
model took the shortest time, at 43.7 seconds. The stu-
dent model took 1,110 seconds to train. Finally, the
teacher model has the highest number of parameters,
at 2,153,864, while the small and student models have
68,012 parameters. The size of all models is relatively
small, with the largest being only 8,412 KB.
The results suggest that knowledge distillation can still
be an effective technique for creating smaller models
with comparable performance to larger, more complex
models, despite being trained on a transfer dataset with
two classes removed.
It is also worth noting that the training time of the teacher
model is much longer than the student and small models
in both datasets. Therefore, one advantage of knowl-
edge distillation is that it can produce smaller models
that require less training time while still maintaining
comparable performance to larger models. Training time
is an important factor to consider in real-world appli-
cations, especially in time-sensitive environments such
as IoT networks where quick response times are neces-
sary. Longer training times may not be feasible in such
scenarios, and therefore, more efficient techniques for
knowledge distillation may be required as the training
time of the student models is still longer than the training
time for the small model in both cases.

• Three and four classes: To obtain a more thorough
comprehension of the efficacy of knowledge distillation
in a scenario where certain traffic classes are excluded,
we conduct additional experiments by removing mul-
tiple classes from the transfer dataset. Specifically,
we repeat the experiment by removing three and four
classes from the transfer dataset during the training of
both the student and small models. Tables 5, 6, 7, and 8
provide detailed performance metrics, while Figures 7,
8, 9, and 10 offer confusion metrics of the results.

In all tables except Table 4, the teacher model (i.e., the
baseline model without any removed classes) has the highest
accuracy and F1 scores. This is expected, as the model was
trained on the full dataset and can therefore classify all classes
of the data accurately. When three classes are removed, both
the small and student models show a decrease in performance
compared to the teacher model. The decrease was much more
severe in the small models than in the student models. The
small models have the lowest accuracy, F1 score, and recall,
while the student models have better performance but still lag
behind the teacher models. This indicates that removing even
a small subset of classes can have a detrimental impact on the
performance of the models.

The results of these experiments further confirm the effi-
cacy of the proposed approach for traffic classification.
Despite the reduced amount of training data, the student
model was able to achieve high accuracy, F1 score, and
recall, indicating that the knowledge distillation technique
was effective in transferring the knowledge from the teacher
model. The small model, on the other hand, was not able
to achieve comparable performance. Furthermore, we can
observe that as the number of removed classes increases, the
performance of the student model begins to degrade slightly.
This is to be expected, as the model has less data to learn
from and fewer examples to draw upon. However, even when
four classes were removed, the student model was still able
to achieve impressive results, indicating the robustness of the
proposed approach.

C. ANALYZING THE TEACHER CAPACITY
To analyze the impact of the teacher model capacity on
the performance of the knowledge distillation approach in
the context of IoT traffic classification, we conducted a
series of experiments. In these experiments, we train multi-
ple teacher models with varying capacities using the same
training dataset. To control the other factors that may affect
performance, such as the size and complexity of the student
model and the amount of training data, we use the same
student model and training dataset across all the experiments.
Additionally, we use the same hyperparameters for all the
experiments.
To train teacher models of varying capacities, we adjust the
architecture of the models. More specifically, we modify the
number of layers (depth). In the first attempt, we consider a
teacher model with three linear layers. The first layer takes an
input size of ‘‘input−dim’’ and outputs a tensor of size 1024.
The second layer takes this tensor of size 1024 and outputs a
tensor of size 700. Finally, the third layer takes this tensor of
size 700 and outputs a tensor of size ‘‘output − dim’’. This
architecture provides a limited capacity teacher model that
can serve as a baseline for comparing with the teacher models
of different capacities. We use the same architecture for the
student model as the previous experiment.
Table 9 shows the performance of different models on the
Cambridge dataset using a three-layer teacher model. The
teacher model, which serves as a baseline for comparison,
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TABLE 3. Performance of models on the cambridge dataset with two removed classes (Test, %).

TABLE 4. Performance of models on the CIC-IDS2017 Dataset with two removed classes (Test, %).

TABLE 5. Performance of models on the cambridge dataset with three removed classes (Test, %).

TABLE 6. Performance of models on the CIC-IDS2017 dataset with three removed classes (Test, %).

TABLE 7. Performance of models on the cambridge dataset with four removed classes (Test, %).

TABLE 8. Performance of models on the CIC-IDS2017 Dataset with four removed classes (Test, %).

achieved an accuracy of 98.79/ an F1 score of 0.98 on the
test dataset. It took 708.22 seconds to train, having 965,473
parameters, and a size of 3774 KB. Generally, the results
suggest that the small model has a lower accuracy compared
to the student model and the teacher model.
To better assess the influence of teacher capacity, we car-
ried out additional experiments wherein we trained teacher
models with four, five, six, and seven layers. In doing so,
we incrementally added one, two, three, and four hidden
layers with a size of 1024*1024, respectively. We repeated
the same experimental setup as before, using the same stu-
dent model, training dataset, and hyperparameters across all

experiments. Moreover, upon conducting a more in-depth
analysis of the CIC-IDS2017 dataset, we discovered that the
results were strikingly similar to those of the previous dataset,
highlighting a consistent pattern in our findings(see Fig. 12).
Looking at the results in Fig. 11 and Fig. 12, we can see
that increasing the number of layers in the teacher model did
not necessarily result in a significant improvement in per-
formance. While the seven-layer teacher model had slightly
better performance than the three-layer teacher model in
terms of accuracy, F1 score, and recall, the difference was
not significant.
One interesting finding is that the training time and model
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FIGURE 5. Confusion matrix for the evaluation results on the Cambridge dataset, two removed classes.

FIGURE 6. Confusion matrix for the evaluation results on the CIC-IDS2017 dataset, two removed classes.

FIGURE 7. Confusion matrix for the evaluation results on the Cambridge dataset, three removed classes.

size increased significantly as the number of layers in the
teacher model increased. The seven-layer teacher model had
the highest training time and model size, which indicates that
increasing the model capacity beyond a certain point may not
be worth the additional computational cost. Additionally, the
results suggest that the knowledge distillation approach was
effective in transferring knowledge from the teacher model to
the student model, as the student model achieved a high level
of performance despite having a much smaller capacity than
the teacher models.

D. MODEL GENERALIZATION USING FAR LESS
TRAINING DATA
Our main argument in favor of using soft targets instead of
hard labels is that soft labels can contain a wealth of useful
information that cannot be captured by a single hard label.
This means that the student model is able to learn and capture
the essential features of the IoT traffic data with fewer data
samples, which is desirable as collecting and labeling traffic
data can be a time-consuming and expensive process [2].
To verify our argument, we conducted an experiment where
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FIGURE 8. Confusion matrix for the evaluation results on the CIC-IDS2017 dataset, three removed classes.

FIGURE 9. Confusion matrix for the evaluation results on the Cambridge dataset, four removed classes.

FIGURE 10. Confusion matrix for the evaluation results on the CIC-IDS2017 dataset, four removed classes.

TABLE 9. Performance of models on the cambridge dataset with a three-layerteacher model (Test, %).

we trained the student model using significantly less data
than in previous trials. Specifically, we trained our model
on a mere 3% of the available data for the Cambridge

and CIC-IDS2017 datasets, comprising 949 and 615 data
instances, respectively, using hard labels. Remarkably, our
model achieved an accuracy of 94.2% and 87.98% for the
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FIGURE 11. Comparison of classification accuracy, training time, number of parameters, and model size on the Cambridge
dataset with varying number of layers.

two datasets, demonstrating the efficacy of our approach even
with limited data. The results presented in the tables 10 and 11
show that even with only 3% of the data, the student model
trained with soft labels achieved a high level of accuracy,
indicating that the model was able to effectively capture the
essential features of the IoT traffic data with limited data.
We also trained the student model using soft labels on 6%
(1,899 and 1,230 data instances) and 15% (4,794 and 3,073
data instances) of the training data, achieving higher accura-
cies of 95.67%/, 91.27%, 96.946%, and 91.51%, respectively.
The results suggest that training the model with soft labels
allows the model to generalize well with less data, as it
captures more information than a single hard label. Addition-
ally, the tables provide information on the training times and
the number of parameters for each model, with the student
models requiring significantly less time and fewer parameters
than the teacher models.
Overall, the experiment’s results lend support to the claim that
soft labels are a valuable approach for training student models
with scarce data resources. This is because soft labels contain
more information than a single hard label, which enables the
model to effectively capture the critical features of the data
using fewer samples.

E. EFFECT OF STUDENT MODEL ARCHITECTURE
The student model architecture (e.g., number of layers, types
of activation functions, number of neurons in each layer,
etc.) is a crucial component in knowledge distillation, as it
determines the complexity and capacity of the model that
will be used to learn from the teacher model. In this section,
we will investigate the effect of different student model
architectures on the performance of IoT traffic classification
using knowledge distillation. We will compare the perfor-
mance of different architectures and analyze the results to
identify which architecture is most effective for this task. This
investigation can help us to better understand the trade-off
between model complexity and performance in the context
of knowledge distillation for IoT traffic classification. Indeed,
by investigating various student model architectures, we can
identify architectures that are lightweight and computation-
ally efficient while maintaining acceptable classification
performance as t is crucial for deploying IoT traffic classi-
fication models on resource-constrained devices.
In this experiment, we consider varying the number of layers
in student models while keeping the number of neurons fixed
at 400 in each layer. We consider student models with two-
layer, three-layer, four-layer, and five-layer configurations.
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FIGURE 12. Comparison of classification accuracy, training time, number of parameters, and model size on the
CIC-IDS2017 dataset with varying number of layers.

TABLE 10. Soft labels enable the student model to effectively generalize withonly a limited amount of training data. these soft labels
are acquired throughtraining on the complete set of training data (Cambridge dataset).

TABLE 11. Soft labels enable the student model to effectively generalize withonly a limited amount of training data. these soft labels
are acquired throughtraining on the complete set of training data (CIC-IDS2017 dataset).

The tables 12 and 13 show the results for the Cambridge
and CIC-IDS2017 datasets, respectively. Based on the results,
the accuracy of the student model increases as the number
of layers in the architecture increases. The highest accu-
racy is achieved with the five-layer student model in both

datasets; However, the differences in the accuracy between
the architectures are relatively small, ranging from 98.3%
and 92.6% for the two-layer models to 98.55% and 93.92%
for the five-layer models, respectively. Moreover, the number
of parameters in the student model increases significantly
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with the number of layers. The two-layer model has the
fewest parameters (98,009 and 33,209), while the five-layer
model has the most parameters (579,209 and 354,009). More
parameters generally allow the model to capture more com-
plex patterns in the data, but they also increase the risk of
overfitting if not properly regularized. Similar to the number
of parameters, the model size increases as the number of
layers in the student model increases. The two-layer model
has the smallest size (385 KB/132 KB), while the five-layer
model has the largest size (2267 KB/1386 KB). Model size
can be a consideration, especially in resource-constrained
environments such as IoT devices, where smaller models may
be preferred.
Based on the results, it can be concluded that increasing the
number of layers in the student model improves accuracy
and reduces error, but at the cost of increased training time,
parameters, and model size. The choice of the student model
architecture should consider the trade-off betweenmodel per-
formance and resource requirements in the specific context of
IoT traffic classification.

F. COMPARISON WITH THE MACHINE LEARNING
MODELS
In addition to our evaluation of deep learningmodels, we con-
ducted a comprehensive comparison of several machine
learningmodels to further enrich our understanding of knowl-
edge distillation and IoT traffic classification performance.
This comparison encompassed a diverse set of machine
learning algorithms, each with its unique characteristics and
suitability for different use cases. The models under consid-
eration include Random Forest, Gaussian Naive Bayes (NB),
Bernoulli NB, K-Nearest Neighbors (KNN), and XGBoost.

Machine learning models offer an alternative approach to
IoT traffic classification, relying on established algorithms
and principles. They are particularly valuable when resource
constraints and computational efficiency are critical consider-
ations. The inclusion of these models in our analysis provides
a holistic view of the landscape, offering insights into both the
distillation of knowledge in neural networks and traditional
machine learning paradigms.

In the following, we present the results and analysis of
these machine learning models, highlighting their perfor-
mance across accuracy, F1 score, and recall. This multi-
faceted evaluation allows us to assess the predictive power of
these models, enabling more informed decisions in selecting
the most appropriate model for specific IoT traffic classifica-
tion scenarios.

As it can be seen from Figure. 13a, knowledge distillation
showcased exceptional performance, achieving an accuracy,
F1 score, and recall of approximately 98.3% on the Cam-
bridge dataset. Random Forest demonstrated competitive
accuracy at around 94.9%, albeit with lower F1 scores and
recalls compared to knowledge distillation. Gaussian NB,
and Bernoulli NB yielded moderate accuracy at approxi-
mately 54.3% and 72.9%, respectively, with lower F1 scores
and recalls, making them more applicable to simpler IoT

contexts. KNN delivered robust performance with high accu-
racy (around 97.0%) and competitive F1 scores and recalls,
establishing it as a versatile choice across diverse IoT applica-
tions. XGBoost achieved moderate accuracy (around 84.2%)
with competitive F1 scores and recalls, striking a balance
between precision and computational efficiency. In conclu-
sion, knowledge distillation is highly effective for IoT traffic
classification, while traditional machine learning models like
KNN and XGBoost offer robust performance in various IoT
scenarios, allowing method selection to align with specific
application requirements and numerical performancemetrics.

Moreover, to provide a comprehensive comparison,
we evaluated the performance of the machine learning mod-
els on the CIC-IDS2017 dataset (see Figure. 13b). On the
CIC-IDS2017 dataset, knowledge distillation maintained its
effectiveness, achieving an impressive accuracy of 92.7%.
This result reaffirms the value of knowledge distillation as a
robust approach for IoT traffic classification across multiple
datasets. Notably, the student model, compressed through
knowledge distillation, demonstrated remarkable accuracy
and F1 scores, showcasing its potential as a lightweight and
efficient classifier. When comparing the machine learning
models, Random Forest displayed competitive accuracy, hov-
ering around 56.1%. However, it exhibited relatively lower
F1 scores and recalls in contrast to knowledge distillation.
Gaussian NB and Bernoulli NB achieved moderate accu-
racy levels of approximately 29.0% and 55.0%, respectively.
KNN emerged as a robust performer with a high accu-
racy rate of around 93.0%, coupled with competitive F1
scores and recalls, rendering it a versatile choice across a
wide range of IoT applications. XGBoost delivered moderate
accuracy at approximately 50.5%, while maintaining compet-
itive F1 scores and recalls. This equilibrium in performance
establishes XGBoost as an appealing option, particularly
in situations where both precision and computational effi-
ciency hold paramount importance.

G. COMPARISON WITH MODEL PRUNING AS
ALTERNATIVE
In this subsection, we delve into a critical aspect of our
research–evaluating the effectiveness of two distinct com-
pression techniques: knowledge distillation and model prun-
ing. As the demand for efficient and resource-conscious IoT
traffic classification models continues to grow, the selec-
tion of an optimal compression method becomes paramount.
Model pruning, a traditional technique, aims to directly trim
the architecture of a neural network by eliminating redundant
or less informative components, thereby reducing its size and
computational demands [38]. In this comparative analysis,
we rigorously assess the performance of these compression
techniques in the context of IoT traffic classification.

The choice to compare model pruning alongside knowl-
edge distillation is rooted in its direct relevance to the unique
challenges of IoT traffic classification. Model pruning, as a
method for reducing the size and computational complex-
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TABLE 12. Performance of the student model on the cambridge dataset with a varying number of layers.

TABLE 13. Performance of the student model on the CIC-IDS2017 dataset with a varying number of layers.

FIGURE 13. The performance comparison of knowledge distillation with traditional machine learning methods.

TABLE 14. Comparison of model performance metrics for knowledge distillation and pruning technique (Cambridge dataset).

ity of machine learning models, aligns inherently with the
requirements of these resource-constrained settings. By iden-
tifying and eliminating redundant or less influential model
parameters, model pruning offers an effective means to create

more compact and efficient models. This characteristic of
model pruning is particularly pertinent to IoT applications,
wheremodel size reduction is crucial for efficient deployment
and operation on resource-constrained devices. Moreover,
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TABLE 15. Comparison of model performance metrics for knowledge distillation and pruning technique (CIC-IDS2017 dataset).

model pruning’s focus on striking a balance between model
size reduction and classification accuracy is well-suited to the
needs of IoT traffic classification.

Tables 14 and 15 provide the comparison of model per-
formance metrics between knowledge distillation and model
pruning techniques using the Cambridge dataset and CIC-
IDS2017 dataset, respectively. The model pruning settings
involve systematically reducing the size and complexity of
neural network architectures by selectively removing a per-
centage of model parameters from specific layers. In the
presented comparison, three different pruning settings were
employed, each varying in the choice of layers and the
extent of pruning, expressed as the ‘‘amount’’ parameter.
These settings explore the impact of pruning on the model’s
performance, with higher ‘‘amount’’ values indicating more
aggressive pruning. The objective is to provide a compre-
hensive evaluation of the effectiveness of model pruning as
a compression technique.

Considering the Cambridge dataset (Table 14), the accu-
racy achieved by knowledge distillation is remarkably high at
98.31%. This technique also demonstrates excellent F1 score
and recall. Model pruning, even with a relatively aggressive
pruning setting (removing 20-50% of parameters), results
in a significant drop in accuracy compared to knowledge
distillation. Moreover, model pruning, even with different
pruning settings, requires lower training times compared
to knowledge distillation. The training times range from
1,079.2 seconds to 1,108.4 seconds for different pruning
settings. Furthermore, as the model pruning becomes more
aggressive (higher ‘‘amount’’ values), the number of param-
eters increases, and it remains substantially larger than the
knowledge distillation model.

Similar to the Cambridge dataset, knowledge distillation
achieves high accuracy at 92.45% on the CIC-IDS2017
dataset. It also exhibits good F1 score and recall, demonstrat-
ing its effectiveness in this dataset (Table 15). Model pruning
in this dataset also leads to a notable decrease in accuracy
compared to knowledge distillation. The decrease in accuracy

is more pronounced here compared to the Cambridge dataset.
This suggests that model pruning may not be as effective for
this dataset, potentially due to the dataset’s complexity.

In Table 15, knowledge distillation exhibits a relatively
longer training time, with an average of approximately
709 seconds. However, it is important to note that this training
time is notmuch longer than that observed for themodel prun-
ing. Model pruning results in a larger model with 1,073,534
parameters, which is substantially larger than the knowledge
distillation.

VI. CONCLUSION
In this study, we investigated the effectiveness of knowledge
distillation for IoT traffic classification. Through a compre-
hensive experimental analysis, we explored the effectiveness
of this technique in improving the classification performance
of IoT traffic data. Our findings provide valuable insights
into the benefits and limitations of knowledge distillation
in this domain. Our study provides empirical evidence that
knowledge distillation is a powerful technique for improving
IoT traffic classification. The results highlight the effec-
tiveness of transferring knowledge from a teacher model
to a student model, enabling the student model to achieve
superior performance, even in scenarios with limited train-
ing data or removed classes. These findings contribute to
the advancement of knowledge distillation techniques and
their application in IoT traffic classification and other related
domains. Future research can further explore optimization
strategies and investigate the scalability of knowledge distil-
lation for larger-scale IoT environments.
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