
Received 21 April 2023; revised 6 September 2023, 25 November 2023, and 22 December 2023; accepted 24 December 2023.
date of current version 11 January 2024.

The associate editor coordinating the review of this article and approving it for publication was N. Pappas.

Digital Object Identifier 10.1109/TMLCN.2023.3347680

Congruent Learning for Self-Regulated
Federated Learning in 6G

JALIL TAGHIA 1, FARNAZ MORADI1, HANNES LARSSON1, XIAOYU LAN 1,
ADAM ORUCU1,2, MASOUMEH EBRAHIMI 2,

AND ANDREAS JOHNSSON 1,3 (Senior Member, IEEE)
1Ericsson AB, Ericsson Research, 164 40 Stockholm, Sweden

2Division of Electronics and Embedded Systems, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
3Department of Information Technology, Uppsala University, 753 10 Uppsala, Sweden

CORRESPONDING AUTHOR: J. TAGHIA (jalil.taghia@ericsson.com)

This work was supported by the Swedish Governmental Agency for Innovation Systems (VINNOVA) under Project Celtic-Next ANIARA
(C2019/3-2) and Project Celtic-Next IMMINENCE (C2020/2-2).

ABSTRACT Future 6G networks are expected to beAI-native with distributedmachine learning functionali-
ties responsible for improving and automating a variety of network- and service-management tasks. To enable
a privacy-preserving approach to distributed learning, federated learning (FL) has become prevalent in the
communication-and-networking domain. However, for efficient management of the networks, FL needs to
be automated requiring minimal hyperparameter tuning. An outstanding challenge towards automation of
FL is regarding difficulties in handling overfitting. Existing techniques tackle overfitting via regularization
heuristics that rely on hyperparameter tuning and as such presume availability of representative validation
data. However, in the dynamic and heterogeneous network environments, this assumption is limiting. Even
if existence of validation data can be assumed, hyperparameter tuning comes with added communication
and compute overhead cost which grows prohibitively as the federation scales in size. Here, we propose the
congruent federated learning (CFL) as a self-regulated method of learning that is robust to overfitting and
achieves the robustness without reliance on hyperparameter tuning. CFL employs a self-taught regularization
mechanism that refrains local models from overfitting to the local data. This is enabled via introduction of the
congruent activation functions as a class of similarity-promoting activation functions that discourage learning
local models which differ excessively from the global (federated) model. Across four networking use cases
on several tasks, reflecting different profiles of data heterogeneity and limited availability of data, it is shown
that CFL greatly reduces overfitting and in nearly all cases improves the performance—a relative gain of
about 21% averaged across all use cases.

INDEX TERMS Collaborative intelligence, distributed and federated machine learning for efficient network
performance, scalability and complexity of machine learning in networks.

I. INTRODUCTION

MACHINE learning (ML) and artificial intelligence
(AI) techniques play an integral role in achieving

the goal that is automation in telecommunication networks.
They have already proven advantageous in a wide range
of use cases including spectrum management and beam-
forming, resource and slice orchestration, service assurance,
energy efficiency optimization, and root-cause analysis [1],
[2]. The future 6G network is envisioned to be intelligent
as the network becomes AI-native with ML functionalities
used pervasively to accommodate increasingly intelligent

services and devices [3], [4], [5], [6]. As illustrated in Fig. 1,
AI andML-based functionalities are expected to be integrated
into different levels of the future 6G network, ranging from
devices to base stations, the core network, and the central
cloud.

The flexibility aspect of the network is essential for
realizing a vast number of emerging 6G use cases with
challenging requirements on latency and throughput such as
tele-presence, collaborative driving, and immersive commu-
nication [7], [8]. However, the increased flexibility comes
naturally with a new set of challenges related to complexity,

VOLUME 2, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

129

https://orcid.org/0009-0004-2721-4030
https://orcid.org/0009-0005-1324-8085
https://orcid.org/0000-0001-7877-6712
https://orcid.org/0000-0003-3743-9431

FIGURE 1. Machine learning will be ubiquitous in 6G networks, for improving and automating a variety of network-
and service-management tasks, and for providing AI-compute capabilities as a service. Automation is essential
for scalable management and configuration of model hyperparameters as they may depend on data availability,
compute capabilities, model latency requirements, and network dynamicity.

performance, and automation. These challenges are due to
various sources of data and system heterogeneity, resource
limitations, dynamicity of the environment, and data owner-
ship and privacy guidelines [9], [10]. To enable automation
of a variety of network and service management tasks, the 6G
network will need to base its operation on ML functionalities
that can leverage the distributed nature of the environment
(in terms of resources) while being able to cope with its
challenges.

Given the vital role of ML in achieving the goal of
automation of telecommunication networks, it is impor-
tant to consider requirements and challenges for effective
training of ML models with respect to data and com-
pute resources. Enabling pervasive use of ML function-
alities in the network necessitates collection of massive
volumes of data across the network. To avoid the high
cost from overhead of data collection and raw data trans-
mission while safeguarding private data, privacy-preserving
distributed ML techniques such as federated learning are
becomingmore prevalent in the communication and network-
ing domain [11], [12], [13], [14], [15].

Federated learning facilitates collaborative learning in a
distributed environment while providing certain guarantees
on the data privacy [16], [17], [18]. Specifically, one can see it
as an approach to distributed learning where agents (residing
in nodes with varying capabilities) participate in a federation
to collaboratively learn a global model without having to
share their data. Under orchestration of a server, the standard
formulation of federated learning involves cycling through
two phases of the local learning at the agents and the global
aggregation at the server. At the local learning phase, agents
update their local models given the global model and using

their local data. At the global aggregation phase, an aggre-
gated model is constructed by aggregating (e.g., averaging)
the local models into a single global model.

However, to enable the automation of federated learning,
an important challenge is to avoid the overfitting problem of
the learning agents. In this direction, we introduce a method
of federated learning, named congruent federated learning,
which tries to promote similarity between parameters of
the agents’ models and the global model. This is done via
the introduction of a novel class of similarity-promoting
parameter activation functions named congruent activation
functions. Integration and learning through such activation
functions in the federated learning process help local models
refrain from overfitting to the local data leading to improved
convergence characteristics.

We discuss our approach in the context of neural net-
works as the underlying predictive model and describe the
concept of congruent learning through introduction of the
congruent activation functions. Unlike the standard activation
functions that are applied to the layer representations of the
neural networks, congruent activation functions are applied to
the parameters of the neural networks (i.e., weight matrices
and bias vectors). Conceptually, they discourage learning
local models that contrast excessively from the global model,
ultimately resulting in local models that are less prone to
overfitting.

Our solution is general in the sense that the commonly
used federated learning frameworks (such as FedAvg [17],
FedSGD [18], and many other recent variants of them [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28]) can be
turned into a congruent federated learning method with min-
imal effort. We motivate the rationale behind the idea and

130 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

verify the method on four use cases, namely, (1) service
performance prediction on data traces collected from a data
center (DC), (2) end-to-end (e2e) round-trip-time (RTT) pre-
diction on data traces from a 5G-mmWave testbed, (3) RTT
prediction on data traces from an IoT testbed, and (4) user
equipment (UE) image classification; these use cases are
shown in Fig. 1. The results show that enabling congruent
learning in the standard federated learning framework con-
siderably improves its robustness to overfitting and improves
optimality of the solutions while requiring no hyperparameter
tuning; this translates into reducing the need for labor-
intensive configuration and tuning, and as such relaxes the
requirement for availability of representative validation data.

The remainder of this paper is organized as follows.
Section II describes the problem formulation and gives a
sketch of our approach. Section III introduces the proposed
family of congruent activation functions and describes the
construction of neural networks using them. Section IV intro-
duces congruent federated learning. Section V evaluates the
approach empirically on our use cases. Section VI provides a
high-level discussion of the main results. Further, Section VII
discusses related work, and finally, Section VIII concludes
the paper.

II. PROBLEM STATEMENT AND APPROACH
A key step towards automation of federated learning in 6G
networks is effectively regulating the model fitness at the
local phase of learning, which reduces the requirements on
manual configuration and hyperparameter tuning for each
ML task. In this section, we provide a problem description,
a formal statement of the problem, a background on the
existing class of solutions and their limitations, and a high-
level description of our approach.

A. PROBLEM DESCRIPTION
Figure 1 shows examples of different federated learning clus-
ters that could be formed across the 6G network. Within
each cluster, models with varying resource constraints and
requirements (such as latency, accuracy, and privacy) will
be trained in a federated learning setting. In use cases 1-
3, the models are used for different performance prediction
and verification tasks of interest for an operator, whereas
use case 4 exemplifies how the network can enable compute
offloading and training of a collaborate image classification
model. Note that the requirements on the data privacy may
vary across use cases. However, common for all is the need
to reduce the overhead in terms of data transmission.

These use cases highlight the fact that for the broader appli-
cability of federated learning, there are important challenges
to be addressed, among others, with respect to system het-
erogeneity, data heterogeneity, and communication overhead
cost associated with transferring the models from agents to
the server and vice versa [29]. Addressing these challenges
has been subject of much research since introduction of
federated learning [16], [17] and remains an active area of

research; we refer readers to a recent survey in [30] for further
discussion.

However, a challenge that has been fairly under-studied is
regarding the automation of federated learning. The dynamic
and heterogeneous environment of the future networks poses
unique challenges in this regard. One outstanding challenge
is related to difficulties in determining the degree of model
fitness at the local phase of learning. In the context of neu-
ral networks as the underlying predictive model, the degree
of model fitness is determined largely by the number of
epochs per round of federation. At the local phase of learn-
ing, if agents learn underfitted models to their local data
(too few epochs per round), the global model would require
many rounds to converge to a desirable solution; conversely,
if agents learn overfittedmodels (toomany epochs per round),
the global model may diverge or converge to a poor solu-
tion. The difficulty of the problem is that it is unclear under
which circumstances a trained model shall be regarded as an
underfitted or as an overfitted model. The problem becomes
particularly pronounced when agents’ data distributions are
heterogeneous to a degree that they can be seen as non-
independently and identically distributed (non-IID), or when
agents have limited data samples representative of the under-
lying oracle distribution of their data [24], [31], [32]. The
degree of model fitness affects not only the needed number
of rounds before a reasonable solution is reached but also the
optimal properties of the final solution [33], [34].

Indeed, determining the exact degree of model fitness at
the local learning phase of the federated learning remains
unsolved under presence of severe data heterogeneity (non-
IID settings) or insufficient amounts of data. However,
to enable automation of federated learning, it might be suf-
ficient to instead study design of learning methods that are
robust to overfitting.

Existing solutions aim at reducing overfitting through
regularization via heuristics that require hyperparameter tun-
ing. Thus, to enable the hyperparameter tuning through
cross-validation, they presume availability of representative
validation data. However, in a highly dynamic and heteroge-
neous environment of the 6G networks, this assumption is not
realistic. Additionally, hyperparameter tuning can become
costly as it requires performing multiple training and eval-
uation steps. Considering the resource limitations (in terms
of compute and data) in the environment, there is a need
for development of federated learning methods that achieve
robustness to overfitting through self-taught mechanisms that
do not rely on the hyperparameter tuning.

B. PROBLEM FORMULATION
For a neural network with a given architecture, the number
of epochs per round is one of the influential factors deter-
mining the overall model fitness1 in terms of convergence

1There are a number of other factors that can affect the degree of model
fitness, such as size and quality of training data, architecture of the neural
network, optimizer, and loss function. However, here, we study the effect of
number of epochs per round while fixing the effect from other factors.

VOLUME 2, 2024 131

FIGURE 2. A conceptual figure visualizing the optimization
problem in (1), described from Agent A prospective. Merely
minimizing the loss at the agent node moves the space of
solutions in the direction of the evidence from the local data
(position 1), resulting in an overfitted model. However, merely
minimizing the deviation of the agent’s parameter set 2 from
the global parameter set 2̄ moves the space of solutions in
direction of the evidence from the global model (position 2),
resulting in an underfitted model. As the federation progresses,
the challenge is to arrange an interplay between the two
competing objectives that leads to improved convergence
characteristics.

characteristics, including both the optimal properties of the
final solution and the convergence rate.

Let Jr denote the training number of epochs at the round r
of a federated learning. A typical assumption is that

Jr = J ∀r = 1, 2, . . .R,

where R is the number of rounds. However, this assumption
ignores that at different stages of learning, the same number
of epochs J can result in models with different degrees of
fitness. As an example, for a given agent, training locally for
J ′ epochs at the round r ′ may result in an overfitted model
while training for J ′′ ≫ J ′ at the round r ′′ may result in an
underfitted model.

The problem can be stated as follows: at each round of
federated learning and at the local learning phase, for how
many epochs should agents train their models for the federa-
tion’s learning objective to converge to an optimal solution?
A theoretically grounded solution to the problem may not
be readily available. However, in practice, it might suffice
to instead learn models that are robust to overfitting. That
effectively means training models for many epochs locally
and then relying on some clever regularization heuristics for
regulating the extra complexity.

Perhaps, the first heuristic that comes to mind is using
early stopping at the local learning phase based on data
samples from a validation set (i.e., a portion of the train set) or
model selection based on choosing the model that performs
best on the validation set. However, a validation set that is
representative of the data is not always available; for example,
in scenarios where there are only a few data samples available
for training at the agents, or where data of different agents are
non-IID such that agents’ local data are poorly representative
of the underlying distribution of data. Arguably, federated
learning is of utmost relevance in precisely these scenarios.

An alternative heuristic is to instead construct models that
are robust to overfitting. One way to achieve this is through

solving a constrained optimization problem where, at the
training phase, the aim is to find a setting of the local parame-
ter set 2 that minimizes a given agent’s learning loss ℓ while
deviating as little as possible from the global parameter set
2̄, that is:

min
2∈P

ℓ(2) subject to : min1(2̄, 2), (1)

where 1(2̄, 2) quantifies the deviation of 2 from 2̄, and P
denotes the set of all possible parameters. Figure 2 conceptu-
alizes the optimization problem in (1).

C. LIMITATIONS OF EXISTING SOLUTIONS
Existing solutions (e.g., in [19], [20], [21], [22], [23], [24],
[25], [26], [27], and [28]) solve the constrained optimization
problem in (1) via a class of heuristic techniques based on
hyperparameter tuning known as penalty methods. This is
done by adding a penalty function to the objective function
ℓ that consists of a penalty parameter multiplied by a mea-
sure of violation of the constraint. Effectively, they solve a
surrogate objective function,

min
2∈P

ℓ(2)+ µ ℓ(reg)(2, 2̄), (2)

where ℓ(reg) is the penalty term and µ is the penalty param-
eter that dictates the strength of the penalization. Although
optimizing the surrogate loss in (2) can potentially help
reduce overfitting, choosing the right penalty parameter µ

is consequential. In practice, optimal settings of the penalty
parameters are data dependent, and they are often selected
through cross-validation techniques. Hence, in the scope of
this study that is concerned with the cases where cross-
validation may not be feasible, the existing techniques are not
suitable due to the need for data-dependant hyperparameter
tuning of the penalty parameters; refer to the related work in
Section VII for additional discussion.

D. OUR APPROACH: LEARNING THROUGH
CONGRUENCE
In this work, we introduce an alternative class of heuris-
tic methods for relaxation of the constrained optimization
problem in (1) via introduction of the concept of congruent
learning in the context of federated learning. Compared to
the existing class of heuristics based on penalty methods that
require hyperparameter tuning, the proposed heuristics are
notably free from hyperparameters.

Learning through congruence is enabled via introduction
of a similarity-promoting class of parameter activation func-
tions referred to as the congruent activation functions. Such
activation functions directly operate on the model parame-
ters and are designed to promote similarity by discouraging
contrasts between the local parameters 2 and the global
parameters 2̄. Contrary to the existing class of solutions
for relaxation of the constrained optimization problem in (1)
into an unconstrained one through optimizing a surrogate
objective function as in (2), our proposed class of solutions
optimizes the objective function in (1) directly and regulates

132 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

FIGURE 3. A conceptual example visualizing effect of application
of congruent activation function, CongruentReLU, in regulating
the model parameters W given the reference parameters W̄. The
resulting regulated parameters are shown here with
W̃ ← CongruentReLU(W | W̄).

the parameter set 2 through the congruent activation func-
tions. The fundamental distinction is that, in our case, it is
the model parameters that are regulated directly and not the
objective function.

III. CONGRUENT LEARNING IN NEURAL NETWORKS
In this section, we begin with providing the necessary
background and defining our notations. Next, we introduce
congruent activation functions and their integration in the
construction of neural networks. This is a first step towards
the design of congruent federated learning as described in
Section IV.

A. BACKGROUND AND NOTATIONS
Let

{
x = xn | n = 1, . . . ,N

}
denote the input data where

xn indicates the n-th feature vector, and let
y = {yn | n = 1, . . . ,N } denote the output task response
where yn indicates the n-th response vector. Furthermore, let
f2 define a neural network consisting of L layers with the
parameter set 2 = {2l

| l = 1, . . . ,L}, specified as:

f2 (x) =
(
f 1
21 ◦ f

2
22 ◦ . . . ◦ f L

2L

)
(x), (3)

where ◦ denotes the function composition and f l
2l indicates

the layer l of the neural network with the layer parameter set
2l . Depending on the class of neural networks, a layer param-
eter set may include different types of learnable parameters.
As an example, for a multi-layer perceptron (MLP) neural
net, a layer parameter set 2 includes a weight matrix and a
bias vector.

In standard training of a neural network, learning through
error back-propagation involves finding a setting of 2 that
minimizes the error loss ℓ

(
y, ŷ

)
between y and its prediction,

ŷ := f2(x).

B. CONGRUENT ACTIVATION FUNCTIONS
Here, we formally introduce the class of congruent activation
functions and provide an example of such activation functions
that will be used throughout the paper.

We begin with a conceptual example. As visualized in
Fig. 3, a congruent activation function, g, takes as its inputs:
(i) a parameter W that requires optimization and (ii) a refer-
ence parameter W̄ that does not require optimization, where

these two parameters belong to the same space of parameters.
The reference parameter W̄ can be seen as a mask that is
applied element wise to the optimizable parameter W . The
activation function is designed to preserve agreements and
penalize disagreements between the optimizable parameter
and the reference parameter.

To keep the notation uncluttered, let W [i, j] := w, and
W̄[i, j] := w̄ be the (i, j)-th element of W , and W̄. Further,
let sgn denote the signum function. A congruent activation
function, denoted by g, satisfies the following conditions:

1) sgn(w) ̸= sgn(w̄) ⇒ g(w | w̄)→ 0;
2) w→ w̄ ⇒ g(w | w̄)→ w̄;
3) sgn(w) = sgn(w̄), w≫ w̄ ⇒ w̄ < g(w | w̄) < w;
4) sgn(w) = sgn(w̄), w≪ w̄ ⇒ w < g(w | w̄) < w̄;
5) g must be approximately differentiable almost every-

where.

In the above, the first condition enforces maximal penalty
for disagreements in signs; the second condition ensures
preservation of the agreements; the third and fourth condi-
tions introduce smoothing effect; the fifth condition is needed
to enable back-propagation in training neural networks via
automatic differentiation tools.

An example of a congruent activation function g satisfying
these conditions is given by

g
(
W | W̄

)
=sgn

(
W̄
)√

ϵ + ReLU
(
W̄⊙W

)
,

:=CongruentReLU(W | W̄) (4)

where ⊙ indicates the element-wise multiplication, ReLU
denotes the rectified linear activation function, ϵ is a small
positive number added for numerical stability (ϵ →+0).
We refer to the congruent activation function in (4) as
CongruentReLU. Conceptually, if W and W̄ have opposite
signs, the contrast between the two is maximal; the disagree-
ment is settled by setting it to a value that approaches zero.
If W is in full agreement with the reference W̄, both in the
sign and the strength, the agreement is preserved. If W and
W̄ have the same signs but contrast in their strength values
such that the strength of one is much larger than the other, the
output is skewed towards the one with the smaller strength.

Figure 4 visualizes CongruentReLU for a case example
showing the behaviour of the function at and about the
reference parameters. As shown in Fig. 4.A,B, depend-
ing on the sign and the strength of the reference
parameter, the function behaviour varies. Specifically, let
g(w | w̄) = CongruentReLU(w | w̄), then for all w ∈ W and
w̄ ∈ W̄, it follows that:

g(w | w̄)→ 0, w̄ > 0, ∀ w ≤ 0,
w < g(w | w̄) < w̄, w̄ > 0, ∀ 0 < w < w̄,

w̄ < g(w | w̄) < w, w̄ > 0, ∀ 0 < w̄ < w,
g(w | w̄)→ 0, w̄ < 0, ∀ w ≥ 0,
w < g(w | w̄) < w̄, w̄ < 0, ∀ w < w̄ < 0,
w̄ < g(w | w̄) < w, w̄ < 0, ∀ w̄ < w < 0,

VOLUME 2, 2024 133

FIGURE 4. Example visualization for the congruent activation
function, g(w | w̄) = CongruentReLU(w | w̄), where w ∈ W is a
learnable parameter requiring optimization and w̄ ∈ W̄ is a
reference parameter which does not require optimization. Here,
g′ and g′′ denote the first and second derivatives with respect to
w. (A, B) Function and its first and second derivatives for fixed
negative and positive values of w̄, respectively. (C) Function
and its first and second derivatives for a range of w and w̄.

satisfying the requirements for the congruent activation func-
tions. In addition to the function values, the figure also
visualizes its first and second derivatives with respect to w;
Fig. 4.C. visualizes the function values and the derivatives
for a range of w and w̄.

At the training phase of a neural network model dur-
ing the forward propagation, CongruentReLU is applied at
each epoch. Upon application, the optimizable parameters
W are updated by a regulated version of them according to:
W ← CongruentReLU(W | W̄).

C. CONSTRUCTION OF NEURAL NETWORKS WITH
CONGRUENT ACTIVATION FUNCTIONS
Here, we formally describe construction of neural networks
with congruent activation functions, and next describe their
application in the context of federated learning. For the ease
of discussion, we begin with a simple example and next
proceed with the general formulation.

Figure 5.B visualizes transformation of a neural network
as specified in Fig. 5.A into the one with congruent activation

functions. In practice, enabling congruent learning in a neu-
ral network involves integration of the congruent activation
functions to the layers of the neural network. This integration
requires minimal effort; it involves only changing the for-
ward pass. The congruent activation functions are designed
to be differentiable so that the error back-propagation can be
followed naturally using standard automatic differentiation
techniques (e.g, as implemented in PyTorch or TensorFlow).

Consider an MLP neural network denoted as f2 (x) =(
f 1
21 ◦ f

2
22 ◦ f

3
23

)
(x) and specified according to:

f2 (x) =

ŷ = a1

(
W1h2 + b1

)
,

h2 = a2
(
W2h3 + b2

)
,

h3 = a3
(
W3x + b3

)
,

where 2 = {2l
| l = 1, 2, 3}, l indicates the neural network

layer, al is a layer activation function (e.g., ReLU and tanh),
hl is the vector of latent layer representations, and the pair of
W l
∈ 2l and bl ∈ 2l denotes the weight matrix and the bias

vector at the l-th layer which require optimization.
The corresponding neural network with congruent activa-

tion functions is denoted as

fg(2|2̄) (x) =
(
f 1g(21|2̄1) ◦ f

2
g(22|2̄2) ◦ f

3
g(23|2̄3)

)
(x),

and constructed according to:

fg(2|2̄) (x) =

ŷ = a1

(
g(W1

| W̄1)h2 + g(b1 | b̄1)
)

,

h2 = a2
(
g(W2

| W̄2)h3 + g(b2 | b̄2)
)

,

h3 = a3
(
g(W3

| W̄3)x + g(b3 | b̄3)
)

,

where 2̄ = {2̄l
| l = 1, 2, 3} denotes the set of reference

parameters, g is a congruent activation function, such as
CongruentReLU given by (4), and W̄l

∈ 2̄l and b̄l ∈ 2̄l

are the reference weights and biases which do not require
optimization.

As in MLPs, other classes of neural networks, including
recurrent neural nets and convolutional neural nets, can be
transformed into the ones with congruent activation func-
tions. In a general form, for a neural network f as defined
in (3), we express the corresponding neural network with
congruent activation functions as:

fg(2|2̄)(x)=
(
f 1g(21|2̄1)◦f

2
g(22|2̄2)◦. . . ◦ f

L
g(2L |2̄L)

)
(x), (5)

where the notation of g(2l
|2̄l) is used to emphasize on

the dependence to the reference parameter set at the layer
l through the congruent activation function g. Given 2̄, the
training involves finding a setting of 2 that minimizes the
loss ℓ

(
y, ŷ

)
defined between y and ŷ := fg(2|2̄)(x).

IV. CONGRUENT FEDERATED LEARNING
In this section, we describe the concept of congruent feder-
ated learning which corresponds to federated learning using
neural networks with congruent activation functions. Without

134 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

FIGURE 5. Transformation of a neural network into the one with congruent activation functions
and its implementation in federated learning: (A) a neural network as defined in (3); (B)
integration of the congruent activation functions g into the layers of the neural network for
the construction of the neural network in (5); (C) two consecutive rounds of federated
learning through congruent learning in a federation of two agents. Here, al denotes the layer
activation function, 2l denotes the layer parameter set, and 2̄l denotes the corresponding
reference parameter set. The horizontal lines in (A) and (B) indicate the layer depth while in
(C) the timeline by training rounds.

FIGURE 6. Visualization of an example showing the changes in the weight matrix parameter of the input layer of a randomly
chosen agent during federated learning with and without congruent activation functions, referred to as CFL and FL,
respectively. Note the difference in the scales of color maps.

loss of generality, we consider federated learning framework
of FedAvg [17] and construct a variant of it that uses our
construction in (5).

A. LEARNING THROUGH CONGRUENT ACTIVATION
FUNCTIONS
Figure 5.C visualizes two consecutive rounds of federated
learning between two agents where each agent accommodates

a neural network model with congruent activation functions
(as shown in Fig. 5.B), and shares their regulated parameters
with the server for the global aggregation. This procedure is
described formally as follows.

Consider a federation of M agents, and let us assume
that the agents participate in the federation for solving the
same task (such as a classification or a regression task) and
share the same input feature attributes. However, we make

VOLUME 2, 2024 135

Algorithm 1 A Variant of FedAvg [17] Described in Con-
gruent Federated Learning Framework; the Main Differences
Are Highlighted by Box Frames. All Notations Are Defined
in Sections III and IV
Outputs:
• 2(global): final global model parameter set
• 2m,∀m: final local model parameter sets

Server executes:
initialize the global model parameter set 2(global) randomly;
for r = 1, . . . ,R do

for m = 1, . . . ,M do
send the global model 2(global) to the m-th agent;
2m← AgentLocalLearning(m, 2(global));

end
2(global)← GlobalAggregation

(
2
)
;

end
GlobalAggregation

(
2
)
:

return: 2(global)=Aggregation(2m |m = 1, . . . ,M)
for l = 1, . . . ,L do

for θ l(global) ∈ 2l
(global) do

θ l(global)←
∑M

m=1
Nm∑M
i=1 Ni

θ lm (as in (7));

end
2(global) = {2

l
(global) | l = 1, . . . ,L};

end
AgentLocalLearning

(
m, 2̄

)
:

return: 2m = {2
l
m | l = 1, . . . ,L}

initialize local parameter set as: 2m← 2(global) as in (6a);

update the reference parameter set: 2̄←2(global) as in (6b);

for j = 1, . . . , J do
for each batch of data Bm = {(xm, ym)} ⊂ Dm do

ŷm := fg(2m|2̄)(x) (as in (5)) ;

ℓm = Loss(ym, ŷm);
2l
m← Optimizer(2l

m,∇2l
m
ℓm);

end
end

no assumptions about the agents’ data distributions, meaning
that they can be non-IID. Let D = {(xn, yn) | n = 1, . . . ,N }
denote the data consisting of the pairs of inputs and out-
puts, and let Dm denote the local data from the m-th agent.
Furthermore, following the general form of (5), let fg(2m|2̄)
denote the local model of them-th agent with the optimizable
parameter set2m given the reference parameter set 2̄, that is,

fg(2m|2̄) (x) =
(
f 1g(21

m|2̄
1) ◦ . . . ◦ f Lg(2L

m|2̄
L)

)
(x), ∀m.

Under orchestration of a server, the global parameter set is
initialized randomly and sent to the agents. Learning then fol-
lows by cycling through the two phases of the local learning at
the agents and the global aggregation at the server, described
in the following.

Let 2(global) = {2
l
(global) | l = 1, . . . ,L} denote the set of

global parameters received from the server by the agents.
The m-th agent initiates the local learning with updating both
its reference parameter set 2̄ and initializing its optimizable
parameter set 2m with the global parameter set 2(global), that
is:

2̄ =
{
2̄l
← 2l

(global) | l = 1, . . . ,L
}
, (6a)

2m =
{
2l
m← 2l

(global) | l = 1, . . . ,L
}
. (6b)

Next, it trains its model locally given the local data Dm for J
epochs which means optimizing the local parameter set 2m
through minimizing the local loss ℓm = Loss(ym, ŷm) where
ŷm = fg(2m|2̄) (xm) as defined in (5). It is important to note
that, during training at a given round, the reference parameter
set 2̄ remains unaltered while the optimizable parameter set
2m adapts in the direction of minimizing the loss ℓm. The
reference parameter set changes once a new global parameter
set is provided to the agent at the next round of federated
learning. At the end of the local training phase, the agent
sends its optimized local parameter set 2m to the server. The
same procedure will be carried out by allM agents.

Server constructs the global model which is an aggregated
model computed from the agent models. Among others, the
aggregated model could simply be obtained by taking the
arithmetic average of the local model parameter sets or, fol-
lowing the framework of FedAvg, by taking the weighted
average based on the number of samples per agent. In the case
of the latter, for a parameter θ l ∈ 2l (such as a weight matrix
or a bias vector), it is expressed as:

θ l(global) =

M∑
m=1

τmθ lm, τm =
Nm∑M
i=1 Ni

, (7)

where Nm = |Dm| is the number of training data points of
agent m. Similarly, aggregation is done for all the param-
eters at all layers and accordingly the global parameter set
2(global) = {2

l
(global) | l = 1, . . . ,L} is updated. In a general

form, the global aggregation step is shown as

2(global) = Aggregation(2m | m = 1, 2, . . . ,M).

The resulting global parameter set is sent to the agents which
will be used by the agents at the local learning phase. The pro-
cedure continues until a convergence or a stopping criterion
is met.

An algorithmic2 description of the congruent federated
learning is shown in Algorithm 1 built on FedAvg. The main
differences are at the local learning phase and, more precisely,
learning through neural networks with congruent activation
functions.

Regarding the number of epochs per round, J , it shall be set
to a ‘‘sufficiently large’’ value. In practice, it means setting
it to a larger value than expected (or a value much larger

2An implementation of the congruent federated learning in PyTorch
is available through the following public repository under BSD 3-
Clause License: https://github.com/EricssonResearch/congruent-federated-
learning.git.

136 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

that expected if added computational complexity is not the
main concern) and then relying on the congruent learning to
regulate additional complexity and reduce risks of overfitting.

B. EXAMPLE VISUALIZATION
Figure 6 visualizes an example where wemonitor the changes
in the weight matrix parameter of the input layer of an agent
during federated learning with and without congruent acti-
vation functions, referred to as CFL and FL, respectively.
More specifically, the figure shows 1FL := W − W̄ and
1CFL := g(W | W̄)− W̄ at rounds 1 and 10 of the learning
at selected epochs 10 and 100, where W is the optimizable
weight matrix at the input layer, W̄ is the corresponding
reference weight matrix from the global model, and g is the
CongruentReLU activation function.

Figure 7.A,B show the results at the early phase of learning,
at round 1. Going from epoch 10 to epoch 100, in the case
of FL, the majority of the weight parameters quickly deviate
from the reference. However, in the case of CFL, the congru-
ent activation function regulates the weight parameters such
that they do not deviate from the reference as quickly. As the
learning continues, at round 10 and at epoch 100 (shown in
Fig. 7.D), the profile of the learned weight matrix obtained
from CFL differs notably from the one using FL which is
reflected in1CFL and1FL. Importantly, we can see the effect
of self-regulation in CFL in encouraging the parameters to
stay in the neighborhood of the reference.

V. EXPERIMENTS
Experiments are designed in connection to the problem state-
ment in Section II and our use cases illustrated in Fig. 1. Our
main focus is on federated learning scenarios where agents
have access to limited amounts of data for training and where
agents’ data distributions are non-IID. A direct consequence
of which is that in all experiments, we assume there is no val-
idation data available to be used for the purpose of improving
model generalization capabilities through heuristics such as
hyperparameter tuning via cross-validation, early stopping of
the learning, or model selection.

A. USE CASES
In the following, we describe the four studied use cases in
relation to Fig. 1.

1) USE CASE 1: DC SERVICE-PERFORMANCE
PREDICTION
In this use case, the goal is to predict the service-level metrics
(SLMs) on clients, which is required for automated service
and network management in 5G and beyond networks. The
SLM prediction is done using data collected from a DC
infrastructure, as well as labels collected from the clients.
Here, data traces are collected from a DC testbed at KTH
University [35], and are publicly available3 [36]. The testbed

3Direct link to data: https://www.kaggle.com/datasets/jaliltaghia/data-
traces-from-a-data-center-testbed.

consists of a server cluster and six client machines. There are
two services running on these machines, namely, Video-on-
Demand (VoD) and a Key-Value (KV) store (database). The
traces are generated by executing experiments with different
configurations of services and load patterns. The features
are collected from the Linux kernels on the server cluster
machines and the SLMs are collected on the client machines.
Examples of such features are CPU utilization per core,
memory utilization, network utilization and disk I/O. The
task underlying the use case is prediction of SLMs given the
features. For KV traces, there are two SLMs, average read and
write latency, while for VoD traces, we consider six SLMs
such as number of played audio samples, and average read
delay. Table 1 lists all the SLMs considered in this study for
KV and VoD services.

Specifically, data used in this study are an emulation of
a multi-operator environment of 24 operators (agents). Each
agent node has a unique configuration based on the execution
type, load pattern, and the client server machine. Agents
have roughly equal number of samples. Table 1 summarizes
the data specifications for KV and VoD services. Data from
these traces are by construction heterogeneous making them
suitable for our study [34]. Additionally, obtaining labeled
data from agents requires instrumentation of the agents which
can be costly and therefore, in an operational network, the
number of labeled data samples at each agent can be limited.

2) USE CASE 2: 5G E2E RTT PERFORMANCE
PREDICTION
The goal of this use case is to predict e2e RTT val-
ues experienced by a UE connected to the network based
on data collected from the base station which is valuable
for applications to proactively solve performance issues in
5G and beyond networks. The traces are collected from a
5G-mmWave testbed in which the equipment corresponds to
a 5G non-standalone system [37]. In this testbed, there are two
UEs, one for performance measurements and the other for
traffic-load generation. The traces obtained from the testbed
contain RTT values as experienced by a UE in the network,
and approximately 200 metrics and events related to the
analogue beamforming function, te UEs connected to the base
station, and the uplink and downlink events [38], [39], [40].

Traces considered here include four experiments speci-
fied according to the traffic-load generation, and the UE
movement. In two experiments, a constant bit rate traffic-
load (uplink) is generated and in others no traffic load is
added. In two experiments, the UE is moving for a duration
of 10 minutes, and in the others the UE is stationary. The
e2e RTT is measured every 10ms using ICMP ping [41]
with a measurement packet size of 1400 bytes. Further, as a
preprocessing step, the RTT and the base-station metrics are
averaged with different time intervals (e.g., every 100ms,
1000ms). In total, 495 features are generated from around
200 metrics based on different averaging intervals.

For construction of the federation, we treat each experi-
ment as an agent. The objective is to predict e2e RTT as

VOLUME 2, 2024 137

TABLE 1. Data specifications for DC traces (KV and VoD services), and split of data into federations of 24 agents (use case 1).

FIGURE 7. Number of samples per label for (A) 5G traces (use
case 2), and (B) IoT traces (use case 3). Note that, for ease of
visualization, y-axis is in logarithmic scale. Data are divided
into train and test set as specified in Table 3.

FIGURE 8. Number of samples per class label for FMNIST (use
case 4) at the training phase. The figure exemplifies the case for
federation of 5 agents.

experienced by the UEs given traces from the 5G-mmWave
base station. Data traces are summarized in Table 2. The
use case is formulated as a binary classification problem
based on different RTTs (low versus high) according to a
threshold.4 Note that, the total number of samples per agent
varies noticeably, and agents do not have the same number of
samples per label, as shown in Fig. 7.A.

3) USE CASE 3: IOT RTT PERFORMANCE PREDICTION
IoT devices are expected to be ubiquitous and 6G is expected
to enhance and accelerate the performance of IoT devices

4The threshold corresponds to emerging 6G use cases explored and there-
fore is confidential. However, the difference between low and high is large
enough to lead to different distributions across outputs, corresponding to
service violations.

TABLE 2. Data specifications for 5G traces and split of data into
4 agents (use case 2).

TABLE 3. Data split into train and test sets for use cases 1-4
(uc.1-4).

compared to 5G [42]. In this use case, the goal is to pre-
dict the RTT between an IoT device and an IoT gateway.
The traces are generated from the EWSN’17 testbed located
at Uppsala University [43], and are publicly available. The
testbed consists of 18 Tmote SkyMotes (IoT devices). Amote
is a compact device with a complete execution environment
including: CPU, memory, radio, antenna, battery, and various
sensors including temperature, humidity, and light. Themotes
reside in a university building constituting a challenging envi-
ronment for wireless communication.

Amote either acts as a Two-Way ActiveMeasurement Pro-
tocol (TWAMP) controller or a reflector [44]. The TWAMP
controller is placed on one of the motes. For our purpose,
we build a federation of 17 agents. This is done by treating the
17 reflector motes as agents and the controller as the server.
The task is to predict RTT between the mote node itself and

138 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

the gateway (TWAMP controller), given 14 input features
containing network statistics; example of input features are:
RPL rank, RSSI, NBR, LQI, CPU and transmitted packets.
The use case is formulated as a binary classification problem
based on different RTTs (high versus low) corresponding to
the threshold of 1 second. Note that, the total number of
samples per agent varies noticeably, and agents do not have
the same number of samples per label, as shown in Fig. 7.B.
The IoT devices in general have resource constraints and
therefore available data for training and validation will be
very limited in real life as well.

4) USE CASE 4: UE COLLABORATIVE IMAGE
CLASSIFICATION
For this use case, we consider collaborative image classifi-
cation on mobile devices connected to the cellular network.
We use data from FMNIST [46], a popular image data set that
is publicly available. The data set comprises of 28× 28 gray-
scale images of fashion products from 10 categories, such as:
dress, coat, sandals.

We construct federations with different sizes consisting
of 2, 5, 50, and 100 agents. All agents have equal number
of training data samples and the number of samples per agent
remains the same for different sizes of federations. This is
done to evaluate how federated learning methods scale with
the number of agents and the extent they are able to leverage
the available data distributed across agents.

Aiming at construction of heterogeneous federations, data
are divided across agents in a non-IID fashion such that none
of the agents in their training set have data representing all
10 class labels; as an example, Fig. 8 shows the number of
training samples per class label for a federation of 5 agents.
However, importantly, at the evaluation phase, data samples
from the test set include all 10 class labels.

B. EXPERIMENTAL SETUP AND EVALUATION
FRAMEWORK
Evaluation framework is designed to reflect scenarios where
the federation is heterogeneous with respect to the underlying
distribution of data and where there are limited data samples
available at the training phase—a common theme for datasets
and tasks in operational networks. Data samples from all
use cases are randomly split into train and test sets. Table 3
summarizes the data split considered in the experiments.

We compare performance of the standard federated learn-
ing (FedAvg) denoted as FL, against the proposed variant of
it based on congruent federated learning denoted as CFL.

All methods use a similar neural network architecture as
their underlying predictive model. In all experiments, the
model architecture is an MLP specified in Table 4. The
distinguishing factor between the MLP architecture in CFL
and other methods is that CFL uses congruent activation
functions, as defined in (4), at all layers. In any other ways,
the MLP models are identical and use the same initialization
(with the same random seed).

We consider federations of 20 rounds, R = 20. To evaluate
the effect of the degree of model fitness on the performance,
we consider different training strategies through varying the
number of epochs J at the local phase of learning including
10, 100, 1000 epochs. As a convention, for instance, we use
the notation CFL-10 to denote the congruent federated learn-
ing with 10 epochs per round; similarly, FL-10 to denote
the standard federated learning with 10 epochs per round.
Note that at the training phase, there is no early stopping (or
model selection) in place, and all models are trained for the
specified number of epochs. In fact, there is no possibility of
model selection, as across all experiments, agents’ training
data are highly heterogeneous and in some cases non-IID.
This agrees with the goals of the study towards automation
of federated learning and provides an opportunity to evaluate
model sensitivity to overfitting in real-world use cases.

Models are learned on the train set and evaluated on the
unseen data samples from the test set. For use case 1, the
regression performance is evaluated in terms of the normal-
ized mean absolute error (nMeanAE) between measured and
predicted SLMs, given by:

nMeanAE :=
1
ȳ

(
1

Ntest

Ntest∑
n=1

∣∣yn − ŷn∣∣),

where ŷn is the model prediction for the n-th measured per-
formance metric yn, and ȳ is the average quantity across all
samples in the test set. The nMeanAE scores closer to zero
are preferred. For use cases 2-4, classification performance is
evaluated in terms of f1-score which combines the precision
and recall scores of the classification into a single metric by
taking their harmonic mean. The use of f1-score is preferred
often in evaluation of imbalanced datasets which is the case
for use cases 2-4. The f1-scores closer to one are preferred.

For the same training set, experiments are repeated
10 times with random initialization of the models. At a given
experiment, all models use the same initialization. The aver-
age and standard deviation values of the performance metrics
across all independent runs are reported.

C. EXPERIMENTAL RESULTS
In all experiments, we show the performance metrics, the
nMeanAE for regression tasks in use case 1 and the f1-score
for classification tasks in use cases 2-4, averaged across all
agents. The results are shown for selected rounds, 5, 10,
15, and 20. The main observations are with respect to (i)
robustness to overfitting and (ii) the optimality of the solution
in terms of the final performance metrics.

The first main observation is that the number of epochs
per round for FL is an influential hyperparameter that greatly
affects the optimality of the solution, whereas it is far less
of a concern for CFL. The second main observation is that,
in several cases, CFL improves the optimal properties of the
solutions resulting in improved performance metrics where in
some cases the improvement is substantial.

VOLUME 2, 2024 139

TABLE 4. Neural network architecture of the MLP used in experiments.

TABLE 5. Summary of the results across all use cases and their respective tasks at the final round of learning (round 20). The table
compares the methods in the statistical sense using paired t-Test (With the statistical significance of 0.05). In cases where multiple
methods perform equally well with no statistical significance, all the methods are stated. Relative gain is computed at round
20 according to gainrelative =

abs(QCFL−QFL)
QFL

× 100 where QCFL indicates the performance metric obtained using CFL-1000, and
similarly QFL indicates that of obtained using FL-1000. For regression tasks (use case 1), the performance metric is nMeanAE and for
classification tasks (use case 2-4), it is f1-score. Refer to Fig. 9 and 10 for a detailed presentation of the results.

Table 5 provides a summary of the results at the final
round of learning, round 20. It is shown that CFL-1000 is
among the best performing CFL methods in all cases with
the exception of ‘‘ReadsAvg’’ task from KV traces in use
case 1. In comparison, for FL methods, in some cases FL-10
and in other cases FL-100 are the best performers—in none
of the cases FL-1000 is among the best performers. This is
important from an automation point of view: for the case of
CFL, it suffices to set the number of epochs to a large value
and then rely on the self-regularization capability enabled
through congruent learning for handling the overfitting. In the
context of our experiments, it means CFL-1000 can be used
safely across all use cases and nearly all tasks with little
signs of overfitting. When the number of epochs per round
increases to an arbitrary large value—from 100 in CFL-100
to 1000 in CFL-1000—in most cases, there is no sign of

overfitting such that CFL-100 and CFL-1000 perform equally
well, while for the case of FL-100 and FL-1000, there is
a noticeable decrease in performance due to overfitting as
the number of epochs grows. More specifically, when the
performance of CFL-1000 is compared directly to FL-1000,
across all use cases and all tasks, CFL-1000 surpasses FL-
1000 to a markedly greater degree in the statistical sense;
Table 5 summarizes the relative gain achieved by CFL-1000
over FL-1000.

In the following, we further describe the results for our four
use cases in Section V-A.

1) USE CASE 1: DC SERVICE-PERFORMANCE
PREDICTION
Figure 9 shows the regression results in terms of nMeanAE
as the performance metric. Regarding the convergence rate,

140 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

FIGURE 9. Regression performance evaluation on use case 1 in terms of nMeanAE (smaller
values are preferred). The figure compares the performance of the congruent federated
learning (CFL) against the standard federated learning (FL) at selected rounds. As an
example, FL-10 and CFL-10 indicate FL and CFL trained using 10 epochs per round,
respectively.

across a majority of VoD tasks (with the exception of
‘‘NetReadBytes’’), CFL converges faster while for KV tasks
FL has a faster convergence.

Considering the performance of the methods over the
course of learning, there are two main observations. Firstly,
FL shows signs of overfitting for the majority of tasks:
‘‘NoAudioPlayed’’, ‘‘NetReadAvgDelay’’, ‘‘DispFrames’’,
and ‘‘AvgInterDispDelay’’, ‘‘NetReadBytes’’ from VoD

tasks, and both ‘‘WritesAvg’’ and ‘‘ReadsAvg’’ from KV
tasks. The overfitting issue is most visible with the increase
in the number of epochs from 100 to 1000 which corresponds
to FL-100 and FL-1000, respectively. In comparison, CFL
can effectively avoid overfitting across most tasks with the
exception of a few tasks such as ‘‘WritesAvg’’ where slight
overfitting is observed going from CFL-100 to CFL-1000
at round 20. Secondly, for VoD and KV traces, across a

VOLUME 2, 2024 141

FIGURE 10. Classification performance evaluation on use cases 2-4 in terms of f1-score
(values closer to one are preferred). The figure compares the performance of the congruent
federated learning (CFL) against the standard federated learning (FL) at selected rounds.
As an example, FL-10 and CFL-10 indicate FL and CFL trained using 10 epochs per round,
respectively.

majority of their respective tasks, CFL achieves the highest
performance where the improvement is most noticeable for
‘‘AvgInterDispDelay’’, ‘‘NetReadAvgDealy’’, and ‘‘AvgIn-
terAudioPlayedDelay’’.

Comparing the performance of CFL-1000 and FL-1000
directly, CFL-1000 is among the best performing methods
across nearly all tasks, with the exception of ‘‘WritesAvg’’.
Among CFL methods, in most cases, CFL-1000 and CFL-
100 perform equally well and they are the best performers,
which highlights effective handling of overfitting in CFL.
However, among FL methods, in some cases FL-10 is clearly
the best performer while in some other cases FL-100, and in
none of the cases FL-1000 is among the best performers. The
observations here point at the overfitting problem in FL.

2) USE CASE 2: 5G E2E RTT PERFORMANCE
PREDICTION
Figure 10.A shows the classification results in terms of f1-
score as the performance metric. Regarding the convergence

rate, both classes of methods, FL and CFL, show similar
characteristics.

Considering the performance of the methods over the
course of learning, it is shown that FL methods are largely
affected by overfitting which is reflected in the classifica-
tion accuracy; overfitting is most pronounced in FL-1000.
In comparison, for CFL there is no sign of overfitting and
the performance improves with the increase in the number of
epochs; CFL-1000 is shown to achieve the highest f1-score.

Comparing the performance of CFL-1000 and FL-1000
directly, CFL-1000 performs considerably better than FL-
1000; indeed FL-1000 is the worst performer among FL
methods whereas CFL-1000 is the best performer among
CFL methods.

3) USE CASE 3: IOT RTT PERFORMANCE PREDICTION
Figure 10.B shows the classification results in terms of f1-
score as the performance metric. Regarding the convergence
rate, FL and CFL show similar characteristics.

142 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

Considering the results over the course of learning, similar
observations can be made as in use case 2. Firstly, it is shown
that the FL methods are largely affected by overfitting while
CFL shows no sign of overfitting. Secondly, CFL-1000 is
shown to achieve the highest f1-score.

Comparing the performance of CFL-1000 and FL-1000
directly, CFL-1000 performs substantially better than
FL-1000.

4) USE CASE 4: UE COLLABORATIVE IMAGE
CLASSIFICATION
Figure 10.C shows the results for image classification on
FMNIST. In this experiment, the number of agents is varied
to reflect federations with different sizes. For the federation
of 2 agents, FL and CFL perform equally well. However,
importantly, as the federation grows in size from 2 agents
to 5, 50 and 100 agents, this is the CFL that benefits the most
from the added number of agents. For example, by increasing
the size of federation from 2 to 50 agents, the performance
of the best performing FL method goes from about 0.57 to
about 0.67 while the performance of the best performing CFL
method goes from about 0.55 to about 0.74.

Considering the results over the course of learning, as in
the previous use cases, there are two main observations.
Firstly, FL is largely affected by overfitting while CFL is only
marginally affected. For federations of smaller sizes, 2 and
5 agents, both FL and CFL show slight signs of overfitting.
As the federation grows in size to 50 and 100 agents, FL
shows clear signs of overfitting while CFL shows no sign of
overfitting. Secondly, CFL is shown to achieve the highest
f1-score as the federation grows in size.

Comparing the performance of CFL-1000 and FL-1000
directly, CFL-1000 outperforms FL-1000 where the improve-
ment becomes more notable as the federation grows in size.
Finally, across CFL methods, CFL-100 and CFL-1000 per-
form equally well and both are among the best performing
methods. The results once again show effective handling of
the overfitting, that is arbitrarily increasing the number of
epochs from 100 to 1000 (corresponding to CFL-100 and
CFL-1000) will not affect the optimality of the final solution
in a statistical sense. On the other hand, across FL methods,
performance of FL-100 differs from FL-1000 where in all
cases FL-100 is preferred to FL-1000 which is a sign of an
overfitting problem.

D. COMPARISON WITH PENALTY BASED METHODS
As discussed in Section II, while both family of techniques,
the penalty-based approach and the proposed congruent-
learning-based approach, aim at handling overfitting through
regularization, they achieve this in two different ways.
The penalty-based methods achieve the regularization effect
through optimizing the surrogate objective function (2)
whereas the proposed approach directly optimizes the orig-
inal objective function (1) and instead regularizes the learn-
able parameters through the application of the congruent
activation function. Importantly, the penalty based methods

require hyperparameter tuning of a penalty parameter which
dictates the strength of the regularization while the proposed
approach is free from such hyperparameter tuning.

In the following, we compare the performance and compu-
tational complexity of CFL against a penalty-based candidate
approach in selected experiments. Specifically, we consider
FedProx [19] as a well-known example of the penalty-based
methods and compare its performance against CFL on use
cases 2-4.

1) PERFORMANCE COMPARISON WITH FedProx
The method FedProx relies on the hyperparameter tuning of
a penalty term, referred to as the proximal term and denoted
by µ in [19]. One goal for this comparative study is to
compare the performance of CFL against FedProx in han-
dling overfitting, and further to demonstrate the need for the
hyperparameter tuning of the proximal term in FedProx and
its overall effect on the performance. The second goal is to
show that the congruent learning can be integrated into other
federated learning frameworks, such as FedProx. This is to
highlight that the proposed approach to handling overfitting
can be seen as complementary to the penalty-based family of
methods including FedProx.

With the above goals in mind, we explicitly compare
the performance of the following learning methods, namely:
(i) FL, the standard federated learning based on FedAvg
framework with no mechanism for handling overfitting; (ii)
FedProx as described in [19]; (iii) CFL based on FedAvg
framework; (iv) FedProxCFL, a variant of CFL based on
FedProx framework.

For FedProx and FedProxCFL, the proximal term
is varied and chosen from the non-exhaustive set of
µ ∈ {0.001, 0.01, 0.1, 1.} as recommended in [19]. We limit
the experiments to use cases 2-4 and compare the perfor-
mance of the above methods.

Figure 11 summarizes the results of the experiments for
use cases 2 and 3. Similarly, Fig. 12 summarizes the results
for use case 4 for the federations of 5 agents and 50 agents.
The first main observation is that FedProx can potentially
outperform FL for certain settings of the proximal term. As an
example, in use case 2, for the case of 10 epochs per round, the
proximal term µ = 0.01 is the best setting which results in a
noticeable gain over FL at the final round of federation (round
20) while for the case of 1000 epochs per round, µ = 0.1 is
the best setting. For use cases 3 and 4, similar observations
can be made. Table 6 summarizes the best settings of µ at
the final round of federation for FedProx and FedProxCFL.
As shown in this table, the optimal setting of the proximal
term depends on a number of factors, including the data type,
the number of epochs per round, and the size of federation.

The second main observation is that CFL either performs
equally as good or outperforms the best performing FedProx
in a majority of cases. An exception is in use case 2 for the
case of 10 epochs per round, Fig. 11.A.1. This is explained
by the fact that in this case, CFL is underfitted. As discussed
earlier, CFL requires that the number of epochs per round be

VOLUME 2, 2024 143

FIGURE 11. Classification performance evaluation on use cases 2 and 3 in terms of f1-score (values closer to
one are preferred). The figure compares the performance of FL, FedProx, CFL and FedProxCFL at selected
rounds. For instance, FedProxCFL-10 (0.1) indicates FedProxCFL trained using 10 epochs per round with
the proximal term µ = 0.1.

TABLE 6. Optimal settings of the proximal term µ for FedProx and FedProxCFL across use cases 2-4.

sufficiently large. As shown in Fig. 11.A.2, once the number
of epochs per round increases to 1000 epochs per round, CFL
is shown to outperform FedProx noticeably by effectively
regulating the additional complexity.

The third main observation is that there are cases where
the best performing FedProxCFL has a marginal advantage
over CFL. As an example, this is true in use case 4 where
FedProxCFL with the proximal term µ = 0.1 outperforms

144 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

FIGURE 12. Classification performance evaluation on use case 4 in terms of f1-score (values closer to one
are preferred). The figure compares the performance of FL, FedProx, CFL and FedProxCFL at selected
rounds. For instance, FedProxCFL-10 (0.1) indicates FedProxCFL trained using 10 epochs per round with
the proximal term µ = 0.1.

CFL marginally as shown in Fig. 12.A. The results here
suggest that while CFL can potentially gain from the inte-
gration with the penalty based method of FedProx, the gain is
marginal and it comes with the cost of hyperparameter tuning
of the proximal term. Table 6 shows that the performance of
FedProxCFL as in FedProx depends upon the choice of the
proximal term µ.

As reflected in the results, across all use cases, µ = 1
seems to be a poor setting for both FedProx and FedProxCFL

in the context of our experiments. This basically highlights
that the framework of FedProx is sensitive to the tuning
of the hyperparameter µ that controls the degree of model
fitness. Additionally, it can be seen that FedProxCFL for
µ = 1 performs worse than FedProx for µ = 1. This is due
to the fact that for FedProxCFL, there are effectively two
mechanisms in parallel controlling over-fitting at the local
phase of learning. The first mechanism is enabled by reg-
ulating the model parameters through congruent activation

VOLUME 2, 2024 145

TABLE 7. Complexity analysis for different learning methods.

functions, and the secondmechanism is enabled by regulating
the optimization loss function by setting the proximal term µ

which dictates the degree of regularization. Both mechanisms
discourage overfitting by slowing down learning. For larger
values of µ (such as µ = 1), for the case of FedProxCFL,
the local models are under-fitted to a more severe extent
than FedProx that only employs the second mechanism of
regularization. The key takeaway is that the optimal settings
ofµ are different for FedProx and FedProxCFL which can be
seen in Figs. 11,12 and Table 6.

2) COMPLEXITY ANALYSIS
In terms of computational complexity, when compared to
FL, both CFL and FedProx (as an example of a penalty-
based method) come with added complexity albeit in two
distinct ways. For CFL, the added complexity is at the
forward pass (forward propagation) as well as the back-
ward pass (backward propagation) due to the application
of the CongruentReLU on the model parameters, whereas
for FedProx the added complexity is in the backward pass
due to the added cost in performing error backpropaga-
tion through the penalty term in the surrogate objective
function (2).

Figure 13 compares the computational time for CFL
against FL and FedProx in terms of the average time needed
for the completion of the forward and backward computa-
tions at the training phase. At the backward pass, the error
backpropagation, CFL has a higher complexity than FL and
roughly similar complexity to FedProx. Even though all
methods contain models with the same number of parame-
ters, CFL and FedProx require additional backpropagation
steps which add to the computational time. At the forward
pass, CFL has a larger computational time than FedProx.
Considering computational time needed for the completion
of the forward and backward computations, CFL has a
larger computational complexity than FedProx and FL at the
training phase. However, given that CFL does not require
hyperparameter tuning, it might be preferred to FedProx.
Additionally, CFL can be applied to the cases where there is
no validation set while FedProx would require having access
to one.

At the inference which involves a single forward pass, CFL
has a larger complexity than FedProx. Table 7 lists the number
of Multiply-Accumulate Operations (MACs) at the inference
phase for the MLP model used in our experiments computed
using the tool developed in [47].
Finally, at each round of federation, the amount of infor-

mation transferred from the server to the agent and vice
versa is the same for all methods.; across all methods,
every agent receives only a single copy of the global
model.

FIGURE 13. Computational time at the forward and backward
propagation for different learning methods at the training
phase.

VI. DISCUSSION
Federated learning is already becoming prevalent in the net-
works and has been suggested by 3GPP Release 17 as an
alternative to exchanging raw training data amongst network
data analytics function (NWDAF) instances [48]. Addi-
tionally, its presence in future networks is expected to be
indispensable [49]. Given the expected increase in the number
of ML tasks and federations in the network, as well as the
dynamicity and flexibility in the network, manual search for
the best hyperparameters for each model will become infea-
sible or prohibitively costly. Therefore, automating federated
learning is becoming essential and as such there is a need
for federated learning methods that are robust to overfitting
and can achieve the robustness without reliance on time-
consuming and costly hyperparameter tuning that requires
availability of representative validation data. In this direction,
we introduced an approach for enhancing federated learning
in the network and communication domain by eliminating the
need to tune the degree of model fitness during local training.

More specifically, we introduced the concept of congru-
ent learning through introduction of congruent activation
functions as a class of similarity-promoting parameter acti-
vation functions. We hypothesized that congruent learning
in the context of federated learning—congruent federated
learning—enables a self-taught regularization mechanism
that refrains local models from overfitting to the local data,
resulting in improved convergence characteristics both in
terms of the convergence rate of the federation and the opti-
mality of the final solution.

To validate the essence of our solution, we considered the
standard federated averaging, FedAvg, as a baseline, referred
to as FL. We then constructed a variant that follows the same
approach during the global aggregation phase but differs in
using congruent learning at the local learning phase, referred
to as CFL. We then empirically evaluated the performance
of our approach in handling model complexity in our four
use cases across several tasks (a total of 11 regression and
classification tasks including 5G and IoT RTT prediction
and DC service performance prediction). These use cases
allowed us to evaluate our approach in scenarios where data
heterogeneity and limited access to labeled data samples for
training and validation are the main hurdles for federated
learning methods that rely on the hyperparameter tuning.

146 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

Additionally, we compared the performance of the pro-
posed solution, CFL, against a penalty-based method,
FedProx. The results of this comparative study showed that,
in the majority of cases, CFL performs either equally as
good or outperforms the best performing FedProx. We also
showed that the integration of CFL in FedProx framework,
named FedProxCFL, can lead to only a slight gain over CFL
provided that the proximal term is well-calibrated.

In our experiments, it was shown that the degree of
model fitness (model complexity) at the local learning phase
of FL has a consequential effect on the optimality of the
global model and convergence characteristics of the learning.
Contrary to FL, it was shown that the self-regularization
mechanism embedded in CFL greatly reduces overfitting and
,in nearly all cases, improves the performance characteristics,
where in some cases, the improvement was considerable (as
summarized by the relative gain in Table 5).
The improved results for CFL are achieved with added cost

of computational complexity. This is due to application of
the congruent activation functions to the optimizable model
parameters at all layers. However, the added complexity at
the training phase may be justified given that the robustness
to overfitting is achieved without reliance on the hyperparam-
eter tuning. Firstly, hyperparameter tuning necessities having
access to a representative validation dataset that is reflective
of the underlying (oracle) distribution of data; indeed, obtain-
ing such a validation dataset in some 6G use cases is not
even possible making hyperparameter tuning impracticable.
Secondly, hyperparameter tuning comes with added compu-
tational and communication overhead itself.

Regarding communication overhead, and potential nega-
tive impact on 6G network performance, congruent federated
learning does not increase the amount of information that
needs to be transferred at each round of federation. However,
it may help reducing communication overhead by relaxing the
need for hyperparameter tuning.

We laid out conditions for a parameter activation function
to act as a congruent activation function and provided an
example of which that satisfies those conditions, named Con-
gruentReLU, given by (4). Although CongruentReLU can be
used for different classes of neural networks, other congru-
ent activation functions might be more suitable for specific
classes of neural network architectures, such as recurrent neu-
ral nets. We leave design of such network-specific congruent
activation functions and evaluation of their performance in
the framework of congruent federated learning for the future
work.

In the analysis of the convergence characteristics of a feder-
ated learning solution, there are two main aspects to consider.
First, the optimality of the solution after convergence which
is indicative of the performance, and second, the conver-
gence rate which indicates how quickly convergence has been
achieved. We leave the theoretical study of the convergence
characteristics of CFL to the future work. From a purely
observational point of view, in our experiments in Section V,
it can be seen that CFL achieves faster convergence than

FL with improved optimality, reflected in the performance
metrics, in the majority of cases but not in all cases. How-
ever, theoretical analysis is needed to establish the necessary
conditions where CFL is guaranteed to outperform FL.

VII. RELATED WORK
Hyperparameter optimization in federated learning is receiv-
ing growing interest, [50], [51], [52], [53], [54]. Authors
in [53] discuss challenges in hyperparameter optimization
in federated learning with respect to the availability of a
federated validation set, resource limitations, and the cost
associated with hyperparameter tuning. In another study
in [54], authors propose an adaptive method, referred to as
AMBLE that aims at adjusting different influential factors
on the model complexity at the local phase of training (such
as, number of epochs, batch size and learning rate) with the
aim of improving the convergence rate and the performance.
However, the method assumes existence of a validation set
for the purpose of hyperparameter tuning through cross
validation. This group of methods aims at construction of
frameworks for structured and efficient hyperparameter tun-
ing. While they are not directly related to our work, they
highlight the influential role that the hyperparameters play
in the overall performance of the federated learning methods.
The works in this area can be seen as a motivation towards
development of federated learning techniques that do not
require extensive hyperparameter tuning.

Overfitting problem is a known challenge in machine
learning affecting the generalization capability of the mod-
els [55]; in this regard, federated learning is of no exception.
There has been recent effort in reducing the overfitting prob-
lem in federated learning. Existing solutions in [19], [20],
[21], [22], [23], [24], [25], [26], [27], and [28] are based
on a class of heuristic techniques known as penalty meth-
ods that optimize a surrogate objective function as defined
in Section II and in (2). The surrogate objective function
relaxes the constrained optimization problem in (1) into
an unconstrained one by penalizing the objective function
with a penalty parameter that dictates the strength of the
penalization. In the following, we provide examples of these
solutions. In FedProx [19], the penalty function takes on a
simple form and it is the Euclidean norm between the local
model parameters and the global (aggregated) model param-
eters. In Scaffold [20], the penalty function is relatively more
involved and it is a measure of the drift between the param-
eters. Inspired by Scaffold, in FedDC [21], the objective loss
relies on a hyperparameter as a control variable that dynami-
cally bridges the gap between the local model and the global
model with the learned local drift variable. In MOON [22],
the penalty function is a model-contrastive loss added to the
local optimization loss measuring similarity between model
representations. In ConTre [23] (as in MOON), a contrastive
regularization loss is added to the local optimization loss that
uses a temperature coefficient to adjust the regularization
strength. In FedAlign [24], authors propose a distillation-
based regularization that aims at regularizing the Lipschitz

VOLUME 2, 2024 147

constants of the final block in a network that is the portion
of the network most prone to overfitting. This is achieved by
adding a penalty term to the local objective function that is the
mean squared error between the approximated Lipschitz con-
stant vectors. However, as in other penalty-based techniques,
it requires tuning of a penalty parameter that balances out the
two competing objectives. In FedBN [25], authors propose
use of the local batch normalization to alleviate the feature
shift before averaging models where the scaling parameter
of the batch normalization requires hyperparameter tuning.
Other examples of penalty-based regularization techniques
are GradAug [26], StochasticDepth [27], and Mixup [28]
which all rely on some penalty parameters that dictate the
strength of regularization. Although the class of penalty-
based methods could be useful in reducing overfitting, in the
scope of this paper that is concerned with automation in fed-
erated learning, the need for data-dependant hyperparameter
tuning of the penalty parameters is a bottleneck which makes
their application limited to the cases where existence of a
representative validation dataset can be assumed.

The degree of model fitness at the local phase of federated
learning has been previously shown to be an influential factor
dictating the optimal properties of the solution. In this regard,
in [33], authors carried out experiments using several state-of-
the-art federated learning approaches, namely, FedAvg [17],
FedProx [19], Scaffold [20], and FedNova [56], on non-IID
data sets with different number of local epochs per round.
The results show that the number of local epochs can have
a large effect on the accuracy of the existing algorithms. The
optimal value of the number of local epochs is shown to be
particularly sensitive for federation of agents with non-IID
data distributions. A similar observation was made in [34]
where authors showed that training federated learningmodels
that perform reasonably well in non-IID and heterogeneous
settings is challenging. Importantly, it was shown that the
performance of the federated model depends largely on the
degree of model fitness at the local training phase, determined
by the number of training epochs.

VIII. CONCLUSION
Future 6G networks are envisioned to be AI-native with ML
functionalities used pervasively as enablers for improving
and automating a large variety of network- and service-
management tasks and for providing AI capabilities as a
service. Further, federated learning is already being con-
sidered by 3GPP as a critical component for effective use
of distributed resources without the need for sharing data.
However, automation is essential for configuration of the
vast number of models and their hyperparameters as they
may depend on data availability, compute capabilities, model-
latency requirements, and network dynamicity.

In this paper, we proposed congruent federated learning as
a method of distributed learning that is robust to overfitting
and achieves the robustness without reliance on hyperpa-
rameter tuning. Learning through congruence was enabled
via the introduction of the congruent activation functions

as a class of similarity-promoting activation functions that
are applied as masks to the parameters of a neural network.
Importantly, such parameter activation functions enable a
self-taught mechanism that refrains local models from over-
fitting to their local data via penalizing contrasts in between
the parameters of the local models and the global model.

Implementation of the congruent activation functions and
their integration into the existing federated learning frame-
works require minimal effort. We used the standard federated
averaging as an example and constructed a variant of it that
uses congruent learning at the local learning phase. We then
evaluated both variants on multiple use cases relevant for 6G
networks with different degrees and profiles of heterogeneity,
namely, service-performance prediction on data traces col-
lected from a data center, end-to-end RTT prediction on data
traces from a 5G-mmWave testbed, RTT prediction on data
traces from an IoT testbed, and user equipment image classi-
fication. When compared to the standard federated learning,
in the majority of evaluated scenarios, it was shown that the
proposed method of learning can effectively, and automati-
cally, reduce overfitting and improve optimal properties of
the solutions resulting in improved performance metrics—a
relative gain of about 21% averaged across all use cases.

REFERENCES
[1] R. Boutaba et al., ‘‘A comprehensive survey on machine learning for net-

working: Evolution, applications and research opportunities,’’ J. Internet
Services Appl., vol. 9, no. 1, pp. 1–99, Dec. 2018.

[2] J. Du, C. Jiang, J.Wang, Y. Ren, andM. Debbah, ‘‘Machine learning for 6G
wireless networks: Carrying forward enhanced bandwidth, massive access,
and ultrareliable/low-latency service,’’ IEEE Veh. Technol. Mag., vol. 15,
no. 4, pp. 122–134, Dec. 2020.

[3] I. F. Akyildiz, A. Kak, and S. Nie, ‘‘6G and beyond: The future
of wireless communications systems,’’ IEEE Access, vol. 8,
pp. 133995–134030, 2020.

[4] L. U. Khan, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong, ‘‘6G wireless
systems: A vision, architectural elements, and future directions,’’ IEEE
Access, vol. 8, pp. 147029–147044, 2020.

[5] H. Yang, A. Alphones, Z. Xiong, D. Niyato, J. Zhao, and K. Wu,
‘‘Artificial-intelligence-enabled intelligent 6G networks,’’ IEEE Netw.,
vol. 34, no. 6, pp. 272–280, Nov. 2020.

[6] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, ‘‘Machine learning for
networking: Workflow, advances and opportunities,’’ IEEE Netw., vol. 32,
no. 2, pp. 92–99, Mar. 2018.

[7] M. Giordani, M. Polese, M.Mezzavilla, S. Rangan, andM. Zorzi, ‘‘Toward
6G networks: Use cases and technologies,’’ IEEE Commun. Mag., vol. 58,
no. 3, pp. 55–61, Mar. 2020.

[8] M. A. Uusitalo et al., ‘‘6G vision, value, use cases and technologies
from European 6G flagship project Hexa-X,’’ IEEE Access, vol. 9,
pp. 160004–160020, 2021.

[9] Z. Zhang et al., ‘‘6G wireless networks: Vision, requirements, architecture,
and key technologies,’’ IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28–41,
Sep. 2019.

[10] W. Saad, M. Bennis, and M. Chen, ‘‘A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,’’ IEEE
Netw., vol. 34, no. 3, pp. 134–142, May 2020.

[11] O. Nassef, W. Sun, H. Purmehdi, M. Tatipamula, and T. Mahmoodi, ‘‘A
survey: Distributed machine learning for 5G and beyond,’’ Comput. Netw.,
vol. 207, Apr. 2022, Art. no. 108820.

[12] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato, ‘‘Federated
learning for 6G communications: Challenges, methods, and future direc-
tions,’’ China Commun., vol. 17, no. 9, pp. 105–118, Sep. 2020.

[13] S. A. Khowaja, K. Dev, P. Khowaja, and P. Bellavista, ‘‘Toward energy-
efficient distributed federated learning for 6G networks,’’ IEEE Wireless
Commun., vol. 28, no. 6, pp. 34–40, Dec. 2021.

148 VOLUME 2, 2024

Taghia et al.: Congruent Learning for Self-Regulated Federated Learning in 6G

[14] M. Al-Quraan et al., ‘‘Edge-native intelligence for 6G communications
driven by federated learning: A survey of trends and challenges,’’ IEEE
Trans. Emerg. Topics Comput. Intell., vol. 7, no. 3, pp. 957–979, Jun. 2023,
doi: 10.1109/TETCI.2023.3251404.

[15] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, ‘‘Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,’’ IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2nd Quart., 2021.

[16] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, ‘‘Federated learning: Strategies for improving communica-
tion efficiency,’’ CoRR, vol. abs/1610.05492, 2016. [Online]. Available:
http://arxiv.org/abs/1610.05492

[17] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from decentralized
data,’’ in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), 2017, pp. 1–10.

[18] R. Shokri and V. Shmatikov, ‘‘Privacy-preserving deep learning,’’ in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput., Sep. 2015,
pp. 909–910.

[19] T. Li, A. K. Sahu,M. Zaheer,M. Sanjabi, A. Talwalkar, andV. Smith, ‘‘Fed-
erated optimization in heterogeneous networks,’’ in Proc. Mach. Learn.
Syst., vol. 2, pp. 429–450, Mar. 2020.

[20] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
‘‘Scaffold: Stochastic controlled averaging for federated learning,’’ in
Proc. Int. Conf. Mach. Learn., 2020, pp. 5132–5143.

[21] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, ‘‘FedDC: Federated
learning with non-IID data via local drift decoupling and correction,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 10102–10111.

[22] Q. Li, B. He, and D. Song, ‘‘Model-contrastive federated learning,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 10708–10717.

[23] Z. Chen et al., ‘‘Contractible regularization for federated learning on non-
IID data,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2022,
pp. 61–70.

[24] M. Mendieta, T. Yang, P. Wang, M. Lee, Z. Ding, and C. Chen, ‘‘Local
learning matters: Rethinking data heterogeneity in federated learning,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 8387–8396.

[25] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, ‘‘FedBN: Feder-
ated learning on non-IID features via local batch normalization,’’ 2021,
arXiv:2102.07623.

[26] T. Yang, S. Zhu, and C. Chen, ‘‘GradAug: A new regularization method
for deep neural networks,’’ 2020, arXiv:2006.07989.

[27] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, ‘‘Deep net-
works with stochastic depth,’’ in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 646–661.

[28] H. Zhang, M. Cissé, Y. Dauphin, and D. Lopez-Paz, ‘‘mixup: Beyond
empirical risk minimization,’’ 2017, arXiv:1710.09412.

[29] P. Kairouz et al., ‘‘Advances and open problems in federated learning,’’
2021, arXiv:1912.04977.

[30] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[31] S. Zawad et al., ‘‘Curse or redemption? How data heterogeneity affects the
robustness of federated learning,’’ in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 10807–10814.

[32] H. Wang, Z. Kaplan, D. Niu, and B. Li, ‘‘Optimizing federated learning on
non-IID data with reinforcement learning,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jul. 2020, pp. 1698–1707.

[33] Q. Li, Y. Diao, Q. Chen, and B. He, ‘‘Federated learning on non-IID data
silos: An experimental study,’’ 2021, arXiv:2102.02079.

[34] X. Lan et al., ‘‘Federated learning for performance prediction in multi-
operator environments,’’ ITU J. Future Evolving Technol., vol. 4, no. 1,
pp. 166–177, 2023.

[35] R. Yanggratoke et al., ‘‘A service-agnostic method for predicting service
metrics in real-time,’’ Int. J. Netw. Manage., vol. 28, no. 2, p. e1991, 2018,
doi: 10.1002/nem.1991.

[36] F. S. Samani. (2021). Data Traces for Efficient Learning
on High-Dimensional Operational Data. [Online]. Available:
https://github.com/foroughsh/KTH-traces

[37] A. Rao et al., ‘‘Prediction and exposure of delays from a base station
perspective in 5G and beyond networks,’’ in Proc. ACM SIGCOMMWork-
shop 5G Beyond Netw. Meas., Modeling, Use Cases. New York, NY, USA:
Association for Computing Machinery, Aug. 2022, pp. 8–14.

[38] NR; Physical Layer Procedures for Data, 3GPP document Version 16.5.0,
3rd Generation Partnership Project (3GPP), Technical Specification (TS),
2021.

[39] NR; Physical Layer Measurements, 3GPP document Version 16.5.0, 3rd
Generation Partnership Project (3GPP), Technical Specification (TS),
2021.

[40] NR; Medium Access Control (MAC) Protocol Specification, 3GPP docu-
ment Version 16.5.0, 3rd Generation Partnership Project (3GPP), Technical
Specification (TS), 2021.

[41] J. Postel. (1981). Internet Control Message Protocol. IETF RFC 792.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc792.txt

[42] D. C. Nguyen et al., ‘‘6G Internet of Things: A comprehensive
survey,’’ IEEE Internet Things J., vol. 9, no. 1, pp. 359–383,
Jan. 2022.

[43] M. Schuss, C. A. Boano, M.Weber, and K. Römer, ‘‘A competition to push
the dependability of low-power wireless protocols to the edge,’’ in Proc.
EWSN, 2017, pp. 54–65.

[44] K. Hedayat, R. M. Krzanowski, A.Morton, K. Yum, and J. Babiarz, A Two-
Way Active Measurement Protocol (TWAMP), document RFC5357, 2008,
pp. 1–26.

[45] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2015, arXiv:1412.6980.

[46] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,’’ Aug. 2017,
arXiv:1708.07747, doi: 10.48550/arXiv.1708.07747.

[47] V. Sovrasov. (2023). ptflops: A FLOPs Counting Tool for
Neural Networks in PyTorch Framework. [Online]. Available:
https://github.com/sovrasov/flops-counter.pytorch

[48] Study on Enablers for Network Automation for the 5G System (5GS); Phase
2, Standard 3GPP Version 17.0.0, 3rd Generation Partnership Project
(3GPP), Technical Specification Group Services and System Aspects,
2020.

[49] E. Muscinelli, S. S. Shinde, and D. Tarchi, ‘‘Overview of distributed
machine learning techniques for 6G networks,’’ Algorithms, vol. 15, no. 6,
p. 210, Jun. 2022.

[50] H. Zhang, M. Zhang, X. Liu, P. Mohapatra, and M. DeLucia, ‘‘FedTune:
Automatic tuning of federated learning hyper-parameters from system
perspective,’’ in Proc. IEEE Mil. Commun. Conf. (MILCOM), Nov. 2022,
pp. 478–483.

[51] Y. Zhou, P. Ram, T. Salonidis, N. Baracaldo, H. Samulowitz, and
H. Ludwig, ‘‘FLoRA: Single-shot hyper-parameter optimization for fed-
erated learning,’’ 2021, arXiv:2112.08524.

[52] Z. Wang, W. Kuang, C. Zhang, B. Ding, and Y. Li, ‘‘FedHPO-B:
A benchmark suite for federated hyperparameter optimization,’’ 2022,
arXiv:2206.03966.

[53] M. Khodak et al., ‘‘Federated hyperparameter tuning: Challenges, base-
lines, and connections to weight-sharing,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 19184–19197.

[54] J. Park, D. Yoon, S. Yeo, and S. Oh, ‘‘AMBLE: Adjusting mini-batch and
local epoch for federated learning with heterogeneous devices,’’ J. Parallel
Distrib. Comput., vol. 170, pp. 13–23, Dec. 2022.

[55] R. Roelofs et al., ‘‘A meta-analysis of overfitting in machine learning,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, Inc., 2019.

[56] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, ‘‘Tackling the
objective inconsistency problem in heterogeneous federated optimization,’’
in Proc. Adv. Neural Inf. Process. Syst. (NIPS), vol. 33, Dec. 2020,
pp. 7611–7623.

VOLUME 2, 2024 149

http://dx.doi.org/10.1109/TETCI.2023.3251404
http://dx.doi.org/10.1002/nem.1991
http://dx.doi.org/10.48550/arXiv.1708.07747

