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ABSTRACT The latest Satellite Communication (SatCom) missions are characterized by a fully reconfig-
urable on-board software-defined payload, capable of adapting radio resources to the temporal and spatial
variations of the system traffic. As pure optimization-based solutions have shown to be computationally
tedious and to lack flexibility, Machine Learning (ML)-based methods have emerged as promising alter-
natives. We investigate the application of energy-efficient brain-inspired ML models for on-board radio
resource management. Apart from software simulation, we report extensive experimental results leveraging
the recently released Intel Loihi 2 chip. To benchmark the performance of the proposed model, we implement
conventional Convolutional Neural Networks (CNN) on a Xilinx Versal VCK5000, and provide a detailed
comparison of accuracy, precision, recall, and energy efficiency for different traffic demands. Most notably,
for relevant workloads, Spiking Neural Networks (SNNs) implemented on Loihi 2 yield higher accuracy,
while reducing power consumption by more than 100× as compared to the CNN-based reference platform.
Our findings point to the significant potential of neuromorphic computing and SNNs in supporting on-board
SatCom operations, paving the way for enhanced efficiency and sustainability in future SatCom systems.

INDEX TERMS Energy-efficient, neuromorphic computing, radio resource management, satellite commu-
nication, spiking neural networks.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION

SATELLITE Communications (SatCom) have become
increasingly important in recent years due to the surge

in global connectivity demands. With the integration of ter-
restrial systems like 6G (Sixth-Generation) and the pressing
need to reduce the digital divide and obtain ubiquitous cover-
age, SatCom plays a vital role in bridging the communication

gap worldwide [1]. However, the growing traffic demand in
SatCom systems presents significant challenges in effectively
managing the allocation of radio resources to meet Quality-
of-Service (QoS) requirements, while minimizing resource
utilization [2].
Conventional SatCom systems typically employ static

multi-beam configurations with fixed bandwidth and power
allocations. These systems are incapable of adapting to the
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dynamic nature of traffic demands. As a result, resources
may be wasted, while user demands may be left unful-
filled. Recognizing the temporal and spatial variations in
demand, software-defined payloads have emerged, offering
unprecedented flexibility and adaptability in Radio Resource
Management (RRM) for SatCom [3].

Software-defined payloads have revolutionized the Sat-
Com landscape by providing fully reconfigurable systems
capable of dynamically allocating power and bandwidth
resources. The advent of these payloads has driven the
need for effective RRM techniques to optimize resource
allocation and ensure efficient utilization. While traditional
optimization-based solutions have been explored for RRM,
they are often computationally cumbersome and lack the
required flexibility to address the diverse and dynamic traffic
patterns encountered in SatCom systems [4].

In recent years, Machine Learning (ML) algorithms have
emerged as a promising alternative to conventional optimiza-
tion approaches for RRM in SatCom [5], [6]. ML-based
solutions not only offer the potential to adaptively learn
and predict traffic patterns, but also contribute to accelerate
complex RRMalgorithmics and bring adaptation and flexibil-
ity to static optimization solutions. However, implementing
ML algorithms on board may be problematic due to the
potentially high energy budgets incompatible with satellites’
available resources.

B. CONTRIBUTIONS
To address this problem, this paper investigates neuromor-
phic computing as an alternative to conventional neural
network-based computing platforms to enhance the effi-
ciency and sustainability of on-board SatCom operations [7]
(see Fig. 1). Neuromorphic Processors (NPs) represent a
new class of computing devices inspired by the human brain
architecture and computational principles [8]. They offer
unique advantages in low terms of power consumption, high
parallelism, and real-time processing capabilities [9], [10].
Leveraging these benefits, NPs hold significant promise for
enabling energy-efficient RRM on-board satellites.

To provide empirical evidence and benchmark the per-
formance of NPs, we conduct experiments using Intel’s
cutting-edge neuromorphic processor, Loihi 2. Benchmark-
ing is carried out by comparing the accuracy, precision,
recall, and energy efficiency of NPs with conventional plat-
forms such as Xilinx Versal VCK5000 under varying traffic
demands for the problem of RRM. Particularly notewor-
thy are the results obtained using Spiking Neural Networks
(SNNs) implemented on the Loihi processor, demonstrating
superior accuracy while reducing power consumption by
more than a factor of 100 compared to the reference platform
based on Convolutional Neural Networks (CNNs).

The principal contributions of this paper are summarized
as follows:

• We investigate the use of neuromorphic computing
in the context of on-board satellite operations. Our

investigation is among the first to systematically assess
the impact of employing NPs in SatCom for efficient
RRM, addressing the key limitations of conventional
neural network-based platforms in terms of power and
computational resource constraints.

• Through rigorous benchmarking, we demonstrate that
SNNs implemented on Intel’s advanced neuromorphic
processor, Loihi 2, deliver a remarkable reduction in
power consumptionexceeding a factor of 100 while
maintaining superior accuracy, precision, and recall
metrics when compared to the conventional CNNs
implemented on Xilinx Versal VCK5000 platform.

• We provide empirical data and analysis, which were
previously scarce, showcasing the tangible benefits of
neuromorphic computing in a real-world satellite com-
munications setting. This includes detailed comparisons
under varying traffic demands, offering insights into the
scalability and adaptability of NPs for RRM problems.

• The results of our experiments serve as a proof-of-
concept benchmark for the deployment of neuromorphic
computing in space applications, potentially revolution-
izing RRM in SatCom by significantly enhancing the
efficiency and sustainability of on-board operations.

• Lastly, our study aids in bridging the gap between the
burgeoning field of neuromorphic computing and its
practical application in the space sector.

C. RELATED WORK
1) MACHINE LEARNING FOR RRM IN SatCom
The efficient implementation of on-board RRM is crucial for
optimizing performance and ensuring seamless connectivity
in SatCom systems. In recent years, ML techniques have
gained significant attention for resource management in var-
ious SatCom scenarios [11], [12]. A study by [13] focused
on ML-based resource management in multi-beam Geosta-
tionary Earth Orbit (GEO) satellite systems. The authors
analyze different ML techniques applied to systems with
power, bandwidth, and/or beamwidth flexibility and systems
with beam hopping capabilities. Furthermore, reference [14]
proposes a combined learning and optimization approach
to address a Mixed-Integer Convex Programming (MICP)
problem in satellite RRM. The problem is decomposed
into classification-like tasks and power control optimization,
respectively solved by dual Deep Neural Networks (DNNs)
and convex optimization.

Another notable work by Deng et al. [15] focuses on
resource management in next-generation Heterogeneous
Satellite Networks (HSNs), and introduces an innovative
framework that encourages cooperation among independent
satellite systems tomaximize resource utilization. DeepRein-
forcement Learning (DRL) optimizes resource allocation
and supports intercommunication between different satellite
systems. In a related study, Ferreira et al. [16] proposed a
feasible solution for real-time, single-channel resource allo-
cation problems usingDRL. Their study discretized resources
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before allocation, which may not be optimal for continuous
resources like satellite power. Luis et al. [17] addressed this
issue by exploring a DRL architecture with constant, stateful
action spaces for energy allocation, avoiding the need for
discretization. Liu et al. [18], [19] presented a DRL-based
Dynamic Channel Allocation (DRL-DCA) algorithm for
multi-beam satellite systems, achieving lower blocking prob-
abilities than traditional algorithms. Finally, Liao et al. [6]
also introduced a game model and a DRL-based bandwidth
allocation framework for satellite communication scenarios,
dynamically allocating bandwidth in each beam. The pro-
posed method effectively handles time-varying traffic and
large-scale communication, albeit limited to managing a sin-
gle resource on the satellite.

2) NEUROMORPHIC COMPUTING FOR
COMMUNICATIONS
The application of neuromorphic processors to communi-
cations has gained significant interest in recent years as a
low-power alternative to traditional systems. The work [20]
explores the application of SNNs for learning and infer-
ence in battery-powered devices connected over bandwidth-
constrained channels. It summarizes activity on federated
learning for distributed training of SNNs [21] and the inte-
gration of neuromorphic sensing, SNNs, and pulse radio
technologies for low-power remote inference [22]. The recent
references [23], [24] generalized wireless neuromorphic
communications to multi-access channels and introduced the
concept of Neuromorphic Integrated Sensing And Communi-
cations (N-ISAC). N-ISAC utilizes a common impulse radio
waveform for transmitting digital information and detecting
radar targets, employing an SNN for decoding and tar-
get detection. The optimization of SNN operation balances
data communications and radar sensing performance met-
rics, showcasing the synergies and trade-offs between these
applications.

The recently presented work in [25] addresses the need
for innovative spectrum monitoring techniques due to the
growing Internet of Things (IoT) and spectrum congestion.
It presents a novel approach using SNNs centered on image
segmentation. This method outperforms traditional energy
detection methods in detection efficiency and performance,
and future work will aim to improve it with ML for better
feature extraction and segmentation.

3) NEUROMORPHIC COMPUTING FOR SatCom
While the field of neuromorphic learning for communications
is still in its infancy, there is a growing interest in its applica-
tions within the space sector due to its high energy efficiency
and promising performance [26]. Both academia and industry
have made great strides in developing non-space applications
for neuromorphic computing, which is a milestone that the
space industry can leverage as a ‘‘spin-off’’ technology.

The work presented in [27] discusses neuromorphic sys-
tems, which mimic biological neural networks and are

ideal for low-power computing. These systems are par-
ticularly well suited for space applications because of
their low power requirements and resilience to space chal-
lenges, such as resource scarcity and radiation. The arti-
cle highlights the potential of neuromorphic devices to
improve the efficiency and effectiveness of space mis-
sions, with previous studies demonstrating their capabil-
ity in tasks such as optical flow sensing for spacecraft
landing.

Recent research initiatives further highlight the increasing
interest in exploring the potential benefits of neuromorphic
computing. U.S National Aeronautics and Space Administra-
tion (NASA) has launched of TechEdSat-13, equipped with
Intel Loihi neuromorphic processor, into Low Earth Orbit
(LEO) in 2022 is a testament to their commitment to testing
new capabilities for future Artificial Intelligence (AI) sci-
ence and engineering applications in space [28]. Additionally,
the European Space Agency (ESA) initiated an Advanced
Research in Telecommunications Systems (ARTES) Future
Preparation (FP) activity in 2021 [29], focusing on exploring
the use of neuromorphic computing for SatCom systems,
underscoring the significance of this technology within the
space sector.

Our previous work, published in 2022, highlights the
potential use cases and applications of neuromorphic pro-
cessors for SatCom [7]. Most recently, the publication [30]
highlights the energy limitations in satellite networks due to
the dependence on solar energy as the only power source,
as well as the lack of efficient and high-performance pro-
cessors to run AI algorithms, which restrict the use of AI
techniques in orbit. The authors note the need for new
AI algorithms such as SNNs and specialized hardware to
achieve resilient LEO satellite constellations for IoT. More
specifically, the authors have discussed what is involved in
highly dynamic channel prediction, spectrum sensing and
classification, signal detection and demodulation, satellite
and inter-satellite access network optimization, and network
security, while outlining future paradigms for these mech-
anisms in practical networks. In this sense, Neuromorphic
processors, such as Loihi [31], are, in fact, particularly
well-suited for processing sparse time series data since their
energy requirements are proportional to the number of emit-
ted spikes, which occur only in the presence of relevant
events.

D. ORGANIZATION
The document is structured as follows. Section II provides a
detailed overview of the system model, covering the problem
definition and the traffic demand model. Section III discusses
our benchmark approach based on CNNs. In Section IV,
we describe the approach based on neuromorphic computing.
Section V discusses the implementation of both models on
the respective hardware. Section VI presents experimental
results, showing the superiority of the neuromorphic com-
puting approach for practical workloads. Finally, Section VII
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TABLE 1. On-board RRM for flexible payload scenario.

offers a detailed analysis of the results and draws some con-
clusions.

II. SYSTEM MODEL
As illustrated in Fig. 1, the system architecture comprises
a flexible, Software-Defined Radio (SDR) satellite payload
that allows for adjustable bandwidth and power allocation
to each beam. The management of communication resources
is dynamically adapted in response to changes in traffic
demand. Specifically, adopting a data-driven ML-based solu-
tion, we focus on designing ML models that take the traffic
demand over the service area as input, and output an opti-
mized resource configuration. After offline training, the ML
payload controller can be deployed on board the satellite for
real-time inference. This data-driven architecture offers the
advantage of reduced processing times [32]. Table 1 provides
an overview of the main characteristics of the setting under
study.

In more detail, we consider a GEO high-throughput satel-
lite system consisting of a single multibeam satellite that
provides coverage to a wide region of Earth through B
spot-beams. We focus on the forward link, consisting of
uplink feeder and downlink user links, and we assume a
total of K single-antenna User Terminals (UTs) distributed
across the satellite coverage area. The considered payload
can flexibly manage power using a Traveling-Wave Tube
Amplifier (TWTA) with adaptive Input Back-Off (IBO). Fur-
thermore, it manages spectrum utilization via a channelizer
on board that separates signals into frequency blocks and
rearranges them to achieve flexible bandwidth allocations and
to avoid co-channel beam interference, frequency reuse is
assumed [13].

A. PROBLEM STATEMENT
The heterogeneous distribution of traffic demands across the
satellite beams and over the satellite’s lifetime motivates
the use of dynamic RRM [3]. The objective of RRM is to
efficiently allocate available bandwidth and power resources
to minimize the discrepancy between the offered capacity Cb

τ

and the requested capacity Rbτ on each b-th beam during any
time slot τ .

The offered capacity Cb
τ [bps] in the b-th beam during time

slot τ can be calculated as

Cb
τ = Wb

τ · κbτ , (1)

where κbτ [bps/Hz] is the spectral efficiency of the selected
Modulation and Coding (ModCod) scheme, and Wb

τ [Hz]
denotes the bandwidth allocated to b-th beam.
The spectral efficiency κbτ depends on the Carrier-to-

Interference-plus-Noise Ratio (CINR) γ bτ of the b-th beam
at slot τ . Accordingly, we write it as a generic function κb =

f (γb), where f (·) denotes the mapping between CINR and the
selected ModCod scheme, which can be found in standards
such as Digital Video Broadcasting Satellite Second Genera-
tion (DVB-S2) [33].
The CINR γ bτ in turn depends on the power Pbτ [W] and

bandwidth Wb
τ [Hz] allocated to the b-th beam. In particular,

we have

γ bN ,τ =
Pbτ |h

b
|
2

Ibτ + N0Wb
τ

, (2)

whereN0 is the power spectral density of noise, and |hb|2 rep-
resents the channel gain for beam b. For the latter, we use the
standard model

|hbτ |
2

=
GSAT

(
θbτ

)
GRX,max(

4πDbτ /λ
)2 Lbτ , (3)

where Dbτ is the distance between the satellite and b-th beam
center on the ground; λ indicates the wavelength; Lbτ denotes
the shadowing and atmospheric gas losses; and the satellite
off-boresight transmit angle to the different beams is θbτ . The
variables GSAT (θ) and GRX,max denote the satellite antenna
gain towards a specific off-boresight angle θ and the user
terminal receive antenna gain, respectively. The user terminal
antenna is assumed to point towards the GEO satellite, and
therefore, the received antenna gain is fixed and equal to the
maximum supported by the receiver’s antenna.

Inspired by [34], our goal is to use minimal power and
spectral bandwidth to match the offered capacity given in (1)
to the aggregated traffic demand Rbτ [bps] of each beam b
at each particular time instant τ . In particular, focusing on a
specific time slot τ , the objective function can be formulated
as

U (Pτ ,Wτ ) = β0

B∑
b=1

|Cb
τ − Rbτ | − β1

B∑
b=1

Pbτ − β2

B∑
b=1

Wb
τ ,

(4)

where Pτ and Wτ denote the set of power and bandwidth
allocation variables {Pbτ } and {Wb

τ }, respectively. The first
term in (4) denotes themismatch between the offered capacity
Cb

τ and the requested capacity Rbτ . The second term facilitates
the minimization of the total transmit power of the satellite
system, i.e.

∑B
b=1 P

b
τ . Finally, the third term prioritizes solu-

tions in which the total bandwidth
∑B

b=1W
b
τ allocated to the

beams is minimized.
The hyperparameters β0 ≥ 0, β1 ≥ 0 and β2 ≥ 0 deter-

mine the relative weights of three terms in (4). The relative
importance of the terms should reflect the priorities of the
resource management system. For example, if the main con-
cern is to minimize the discrepancy between offered and
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FIGURE 1. On-board resource management for flexible payload in a multibeam satellite.

requested capacity, hyperparameter β0 should be larger than
β1 and β3. Alternatively, if it is crucial to reduce power and
bandwidth, the respective weights should be increased. These
choices depend largely on the specific operational objectives
of the satellite communication system.

The objective function (4) is minimized under total band-
width constraints and total system power constraints as

minimize
Pτ ,Wτ

U (Pτ ,Wτ )

s.t.
∑B

b=1
Pbτ ≤ Pmax∑B

b=1
Wb

τ ≤ Wmax. (5)

The objective (4) includes terms supporting power and band-
width minimization so as to potentially reduce the power and
bandwidth consumption beyond the upper bounds imposed
by the constraints in (5).
We assume that power and bandwidth variables Pbτ andW

b
τ

are to be selected within discrete sets Pτ = {P1,P2, . . . ,PN }

and Wτ = {W1,W2, . . . ,WM } of feasible solutions, impos-
ing the additional constraints Pbτ ∈ Pτ and Wb

τ ∈ Wτ . As a
result, problem (5) is of combinatorial nature, as it involves
the selection of variables from a finite set of options, and its
complexity scales exponentially with the number of beams.
Since the aggregated beam demands Rbτ generally change
over time, problem (5) needs to be solved anytime that there is
a relevant change in the traffic profile, resulting in an update
on the power and bandwidth assignment.

B. TRAFFIC MODEL
In order to model the requested capacity Rbτ , we make
use of the traffic simulator developed by University
of Luxembourg and presented in [35], which integrates

population, aeronautical, and maritime data to accurately
model traffic demand and distribution within a specific ser-
vice area. As depicted in Fig. 2, first, the population dataset
considers the distribution of broadband Fixed Satellite Ser-
vice (FSS) terminals, encompassing the fundamental spatial
patterns of FSS traffic. The population data has been obtained
from the NASA Socioeconomic Data and Applications and
Data Center (SEDAC) population density database [36].
Secondly, the simulator incorporates real variations in aero-
nautical traffic by utilizing data extracted from an anonymous
and unfiltered flight tracking source [35], [37]. This inclusion
enables the examination of the impact of flight volume on
the geographical density of traffic at different time inter-
vals, thereby ensuring an accurate representation of the
spatio-temporal distribution of aeronautical traffic.

Lastly, the maritime dataset accounts for the potential
demand for satellite connectivity through ship communi-
cations, which exhibit significant changes over time and
location. To capture this, the simulator employs a dataset
obtained from Vessel Traffic Services (VTS), comprising
vessel positions and maritime traffic detected by the global
Automatic Identification System (AIS) [35], [38].

To prepare the collected datasets for analysis, a pre-
processing unit within the traffic simulator handles tasks
such as eliminating redundant and conflicting traffic records,
resolving missing information, and extracting user positions.
UTs are categorized and assigned to their respective service
beams based on the geographic longitudes and latitudes. The
simulator also considers the limited use of FSS in large urban
areas, recognizing the prevalence of alternative broadband
technologies in such regions.

For modeling daily hourly traffic demands, the aeronauti-
cal data traces are pre-processed by collecting and gathering
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FIGURE 2. The traffic demand model in Europe depends on population density, aerial, and maritime density.

flight data for one hour. Similarly, in capturing the temporal
maritime traffic demand, the maritime data is analyzed, tak-
ing into account the position of each ship’s first appearance
within the covered area during each hour. This approach
allows for a reasonable estimation of the current and antic-
ipated demand within an hour [35].

C. TRAINING DATA
The per-beam demand requests one formatted in a matrix
form Rτ , which represents the traffic demand at each geo-
graphic location in the service area as

Rτ =

r1,1 . . . r1,n
...

. . .
...

rm,1 . . . rm,n

 , (6)

where m and n denote a grid of latitude and longitude points,
respectively, within the service area. In (6), the ri,j denotes
the required traffic in Mbps at a location indexed by i and j.

To generate training data, we collect labels for several real-
izations of the traffic matrix in (6) by running an exhaustive
search method on the problem (5). Although data generation
is a data-intensive task, it is performed offline. Each label
represents the optimal choices Pτ and Wτ . Once trained,
ML models can quickly determine the appropriate power
and bandwidth allocation for each beam based on the demand
pattern while minimizing payload resource consumption.

In principle, the generated labels should encompass all
potential payload configurations, which consist of feasible
combinations of power and bandwidth pairs per-beam derived
from the sets (Pτ ,Wτ ). In fact, a payload configuration can
be represented as Sτ =

[
(P1τ ,W

1
τ ), (P

2
τ ,W

2
τ ), . . . , (P

B
τ ,WB

τ )
]
,

with each power or bandwidth variable selected from the cor-
responding setPτ orWτ . However, due to the total power and
bandwidth constraints defined in equation (5), numerous con-
figurations fail to satisfy these constraints and are, therefore,
not viable outputs. Moreover, many different configurations
will be discarded due to the traffic pattern. However, this will

be known after many iterations of exhaustive searches during
training data generation. We refer to Section V for further
details.

The time it takes to generate each sample using an exhaus-
tive search to allocate resources optimally depends on the
number of possible configurations on the satellite and the
characteristics of the computer onwhich the data is generated.
We used the High Performance Computing (HPC) facilities
of the University of Luxembourg [39] to generate a large
amount of data, and on average, it took more than 8 hours
per 500 samples generated for the parameters defined in
Section V.
One important consideration is that the larger the search

space, the more complex the generation of training data
based on exhaustive search becomes to the point that it may
become infeasible. Although it may seem an alternative to
generate the training database using traditional optimization
techniques, it has been shown that most of these techniques
only achieve sub-optimal performance due to the non-convex
and non-linear structure of the RRM problems [3]. In that
sense, despite the drawbacks and limitations of the exhaustive
search, we have decided to use it for the generation of the
database in order to achieve the absolute optimum resource
allocation and thus improve the reliability of the data used to
train the ML models. On the other hand, the whole training
process is assumed offline to mitigate the inconvenience of
the processing time for the training data generation.

Additionally, we have made our generated database avail-
able to the general public. To access it and obtain more
information about the structure of this database, please refer
to [40].

III. CONVENTIONAL ML BENCHMARK
In this section, we establish a CNN-based conventional
ML benchmark for resource management tasks within the
scope of on-board RRM systems using the Xilinx Versal
VCK5000 platform. The CNN architecture, illustrated in
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FIGURE 3. Benchmark approach based on convolutional neural networks (CNNs) for on-board RRM.

Figure 3, is tailored for the classification of potential payload
configurations.

A. ARCHITECTURE
The proposed CNN takes input matrices Rτ , which encapsu-
late the demand requests across various beams and outputs
a series of viable payload configurations Sτ . These config-
urations, represented as Sτ =

[
(P1τ ,W

1
τ ), . . . , (P

B
τ ,WB

τ )
]
,

comply with the constraints imposed by the sets Pτ andWτ .
Our CNN comprises of convolutional layers for feature

extraction, Rectified Linear Unit (ReLU) for nonlinear-
ity, pooling layers for dimensionality reduction, and a
fully-connected layer for classification. By constraining the
output layer in alignment with Pτ and Wτ , we effectively
compress the solution space, as described in Section II-C and
Section V alongside training data synthesis.
The architecture is optimized for performance, capitalizing

on the ability of the convolutional layer to reduce parameter
count and facilitate weight sharing. This efficiency is crucial
in interpreting the complex input data and enabling fast,
reliable classification:

• Convolutional layers conduct feature mapping via the
convolution operation, maintaining spatial demand rela-
tionships to highlight input characteristics.

• ReLU layers implement nonlinearity, setting negative
values to zero within the feature maps.

• Pooling layers condense feature dimensions while pre-
serving salient information, thus summarizing the fea-
tures extracted.

• The fully-connected layer harnesses these features to
discern among the classes defined by the training data.

B. CNN TRAINING
For the CNN, we refine the network parameters µ using a
training dataset D. Each element in D is a tuple (Rτ , Sτ ),

where Rτ signifies the input matrix of traffic demands and Sτ

represents the corresponding optimal payload configurations.
The conversion of raw inputs into the format suitable for
CNN processing will be elaborated upon in a forthcoming
subsection.

We introduce a loss function LRτ ,Sτ (µ) that measures
the performance of the CNN. This function captures the
difference between the network predictions and the actual
configurations across a sequence of time-stamped inputs.
Formally, the loss for a single data instance is

LRτ ,Sτ (µ) =

B∑
b=1

L
(
Sbτ , Fb(µ,Rτ )

)
, (7)

where L is a suitable loss function that compares the true
payload configuration Sbτ for each beam b with the CNN’s
prediction Fb(µ,Rτ ).
Aggregating these individual losses, the cumulative train-

ing loss LD over the entire dataset D is given by

LD(µ) =
1

|D|

∑
(Rτ ,Sτ )∈D

LRτ ,Sτ (µ), (8)

and the training goal is to find the optimal parameters µ∗ that
minimize this loss, i.e.

µ∗
= argmin

µ
LD(µ). (9)

For the classification of multi-dimensional input data,
we utilize a loss function that enables probabilistic interpre-
tation of class predictions, such as categorical cross-entropy.
The loss for a given data instance is then

LRτ ,Sτ (µ) = −

B∑
b=1

Sbτ log(Fb(µ,Rτ )). (10)

The CNN leverages gradient-based optimization tech-
niques like Stochastic Gradient Descent (SGD) or Adam,

VOLUME 2, 2024 175



which adaptively estimates lower-order moments to steer
the network weights µ towards the optimal values. Such
optimization is facilitated by the backpropagation algorithm,
which computes gradients efficiently through the network
layers. We refer the reader to the references [41] for more
details on this approach.

IV. NEUROMORPHIC COMPUTING FOR SatCom RRM
ML-based algorithms have gained popularity due to their
performance and flexibility, but their practical application
is hindered by the substantial computational power required
for training and inference. This limitation becomes particu-
larly evident when considering scenarios such as deploying
these models on board of satellites, where the use of one or
several Graphics Processing Units (GPUs), which is com-
mon for modern ML architectures, is impractical due to
power restrictions. To address this challenge, one promising
approach involves developing more energy-efficient versions
of standard ML algorithms, e.g., by employing quantiza-
tion of a model’s weights. In this work, we investigate a
potentially more efficient alternative, SNNs, which draw
inspiration from the low-power operation of biological brains.
In the following section, we provide an introduction to SNNs,
including training techniques and data encoding methods.
We further overview the Loihi 2 chip developed by Intel, and
discuss the hardware deployment of SNNs.

A. SPIKING NEURAL NETWORKS
In general, an SNN is a directed, possibly cyclic, network
of spiking neurons. Each spiking neuron is a dynamic sys-
tem with inputs and outputs given by sequences of spikes,
or binary {0, 1}, signals. SNNs comprise read-out, or visible,
neurons, forming the network’s outputs, as well as exoge-
neous input neurons. It also consists of hidden neurons,
whose role is to facilitate the output of a desired spiking
sequence [42], given a sequence of exogeneous inputs.
For the purpose of this study, we consider SNNs with fully

connected layered topologies, i.e., each neuron in one layer is
connected to all of the neurons in the next. Denoting as L the
number of layers in the network, each layer ℓ ∈ {1, . . . ,L}

consists ofNℓ spiking neurons; we denote bywℓ theNℓ+1×Nℓ

weight matrix between layer ℓ and layer ℓ + 1 and by w the
vector of all parameters. Each neuron k in layer ℓ+1 receives
inputs from the set Nℓ of neurons in layer ℓ, i.e., we do
not consider recurrent connections. The last layer comprises
Z output neurons, corresponding to the number of classes
(reduced number of payload configurations).

We consider neurons following the standard Spike
Response Model (SRM) [43]. At every time-step t =

1, . . . ,T , where T denotes the temporal horizon of the task,
each spiking neuron k outputs a binary signal sk,t ∈ {0, 1},
with ‘‘1’’ representing the firing of a spike and ‘‘0’’ an idle
neuron.

Following the SRM, each neuron k maintains at every time
step t an internal analog state variable uk,t , known as themem-
brane potential. Mathematically, the membrane potential uk,t

is defined by the sum of filtered contributions from incoming
spikes and from the neuron’s own past outputs, i.e.,

uk,t =

∑
j∈Nℓ

wk,j,ℓ · (αt ∗ bj,t ) + βt ∗ sk,t , (11)

where wk,j,ℓ is the element (k, j) of matrix wℓ, which corre-
sponds to the synaptic weight between neuron j ∈ Nℓ and
neuron k in layer ℓ+1; αt represents the synaptic response to
a spike from the presynaptic neurons j ∈ Nℓ to a postsynaptic
neuron k; βt describes the synaptic response to the spike
emitted by the neuron itself; and ∗ is the convolution operator.
Neuron k outputs a spike at time step t when its membrane
potential uk,t passes some fixed threshold ϑ , i.e.,

sk,t = 2(uk,t − ϑ). (12)

We refer to the review [20] for more details.

B. SNN TRAINING
The training loss over the parameter vector w is defined
using the training dataset D = {(r, y)} composed of the
encoded traffic requirement signals r = (r1, . . . , rT ) and
corresponding targets y = (y1, . . . , yT ). How to obtain the
encoded signals r and y from input R in (6) and targets
Sτ =

[
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]
will be discussed

in the next subsection.
We define the loss Lr,y(w) measured with respect to a data

(r, y) ∈ D as the error between the reference signals y and the
output spiking signals produced by the SNN with parameters
w, given the input r. Accordingly, the loss is written as a sum
over time instants t ∈ {1, . . . ,T } and over the Z read-out
neurons as

Lr,y(w) =

T∑
t=1

Lrt ,yt (w)

=

T∑
t=1

Z∑
k=1

L
(
yk,t , fk (w, rt )

)
, (13)

where function L
(
yk,t , fk (w, rt )

)
is a local loss measure

comparing the target output yk,t of neuron k at time t and
the actual output fk (w, rt ) of the same neuron, given the
inputs rt = (r1, . . . , rt ) up to time t . The notations fk (w, rt )
and Lrt ,yt (w) are used as a reminder that the output of the
SNN and the corresponding loss at time t generally depend
on the input rt up to time t , and on the target output yt at
time t . Specifically, the notation fk (w, rt ) makes it clear that
the output of neuron k ∈ Nℓ is produced with the model
parametersw from exogeneous input rt , consisting of all input
samples up to time t , using the SRM (11)-(12).
The training loss LD(w) is given as

LD(w) =
1

|D|

∑
(r,y)∈D

Lr,y(w), (14)

and training is done by minimizing the loss as

min
w

LD(w). (15)
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FIGURE 4. Illustration of the encoding techniques employed for this study. Left: rate coding. Right: encoding with a time
encoding machine composed of LIF neurons.

We consider a spike-rate loss, whereby the SNN is given a
rate ρ to dictate the desired rate of the correct output neuron
for each example, and a spike rate ρF to dictate the desired
spike rate of the other output neurons. For a classification
problem with C classes, if c is the correct class for the given
input, the spike-rate loss is defined as

Lr,y(w) =
1
2

T∑
t=1

∑
k ̸=c

(fk (w, rt ) − ρF ) + (fc(w, rt ) − ρ).

(16)

Throughout, we set ρF = 0.01.
Problem (15) cannot be directly solved using standard

gradient-based methods since the spiking mechanism (12) is
not differentiable in w due to the presence of the threshold
function 2(·). To tackle the former problem, surrogate gra-
dients (SG) methods replace the derivative of the threshold
function 2(·) in (12) with a suitable differentiable approxi-
mation.We direct the reader to the reviews [20], [44] for more
details on this approach.

C. SPIKE ENCODING
Although spiking neuron models can in principle receive
data in the form of an analog input current, neuromorphic
processors can typically handle data only in the form of
binary inputs. Consequently, the natural signals (ri,j) repre-
senting the required traffic to be encoded into binary spikes
for processing using the neuromorphic chip. Encoding into
spiking signals is performed as follows and as illustrated in
Fig. 4.

Considering the feature matrix R ∈ Rn×m in (6),
we first perform max-pooling with pool size (ds, ds) to
obtain an (n/ds)× (m/ds) matrix. This dimensionality reduc-
tion was key to reduce the transmission time of data to
the neuromorphic chip. The resulting matrix is flattened
into (n/ds)(m/ds) × 1 column vector [r1,1 . . . rn/ds,m/ds]T.
We finally perform the encoding of this column vector into
a collection of spiking signals r ∈ {0, 1}(n/ds)(m/ds)×T , with
T being the number of encoding time-steps. Although a
number of encoding techniques are used in the literature,

we propose to compare in this study results obtained using
rate encoding [42] and a Time Encoding Machine (TEM).
We detail both techniques below. Note that time encoding
may potentially increase the sparsity of the signals, hence
reducing power consumption, but we were not able to train
models successfully using this method.
(i) Rate encoding: As seen in Fig. 4, each input value,

as shown using the horizontal blue bars on the left, is encoded
in the spike rate of the corresponding encoding neuron: a
larger input generates a large number of spikes within a fixed
encoding window time.
(ii) Time encoding machine: A TEM is a system that

receives as input a (bounded) natural signal x(t), and outputs
binary spikes. We consider a TEM model based on Leaky
Integrate-and-Fire (LIF) neurons, whereby a spike is emitted
when the voltage of the neuron crosses a pre-defined thresh-
old. More specifically, the TEM operates using the following
set of recursive equations

ut = (1 − αu) · ut−1 + xt
vt = (1 − αv) · vt−1 + ut
st = 2(vt − ϑ)

vt = vt · (1 − st ), (17)

where ut and vt denote the current and voltage of the neuron
at time instant t; xt := x(t); 1 > αu > 0 and 1 > αv >

0; ϑ is the threshold of the neuron; st ∈ {0, 1} is the spike
output at instant t; and 2(·) is the Heaviside step function.
In practice, a single signal x can be encoded throughN TEMs
with varying decays αu and αt .

V. CHIPSET IMPLEMENTATION
In this section, we present the implementation of the CNN
model and the SNN model in hardware chipsets, namely
Xilinx Versal VCK5000 and Intel Loihi2, respectively.

In selecting the Xilinx Versal VCK5000 for benchmarking,
we aimed to align with the cutting-edge of satellite processing
technology. The ESA SPAICE project adoption of the Versal
family underscores its suitability for space applications [45],
offering advanced on-board data processing and AI capabil-
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TABLE 2. Simulation parameters for generating training data.

ities [32]. With the first space-grade Versal AI Core devices
already in use, these processors represent the next generation
of satellite hardware, offering significant enhancements in
signal processing and AI inferencing. Our benchmark choice
thus reflects an anticipation of future industry standards and
the evolving requirements of satellite technology.

First, let us define the simulation parameters. The focus
of this study is on downlink analysis for the forward link.
The parameters used during the simulations are listed in
Table 2. We consider two different values of bandwidth,
Wτ = {250, 500} MHz, and three values of power, Pτ =

{10, 12, 14} dBW. This results in six possible values of capac-
ity that can be offered in each beam as listed in Table 3.
We focus on eight beams and six configurations per beam,

and hence the number of possible payload configurations is
more than 40,000 options. However, after setting Pmax,T =

115 W, all configurations that do not meet the power con-
straint are eliminated, resulting in the reduction of the number
of feasible configurations to less than 1%. Finally, many con-
figurations will be discarded again due to the traffic pattern as
explained in Section III, resulting in Z = 6 distinct possible
classes (number of configurations that are actually deployed
on the satellite).

30,000 samples were generated, The data was divided
into two sets, with 80% used for training and 20% used for
validation.

A. CNN MODEL
The CNN model is implemented on the VCK5000 AI accel-
erator, a high-performance platform based on the Xilinx
7nm Versal ACAP architecture. It utilizes matrices as input
and applies convolutional layers for feature extraction, fol-
lowed by fully connected layers for classification. The CNN
architecture comprises Conv2D, Maxpooling2D, and Dense
layers.

The specific CNN architecture employed consists of
Conv2D layers with 8 filters and a kernel size of (3,3), fol-
lowed byMaxpooling2D layers with a pool size of (2,2). This
is followed by additional Conv2D and Maxpooling2D layers
with 4 filters and a kernel size of (3,3) and (2,2), respectively.
The subsequent layers include a Flatten layer, Dense layers

with 512 and 256 units and ReLU activation, and a final
Dense layer with 6 units and softmax activation, representing
the different payload configurations. The trainable parame-
ters sum up to a total of 3,192,058.

To implement the CNN model, we consider using the
VCK5000 Versal development card, designed to provide
high-throughput AI inference and signal processing compute
performance. It supports popular ML frameworks such as
TensorFlow, PyTorch, and Caffe, using Python or C++APIs.
The Vitis AI framework facilitates the deployment of Tensor-
Flow/PyTorch trained models on the VCK5000 for inference.
In Table 4 we summarize the main VCK5000 card features.

B. NEUROMORPHIC MODEL FOR RMM
As seen in Fig. 5, we consider a layered SNN with L =

4 layers, where the hidden layers comprise 512, 256 and
512 neurons respectively, and Z = 6. We train the system via
the SG-basedmethod SLAYER [46]. SGD is carried out using
the Adam optimizer. Models are trained using Intel’s Lava
library [47] with Loihi bit-accurate precision, on a single
A100 GPU. On-chip training was not yet available on Intel’s
Loihi 2 at the time of writing. Decisions are obtained via rate
decoding, i.e., by selecting the output neuron with the largest
spiking rate.

Following the approach proposed in reference [34], train-
ing is completed using a dataset D, composed of measure-
ments of the required capacity in each geographical zone.
Each example R ∈ Rm×n in dataset D consists of n × m
resource requirements, in Mbps, for each geographical posi-
tion, as detailed in Section II. We preprocess each example
independently as follows. First, we set all the outlier values
over a given percentile p to the value rp, which is the value
such that p% of the entries in R are smaller than rp. Through-
out, we set p = 0.98. We then normalize the examples to
the range [0, 1], and perform max-pooling with stride ds to
reduce the input size to (n/ds)× (m/ds) before encoding into
binary spiking signals, as described in Section IV-C.
We perform inference using SNNs as described in the

previous sections on Intel’s Loihi 2 chips [47]. Loihi 2 is a
research neuromorphic chip that uses asynchronous spiking
neurons to implement fine-grained, event-driven, adaptive,
self-modifying, parallel computations. Loihi’s first iteration
was fabricated on Intel’s 14 nm process and houses 128 clus-
ters of 1,024 artificial neurons each, for a total of 131,072
simulated neurons, which is about 130 million synapses,
which is still far below the 800 trillion synapses in the human
brain. Asmembers of the Intel Neuromorphic Research Com-
munity (INRC), we were given access to Loihi 1 under the
Kapoho Bay form factor (see Table 5), as well as the second
iteration of the chip via Intel’s cloud services. Experimental
results were obtained on Loihi 2.

The Lava software library gives access to a number of
metrics of interest, of which we show a summary in Fig. 6.
We can hence measure the evolution of the execution time
per algorithmic step, and the total power consumed by them,
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TABLE 3. Possible resource allocation configurations in a beam.

TABLE 4. Summary of VCK5000 card features.

TABLE 5. Summary of Kapoho Bay USB Flash Drive
incorporating 2 Loihi chips.

as well as the activity over the various cores on the chip.
Activity measurements comprise the number of synaptic
operations, neuron updates, and output and input spikes per
core. As can be seen, the execution time per step decreases

after the first few steps. In our experiments, we exploit this
by initializing the network by sending all-zeros inputs up
to T = 8 time-steps, and start recording predictions from
that point onwards, with the black dotted line marking the
beginning of the recording. During inference for the task at
hand, the power consumption is seen to vary around 0.12 W,
which comprises the power expenditure for input and output
of spikes to the chip. Finally, the activity of the network is
balanced over several cores, which is directly optimized by
the Lava library.

C. EVALUATION METRICS
We evaluate the performance of the proposed algorithm in
terms of average capacity gap. This is a measure of the
capacity gap between the predicted configuration, and the
resource requirements. Formally, it is defined as

G =
1

B|D|

∑
R∈D

B∑
b=1

∣∣Cb
R − Y bR

∣∣, (18)
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FIGURE 5. Proposed neuromorphic solution. (a) Encoding of natural signals into spikes. (b) Spiking neural
networks with a layered architecture comprising three hidden layers. The prediction is given by rate decoding,
that is, by selecting the index of the readout neuron producing the most spikes.

FIGURE 6. Summary of the metrics measured on Loihi 2. Left: Execution time per algorithmic time-step. Middle: Evolution of the total
power consumption. Right: Activity per core.

where we have defined Cb
R, the required capacity for beam b

in example R, and the corresponding prediction Y bR.
Further metrics can be employed when comparing a neu-

romorphic to a conventional approach. These metrics include
accuracy, but also latency and energy consumption, as we
detail now.

• Accuracy: Accuracy measures the ability of the RRM
algorithm to choose the most appropriate configuration
given the current traffic requirements. It is obtained by
comparing the configuration predicted by the model to
the ground truth. Comparing the accuracy achieved by
both approaches allows to determine which approach
performs better in effectively utilizing the available
resources.

• Latency: Latency is a measure of the computational
efficiency and responsiveness of the algorithm under
study, and a key criterion in many SatCom applications.
In the case of RRM, it measures how quickly the pro-
posed algorithm can measure a change in the traffic
requirement conditions, and propose an alternative con-
figuration.

• Energy Consumption: Energy consumption is a crit-
ical metric, especially in satellite systems, wherein
power resources are often limited. Evaluating the energy
consumed by RRM approaches allows us to assess
their suitability for deployment on board of satellites.
The energy consumption of the neuromorphic solu-
tion includes all the energy spent by the chip during
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FIGURE 7. Results obtained for a CNN model with max-pooling stride ds = 3. Left: Capacity gap per beam. Middle: ROC curves. Right:
Confusion matrix.

inference, including I/O interfaces. For the conventional
approach, energy consumption relates to the power con-
sumed by the VCK chip during inference. Comparing
the energy consumed by both approaches allows to
inform choices pertaining to the deployment of algo-
rithms on board of satellite systems.

VI. EXPERIMENTAL RESULTS
In this section, we present the most outstanding numerical
results.

A. BENCHMARKING
TheCNNmodel was trained for 25 epochswith a batch size of
128. The training for the conventional models was carried out
using the HPC facilities of the University of Luxembourg [39]
(see hpc.uni.lu). The training configuration used the SGD
optimizer with a learning rate of 0.01, momentum of 0.9,
and Nesterov acceleration. The loss function used was the
categorical cross-entropy and the model’s accuracy was used
as the metric.

We determined experimentally that the set of hyperparam-
eters providing the maximal accuracy. The final accuracy of
the model on the training data corresponded to max-pooling
stride ds = 3 was 98.93% and the validation accuracy was
98.87%. In Fig. 7, we show the capacity gap, Receiver Oper-
ating Characteristic (ROC) curves and confusion matrix for
the predictions given by this model. The capacity gaps stem
from the power constraint of the system, which does not allow
to serve all the users. Concerning the system performance,
Fig. 8 shows the average capacity gap in the validation data
in which we observe that in all cases the capacity follows the
traffic demand and in the cases where the gap is larger, it is
due to the lower and upper limit on the satellite resources.
In this regard, the confusion matrix shows that for all config-
urations we obtain a ratio higher than 96%, reaching a ratio
of 100% in class 4, which is the class that has the highest
probability of occurrence.

The ROC plots the True Positive Rate (TPR) against
the False Positive Rate (FPR) at different classification

TABLE 6. F1-score for test data.

thresholds. It provides information about the trade-off
between TPR and FPR, and it is useful for selecting the
optimal classification threshold. The Area Under the Curve
(AUC) is the area under the ROC curve. AUC ranges between
0 and 1, where a higher value indicates a better model.
Accordingly, we can observe that the CNN results for the
flexible payload maintain an area close to 1 for all classes.

As for the F1-score, it measures the model’s balance
between precision and recall. A high F1-score indicates a
good balance between the two. Table 6 shows the obtained
F1-scores. The results indicate that the CNN architecture
and the training configuration used were able to effectively
manage the power and bandwidth of a multibeam satellite as
a function of traffic demand.

Finally, we vary the size of the traffic matrix, Rτ , by con-
sidering several max-pooling strides ds. As seen in Table 7,
by increasing ds (i.e., reducing the matrix size), the execution
time can be reduced. However, this comes at the cost of accu-
racy. Hence, we use ds = 3 for the purpose of comparison
with the neuromorphic model in the following sections.

B. NEUROMORPHIC MODEL
We determined experimentally that the set of hyperparam-
eters providing the maximal accuracy whilst minimizing
energy expenditure and execution time corresponded to
max-pooling stride ds = 32; number of encoding time-steps
T = 8; and target spike rate ρ = 0.5, when using TEM
encoding. This set of hyperparameters provides a reference
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FIGURE 8. Results obtained for an SNN model with max-pooling stride ds = 32; number of encoding time-steps T = 8; target spike
rate r = 0.5, with TEM encoding. Left: Capacity gap per beam. Middle: ROC curves. Right: Confusion matrix.

TABLE 7. Accuracy and time per example for different size of the
traffic matrix using maxpooling.

model, which reaches 99.6% of test accuracy. In Fig. 8,
we show the capacity gap, ROC curves and confusion matrix
for the predictions given by this model. As in the results
observed with the CNN model, the capacity gaps stem from
the power constraint of the system, which does not allow to
serve all the users. The predictions made by the SNN provide
better AUC than the CNN for all classes, only predicting the
wrong classes for labels 4 and 5, contrary to the conventional
solution, which seldom reach perfect accuracy for a single
class. Overall, the SNN is seen to obtain better accuracy than
the CNN.

In Fig. 9, we compare results in terms of average execution
time and energy expenditure per example between the neuro-
morphic processor and Intel’s lava-dl simulator running on an
A100 GPU. Measurements on the GPU are carried using the
PyJoules library [48]. It can be seen that the simulator running
on GPU is slower than the execution on Loihi 2, but also six
orders of magnitude more costly in terms of energy. It is to
be noted that execution on GPU also allows one to perform
inference over a minibatch B of size larger than one, which is
not possible on the neuromorphic hardware.

In the following, we extensively study how the different
hyperparameters of the system affect the metrics of interest
– that is, accuracy, execution time, energy and the number of
synaptic operations. In all the following figures, the red data

point corresponds to the model with the hyperparameters of
reference described above.

We start by comparing the two encoding techniques
described in Section IV-C, i.e., rate encoding and time encod-
ing machines. As can be seen in Fig. 10, the TEM generally
provides much higher accuracy, at the cost of a slightly larger
execution time and energy expenditure compared with rate
encoding with T = 8. By increasing the number of encoding
time-steps, one can improve the accuracy of themodel for rate
encoding, although this proportionally increases execution
time, energy expenditure and number of synaptic operations.
Even with a 4× longer encoding of T = 32, rate encoding
only reaches 85.6% test accuracy, which is 14 points below
the results obtained by encoding the signal with a TEM.

Next, we vary the size of the exogenous inputs by con-
sidering several max-pooling strides ds. As seen in Fig. 11,
by increasing the value of ds (that is, by reducing the exoge-
nous signal size), one can reduce the execution time, energy
and synaptic operations per example. However, this comes
at the cost of accuracy, By reducing ds from ds = 28 to
ds = 36, which results in decreasing the size of the inputs
from (n/22)× (m/22) = 299 to (n/30)× (m/30) = 180, the
test accuracy only diminishes by less than 1%.

In Fig. 12, we demonstrate how using smaller target rates
ρ during training affects the metrics of interest. As one can
see, using a rate smaller than ρ = 0.5 generally increases
the processing time, energy per example, and the number
of synaptic operations. This can be explained by the fact
that forcing a smaller output rate actually pushes the hid-
den neurons to spike more to encode the signals of interest.
Considering the fact that these are more numerous than the
output neurons, this results in a generally larger number of
synaptic operations, which also increases the processing time
and energy expenditure. We determined experimentally that
ρ = 0.5 provided the best trade-off between sparsity of the
read-out neurons, sparse activation of the hidden neurons, and
test accuracy.

We now examine how the number of encoding time-
steps T affects the model when encoding the input signals

182 VOLUME 2, 2024



Ortiz et al.: Energy-Efficient On-Board Radio Resource Management for SatCom

FIGURE 9. Comparison between execution of an SNN on Loihi 2 and simulation on an NVIDIA A100 GPU with various batch sizes.
Left: Average execution time per example. Right: Energy expenditure.

FIGURE 10. Comparison between various types of encoding techniques and number of encoding time-steps. From left to right are
shown: Test accuracy, average execution time per example, average energy expenditure per example, average number of synaptic
operations per example. In red are shown the parameters selected for comparison with the conventional approach.

FIGURE 11. Comparison between various encoding max-pooling strides ds. From left to right are shown: Test accuracy, average
execution time per example, average energy expenditure per example, and average number of synaptic operations per example.
In red are shown the parameters selected for comparison with the conventional approach.

with a TEM. As can be seen, decreasing T below the
reference value T = 8 provides worse-than-chance accu-
racy. This is due to the fact that with T = 4, the
encoder does not produce enough spikes for the model to
carry out the classification task. Increasing the number of
time-steps does not provide an improvement in terms of
accuracy.

Lastly, varying the threshold ϑ of the TEM in (17) allows
to control the sparsity of the input signal. We observe that

increasing ϑ generally decreases the accuracy of the system,
although the decrease is almost negligible for ϑ < 5. As one
can expect, sparser rates in the exogenous inputs in turn cause
the network to spike less, which results in a smaller energy
footprint. However, this does not bring benefits in terms of
execution time per example.

Overall, we explored how a variety of hyperparameters
impact the operation of the system. We found a reference
set of parameters that allowed us to miminize the execution
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FIGURE 12. Comparison between various target rates ρ. From left to right are shown: Test accuracy, average execution time per
example, average energy expenditure per example, and average number of synaptic operations per example. In red are shown the
parameters selected for comparison with the conventional approach.

FIGURE 13. Comparison between the number of encoding time-steps T . From left to right are shown: Test accuracy, average
execution time per example, average energy expenditure per example, and average number of synaptic operations per example.
In red are shown the parameters selected for comparison with the conventional approach.

FIGURE 14. Comparison between the number of TEM threshold ϑ . From left to right are shown: Test accuracy, average execution time
per example, average energy expenditure per example, and average number of synaptic operations per example. In red are shown
the parameters selected for comparison with the conventional approach.

time and energy expenditure while maintaining the high-
est accuracy we were able to obtain. We note that we
were able to further reduce the processing time, even by
reducing more the input size or sparsity of the signal. We sus-
pect this is because, at this level of sparsity, the execution
time is lower-bounded by the general operation time of the
chip.

C. COMPARISON BETWEEN NON-NEUROMORPHIC AND
NEUROMORPHIC MODELS
We present a comparative analysis between the results
obtained from inference using SNN on Loihi 2 and the
VCK5000 chip for the CNN model. Fig. 15 presents a
comprehensive comparison of accuracy and power consump-
tion for both combinations. The results clearly demonstrate
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FIGURE 15. Comparison between the execution of an SNN on Loihi 2 and the execution of a CNN on the CPU of the VCK
5000 chip. Left: Accuracy vs. Energy Consumption. Right: Solution Time Ratio.

that the neuromorphic model consistently outperforms the
non-neuromorphic approach in terms of accuracy while dras-
tically reducing energy consumption. In fact, the energy
consumption is up to two orders of magnitude lower than the
models running on the VCK5000 chip.

One of the factors contributing to the superior performance
of the neuromorphic approach is the deployment of the CNN
model on the VCK5000 chip. To facilitate this deployment,
the CNN model must undergo quantization, which involves
reducing its accuracy. This quantization process inevitably
leads to a loss of accuracy compared to the original values
obtained in Section VI-A. Consequently, the lower accuracy
of the CNN model quantized on the VCK5000 chip is one of
the reasons for the difference in performance between the two
approaches.

However, the primary and more significant reason behind
the higher accuracy achieved through inference using SNN
on Loihi 2 can be attributed to the characteristics of the traffic
matrix Rτ . We have observed that the traffic matrix exhibits
a large spatial sparsity, where a substantial portion of the
values are zeros. The neuromorphic approach, particularly
the SNN on Loihi 2, benefits significantly from this spatial
sparsity, making it inherently well-suited to leverage such
data characteristics.

The ability of the neuromorphic approach to process
sparse data efficiently is a key advantage that enables it
to outperform the non-neuromorphic approach. The unique
design of the Loihi 2 chip allows for specialized pro-
cessing of sparse data patterns, leading to optimized and
accurate inferences. As a result, the neuromorphic models
excel in extracting valuable information from the sparse
traffic matrix Rτ , enabling them to achieve higher accuracy
levels compared to the non-neuromorphic approach. Con-
versely, conventional deep neural networks are known to
require dense data to learn informative features, which further
motivates the use of neuromorphic learning for such use
cases.

In Fig. 15, we present the results of the comparative
benchmarks for latency and energy in a unified view. This
two-dimensional plot highlights the key advantages offered
by neuromorphic hardware, such as the Loihi chip, as com-
pared to commercially available programmable architectures.
The dashed diagonal line represents the energy-delay ratio
parity line [49], with benchmark points located below and
to the left of this line indicating architectures that outper-
form Loihi. In contrast, points located above and to the right
indicate superior performance for Loihi. In all the scenarios
presented here, the conventional models lie above the parity
line, indicating that neuromorphic algorithms running on
dedicated hardware provide clear benefits to perform RRM
on board of satellites.

D. COMPLEXITY ANALYSIS
We now describe the computational capabilities and con-
straints of CNN and SNN models, with direct implications
for on-board satellite systems. The CNN model comprises of
3,192,058 trainable parameters, while the SNN model incor-
porates 395,312 for ds = 32, reflecting the computational
intensity required for operations like feature extraction and
classification.

Comparing the memory complexity used for ML models
with traditional optimization methods such as exhaustive
search (which was used for the generation of training data),
we have that for ML models the memory required involves
the storage of parameters and intermediate data for the CNN
and the retention of states and synaptic weights for each of
the 1,280 neurons of the SNNmodel on the Intel Loihi2 chip.
In comparison, exhaustive search requiring considerable
memory for combinatorial exploration of configurations that
for our scenario making to over 40,000 options.

Power consumption between both ML-based approaches
contrasts the power consumption of the Versal VCK5000
board with the average of 21 W during CNN inference with
the remarkable efficiency of SNN with an average of 0.12 W
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on Intel Loihi2. On the other hand, although not directly mea-
sured, the power overhead of exhaustive search is presumed
significant due to its intensive computation.

Latency is evaluated by the time efficiency of the CNN
and SNN in responding to data inputs, with a comparative
illustration in Figure 15. The exhaustive search latency is
inherently higher, as it encompasses the duration to traverse
all configurations to produce viable training data sets.

VII. CONCLUSION
SNNs excel in processing sparse temporal data due to their
reliance on spike patterns. However, they face limitations
with dense datasets common across domains, hindering their
universal adoption over CNNs. SNNs energy efficiency ben-
efits rely on specialized neuromorphic hardware, yet its
limited availability poses a barrier to widespread imple-
mentation. Furthermore, the learning curve associated with
neuromorphic computing, its evolving frameworks, and tools
contrasts with the mature ecosystem surrounding CNNs.
Despite these challenges, ongoing research and technological
advancements offer promise for neuromorphic computing to
complement traditional methods, paving the way for more
energy-efficient processing in the future.

This article presents an extensive investigation into the
benefits of incorporating neuromorphic computing and SNNs
for on-board radio resource management in SatCom sys-
tems. By leveraging innovative approaches, we addressed
the challenge of implementing on-board RRM, comparing
the performance of the proposed neuromorphic computing
approach with a traditional CNN model. Our experiments
demonstrate that SNNs, enabled by dedicated hardware, offer
higher accuracy and significantly reduce energy consump-
tion and latency. These remarkable results underscore the
potential of neuromorphic computing and SNNs in improving
RRM for SatCom, leading to better efficiency and sustainabil-
ity for future SatCom systems.

To advance this research further, several avenues of
investigation remain open. An important aspect is the imple-
mentation of the proposed approach in a real system, taking
into account factors such as radiation tolerance, which holds
great significance in the space environment. Moreover, future
research could focus on optimizing the SNN architecture to
achieve better performance and energy efficiency, consid-
ering the specific requirements and constraints of SatCom
systems.

Although our current model is suitable for GEO satellite
systems [50], we recognize the dynamic nature of LEO/MEO
systems [51], [52], where the Doppler effect, rapid elevation
angle changes, and other factors significantly influence the
analysis. In future work we intend to extend our model to
address these challenges, recognizing that channel and traffic
conditions vary much more rapidly due to the higher rel-
ative velocity of LEO/MEO satellites. This will require a
more complex and robust model to accommodate the highly
dynamic environment.

We also wish to emphasize the generalization perfor-
mance of the proposed models. Rigorous testing through
cross-validation on diverse datasets simulating various opera-
tional scenarios has shown that the SNN model, in particular,
exhibits strong generalization capabilities. This is evidenced
by its ability to maintain high accuracy and low energy
consumption when exposed to unseen data, indicating its
robustness in real-world deployments. We acknowledge,
however, that substantial changes in the operational environ-
ment, such as a transition from GEO to LEO/MEO systems,
will necessitate the adaptation of the model. To this end, our
future work will focus on enhancing the model complexity
to cope with the increased dynamics of LEO/MEO systems,
ensuring that the generalization capabilities extend across
different orbital conditions. The planned integration of con-
tinual learningmechanisms is anticipated to bolster themodel
adaptability further, allowing it to update its parameters
in response to evolving traffic patterns and channel condi-
tions, thereby sustaining high performance without frequent
retraining. These enhancements will be pivotal for deploying
SNN-based RRM in the highly variable and demanding envi-
ronment of space communications.

The findings of this study lay a solid foundation for the
application of neuromorphic computing and SNNs in the
field of SatCom RRM. Future investigations can build upon
this work to further advance the state-of-the-art in SatCom
systems, leveraging the benefits and insights gained from this
comprehensive study.
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