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ABSTRACT Graph neural networks (GNNs) update the hidden representations of vertices (called Vertex-
GNNs) or hidden representations of edges (called Edge-GNNs) by processing and pooling the information
of neighboring vertices and edges and combining to exploit topology information. When learning resource
allocation policies, GNNs cannot perform well if their expressive power is weak, i.e., if they cannot
differentiate all input features such as channel matrices. In this paper, we analyze the expressive power of
the Vertex-GNNs and Edge-GNNs for learning three representative wireless policies: link scheduling, power
control, and precoding policies. We find that the expressive power of the GNNs depends on the linearity and
output dimensions of the processing and combination functions. When linear processors are used, the Vertex-
GNNs cannot differentiate all channel matrices due to the loss of channel information, while the Edge-GNNs
can. When learning the precoding policy, even the Vertex-GNNs with non-linear processors may not be with
strong expressive ability due to the dimension compression. We proceed to provide necessary conditions
for the GNNs to well learn the precoding policy. Simulation results validate the analyses and show that the
Edge-GNNs can achieve the same performance as the Vertex-GNNs with much lower training and inference
time.

INDEX TERMS Vertex-GNN, Edge-GNN, resource allocation, precoding, expressive power.

I. INTRODUCTION

OPTIMIZING resource allocation such as link schedul-
ing, power control, and precoding is important for

improving the spectral efficiency of wireless communica-
tions. Various numerical algorithms have been proposed
to solve these problems, such as the weighted minimal
mean-square error (WMMSE) and the fractional program-
ming algorithms [1], [2], which are however with high
computational complexity. To facilitate real-time implemen-
tation, fully-connected neural networks (FNNs) have been
introduced to learn resource allocation policies, which are
the mappings from environmental parameters (e.g., chan-
nels) to the optimized variables [3]. While significant
research efforts have been devoted to intelligent commu-
nications, most existing works optimize resource alloca-
tion with FNNs or convolutional neural networks (CNNs).
These DNNs are with high training complexity, not scalable,
and not generalizable to problem size (say, the number of

users). This hinders their practical use in dynamic wireless
environments.

Encouraged by the potential for achieving good perfor-
mance, reducing sample complexity and space complexity,
as well as supporting scalability and size generalizability,
graph neural networks (GNNs) have been introduced for
learning resource allocation policies [4], [5], [6], [7], [8], [9].

These benefits of GNNs originate from exploiting topol-
ogy information of graphs and permutation properties of
wireless policies. To embed the topology information, the
hidden representations in each layer of a GNN are updated by
first aggregating the information of neighboring vertices and
edges and then combining with the hidden representations in
the previous layer, where the aggregation operation consists
of processing and pooling. A policy can be learned either
by a Vertex-GNN that updates the hidden representations of
vertices or by an Edge-GNN that updates the hidden repre-
sentations of edges, no matter if the optimization variables
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are defined on vertices or edges. To harness the permutation
property, parameter-sharing should be introduced for each
layer of a GNN. It has been shown in [9] that a GNN designed
for learning a wireless policy will not perform well if the
permutation property of the functions learnable by the GNN
is mismatched with the policy.

However, even after satisfying the permutation property
of a policy, a GNN may still not perform well due to the
insufficient expressive power for learning the policy. The
expressive power of a GNN is weak if the GNN cannot dis-
tinguish some pairs of graphs [10]. When learning a wireless
policy, the graphs (i.e., the samples) that a GNN learns over
are with different features. If a GNN maps different inputs
(i.e., features) into the same output (called action), then the
policy learned by the GNN may not achieve fairly good
performance. Nonetheless, such a cause of the performance
degradation has never been noticed until now.

A. RELATED WORKS
1) VERTEX-GNNs AND EDGE-GNNs
GNNs can either update the hidden representations of ver-
tices (i.e., Vertex-GNNs) or edges (i.e., Edge-GNNs). In the
literature of machine learning, Vertex-GNNs were proposed
for ‘‘vertex-level tasks’’ (say, vertex and graph classification)
whose actions are defined on vertices [11]. For ‘‘edge-level
tasks’’ (say, edge classification and link prediction) whose
actions are defined on edges, both Vertex-GNNs and Edge-
GNNs have been designed. In early works as summarized in
[11], edge-level tasks were learned by Vertex-GNNs with a
read-out layer, which was used to map the representations
of vertices to the actions on edges. In [12] and [13], the
edges of the original graph were transformed into vertices
of a line-graph or hyper-graph. Then, the edge-level task on
the original graph is equivalent to the vertex-level task on the
line-graph or hyper-graph, which can be learned by Vertex-
GNNs. In [14], an Edge-GNN was designed for learning an
edge-level task.

In the literature of intelligent communications, GNNs have
been designed to learn the link scheduling [4], [5], [15],
[16], power control [6], [17] and power allocation [9] policies
in device-to-device (D2D) communications and interference
networks, the precoding policies in multi-user multi-input-
multi-output (MIMO) system [18], [19], [20], [21], as well
as the access point selection policy in cell-free MIMO sys-
tems [22]. Except [19], [21] where the optimized precoding
matrices were defined as the actions on edges and hence
Edge-GNNs were designed, the actions of all these works
were defined on vertices and thereby Vertex-GNNs were
designed.

2) STRUCTURE OF GNNs
When using GNNs for a learning task, graphs need to be con-
structed and the structures of GNNs need to be designed or
selected. For a resource allocation task, more than one graph
can be constructed, say homogeneous graph or heterogeneous

TABLE 1. Processing, pooling and combination functions of
GNNs for resource allocation.

graph, and the action can be defined either on vertex or
on edge. The structure of a GNN is captured by its update
equation, which can either be vertex-representation update
or edge-representation update, with a variety of choices for
the processing, pooling, and combination functions. The
commonly used pooling functions are sum, mean, and max
functions, and the processing and combination functions can
be either linear or nonlinear (say using FNNs). The three
functions used in the GNNs for wireless policies are provided
in Table 1, which were designed empirically without explain-
ing the rationality.

GNNs can be designed to satisfy permutation properties,
which widely exist in wireless policies [21], [23]. According
to the problem, a policy can be with different properties
such as one-dimension (1D)-permutation equivariance (PE),
two-dimension (2D)-PE, and joint-PE [9] property. A GNN
learning over a homogenous graph can automatically learn
the policies with 1D-PE property if the read-out layer (if
needed) also satisfies the 1D-PE property, since the permu-
tation of the vertices in the graph does not affect the output
of the GNN. If a GNN is designed for learning a policy with
2D-PE, joint-PE, or more complicated PE property, then the
parameter-sharing in the update equation of the GNN should
be judiciously designed, as detailed in [21]. In [4], [6], [9],
[19], and [21], the PE properties of their considered wireless
tasks were analyzed, and the GNNs were designed to satisfy
the same properties. A GNN with matched PE property to a
policy is possible to be sample efficient, scalable, and size
generalizable, but the GNN may still not perform well due to
insufficient expressive power to the policy.

3) EXPRESSIVE POWER OF GNNs
The parameter-sharing in GNNs restricts their expressive
power [24]. In the literature of machine learning, the expres-
sive power of Vertex-GNNs has been investigated for vertex
classification, link prediction, and graph classification tasks,
where the samples for training and testing a GNN are graphs
with different topologies [10], [24], [25], [26]. The expressive

VOLUME 2, 2024 191



power is characterized by the capability to distinguish non-
isomorphic graphs.1

The 1-dimensional Weisfeiler-Lehman (1-WL) test is a
widely used algorithm to distinguish non-isomorphic graphs,
which consists of an injective aggregation process. Both the
1-WL test and Vertex-GNNs iteratively update the represen-
tation of a vertex by aggregating the representations of its
neighboring vertices. Inspired by such a finding, the expres-
sive power of Vertex-GNNs was characterized by whether
their aggregating functions were injective in [10]. To build a
GNN that is as powerful as the 1-WL test, a graph isomorphic
network (GIN)was developed in [10], which is a Vertex-GNN
whose processing and combination functions are FNNs and
the pooling function is sum function. Under the assumption
that the features of vertices were from a countable set, e.g., all
vertices are with identical feature, the aggregating functions
of the GIN were proved to be injective. When replacing
the processing functions in the GIN with linear functions or
replacing the pooling functions with mean or max function,
the aggregating functions were proved to be non-injective,
hence the resultant GNN is with weaker expressive power
than the GIN. It was empirically shown that the less powerful
Vertex-GNNs perform worse than the GIN on a number of
graph classification tasks.

In [24], [25], and [26], the expressive power of Vertex-
GNNs and the techniques to improve their expressive power
were reviewed. According to the analyses in [10], a GNN as
powerful as the 1-WL test is with the strongest expressive
power among all Vertex-GNNs. Since the 1-WL test can-
not distinguish some non-isomorphic graphs, e.g., k-regular
graphs with the same size and same vertex features, the
Vertex-GNNs also cannot distinguish them. To designVertex-
GNNs with stronger expressive power for these graphs, one
can provide each vertex a unique feature to make vertices
more distinguishable [24], [26] or use a high-order GNN that
updates the representation of k-tuple of vertices to maintain
more structural information of the graph [24], [25], [26].
However, these techniques incur computational costs.

Due to the considered tasks in [10], [24], [25], and [26]
and the references therein, these works did not consider the
features of edges. When learning wireless policies, the edges
of the constructed graphs may have features, and the graphs
with the same topology but with different features usually cor-
responds to different actions. The 1-WL test was proposed to
distinguish non-isomorphic graphs without edge features that
are different from the graphs for wireless problems, hence
the analyses for the expressive power of GNNs in [10], [24],
[25], and [26] are not applicable to most wireless problems.
The expressive power of a GNN for learning wireless policies
is captured by its capability to distinguish input features
(e.g., channel matrices), which has never been investigated
so far.

1According to the definition in [24], we know that two graphs are isomor-
phic if a graph can be obtained by reordering the vertices in another graph,
otherwise they are non-isomorphic.

B. MOTIVATION AND MAJOR CONTRIBUTIONS
In this paper, we strive to analyze the impact of the structure
of a GNN for optimizing resource allocation or precoding on
its expressive power, aiming to provide useful insight into the
design of GNNs for learning wireless policies.

We take the link scheduling and power control problems in
D2D communications and the precoding problem in multi-
user MIMO system as examples, each representing a class
of policies. The link scheduling and power control policies
are the mappings from the channel matrices to the optimized
vectors in a lower dimensional space, where the optimization
variables are respectively discrete and continuous scalars.
The precoding policy is the mapping from the channel matrix
to the optimized precoding matrix, where the optimization
variables are vectors. To demonstrate that the graph con-
structed for a wireless policy is not unique and the policy can
be learned by both Vertex-GNN and Edge-GNN, we consider
different graphs and GNNs for each policy.

To the best of our knowledge, this is the first attempt
to analyze the expressive power of the GNNs for learning
wireless policies. The major contributions are summarized as
follows.

• We find that Vertex-GNNs with linear processing func-
tions cannot differentiate specific channel matrices due
to the loss of channel information after aggregation,
which leads to poor learning performance. Their expres-
sive power can be improved by introducing non-linear
processers. By contrast, the update equations of Edge-
GNNs with linear processors do not incur the informa-
tion loss.

• Wefind that the output dimensions of the processing and
combination functions also restrict the expressive power
of the Vertex-GNN for learning the precoding policy,
in addition to the linear processors. We provide a lower
bound on the dimensions for a Vertex-GNN or Edge-
GNN without the dimension compression.

• We validate the analyses and compare the performance
of Vertex-GNNs and Edge-GNNs for learning the three
policies via simulations. Our results show that both the
training time and inference time of the Edge-GNNs with
linear processors are much lower than the Vertex-GNNs
with FNN-processors to achieve the same performance.

The rest of this paper is organized as follows. In section II,
we introduce three resource allocation policies. In section III,
we present Vertex-GNNs and Edge-GNNs to learn the poli-
cies over the directed homogeneous or undirected heteroge-
neous graph, and analyze the expressive power of the GNNs
with linear processors. In section IV, we analyze the impacts
of the linearity and output dimensions of processing and
combination functions on the expressive power of GNNs.
In sections V and VI, we provide simulation results and
conclusions.
Notations: (·)T and (·)H denote transpose and Hermitian

transpose, respectively. | · | denotes the absolute value of a
real number or the magnitude of a complex number. Tr(·)
denotes the trace of a matrix. X = [xij]m×n denotes a

192 VOLUME 2, 2024



Peng et al.: Learning Resource Allocation Policy: Vertex-GNN or Edge-GNN?

matrix with m rows and n columns where xij is the element
in the ith row and the jth column. ∥X∥ ≜

∑m
i=1

∑n
j=1 xij,

and |X|max ≜ maxmi=1maxnj=1 |xij|. 5, 51 and 52 denote
permutation matrices. R, C, and I denote the sets of real,
complex, and integer numbers, respectively. Rn denotes n-
dimensional vector space.

II. RESOURCE ALLOCATION PROBLEMS AND
POLICIES
In this section, we present three representative resource allo-
cation problems.

A. LINK SCHEDULING
Consider a D2D communication system with K pairs of
transceivers. Every transmitter sends data to a receiver, and
all the transmissions share the same spectrum. Hence, there
exist interference among the transceiver pairs, as illustrated
in Fig. 1(a). To coordinate the interference, not all the D2D
links are activated. A link scheduling problem that maximizes
the sum rate of active links is [2], [5], and [15],

max
x1,··· ,xK

K∑
k=1

log2

(
1 +

xkpkαkk∑K
j=1,j̸=k xjpjαjk + σ 2

0

)
s.t. xk ∈ {0, 1}, k = 1, · · · ,K , (1)

where xk is the active state of the kth D2D link, xk =

1 when the kth D2D link is active, xk = 0 otherwise, αjk
is the composite large- and small-scale channel gain from
the jth transmitter to the kth receiver, pk is the power of the
kth transmitter, and σ 2

0 is noise power.
The link scheduling policy is denoted as x∗

= Fls(α),
where x∗

= [x∗

1 , · · · , x∗
K ]

T is the optimized solution of the
problem in (1) for a given channel matrix α = [αij]K×K , and
Fls(·) is a function that maps α ∈ RK×K into x∗

∈ IK×1. This
policy is joint-PE to α [9], i.e., 5Tx∗

= Fls(5Tα5).

B. POWER CONTROL
The interference in the D2D system can also be coordinated
by adjusting the transmit power of every transmitter. The
power control problem that maximizes the sum rate under
power constraint is [3], [6], and [17],

max
p1,··· ,pK

K∑
k=1

log2

(
1 +

pkαkk∑K
j=1,j̸=k pjαjk + σ 2

0

)
s.t. 0 ≤ pk ≤ Pmax , k = 1, · · · ,K , (2)

where Pmax is the maximal transmit power.
The power control policy is denoted as p∗

= Fpc(α), where
p∗

= [p∗

1, · · · , p∗
K ]

T is the optimized solution of the problem
in (2) for a given channel matrix α, and Fpc(·) is a function
that maps α ∈ RK×K into p∗

∈ RK×1. This policy is also
joint-PE to α [6], i.e., 5Tp∗

= Fpc(5Tα5).

C. PRECODING
Consider amulti-usermulti-antenna system,where a base sta-
tion (BS) equipped withN antennas transmits toK users each

FIGURE 1. The considered two systems. (a): K = 3, solid and
dashed lines represent the communication and interference
links, respectively. (b): N = 3 and K = 2.

with a single antenna, as shown in Fig. 1(b). The precoding
problem thatmaximizes the sum rate of users subject to power
constraint is [19], [20]

max
v1,··· ,vK

K∑
k=1

log2

(
1 +

|hH
k vk |

2∑K
j=1,j̸=k |hH

k vj|
2 + σ 2

0

)
s.t. Tr(VVH) ≤ Pmax , (3)

where V = [v1, · · · , vK ] = [vnk ]N×K , vk ∈ CN×1 is the
precoding vector for the kth user, and hk ∈ CN×1 is the
channel vector from the BS to the kth user.
Denote the precoding policy as V∗

= Fp(H), where V∗

is the optimized solution of the problem in (3) for a given
channel matrix H = [h1, · · · ,hK ] = [hnk ]N×K , and Fp(·)
is a function that maps H ∈ CN×K into V∗

∈ CN×K .
The precoding policy is 2D-PE to H [19], i.e., 5T

1V
∗52 =

Fp(5T
1H52).

The link scheduling problem is a combinatorial optimiza-
tion problem, which can be solved by using iterative algo-
rithms [2] or exhaustive searching. Both the problems in (2)
and (3) are non-convex, which can be solved by numerical
algorithms such as the WMMSE algorithm [1].

III. GNNs FOR LEARNING THE POLICES
In this section, we introduce several GNNs to learn the three
policies. Since constructing appropriate graphical models is
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the premise of applying GNNs, we first introduce graphs
for each policy. Then, we introduce Vertex-GNN and Edge-
GNN. Finally, we analyze the expressive power of the
GNNs with simple pooling, processing, and combination
functions.

A. HOMOGENEOUS AND HETEROGENEOUS GRAPHS
A graph consists of vertices and edges. Each vertex or edge
may be associated with features and actions. Learning a
resource allocation policy over a graph is to learn the actions
defined on vertices or edges based on their features. The
inputs and outputs of a GNN are the features and actions of a
graph, respectively.

A graph may consist of vertices and edges that belong
to different types. If a graph consists of vertices or edges
with more than one type, then it is a heterogeneous graph.
Otherwise, it is a homogeneous graph, which can be regarded
as a special heterogeneous graph.

More than one graph can be constructed for a resource
allocation problem.

1) LINK SCHEDULING/POWER CONTROL
For learning the link scheduling and power control poli-
cies, the topologies and features of the graphs and the struc-
tures of the GNNs are the same, and only the actions of
the GNNs and the loss functions for training the GNNs are
different. Hence, we focus on the GNNs for learning the link
scheduling policy in the sequel.

In [5] and [15], a directed homogeneous graph Ghom
ls ,

as shown in Fig. 2(a), was constructed for learning the link
scheduling policy. In Ghom

ls , each D2D pair is a vertex, and the
interference links among the D2D pairs are directed edges.
Denote the ith vertex asDi, and the edge fromDi toDj as edge
(i, j). The feature of vertex Di is αii, and the feature of edge
(i, j) is αij. The features of all vertices and edges can be rep-
resented as α. The action of vertexDi is the active state of the
ith link xi. In [6], the graph constructed for optimizing power
control only has one difference from Ghom

ls : the action of
vertex Di is pi.

We can also construct an undirected heterogeneous graph
Ghet

ls as shown in Fig. 2(b) for learning the link scheduling
policy. In Ghet

ls , there are two types of vertices and two types
of edges. Each transmitter and each receiver are respec-
tively defined as a transmitter vertex and a receiver vertex
(respectively called tx vertex and rx vertex for short), and
the link between them is an undirected edge. Denote the
ith tx vertex and the ith rx vertex as Ti and Ri, respec-
tively, and the edge between Ti and Rj as edge (i, j). Edge
(i, i) is referred to as signal edge, and edge (i, j) (i ̸= j)
is referred to as interference edge (respectively called sig
edge and int edge for short). The vertices have no features.
The feature of edge (i, j) is αij, and the features of all the
edges can be represented as α. The active state xi can either
be defined as the action of vertex Ti or the action of sig
edge (i, i).

FIGURE 2. The topologies of the graphs. (a) and (b): link
scheduling/ power control, K = 3. (c): precoding, N = 3, K = 2.
The circles and triangles represent vertices, solid and dashed
lines represent the two types of edges.

2) PRECODING
In [19], the precoding policy was learned over a heteroge-
neous graph Ghet

p as shown in Fig. 2(c). In Ghet
p , there are

two types of vertices and one type of edges. Each antenna
at the BS and each user are respectively antenna vertex and
user vertex, and the link between them is an undirected edge.
Denote the ith antenna vertex and the jth user vertex as Ai and
Uj, respectively, and the edge between Ai andUj as edge (i, j).
The vertices have no features. The feature of edge (i, j) is hij,
and the features of all the edges can be represented asH. The
action vij is defined on edge (i, j).

One can also construct a homogeneous graph for learning
the precoding policy in a similar way as in [18]. In particular,
each user (say the kth user) and all antennas at the BS are
defined as a vertex, hk and vk are the feature and action of
the vertex, respectively. Every two vertices are connected by
an edge, which has no feature and action. However, a GNN
learning over such a graph is only permutation equivariant
to users, losing the property of permutation equivariance to
antennas and hence incurring higher training complexity.

B. VERTEX-GNN AND EDGE-GNN
GNNs can be classified into Vertex-GNNs and Edge-GNNs,
which respectively update the hidden representations of
vertices and edges. Each class of GNNs can learn over
either homogeneous or heterogeneous graphs. The directed
homogeneous graph can be transformed into an undirected
heterogeneous graph by regarding the edges of different
directions as two types of undirected edges and the two
vertices connected by a directed edge as two types of
vertices.2 Hence, we focus on undirected heterogeneous

2The basic idea is to transform the direction information in a directed
homogeneous graph into the type information in an undirected heteroge-
neous graph, which is applicable to any problem.
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graph in the following (called heterogeneous graph for
short).

For conciseness, we take the GNNs for learning the link
scheduling policy over the heterogeneous graph Ghet

ls in
Fig. 2(b) as an example. We discuss the GNN for learning
the link scheduling policy over the converted heterogeneous
graph from the directed homogeneous graph and the GNN for
learning the precoding policy in remarks.

1) VERTEX-GNN
In Vertex-GNN, the hidden representation of each vertex is
updated in each layer, by first aggregating information from
its neighboring vertices and edges, and then combining the
aggregated information with its own information in the pre-
vious layer. For each vertex, its neighboring vertices are the
vertices connected to it with edges, and its neighboring edges
are the edges connected to it. As illustrated in Fig. 3(a)(b)
where K = 4, for T1, R1 ∼ R4 are its neighboring vertices
and edge (1,1) ∼ edge (1,4) are its neighboring edges, while
for R1, T1 ∼ T4 are its neighboring vertices and edge (1,1) ∼

edge (4,1) are its neighboring edges.

FIGURE 3. Vertex-GNN (a) and (b) (When updating the
representation of a vertex in blue color, the information of the
vertices and edges with the same color is aggregated with
the same weight.) and Edge-GNN (c) and (d) (When updating
the representation of an edge with dashed lines, the information
of the edges with the same color is aggregated with the same
weight).

For the Vertex-GNN learning over a heterogeneous graph,
the hidden representation of the ith vertex with the τith type
in the lth layer, d(l)i,τi , is updated as follows [27],

Aggregate : a(l)i,τi = PLj∈N (i)

(
q(d(l−1)

j,τj , eij;W(l)
τiτjτij

)
)
,

Combine : d(l)i,τi = CB
(
d(l−1)
i,τi , a(l)i,τi;U

(l)
τi

)
, (4)

where a(l)i,τi is the aggregated output at the ith vertex, τi and τij
are respectively the types of the ith vertex and edge (i, j),N (i)

is the set of neighboring vertices of the ith vertex, eij is the
feature of edge (i, j), q(·),PL(·) andCB(·) are respectively the
processing, pooling, and combination functions, and W(l)

τiτjτij

and U(l)
τi are weight matrices.

The choices for the processing and combination functions
are flexible [11]. To ensure a GNN satisfying the PE property
of a learned policy, the pooling function should satisfy the
commutative law, e.g., sum-pooling

∑K
k=1(·), mean-pooling

1
K

∑K
k=1(·), and max-pooling maxKk=1(·).

Remark 1: We consider simple pooling, processing, and
combination functions as in [5], [9], [19], and [21] for easy
analysis, where PL(·) is the sum-pooling function, q(·) is a
linear function, and CB(·) is a FNN without hidden layer
(i.e., a linear function cascaded with an activation function),
unless otherwise specified. The GNNs with the three func-
tions are called vanilla GNNs.

The vanilla GNN updating vertex representations for learn-
ing the link scheduling policy over Ghet

ls is referred to as
vanilla Vertex-GNNhet

ls , where the active state xi is defined as
the action of vertex Ti. Since there are two types of vertices
in Ghet

ls , the GNN respectively updates the hidden representa-
tions of the vertices of each type in each layer.

From (4), the hidden representations of Ti and Ri in the
lth layer of the vanilla Vertex-GNNhet

ls , d (l)i,T and d (l)i,R, are
updated as,

Update hidden representations of tx vertices :

Aggregate : a(l)i,T = Q(l)
RS d

(l−1)
i,R + P(l)

RSαii

+

K∑
j=1,j̸=i

(
Q(l)
RI d

(l−1)
j,R + P(l)

RIαij

)
,

Combine : d(l)i,T = σ
(
U(l)
T d(l−1)

i,T + a(l)i,T
)
, (5a)

Update hidden representations of rx vertices :

Aggregate : a(l)i,R = Q(l)
TS d

(l−1)
i,T + P(l)

TSαii

+

K∑
j=1,j̸=i

(
Q(l)
TI d

(l−1)
j,T + P(l)

TIαji

)
,

Combine : d(l)i,R = σ
(
U(l)
R d(l−1)

i,R + a(l)i,R
)
, (5b)

where a(l)i,T and a(l)i,R are respectively the aggregated outputs
at Ti and Ri, Q

(l)
RS , P

(l)
RS , Q

(l)
RI , and P(l)

RI are respectively the
weight matrices for processing the information of Ri, edge
(i, i), Rj, j ̸= i, and edges (i, j), j ̸= i, U(l)

T is the weight
matrix for combining when updating Ti, σ (·) is an activation
function,Q(l)

TS , P
(l)
TS ,Q

(l)
TI , P

(l)
TI , andU

(l)
R in (5b) are respectively

the weight matrices used for processing and combining when
updating Ri.
In the input layer (i.e., l = 0), we set d (0)i,T = 0 and

d (0)i,R = 0, because the vertices in Ghet
ls have no features. The

input of the GNN is α, which is composed of the features
of all edges. The output of the GNN is [d (L)1,T , · · · , d (L)K ,T ]

T ≜
[x̂1,T , · · · , x̂K ,T ]T ≜ x̂T , which is composed of the learned
actions taken on all the tx vertices, where L is the number of
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layers of the GNN. Denote the policy learned by the vanilla
Vertex-GNNhet

ls as x̂T = Ghet
ls,v(α). It is not hard to show that

the learned policy is joint-PE to α.
Remark 2: In [5], [6], and [15], Vertex-GNNs were used

to learn the link scheduling and power control policies over
directed homogeneous graphs with the same topology as
Ghom

ls in Fig. 2(a). To apply the update equation in (4), one
can convert Ghom

ls into a heterogeneous graph, denoted as
Gundir

ls,v . When updating the representation of vertex Di, its
neighboring edges (i, j) and (j, i) (j ̸= i) are two types of
edges, and its neighboring vertices are with two different
types. Then, the representation of Di in the lth layer, d(l)i,V ,
can be obtained from (4), where d (0)i,V = αii. The input of the
GNN is α, which is composed of the features of all vertices
and edges. The output of the GNN is [d (L)1,V , · · · , d (L)K ,V ]

T ≜
[x̂1,V , · · · , x̂K ,V ]T ≜ x̂V , which includes the learned actions
on all vertices. When the three functions in Remark 1 are
used, the Vertex-GNN learning over Gundir

ls,v is referred to
as vanilla Vertex-GNNundir

ls . It is not hard to show that the
learned policy is joint-PE to α.
Remark 3: When using a Vertex-GNN to learn the precod-

ing policy over Ghet
p , the hidden representations of antenna

vertex Ai and user vertex Uj in the lth layer, d(l)i,A and d(l)j,U ,

can be obtained from (4), where d (0)i,A = d (0)j,U = 0 because
the vertices have no features. Since the actions are defined
on edges, a read-out layer is required to map the vertex
representations in the output layer into the actions. In par-
ticular, to map d(L)i,A and d(L)j,U into the action on edge (i, j),

a FNN can be designed as v̂ij,V = FNNhet
read(d

(L)
i,A ,d(L)j,U ),

which is the same for i = 1, · · · ,N , j = 1, · · · ,K .
The input and output of the GNN are respectively H and
[v̂ij,V ]N×K ≜ V̂V , which are composed of the features and
the learned actions of all edges. When the three functions in
Remark 1 are used, the GNN is referred to as vanilla Vertex-
GNNhet

p . It is not hard to show that the learned policy is
2D-PE to H.

2) EDGE-GNN
In Edge-GNN, the hidden representation of each edge is
updated in each layer, by first aggregating information from
its neighboring edges and neighboring vertices, and then
combining with its own hidden representation in the previous
layer. For edge (i, j), the ith and jth vertices are its neighboring
vertices, and the edges connected by the ith and jth vertices
are its neighboring edges.

The update equation of an Edge-GNN can be obtained
from the update equation of a Vertex-GNN simply by
switching the roles of the edges and vertices [13]. For the
Edge-GNN learning over a heterogeneous graph, the hidden
representation of edge (i, j) with the τijth type in the lth layer,
denoted as d(l)ij,τij , is updated as follows,

Aggregate : a(l)ij,τij = PL
m∈N (i)/j
n∈N (j)/i

(
q(d(l−1)

im,τim
, evi;W

(l)
τijτimτi

),

q(d(l−1)
nj,τnj , evj;W

(l)
τijτnjτj

)
)
,

Combine : d(l)ij,τij = CB
(
d(l−1)
ij,τij , a(l)ij,τij;U

(l)
τij

)
, (6)

where a(l)ij,τij is the aggregated output at edge (i, j), the first
and second processors are respectively used to process the
information from the ith vertex and its connected edges and
the jth vertex and its connected edges, N (i)/j is a set of
neighboring vertices of the ith vertex except the jth vertex,
evj denotes the feature of the jth vertex, andW

(l)
τijτnjτj and U

(l)
τij

are the weight matrices.
When an Edge-GNN is used for learning the link schedul-

ing policy over Ghet
ls in Fig. 2(b), the actions are defined on

the sig edges.When the pooling, processing, and combination
functions in Remark 1 are used, the Edge-GNN is referred to
as vanilla Edge-GNNhet

ls .
Since there are two types of edges in Ghet

ls , the GNN respec-
tively updates the hidden representations of the edges of each
type in each layer. Since the vertices have no features in
Ghet

ls , when updating the representation of each edge, only the
information of its neighboring edges is aggregated. For edge
(i, i) (say, edge (1, 1) in Fig. 3(c)), edge (i, j) and edge (j, i)
(j ̸= i) respectively connected by Ti andRi are its neighboring
edges. For edge (i, j) (say, edge (1, 2) in Fig. 3(d)), edge (i, i)
and edge (i, k) (k ̸= {i, j}) connected by Ti are respectively its
neighboring sig and int edges, and edge (j, j) and edge (k, j)
connected by Rj are respectively its neighboring sig and int
edges.

From (6), the hidden representations of edge (i, i) and edge
(i, j) in the lth layer of the vanilla Edge-GNNhet

ls , d(l)i,S and d
(l)
ij,I ,

are updated as follows,

Update hidden representations of sig edges :

Aggregate : a(l)i,S =

K∑
k=1,k ̸=i

Q(l)
T d(l−1)

ik,I +

K∑
k=1,k ̸=i

Q(l)
R d(l−1)

ki,I ,

Combine : d(l)i,S = σS

(
U(l)
S d(l−1)

i,S + a(l)i,S
)
, (7a)

Update hidden representations of int edges :

Aggregate : a(l)ij,I = Q(l)
STd

(l−1)
i,S +

K∑
k=1,k ̸={i,j}

Q(l)
ITd

(l−1)
ik,I

+ Q(l)
SRd

(l−1)
j,S +

K∑
k=1,k ̸={i,j}

Q(l)
IRd

(l−1)
kj,I ,

Combine : d(l)ij,I = σI

(
U(l)
I d(l−1)

ij,I + a(l)ij,I
)
, (7b)

where a(l)i,S and a(l)ij,I are respectively the aggregated outputs

at edge (i, i) and edge (i, j), Q(l)
T and Q(l)

R are respectively
the weight matrices for processing the information of the
neighboring int edges of the sig edge (i, i) connected by Ti
and Ri, Q

(l)
ST and Q(l)

IT are respectively the weight matrices
for processing the information of the neighboring sig and int
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edges of the int edge (i, j) connected by Ti, Q
(l)
SR and Q(l)

IR
are respectively used for processing the information from
neighboring sig and int edges of the int edge (i, j) connected
by Rj, U

(l)
S and U(l)

I are respectively the weight matrices for
combining the information of the sig and int edges, and σS (·)
and σI (·) are activation functions.
In the input layer, d (0)i,S = αii and d

(0)
ij,I = αij. The input of the

GNN is α, which consists of the features of all edges. The out-
put of the GNN is [d (L)1,S , · · · , d (L)K ,S ]

T ≜ [x̂1,S , · · · , x̂K ,S ]T ≜
x̂S , which consists of the learned actions on all the sig edges.
The policy learned by the vanilla Edge-GNNhet

ls is denoted as
x̂S = Ghet

ls,e(α), which is easily shown as joint-PE to α.
Remark 4: When using the Edge-GNN to learn the link

scheduling policy over Ghom
ls with the update equations in (6),

Ghom
ls needs to be converted into a heterogeneous graph,

denoted as Gundir
ls,e . For the directed edge (i, j), its neighboring

vertices Di and Dj are two types of vertices, its neigh-
boring edges (i, k) and (j, k) are one type of edges while
edges (k, i) and (k, j) are another type of edges. Then, the
hidden representation of edge (i, j) in the lth layer, d(l)ij,ls,
can be obtained from (6). Since the actions are defined on
vertices in Ghom

ls , a read-out layer is required to map the
representations of edges in the output layer to the action on
each vertex. For example, a FNN layer can be used that is
shared among Di, i = 1, · · · ,K , which can be designed
as x̂i,E = FNNundir

read

(∑K
k=1,k ̸=i d

(L)
ik,ls,

∑K
k=1,k ̸=i d

(L)
ki,ls

)
. The

input of the GNN is α, which is composed of the features
of all the vertices and edges. The output of the GNN is
[x̂1,E , · · · , x̂K ,E ] ≜ x̂E , consisting of the learned actions
on all vertices. When using the processing, pooling, and
combination functions in Remark 1, the GNN is referred to as
vanilla Edge-GNNundir

ls . It is not hard to show that the learned
policy is joint-PE to α.
Remark 5: In [19], the precoding policy was learned with

a vanilla Edge-GNN over Ghet
p , where the hidden represen-

tation of edge (i, j) in the lth layer, d(l)ij,E , can be obtained
from (6) with the three functions in Remark 1. This GNN
is referred to as vanilla Edge-GNNhet

p . The input and output

of the GNN are respectively H and [d(L)ij,E ]N×K , which are
composed of the features and the learned actions of all edges.
It was shown that the learned policy is 2D-PE to H.
The above-mentioned GNNs and the features and actions

of graphs for each GNN are summarized in Table 2 and
Table 3, respectively.

C. EXPRESSIVE POWER OF THE VANILLA GNNs
In what follows, we analyze the expressive power of the
vanilla Vertex-GNNs and vanilla Edge-GNNs, by observing
whether or not a GNN can output different actions when
inputting different channel matrices. Without loss of gener-
ality, we assume that L ≥ 3.

We first define several notations to be used in the sequel.
αR/i ≜

∑K
j=1,j̸=i αij and αC/i ≜

∑K
j=1,j̸=i αji, which are the

summations of the ith row of the channel matrix α without αii
and the ith column of α without αii, respectively.

HR,i ≜
∑K

j=1 hij and HC,i ≜
∑N

j=1 hji, which are the
summations of the ith row and column of the channel matrix
H, respectively.
ACR ≜ {αR/1, · · · , αR/K, αC/1, · · · , αC/K}, which is the set

composing of αR/i and αC/i, i = 1, · · · ,K .
Adiag ≜ {α11, · · · , αKK }, which is the set composing of all

the diagonal elements in α.
Aind ≜ {αij, i, j = 1, · · · ,K }, which is the set composing

of all the elements in α.
Hind ≜ {hij, i = 1, · · · ,N , j = 1, · · · ,K }, which is the set

composing of all elements in H.
f (·) with different super- and sub-scripts are non-linear

functions.

1) LINK SCHEDULING POLICY
For the vanilla Vertex-GNNhet

ls , by respectively substituting
a(l)i,T and a(l)i,R into d(l)i,T and d(l)i,R in (5), the hidden representa-
tions of Ti and Ri in the lth layer can be respectively updated
as,

d(l)i,T = σ
(
U(l)
T d(l−1)

i,T + Q(l)
RSd

(l−1)
i,R + Q(l)

RI

K∑
j=1,j̸=i

d(l−1)
j,R

+ P(l)
RSαii + P(l)

RIαR/i

)
, (8a)

d(l)i,R = σ
(
U(l)
R d(l−1)

i,R + Q(l)
TSd

(l−1)
i,T + Q(l)

TI

K∑
j=1,j̸=i

d(l−1)
j,T

+ P(l)
TSαii + P(l)

TIαC/i

)
. (8b)

Since d (0)i,T = d (0)i,R = 0, when l = 1, from (8) we have

d(1)i,T = σ
(
P(1)
RSαii + P(1)

RI αR/i

)
≜ f (1)T (αii, αR/i), (9a)

d(1)i,R = σ
(
P(1)
TSαii + P(1)

TI αC/i

)
≜ f (1)R (αii, αC/i). (9b)

When l = 2, by substituting d(1)i,T and d(1)i,R in (9) into (8),
it is not hard to derive

d(2)i,T ≜ f (2)i,T (α11, · · · , αKK , αC/1, · · · , αC/K, αR/i), (10a)

d(2)i,R ≜ f (2)i,R (α11, · · · , αKK , αR/1, · · · , αR/K, αC/i). (10b)

Similarly, the action taken over Ti can be derived as,

x̂i,T ≜ fi,T (α11, · · · , αKK , αC/1, · · · , αC/K, αR/1, · · · , αR/K)

= fi,T (Adiag,ACR). (11)

It is shown that the information of interference channel gains
αij, i ̸= j is lost after the aggregation in the update equation
of the vanilla Vertex-GNNhet

ls .
Analogously, for the vanilla Vertex-GNNundir

ls , the vanilla
Edge-GNNhet

ls , and the vanilla Edge-GNNundir
ls , the actions

taken over the ith vertex or the ith sig edge can respectively
be expressed as,

x̂i,V ≜ fi,V (Adiag,ACR),

x̂i,S ≜ fi,S (Aind ),

x̂i,E ≜ fi,E (Aind ). (12)
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TABLE 2. Vertex- and Edge-GNNs learned over the graphs in Fig.2.

TABLE 3. Features and actions of the graphs for each GNN.

Denote the outputs of the vanilla Vertex-GNNls
(i.e., Vertex-GNNhet

ls or Vertex-GNNundir
ls ) as x̂[1] and x̂[2]

with two different inputs α[1] = [α[1],ij]K×K and α[2] =

[α[2],ij]K×K , respectively. From (11) and (12), we can obtain
the following observation.
Observation 1: x̂[1] = x̂[2] if the elements in α[1]

and α[2] satisfy the following conditions: (1) α[1],11 =

α[2],11, · · · , α[1],KK = α[2],KK , (2) α[1],C/1 = α[2],C/1, · · · ,

α[1],C/K = α[2],C/K, and (3)α[1],R/1 = α[2],R/1, · · · , α[1],R/K=

α[2],R/K.
These conditions can be rewritten as a group of linear

equations

α[1],ii = α[2],ii,

K∑
j=1,j̸=i

α[1],ji =

K∑
j=1,j̸=i

α[2],ji,

K∑
j=1,j̸=i

α[1],ij =

K∑
j=1,j̸=i

α[2],ij, i = 1, · · · ,K , (13)

which consists of 3K equations and 2K 2 variables. When
K ≥ 3, the number of variables is larger than the number
of equations, and hence there are infinite solutions to these
equations, i.e., there are infinite numbers of α[1] and α[2]
satisfying the conditions.

The observation indicates that the vanilla Vertex-GNNls for
learning the link scheduling policy x∗

= Fls(α) is unable to
differentiate all channel matrices. When the pooling function
in a vanilla Vertex-GNNls is replaced by mean-pooling or
max-pooling, we can also find channel matrices that the GNN
cannot differentiate.

Recalling that α ∈ RK×K and x∗
∈ IK×1, the schedul-

ing policy x∗
= Fls(α) is a many-to-one mapping where

the channel matrix is compressed by the mapping. How-
ever, the mappings learned by a vanilla Vertex-GNNls may
not be the same as the scheduling policy, because Fls(α[1]) =

Fls(α[2]) does not necessarily hold when α[1] and α[2] satisfy
the three conditions, as to be shown via simulations later. As a
consequence, the vanilla Vertex-GNNls cannot well learn the
link scheduling policy due to the information loss.

By contrast, the vanilla Edge-GNNls (i.e., Edge-GNNhet
ls

or Edge-GNNundir
ls ) does not incur the information loss, since

it can differentiate the channel matrices resulting in different
optimization variables. This can be seen from (12), where the
outputs of the vanilla Edge-GNNls (i.e., x̂i,S and x̂i,E ) depend
on each individual channel gain (say αij) in α.

2) PRECODING POLICY
With similar derivations, we can show that H is compressed
into HR,i and HC,j, i = 1, · · · ,N , j = 1, · · · ,K after the
aggregation of the vanilla Vertex-GNNhet

p where the informa-
tion in individual channel coefficients loses. As a result, the
GNN is unable to differentiate the channel matrices H[1] =

[h[1],ij]N×K ̸= H[2] = [h[2],ij]N×K that satisfy the following
conditions: (1) H[1],C,1 = H[2],C,1, · · · ,H[1],C,K = H[2],C,K,
(2) H[1],R,1 = H[2],R,1, · · · ,H[1],R,N = H[2],R,N, which can
be expressed as the following group of equations,

N∑
n=1

h[1],nj =

N∑
n=1

h[2],nj, j = 1, · · · ,K ,

K∑
k=1

h[1],ik =

K∑
k=1

h[2],ik , i = 1, · · · ,N . (14)
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In other words, when inputting H[1] and H[2], the outputs
of the vanilla Vertex-GNNhet

p are identical. When the pool-
ing function is mean-pooling or max-pooling, we can also
find channel matrices that the vanilla Vertex-GNNhet

p cannot
differentiate.

However, the precoding matrix depends on every chan-
nel coefficient hij. For example, when the signal-to-noise
ratio (SNR) is very low, the optimal precoding matrix degen-
erates into K vectors each for maximal-ratio transmission

(i.e., v∗ij/
√
v∗j

Hv∗j = hH
ij /

√
hH
j hj) [19]. As a result, the vanilla

Vertex-GNNhet
p is unable to learn the optimal precoding

policy.
By contrast, the vanilla Edge-GNNhet

p can differentiate all
channel matrices. The update equation of the vanilla Edge-
GNNhet

p designed in [19] is

d(l)ij,E

= σ (U(l)
E d(l−1)

ij,E +

K∑
m=1,m̸=j

Q(l)
A d(l−1)

im,E +

N∑
n=1,n̸=i

Q(l)
U d(l−1)

nj,E ),

(15)

where U(l)
E is the weight matrix for the combination,Q(l)

A and
Q(l)
U are respectively the weight matrices for processing the

information of the neighboring edges connected by Ai and
Uj. In the input layer, d (0)ij,E = hij. The inputs of the GNN are

the features of all edges, i.e., [d (0)ij,E ]N×K = [hij]N×K = H.
The outputs of the GNN are the learned actions taken on all
the edges, i.e., [d (L)ij,E ]N×K ≜ [v̂ij,E ]N×K ≜ V̂E .

It can be derived from (15) that v̂ij,E ≜ fij,E (Hind ), since
every channel coefficient (say hij) is combined individually
when updating the edge representation with l = 1.
Remark 6: When considering other typical constraints,

we can use the same way to analyze the expressive power of
GNNs, but the input samples that GNNs cannot distinguish
may differ.

IV. IMPACT OF PROCESSING AND COMBINATION
FUNCTIONS ON EXPRESSIVE POWER
In this section, we analyze the impact of processing and
combination functions on the expressive power of the Vertex-
GNNs and Edge-GNNs for learning the policies.

We first analyze the impact of the linearity of processing
and combination function, and then analyze the impact of the
output dimensions of the two functions on Vertex-GNNs and
Edge-GNNs.

Without the loss of generality, we assume that L ≥ 3.
Denote αTr ≜

∑K
j=1 αjj. Denote g(·) with different super-

and sub-scripts as linear functions.

A. IMPACT OF LINEARITY
As analyzed in section III-C, the vanilla Vertex-GNNs
(i.e., vanilla Vertex-GNNhet

ls , Vertex-GNNundir
ls , and Vertex-

GNNhet
p ) cannot while the vanilla Edge-GNNs (i.e., vanilla

Edge-GNNhet
ls , Edge-GNNundir

ls , and Edge-GNNhet
p ) can

differentiate the channel matrices resulting in different
optimization variables, where both classes of vanilla GNNs
are with linear processors and non-linear combiners. In the
sequel, we show that the expressive power of the Vertex-
GNNs can be enhanced by using non-linear processors, and
the strong expressive power of the Edges-GNNs comes from
the non-linear combiners. We take the GNNs for learning the
link scheduling policy as an example. The impact is the same
on the GNNs for learning the power control and precoding
policies.

1) VERTEX-GNNs
We start by analyzing the expressive power of a degener-
ated vanilla Vertex-GNNhet

ls where the combination function
becomes linear.
Linear Processor and Linear Combinator: For Vertex-

GNNhet
ls , d (0)i,T = d (0)i,R = 0. Then, after omitting the activation

functions in (8), the hidden representations of Ti and Ri
become,

d(1)i,T = P(l)
RSαii + P(1)

RI α R/i ≜ g(1)T (αii, αR/i), (16a)

d(1)i,R = P(l)
TSαii + P(1)

TI αC/i ≜ g(1)R (αii, αC/i). (16b)

By substituting d(1)i,T and d(1)i,R into (8), and again omitting
the activation functions, we have,

d(2)i,T = U(2)
T g(1)T (αii, αR/i) + Q(2)

RSg
(1)
R (αii, αC/i)

+ Q(2)
RI

K∑
j=1,j̸=i

g(1)R (αjj, αC/j) + P(2)
RSαii + P(2)

RI αR/i

(a)
= U(2)

T g(1)T (αii, αR/i) + Q(2)
RSg

(1)
R (αii, αC/i)

+ Q(2)
RI g

(1)
R (αTr − αii, ∥α∥ − αC/i − αTr)

+ P(2)
RSαii + P(2)

RI αR/i

≜ g(2)T (αii, αTr, αR/i, αC/i, ∥α∥), (17a)

d(2)i,R = U(2)
R g(1)R (αii, αC/i) + Q(2)

TSg
(1)
T (αii, αR/i)

+ Q(2)
IT

K∑
j=1,j̸=i

g(1)T (αjj, αR/j) + P(2)
TSαii + P(2)

TI αC/i

(a)
= U(2)

R g(1)R (αii, αC/i) + Q(2)
TSg

(1)
T (αii, αR/i)

+ Q(2)
TI g

(1)
T (αTr − αii, ∥α∥ − αR/i − αTr)

+ P(2)
TSαii + P(2)

TI αC/i

≜ g(2)R (αii, αTr, αR/i, αC/i, ∥α∥), (17b)

where (a) in both (17a) and (17b) is obtained by exchanging
the operation order of the linear function and the summa-
tion function, i.e.,

∑
g(1)T (·) = g(1)T (

∑
(·)) and

∑
g(1)R (·) =

g(1)R (
∑

(·)).
With similar derivations, we can obtain that the action of

vertex Ti is a linear function of the input features, i.e.,

x̂i,T ≜ gT (αii, αTr, αR/i, αC/i, ∥α∥), (18)

which does not depend on αij (i ̸= j). This indicates that the
degenerated vanilla Vertex-GNNhet

ls cannot distinguish the
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individual interference channel gains in α. As a result, the
GNN may yield the same action for different input features
α[1] and α[2].
Remark 7: Analogously, when the combination functions

are linear, the action of vertex Di of the degenerated vanilla
Vertex-GNNundir

ls (i.e., x̂i,V ), the action of vertex Di of the
degenerated vanilla Edge-GNNundir

ls (i.e., x̂i,E ), and the action
of sig edge (i, i) of the degenerated vanilla Edge-GNNhet

ls
(i.e., x̂i,S ) can also be expressed in the form as (18).
Linear Processor and Non-Linear Combinator: From (4)

and (5), we can see that four linear functions with different
weight matrices are required in the vanilla Vertex-GNNhet

ls .
In particular, the processing functions are respectively used
for (a) tx vertex aggregating information from rx vertex and
sig edge, (b) tx vertex aggregating information from rx vertex
and inf edge, (c) rx vertex aggregating information from tx
vertex and sig edge, and (d) rx vertex aggregating information
from tx vertex and inf edge, which are respectively

q(d(l−1)
i,R , αii;W

(l)
RS ) = Q(l)

RSd
(l−1)
i,R + P(l)

RSαii,

q(d(l−1)
j,R , αij;W

(l)
RI ) = Q(l)

RId
(l−1)
j,R + P(l)

RIαij,

q(d(l−1)
i,T , αii;W

(l)
TS ) = Q(l)

TSd
(l−1)
i,T + P(l)

TSαii,

q(d(l−1)
j,T , αji;W

(l)
TI ) = Q(l)

TId
(l−1)
j,T + P(l)

TIαji. (19)

Then, the aggregated outputs of Ti and Ri in (5) can be
respectively rewritten as,

a(l)i,T = q(d(l−1)
i,R , αii;W

(l)
RS ) +

K∑
j=1,j̸=i

q(d(l−1)
j,R , αij;W

(l)
RI )

= Q(l)
RSd

(l−1)
i,R + Q(l)

RI

K∑
j=1,j̸=i

d(l−1)
j,R + P(l)

RSαii + P(l)
RIαR/i,

(20a)

a(l)i,R = q(d(l−1)
i,T , αii;W

(l)
TS ) +

K∑
j=1,j̸=i

q(d(l−1)
j,T , αji;W

(l)
TI )

= Q(l)
TSd

(l−1)
i,T + Q(l)

TI

K∑
j=1,j̸=i

d(l−1)
j,T + P(l)

TSαii + P(l)
TIαC/i.

(20b)

Since d (0)k,T = d (0)k,R = 0, a(1)i,T and d(1)i,T depend on αii and
αR/i, and a(1)i,R and d(1)i,R depend on αii and αC/i. With similar
derivations, it can be shown that the outputs of the GNN
depend on Adiag and ACR, which are respectively composed
of αii, αR/i and αC/i, i = 1, · · · ,K . If σ (·) in the combination
function is replaced by a FNN, then it is not hard to show
that x̂i,T has the same form as in (11). This means that
the information of interference channel gains αij, i ̸= j is
lost after the linear processing. As a consequence, the GNN
cannot distinguish α[1] and α[2].
Non-Linear Processor and Linear/Non-Linear Combiner

When the processors in the vanilla Vertex-GNNhet
ls are

replaced by non-linear functions (say FNNs), the aggregated

outputs of Ti and Ri after passing through the sum-pooling
become,

a(l)i,T = FNNRS

(
d(l−1)
i,R , αii

)
+

K∑
j=1,j̸=i

FNNRI

(
d(l−1)
j,R , αij

)
,

(21a)

a(l)i,R = FNNTS

(
d(l−1)
i,T , αii

)
+

K∑
j=1,j̸=i

FNNTI

(
d(l−1)
j,T , αji

)
.

(21b)

Since
∑

FNN(·) ̸= FNN(
∑

(·)) and d(0)k,T = d(0)k,R = 0, a(1)i,T
depends onAi∗ ≜ {αi1, · · · , αiK }, and a(1)i,R depends onA∗i ≜
{α1i, · · · , αKi}. After the combiner (no matter linear or non-
linear), d(1)i,T and d(1)i,R respectively depend on Ai∗ and A∗i. It
can be shown with similar derivations that the outputs of the
GNN depend on Aind, which is the set of all the elements
in α. In other words, the outputs of the GNN depend on αij,
and hence the GNN can distinguish α[1] and α[2].

Similarly, we can show that the expressive power of Vertex-
GNNundir

ls is able to be improved by using FNN for process-
ing, but cannot be improved by using FNN for combining.

2) EDGE-GNNs
Since the outputs of all GNNs for link scheduling depend
on αii, i = 1, · · · ,K when the processing and combina-
tion functions are linear as in Remark 7, we only analyze
whether they depend on individual interference channel gains
in the following. According to Remark 7 and the analysis
in Section III-C, it is the non-linear combination functions
that help the vanilla Edge-GNNls distinguish individual inter-
ference channels. Since there are two types of combination
functions in each layer of the vanilla Edge-GNNhet

ls as shown
in (7), in the following we analyze which combiner helps the
vanilla Edge-GNNhet

ls distinguish αij, i ̸= j.
Since d (0)i,S = αii and d

(0)
ij,I = αij, the combination functions

of the vanilla Edge-GNNhet
ls for updating the hidden repre-

sentations of sig edge (i, i) and int edge (i, j) in the first layer
can be obtained from (7a) and (7b) as,

d(1)i,S = σS

(
U(1)
S d (0)i,S + a(1)i,S

)
≜ CB(1)

S

(
d (0)i,S , a(1)i,S

)
(a)
= CB(1)

S

(
αii,

K∑
k=1,k ̸=i

Q(1)
T αik +

K∑
k=1,k ̸=i

Q(1)
R αki

)
(b)
= CB(1)

S

(
αii,Q

(1)
T αR/i + Q(1)

R αC/i

)
, (22a)

d(1)ij,I = σI

(
U(1)
I d (0)ij,I + a(1)ij,I

)
≜ CB(1)

I

(
d (0)ij,I , a

(1)
ij,I

)
(a)
= CB(1)

I

(
αij,Q

(1)
STαii +

K∑
k=1,k ̸={i,j}

Q(1)
IT αik

+ Q(1)
SRαjj +

K∑
k=1,k ̸={i,j}

Q(1)
IR αkj

)
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(b)
= CB(1)

I

(
αij,Q

(1)
STαii + Q(1)

IT αR/i + Q(1)
SRαjj

+ Q(1)
IR αC/j − (Q(1)

IT + Q(1)
IR )αij

)
≜ Jij(αij), (22b)

where (a) in (22a) or (22b) comes from substituting d (0)i,S and
d (0)ij,I into a(1)i,S and a(1)ij,I , (b) in (22a) or (22b) is obtained by
exchanging the order of matrix multiplication and summation
operations. Jij(·) is expressed as a function of only αij, since
we are concerned whether or not the output of GNN depends
on individual interference channel gains.

If σI (·) is omitted, then CB(1)
I (·) and Jij(·) in (22b) become

linear functions. Then, when l = 2, the first term in (7a)
becomes

∑K
k=1,k ̸=iQ

(2)
T d(1)ik,I = Q(2)

T
∑K

k=1,k ̸=i Jik (αik ) that
depends on αR/i, and the second term in (7a) becomes∑K

k=1,k ̸=iQ
(2)
R d(1)ki,I that depends on αC/i. Hence, d

(2)
i,S depends

onαR/i andαC/i.With similar analysis, it can be shown that the
action on edge (i, i) (i.e., x̂i,S ) still depends on ACR, i.e., the
corresponding Edge-GNN cannot distinguish αij, i ̸= j.
With σI (·), CB(1)

I (·) and Jij(·) in (22b) are non-linear. Since∑
Jij(·) ̸= Jij(

∑
(·)),

∑K
k=1,k ̸=iQ

(2)
T d(1)ik,I depends on αik , k ̸=

i rather than αR/i, and
∑K

k=1,k ̸=iQ
(2)
R d(1)ki,I depends on αki

rather thanαC/i. Hence, d
(2)
i,S depends onAi∗ andA∗i nomatter

if σS (·) is omitted. Similarly, we can show that the action of
edge (i, i) depends on Aind, i.e., the corresponding GNN can
distinguish αij, i ̸= j.

With similar analysis, we can show that it is σI (·) (instead
of σS (·)) in the Edge-GNNhet

ls that enables the GNN to distin-
guish αij, i ̸= j and enhances its expressive power.

In a nutshell, non-linear processors help improve the
expressive power of the vanilla Vertex-GNNs (i.e., Vertex-
GNNhet

ls , Vertex-GNNundir
ls , and Vertex-GNNhet

p ). Non-linear
combiners for updating the int edges (say σI (·)) help the
vanilla Edge-GNNhet

ls to distinguish αij, i ̸= j. Since there
is only one type of combination functions in the vanilla
Edge-GNNundir

ls and Edge-GNNhet
p , the non-linearity of all

combination functions helps improve the expressive power of
the two Edge-GNNs. The expressive power of these GNNs is
summarized in Table 4.

B. IMPACT OF DIMENSION
When a Vertex-GNN learns the link scheduling or power
control policy over Ghet

ls that consists of 2K vertices, there
are 2K update equations, where two of them for updating
d(l)i,T ∈ RM (l)

and d(l)i,R ∈ RM (l)
are shown in (8) and

M (l) is an integer that is a hyper-parameter. The represen-
tation of all vertices of the Vertex-GNNhet

ls in the lth layer
is [d(l)1,T , · · · ,d(l)K ,T ,d(l)1,R, · · · ,d(l)K ,R] ∈ RM (l)

×2K , whose
dimension is higher than the dimension of action vector
x̂T ∈ RK . Analogously, the representation of all vertices of
the Vertex-GNNundir

ls in the lth layer is [d(l)1,V , · · · ,d(l)K ,V ] ∈

RM (l)
×K , whose dimension is no less than the dimension

of action vector x̂V ∈ RK . When Edge-GNNs are used to
learn the two policies, the dimension of the representation

of all edges is higher than K . Since channel information
is not compressed with the high representation dimension,
the dimensions of the GNNs for these two policies do not
affect their expressive power. In the sequel, we only analyze
the impact of the dimensions for the GNNs learning the
precoding policy.

When learning over Ghet
p consisting of N + K vertices

and NK edges, the hidden representations in the lth layer
of the Vertex-GNN are [d(l)1,A, · · · ,d(l)N ,A] ∈ RM (l)

A ×N and

[d(l)1,U , · · · ,d(l)K ,U ] ∈ RM (l)
U ×N , and that of the Edge-GNN is

[d(l)11,E , · · · ,d(l)NK ,E ] ∈ RM (l)
E ×NK , where M (l)

A , M (l)
U , and M (l)

E
are hyper-parameters respectively representing the dimen-
sions of the hidden representations for each antenna vertex,
each user vertex, and each edge. Since the precoding policy
maps H ∈ CN×K into V∗

∈ CN×K , the channel infor-
mation will be lost if the vertex representation is with low
dimension.

1) VERTEX-GNNhet
p

As shown in Fig. 4(a), the combination outputs of all
antenna and user vertices in the lth layer are d(l)A ≜

[d(l)1,A, · · · ,d(l)N ,A] ∈ RM (l)
A ×N and d(l)U ≜ [d(l)1,U , · · · ,d(l)K ,U ] ∈

RM (l)
U ×K , the aggregation outputs of Ai and Uj in the lth layer

are a(l)i,A ∈ RM (l)
A,q , and a(l)j,U ∈ RM (l)

U ,q , respectively, where

M (l)
A,q and M

(l)
U ,q are hyper-parameters.

The GNN can be expressed as composite functions
ϕOV ;2

(ϕ(L)
RV ;2

(H)), where ϕ(·) with sub-script 2 denotes

the functions with trainable parameters, ϕ
(L)
RV ;2

(H) maps H
(i.e., the input feature of the GNN) to [d(L)A ,d(L)U ] (i.e., the
vertex representations in the Lth layer), and ϕOV ;2

(·) maps

[d(L)A ,d(L)U ] to V̂V (i.e., the actions on edges). In order for the
GNNnot compressing channel information,ϕ(L)

RV ;2
(H) should

not compress the channel dimension. Otherwise, the GNN
may not differentiate all channel matrices.

Since matrix X = [xij]m×n can be vectorized as a (mn)-
dimensional vector x ∈ Rmn, a block matrix [X1,X2] with
X1 = [x1,ij]m1×n1 andX2 = [x2,ij]m2×n2 seems able to be vec-
torized to a (m1 +m2)(n1 + n2)-dimensional vector, because
the block matrix before vectorization can be expressed as(

X1 [0]m1×n2
[0]m2×n1 X2

)
. However, since zero matrices do not

occupy space, the dimension of the vectorized block matrix
is (m1n1 +m2n2). Hence, the output dimension of ϕ

(L)
RV ;2

(H)

is (NM (L)
A + KM (L)

U ).H ∈ CN×K can be vectorized as a 2NK -
dimensional real vector. In order for ϕ

(L)
RV ;2

(H) not compress-

ing channel information, the output dimension of ϕ
(L)
RV ;2

(H)

should be no less than the dimension of H, i.e., NM (L)
A +

KM (L)
U ≥ 2NK .

ϕ
(L)
RV ;2

(H) can further be expressed as the following com-

posite functionsϕ
(L)
RV ;2

(H) ≜ ϕ
(L)
2V ;2

(ϕ(L−1)
RV ;2

(H), ϕ(L)
AV ;2

(H)) ≜

ϕ
(L)
2V ;2

(ϕ(L)
1V ;2

(H)), where ϕ
(L)
2V ;2

(·, ·) is the combination
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TABLE 4. Expressive power of GNNs.

FIGURE 4. Structure of (a) Vertex-GNNhet
p and (b) Edge-GNNhet

p .

function to output the vertex representations in the Lth layer,
ϕ
(L)
AV ;2

(H) denote the functions that map H to the aggregated

output in the Lth layer (i.e., [a(L)1,A,· · · ,a(L)N ,A, a
(L)
1,U ,· · · ,a(L)K ,U ]),

and ϕ
(L)
1V ;2

(H) denotes the functions that map H to

[d(L−1)
A ,d(L−1)

U ] and [a(L)1,A, · · · , a(L)N ,A, a
(L)
1,U , · · · , a(L)K ,U ].

In order for ϕ
(L)
RV ;2

(H) not compressing channel information,

ϕ
(L−1)
1V ;2

(H) (and hence ϕ
(L−1)
RV ;2

(H) and ϕ
(L)
AV ;2

(H)) should not
compress channel information. Hence, the output dimensions
of ϕ

(L−1)
RV ;2

(H) and ϕ
(L)
AV ;2

(H) should not be less than the

dimension of H, i.e., NM (L−1)
A + KM (L−1)

U ≥ 2NK and
NM (L)

A,q+KM (L)
U ,q ≥ 2NK . With similar analysis, we can show

that the following conditions should be satisfied for the GNN
not losing channel information,

NM (l)
A + KM (l)

U ≥ 2NK ,

NM (l)
A,q + KM (l)

U ,q ≥ 2NK , l = 1, 2, · · · ,L. (23)

When one sets M (l)
A = M (l)

U ≜ M (l)
d and M (l)

A,q = M (l)
U ,q ≜

M (l)
q , then the necessary conditions in (23) can be simplified

as M (l)
d ≥ 2NK/(N + K ), M (l)

q ≥ 2NK/(N + K ), l =

1, 2, · · · ,L. Further considering the analysis in Section IV-A,
the Vertex-GNNs with linear processors cannot differentiate
H[1] and H[2]. Hence, to design a Vertex-GNNhet

p that does
not lose channel information, the processing functions should
be non-linear and the output dimensions of the processing and
combination functions in (23) should be satisfied.

2) EDGE-GNNhet
p

The structure of the GNN is shown in Fig. 4(b), where d(l)E ≜

[d(l)11,E , · · · ,d(l)NK ,E ] ∈ RM (l)
E ×NK is the combination output of

all edges, and a(l)ij,E ∈ RM (l)
E,q is the aggregation output of edge

(i, j) in the lth layer, andM (l)
E,q is a hyper-parameter.
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The GNN can be expressed as composite functions
ϕ
(L)
2E,2(ϕ

(L−1)
RE;2

(H), ϕ(L)
AE;2

(H)) ≜ ϕ
(L)
2E;2

(ϕ(L)
1E;2

(H)), where

ϕ
(L)
2E;2

(·, ·) is the combination function to output the edge

representations in the Lth layer (i.e., V̂E ), ϕ
(L−1)
RE;2

(H) denote
the functions that map H to the edge representations in the
(L − 1)th layer (i.e., d(L−1)

E ), ϕ
(L)
AE;2

(H) denote the func-
tions that map H to the aggregated output in the Lth layer
(i.e., [a(L)11,A, · · · , a(L)NK ,A]), and ϕ

(L)
1E;2

(H) denote the func-

tions that map H to d(L−1)
E and [a(L)11,A, · · · , a(L)NK ,A]. If the

GNN does not lose channel information, then ϕ
(L)
1E;2

(H) (and

hence ϕ
(L−1)
RE;2

(H) and ϕ
(L)
AE;2

(H)) should not compress chan-

nel information. Hence, the output dimensions of ϕ
(L−1)
RE;2

(H)

and ϕ
(L)
AE;2

(H) should not be less than the dimension of H,

i.e., M (L−1)
E ≥ 2 and M (L)

E,q ≥ 2. Analogously, we can show
that the following conditions should be satisfied for the GNN
not losing channel information,

M (l)
E ≥ 2, l = 1, · · · ,L − 1;

M (l)
E,q ≥ 2, l = 1, · · · ,L. (24)

The dimensions should be at least 2, because H and V are
complex matrices. Since M (L)

E is the dimension of the action
vector defined on each edge, we have M (L)

E = 2. Further
recalling the analysis in Section IV-A, to design an Edge-
GNNhet

p that does not compress channel information, the
combination functions should be non-linear and the condi-
tions in (24) should be satisfied.

V. SIMULATION RESULTS
In this section, we validate the previous analyses, and
compare the system performance, space, time, and sam-
ple complexity of Vertex-GNNs with Edge-GNNs via
simulations.

We consider three optimization problems, i.e, the link
scheduling problem in (1), the power control problem in (2),
and the precoding problem in (3). For the link scheduling
and power control problems, all the D2D pairs are randomly
located in a 500 m × 500 m squared area. The wireless
network parameters are provided in Table 5. The compos-
ite channel consists of the path loss generated with the
model in [5], log-normal shadowing with standard deviation
of 8 dB, and Rayleigh fading. For the precoding problem,
we set Pmax = 1 W , and change σ 2

0 in (3) to adjust SNR.
These simulation setups are considered unless otherwise
specified.

While the GNNs can be trained in a supervised or unsuper-
vised manner, we train the GNNs in an unsupervised manner
to avoid generating labels that is time-consuming. Then, each
sample only contains a channel matrix α = [αij]K×K that
is generated according to the channel model with randomly
located D2D pairs or H = [hnk ]N×K where each element
follows Rayleigh distribution.We generate 5×105 samples as
the training set (the number of samples used for training may
be much smaller), and 103 samples as the test set. Adam is

TABLE 5. Parameters in simulation.

used as the optimizer. The loss function is designed as Loss =

−
1
Ns

∑Ns
n=1

(∑K
k=1 r

n
k +w1

∑K
k=1 log(y

n
k )+w2

∑K
k=1 log(1−

ynk )
)
, where Ns is the number of training samples, rnk is the

data rate of the kth user and ynk is the activate probability of
the kth D2D link in the nth sample, w1 and w2 are weights
that need to be tuned. The second and the third terms in the
loss function are respectively the penalty for preventing all
the links from being closed and being activated. For the link
scheduling problem, we set w1 = 10−1 and w2 = 10−4. For
the power control and precoding problems, w1 = w2 = 0.
We use sum rate ratio as the performance metric. It is

the ratio of the sum rate achieved by the learned policy to
the sum rate achieved by a numerical algorithm (which is
FPLinQ [2] for link scheduling, and WMMSE for power
control and precoding). We train each GNN five times. The
results are obtained by averaging the sum rate ratios achieved
by the learned policies with the five trained GNNs over
all test samples. For the link scheduling and power control
problems, we only provide the performance of Vertex- and
Edge-GNNhet

ls in the sequel since Vertex- and Edge-GNNundir
ls

perform very close to them.
All the simulation results are obtained on a computer with

a 28-core Intel i9-10904X CPU, a Nvidia RTX 3080Ti GPU,
and 64 GB memory.

All the GNNs in the following use the mean-pooling
function.

A. IMPACT OF THE NON-DISTINGUISHABLE CHANNEL
MATRICES
We first validate that the vanilla Vertex-GNNhet

ls cannot well
learn the link scheduling and power control policies, and
the vanilla Vertex-GNNhet

p cannot well learn the precoding
policy, due to their weak expressive power.

In Fig. 5(a) and Fig. 5(b), we show the probability of
Fls(α[1]) = Fls(α[2]) and Fpc(α[1]) = Fpc(α[2]) simu-
lated with different values of K and transmit power, where
pk = P for the link scheduling problem and Pmax = P
for the power control problem. α[1] and α[2] are generated
by solving the linear equations in (13). Since the computa-
tional complexity of solving (13) is high when K is large,
we take K ∈ {3, 4, 5, 6} as examples. For the link scheduling
problem, the optimal solutions are obtained by exhaustive
searching. For the power control problem, the sub-optimal
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solutions are obtained by the WMMSE algorithm. Since the
optimized powers are continuous, we regard the frequency
of |Fpc(α[1]) − Fpc(α[2])|max < 10−3 as the probability.
We can see that the probability decreases with K and P.
This can be explained as follows. Since the solution spaces
of both problems become large with a large value of K , the
probability that the optimal solutions for α[1] and α[2] are
identical decreases with K . When P is low such that the noise
power dominates, the optimization for the K D2D pairs in
problem (1) and (2) is decoupled. In this case, the optimal
scheduling policy is to activate all the links, and the optimal
power control policy is to transmit with the maximal power to
all the receivers. Hence, given any two channel gain matrices,
the two optimal solutions are always identical.

FIGURE 5. Probability of (a) Fls(α[1]) = Fls(α[2]),
(b) Fpc(α[1]) = Fpc(α[2]), and (c) Fp(H[1]) = Fp(H[2]), where α[1]
and α[2] satisfy the conditions in Observation 1, and H[1] and
H[2] satisfy the conditions in Section III-C2.

In Fig. 5(c), we show the probability of Fp(H[1]) =

Fp(H[2]) simulated with N = 2 or 4 and K = 2, where H[1]
andH[2] are generated by solving the linear equations in (14).
The sub-optimal solutions are also obtained by the WMMSE
algorithm. Since the precoding variables are continuous,
we regard the frequency of |Fp(H[1]) − Fp(H[2])|max < ϵ

as the probability, where ϵ is a parameter. We can see that
the probability is low under different values of ϵ and SNR.
When ϵ is smaller than 0.05, or the values of N and K
are larger, the probability is almost zero, i.e., the optimized
precoding matrices for H[1] and H[2] are different with very
high probability.

In Fig. 6(a) and Fig. 6(b), we show the performance of
the link scheduling and power control policies learned by
the vanilla GNNs versus P. The GNNs are trained with
1000 samples, and the fine-tuned hyper-parameters are shown
in Table 6. We can see that the performance of the vanilla

Vertex-GNNhet
ls degrades rapidly with P, while the perfor-

mance of the vanilla Edge-GNNhet
ls changes little with P.

This is because when the value of P is higher, the prob-
ability of Fls(α[1]) = Fls(α[2]) or Fpc(α[1]) = Fpc(α[2])
is lower according to Fig. 5, but the vanilla Vertex-GNNhet

ls
yields the same output with the two channel matrices α[1]
and α[2]. Recall that the vanilla Vertex-GNNhet

ls is with the
mean-pooling function. If max-pooling is used as in [6], the
Vertex-GNNwill performmuch better when learning the link
scheduling or power control policy, which however is still
inferior to the vanilla Edge-GNNhet

ls . It is noteworthy that
the sum rate ratio achieved by the link scheduling policy
learned by the vanilla Edge-GNN exceeds 100% as shown
in Fig. 6(a). This is because the sum rate ratio is the ratio
of the sum rate achieved by the learned policy to the sum
rate achieved by the FPLinQ algorithm that can only learn
suboptimal solutions.

FIGURE 6. System performance of the vanilla GNNs versus P or
SNR. (a) and (b): K = 50. (c): N = 4, K = 2.

In Fig. 6(c), we show the performance of the precod-
ing policies learned by the vanilla GNNs versus SNR. The
GNNs are trained with 105 samples, and the fine-tuned hyper-
parameters are shown in Table 6. We can see that the vanilla
Vertex-GNNhet

p performs poor under different SNRs. This
is because the probability of Fp(H[1]) = Fp(H[2]) is low
under different SNRs as shown in Fig. 5(c), but the vanilla
Vertex-GNNhet

p yields the same output for H[1] and H[2]. As
expected, the vanilla Edge-GNNhet

p performs very well.

B. IMPACT OF THE LINEARITY OF PROCESSING AND
COMBINATION FUNCTIONS
To validate the analysis in Section IV-A, we compare the
performance of Vertex-GNNs and Edge-GNNs with vanilla
Vertex-GNNs and vanilla Edge-GNNs.
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TABLE 6. Fine-tuned hyper-parameters for the vanilla GNNs.

TABLE 7. Fine-tuned hyper-parameters for the Vertex-GNNs with
FNN as processor or combiner.

The hyper-parameters for the vanilla GNNs are the same
as Table 6. The fine-tuned hyper-parameters of the Vertex-
GNNs with FNN as processor or combiner are shown in
Table 7. TheGNNs for learning the link scheduling policy and
the power control policy are trained with 1000 samples. The
GNNs for learning the precoding policy with N = 4, K = 2,
and SNR = 10 dB are trained with 105 samples. In Table 8,
we provide the simulation results, where the performance of
the vanilla GNNs is marked with bold font.

It is shown that for the Vertex-GNNs learning the same
policy, when the processing function is FNN (no matter if
the combiner is linear or non-linear, where the results for
linear combiner are not shown because combiner is usually
non-linear), the performance is much better than the vanilla
Vertex-GNN. When only the combination function is FNN,
the Vertex-GNN performs closely to the vanilla Vertex-GNN,

because both of them cannot differentiate α[1] and α[2] orH[1]
and H[2].

For the Edge-GNNs learning the link scheduling and power
control policies, when CBS (·) is non-linear and CBI (·) is
linear, Edge-GNNhet

ls is inferior to the vanilla Edge-GNNhet
ls .

When CBI (·) is non-linear and CBS (·) is linear, Edge-
GNNhet

ls performs closely to the vanilla Edge-GNNhet
ls , since

both of them can differentiate α[1] and α[2]. When learning
the precoding policy, the Edge-GNN with linear combination
function is inferior to the vanilla Edge-GNN, since it cannot
differentiate H[1] and H[2].

Next, we show the impact of different activation functions.
For the Vertex-GNNs, when the processing function is a
non-linear function such as FNN, they can perform well even
if a linear combination function is applied. Hence, non-linear
activation functions in the combiner have little impact on
the performance of the Vertex-GNNs. For the vanilla GNNs,
only the combination functions contain non-linear activation
functions. Thereby, we only compare the performance of the
vanilla GNNs with several non-linear activation functions.
The simulation results are provided in Table 9. It shows that
the vanilla GNNs with different activation functions achieve
similar performance.

C. IMPACT OF THE OUTPUT DIMENSIONS OF
PROCESSING AND COMBINATION FUNCTIONS
To validate the analysis in Section IV-B. we provide the
performance of the vanilla Edge-GNNhet

ls , the vanilla Edge-
GNNhet

p , as well as Vertex-GNNhet
ls and Vertex-GNNhet

p with
FNN as processor (denoted as Vertex-GNNhet

ls +FNN and
Vertex-GNNhet

p +FNN, respectively).3

The hyper-parameters of the GNNs for learning the
link scheduling and power control policies are provided in
Tables 6 and 7. The hyper-parameters of the GNNs for learn-
ing the precoding policy with N = 4 and K = 2 are also

3The features and actions of Vertex-GNNhet
ls +FNN and Vertex-

GNNhet
p +FNN are respectively the same as those of Vertex-GNNhet

ls and
Vertex-GNNhet

p in Table. 3.
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TABLE 8. Performance of GNNs with different processing and combination functions.

TABLE 9. Performance of vanilla GNNs under different non-linear activation functions.

shown in Tables 6 and 7. When using the GNNs to learn the
precoding policy with N = 8 and K = 4, the number of
training samples needs to increase to achieve acceptable per-
formance, which is set to be 5× 105. Their hyper-parameters
are as follows. For the Vertex-GNNhet

p +FNN, L = 5,
the processing function is a FNN with a hidden layer with
256 neurons, the read-out layer is a FNN with five hidden
layers each with 512 neurons. For the vanilla Edge-GNNhet

p ,
L = 9.

In Fig. 7, we show the performance of the GNNs
with different values of ‘‘Dimension’’ for learning the
link scheduling and power control policies, where the
‘‘Dimension’’ indicates the value of M (l), ∀l. It is
shown that the performance of the GNNs grows slowly
with ‘‘Dimension’’. This is because the dimensions of
the representation vectors do not affect the expressive
power of the GNNs for learning these two policies, but
the representation vectors with higher dimension lead
to a wider GNN and hence provide larger hypothesis
space.

In Fig. 8, we show the performance of the GNNs with
different values of ‘‘Dimension’’ for learning the precod-
ing policy where the ‘‘Dimension’’ indicates the value of
M (l)
A = M (l)

U = M (l)
A,q = M (l)

U ,q = M (l)
E = M (l)

E,q, ∀l.
We show the impact of the output dimensions of the

FIGURE 7. Performance of the GNNs with different dimensions of
hidden representations, K = 50.

processors and combiners in this simple way, because there
are too many combinations of these dimensions that can sat-
isfy (23) or (24). Vertex-GNNhet

p +FNN (w/o H) is a Vertex-
GNNhet

p +FNN, where only the representations of vertices are

input to the read-out layer (i.e., v̂ij,V = FNNhet
read(d

(L)
i,A ,d(L)j,U )

as in Remark 3. Vertex-GNNhet
p +FNN (with H) is another

Vertex-GNNhet
p +FNN, where the channel matrix H

are also input to the read-out layer (i.e., v̂ij,V =

FNNhet
read(d

(L)
i,A ,d(L)j,U , hij)). It is shown that all the GNNs per-

form better with larger ‘‘Dimension’’. For Edge-GNN, (24)
is satisfied when ‘‘Dimension’’≥ 2. For Vertex-GNN, (23) is

206 VOLUME 2, 2024



Peng et al.: Learning Resource Allocation Policy: Vertex-GNN or Edge-GNN?

TABLE 10. Space and time complexity of GNNs.

satisfied when ‘‘Dimension’’≥ 3 for N = 4 and K = 2 and
when ‘‘Dimension’’≥ 6 for N = 8 and K = 4. However,
even when (24) or (23) is satisfied, the vanilla Edge-GNNhet

p
or Vertex-GNNhet

p +FNN (w/o H) may not perform well. This
is because the conditions in (24) or (23) are only necessary
for a GNN to avoid information loss. With the same ‘‘Dimen-
sion’’, the Vertex-GNNhet

p +FNN (with H) performs better
than the Vertex-GNNhet

p +FNN (w/o H). This is because the
input of the read-out layer of Vertex-GNNhet

p +FNN (with
H) contains H, which is helpful to differentiate channel
matrices.

FIGURE 8. Performance of the GNNs with different dimensions of
hidden representations, precoding, SNR = 10 dB.

D. SPACE, TIME, AND SAMPLE COMPLEXITIES OF THE
GNNs
Finally, we compare the space, time, and sample com-
plexities of the Vertex-GNNs and the vanilla Edge-GNNs.
The space complexity is the number of trainable parame-
ters in a fine-tuned GNN to achieve an expected perfor-
mance, which is set as 98% sum rate ratio for the pre-
coding problem with N = 8,K = 4, and 99% for the
other two problems and the precoding problem with N =

4,K = 2. The time complexity includes the training time
required to achieve the expected performance and the infer-
ence time. The sample complexity is the minimal number
of samples required for training a GNN to achieve a given
performance.

Since the Vertex-GNNhet
p +FNN (with H) outperforms

the Vertex-GNNhet
p +FNN (w/o H), we only consider the

Vertex-GNNhet
p +FNN (with H). The Vertex-GNNhet

ls +FNN
and the vanilla Edge-GNNhet

ls are with the hyper-parameters
in Table 7 and Table 6, respectively. The Vertex-
GNNhet

p +FNN (with H) and Edge-GNNhet
p are with the

hyper-parameters in Section V-C. Besides, Md = 4 for
Vertex-GNN and Md = 32 for Edge-GNN when N = 4 and
K = 2, while Md = 64 for Vertex-GNN and Md = 128 for
Edge-GNN when N = 8 and K = 4.

FIGURE 9. Performance of the GNNs versus the number of
training samples.

In Table 10, we show the space and time complexities of the
GNNs. It is shown that the training time and inference time
of the vanilla Edge-GNNs are shorter than the Vertex-GNNs,
because using FNN as processor is with higher computa-
tional complexity than using linear processor. The space
complexities of the vanilla Edge-GNNs are lower than the
Vertex-GNNs.

In Fig. 9, we compare the performance of the GNNs
trained with different numbers of samples. It is shown that the
Edge-GNN and the Vertex-GNN for link scheduling are with
almost the same sample complexity, while the Edge-GNN
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outperforms the Vertex-GNN with few number of training
samples when learning the power control policy. When learn-
ing the precoding policy, the Edge-GNN (which uses linear
processor) is more sample efficient than the Vertex-GNN,
because the Vertex-GNN has more trainable parameters than
the Edge-GNN due to using FNN as processor and the extra
read-out layer.

The main results for the three policies are summarized as
follows.

• The vanilla Edge-GNNs outperform the vanilla Vertex-
GNNs and perform closely to the Vertex-GNN with
FNN-processor. The performance of the Vertex-GNNs
can be improved by using FNN as processor, but cannot
be improved by using FNN as combiner.

• The vanilla Edge-GNNs are with lower time complexity
than the Vertex-GNNwith FNN-processor to achieve the
same performance. When learning the precoding policy,
the vanilla Edge-GNN is with lower sample complexity
than the Vertex-GNN with FNN-processor.

VI. CONCLUSION
In this paper, we analyzed the impacts of the linearity and
output dimensions of processing and combination functions
on the expressive power of the Vertex-GNNs and Edge-
GNNs for learning link scheduling, power control, and pre-
coding policies. We demonstrated that all the policies can
be learned with either Vertex-GNNs or Edge-GNNs over
either homogeneous or heterogeneous graphs. We showed
that the Vertex-GNNs with linear processing functions can-
not perform well for these policies due to their inability to
differentiate all channel matrices. When learning the precod-
ing policy, the expressive power of the Vertex-GNN with
non-linear processing functions is still weak, which depends
on the output dimensions of processing and combination
functions. Simulation results showed that the Edge-GNNs
using linear processors can achieve the same performance
as the Vertex-GNNs using non-linear processors for learn-
ing these policies but with much lower training time and
inference time. Our results indicate the advantage of Edge-
GNNs for learning wireless policies and provide guidelines
for designing efficient and well-performed GNNs. While we
focused on two resource allocation policies and a precoding
policy, the conclusions are also applicable to other wireless
policies such as signal detection, channel estimation, other
resource allocation, and other precoding problems whenever
the edges of constructed graphs are with features. If both the
features and actions of a graph are defined on vertices, then
a Vertex-GNN will be with the same expressive power as an
Edge-GNN and may be more sample efficient.
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