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ABSTRACT This paper investigates various multi-agent reinforcement learning (MARL) techniques for
designing grant-free random access (RA) schemes suitable for low-complexity, low-power battery-operated
devices in massive machine-type communication (mMTC). Previous studies on RA with MARL have shown
limitations in terms of scalability and suitability for mMTC. To address scalability and practicality of the
proposed methods, we examine the impact of excluding agent identification in the observation vector of each
agent on network performance. We employ value decomposition networks (VDN) and QMIX algorithms
with parameter sharing (PS) and compare their policies with the deep recurrent Q-network (DRQN). Our
simulation results demonstrate that the MARL-based RA schemes can achieve a better throughput-fairness
trade-off between agents without having to condition on the agent identifiers. We also present a correlated
traffic model, which is more descriptive of mMTC scenarios, and show that the proposed algorithm can easily
adapt to traffic non-stationarities. Moreover, the robustness of the proposed method in terms of scalability is
also shown through simulations.

INDEX TERMS Massive machine-type communications, MARL, reinforcement learning, grant-free ran-
dom access, scalability.

I. INTRODUCTION

THE mMTC paradigm is a key component of 5G and
will continue to be important in the development of

6G technologies [1]. As the number of Internet of Things
(IoT) devices grows, millions of devices with characteristics
different from human-type communication, will require con-
nectivity [2], [3]. To support mMTC in LTE-A, 3GPP has
developed narrowband IoT (NB-IoT) and LTE-Machine-type
communication (LTE-M) [4], which fall under the category
of low power wide area networks (LPWANs). In addition
to these cellular standards, non-cellular LPWAN standards
such as Sigfox [5] and LoRa [6] have also been commer-
cialized. 3GPP’s recent Rel-17 introduces ‘NR-Light’, a new
class of devices that is more capable than NB-IoT or LTE-
M but supports different features with a bandwidth larger

than NB-IoT/LTE-M but smaller than 5G NR devices. In this
paper, we focus on low-power, low-complexity machine-type
devices (MTDs) with low data rates (around 1-100 Kbps)
and where the communication is mostly uplink dominated.
These devices are low-cost, battery-operated and their activ-
ity is sporadic. Managing medium access for these devices is
challenging, and future wireless technologies will be required
to provide massive connectivity to such users.

For devices having above-mentioned characteristics, grant-
free RA schemes are preferred, as scheduled access incurs
huge signaling overhead [7]. However, RA schemes are prone
to collisions and scale poorly. Traditionally, RA schemes such
as exponential backoff (EB) [8] employ back-off mechanism
at each device to update their transmit probabilities based
on feedback from the receiver. These schemes are relatively
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simple and decentralized in nature, but their performance
is dependent on various assumptions such as the traffic
arrival process and whether devices’ buffers are saturated.
Additionally, the optimal back-off factor for different system
parameters is not fixed and may vary [9]. One drawback of
EB schemes such as binary exponential backoff (BEB) is the
capture effect, where a group of devices occupy the channel
for a period of time, causing other devices to be deprived
of access, hence making the technique unfair. Our goal is to
design RA schemes for mMTC that not only provide better
throughput but are also fair.

Reinforcement learning (RL) algorithms have become a
popular tool for learning RA policies in wireless networks.
These algorithms can adapt to changes in the environment and
use history to learn the transmission probabilities of devices
in a decentralized manner. TheMARL has several advantages
over traditional EB backoff policies, as it allows for the design
of multi-objective policies in a decentralized manner, which
is not analytically tractable using traditional methods. How-
ever, many MARL solutions such as [10], [11], [12], and [13]
are not tailored to the traffic and device characteristics of
mMTC systems (details in Section V), and they also struggle
with scalability which is a major concern in RA schemes
for mMTC. This is because mMTC devices often have low
computational power and rely on battery power, making it
impractical to perform learning at each device. To the best of
our knowledge, the scalability issue has not been adequately
addressed in previous RL or MARL studies on RA schemes,
and it is unclear how these MARL algorithms can be scaled
and whether they are practical and suitable for designing RA
policies.

Therefore, one objective of this paper is to design grant-
free RA schemes formMTCusingMARL to achieve fairness,
adaptability to changes in traffic, and scalability to a large
number of devices. Another objective is to provide an analysis
by considering the limitations imposed by mMTC users,
may be used as a guideline for designing RA protocols. Our
contributions are listed in the following.
• A system model is proposed to learn schemes in which
the devices can leave and join the network randomly.
We do not assume that the devices in the network always
have a packet to transmit as opposed to most of the other
works for RA with RL, e.g., [10] and [12].

• The proposed system model uses broadcast feedback
to reduce the signaling overhead. We assume that the
feedback is only sent to the active devices at a given time
and the inactive devices are not required to listen to the
feedback signal.

• We present a brief report on suitability of MARL algo-
rithms for an mMTC system. Since we want a policy
for the devices that can be learned in a centralized
training and decentralized execution (CTDE) manner;
we provide a comparison between some well-known
MARL algorithms and how they may or may not be
suitable for our environment. We propose VDN and
QMIX algorithms to achieve our objectives. We present

our simulation results for VDN and compare it with
QMIX and DRQN policies.

• Most of the MARL algorithms that employ CTDE,
include an agent-specific identifier into the observation
vector of the agents. In case of mMTC, the devices
should be able to leave/join the network and the poli-
cies should be scalable to a large number of devices.
For these reasons, incorporating agent/device identifi-
cation (ID) is not feasible. We will also show that how
the algorithm distributes resources among MTDs fairly
when agent IDs are not incorporated and how the algo-
rithms learn an unfair policy when we use agent IDs.
However, this way of training may not be suitable in
terms of convergence.

• We present our results for regular or periodic traffic
arrival, in which each MTD receives packets following
a random process independently. In addition, we present
a correlated traffic arrival model in Section IV, that is
more suitable for mMTC system. In the correlated traffic
arrival model, the devices follow both regular traffic
arrivals and event-driven (ED) traffic arrival. In ED, that
is independent of the regular traffic arrival, a subset
of MTDs become active together whenever an event
happens. We show that our proposed algorithm adapts
to different traffic conditions.

II. RELATED WORK
The application of RL to channel access problems in wire-
less communications goes back to 2010 that used tabular
Q-learning [14]. However, it has become popular in the recent
years due to the advancements in deep reinforcement learn-
ing (DRL). In [15], the authors considered the problem of
multiple access where the agents are the base stations to
predict the future state of the system. They use recurrent
neural network (RNN) and REINFORCE algorithm to learn
policies for each agent. In [16], the ALOHA-Q protocol is
proposed for a single channel slotted ALOHA scheme that
uses an expert-based approach in RL. The goal in that work is
for nodes to learn in which time slots the likelihood of packet
collisions is reduced. However, the ALOHA-Q depends on
the frame structure and each user keeps and updates a sep-
arate policy for each time slot in the frame. In [17], the
ALOHA-Q is enhanced by removing the frame structure.
However, every user still has to keep the number of policies
equal to the time slots window it is going to transmit in.
Other works such as [10], [11], [12], and [13] consider RL-
based multiple access works for multiple channels. In [10],
[12], and [18] deep Q-network (DQN) algorithm is used for
multiple user andmultiple channel wireless networks. In [11],
another DRL algorithm known as actor-criticDRL is used for
dynamic channel access. All these works train agents with
the assumption that every device has always a packet in its
buffer (saturation state). Moreover, it is not clear whether
their algorithms can be scaled for higher number of agents.
Interestingly, these works also do not compare their results
with any backoff techniques such as EB to show whether
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FIGURE 1. System model.

their results outperform them. In [19], authors propose a RA
procedure for delay sensitive applications using the context
IDs of the devices alongwith the two-stepRAprocedure. This
is done by predicting the traffic of the devices. A RA strategy
for initial access (4 message exchange) to allocate resources
in proposed in [20]. They assume that each device also reports
its energy levels and access delay to the centralized receiver.
Therefore, signaling overhead in this work is high for massive
access and it is not energy efficient.

Recently, a RA protocol for initial access is proposed
in [21] where results were shown for both regular and bursty
traffic arrivals. In [22], RL-based strategy is proposed consid-
ering the correlated traffic model. In our previous work [23],
we had used DQN with a single resource for the devices
following Poisson process for traffic arrival and in [24] we
showed how DQN with PS is scalable for bursty traffic
arrival model. We minimized the collision rate for an energy
efficient policy by penalizing the collisions. Furthermore, the
packet delay is also shown to be reduced with the proposed
algorithm. To show the effectiveness of DRL in learning new
access strategies, in [25], a heterogeneous environment is
considered in which an RL agent learns an access scheme
in co-existence with slotted ALOHA and a time division
multiple access (TDMA) access scheme. In [26], access class
barring (ACB) mechanism has been optimized for NB-IoT
using DRL. A multiple access algorithm is designed using
actor-critic MARL in [27].

III. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a synchronous time-slotted wireless network
with a setN = {1, . . . ,N } of MTDs, a setM = {1, . . . ,M}
of shared orthogonal physical resource blocks (PRBs) and a
receiver as shown in Fig. 1. The physical time is divided into
slots, each of duration 1 and the slot index is k ∈ N. At each
time slot, we assume that only Na ⊆ N devices are active,
and the activity pattern follows a random process. Each active
MTD transmits over the shared PRBs in a grant-free manner.
At each time slot k , anMTD can transmit only one packet and

it can transmit it only over one resource m ∈M. The MTDs
are assumed to have perfect synchronization. Moreover, each
MTD is equipped with a buffer to store the packets in its
queue and each device n can only store at most one packet.
The buffer state at time k is defined as Bn(k) ∈ {0, 1},
where Bn(k) = 1 if there is a packet in the buffer and it is
0 otherwise. If the buffer Bn(k) is full, new packets arriving
at device n are discarded and are considered lost. Each device
becomes active whenever a packet is generated at the device
following one of the traffic arrival models given in Section IV.
At each time slot k , MTD n takes an action,

An(k) ∈ A = {0, 1, . . . ,M}, (1)

where An(k) = 0 corresponds to the event when user n
chooses to not transmit and An(k) = m corresponds to the
event when user n transmits a single packet on channel m for
1 ≤ m ≤ M . If only one user transmits on the channel m
in each time slot k , the transmission is successful, whereas a
collision event happens if two or more devices transmit in the
same time slot. The collided packets are discarded and need
to be retransmitted until they are successfully received at the
receiver.

For feedback, we consider a broadcast feedback signal
F(k) from the receiver that is common to all the devices.
Formally, we define

F(k) = {F1(k), . . . ,FM (k)}, (2)

and Fm(k) stands for the feedback corresponding to the chan-
nel m and for each time slot k , it is defined as

Fm(k) =

{
1 if success at time slot k
0 otherwise

(3)

Let us define the binary set B = {0, 1}. We define success
the eventGn,m(k) ∈ B for user n as a function of the feedback
Fm(k) and An(k), i.e., g : (Fm(k),An(k)) 7→ Gn,m(k), and it
is locally computed by each device. We define Gn,m(k) for
device n and ∀m ∈M as,

Gn,m(k) =

{
1 if An(k) = m and Fm(k) = 1
0 otherwise.

(4)

Since each device can only transmit on one resource at
each time slot, the indicator whether the transmission on any
resource for the device n has been successful or not, can be
written as

Gn(k) =
M∑
m=1

Gn,m(k) ∈ {0, 1}. (5)

Furthermore, we define the matrix with N rows and M
columns for success events as,

G =
(
Gn,m

)
∈ BN×M . (6)

We assume that each user keeps a record of its previous
actions, feedback and its current buffer stateBn(k) up to h past
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instants, where we refer to h as the history length. Therefore,
the tuple

S0n (k) =
(
An(k − h), . . . ,An(k − 1), F(k − h), . . . ,

F(k − 1),Bn(k)
)
, (7)

is referred to as the state of user n at time k for IDs= 0 case.
For IDs = 1 case, we write the state of the agent n as

S1n (k) =
(
In, S0n (k)

)
, (8)

where In is a one-hot encoded vector of size N for device n.
We will use a general notation Sn(k) to denote the state of

a device n for both cases unless mentioned otherwise and we
define S(k) =

(
S1(k), . . . , SN (k)

)
as the global history of the

system.
The feedback signal F(k) is only recorded by the devices

that are active at time k−1. If a new device becomes active at
time k , its state is initialized with An(k − 1) = 0, and Fm(k −
1) = 0,∀m ∈ A for its local history Sn(k). The memory is
initialized with zero values. Moreover, we set zero values for
the time a device has been inactive if the time of inactivity is
smaller than the history size.
Definition 1: A policy or access scheme of user n at time

slot k , is a mapping from Sn(k) to a conditional probability
mass function πn(·|Sn(k)) over the action space A. We con-
sider a distributed setting in which there is no coordination
or message exchange between users for the channel access.
Each new action An(k) ∈ {0, 1} is drawn at random from
πn(·|Sn(k)) as follows:

Pr
{
An(k) = a

∣∣ Sn(k) = s
}
= πn(a|s). (9)

We are interested in developing a distributed transmission
policy for slotted RA that can effectively adapt to changes in
the traffic arrivals and provide better performance in terms of
throughput, latency, and fairness than the baseline reference
schemes. We consider EB policies as our baseline schemes.
More specifically, we use BEB when the value of backoff
factor is 2, which has been used in IEEE 802.11 and IEEE
802.3 standards.

A. PERFORMANCE METRICS
1) THROUGHPUT
The channel throughput is defined as the average number of
packets that are successfully transmitted from all the devices
divided by the total number of PRBs, over a time window of
size K . For the finite time horizon K and for M orthogonal
resources, the average throughput of the system is defined as

T =
1
MK

K∑
k=1

M∑
m=1

∑
n∈N

Gn,m(k). (10)

where Gn,m(k) refers to the success event over channel m and
T ∈ [0, 1].

FIGURE 2. An example of using AoP for fairness for 3 devices,
where each device generates a packet.

2) AGE OF PACKETS
The age of packet (AoP)1 of device n, denoted aswn(k), grows
linearly with time if a packet stays in the buffer of the device,
and it is reset to 0 if the packet is transmitted successfully.
Specifically, we assume that wn(1) = 0, and the AoP wn(k)
evolves over time as follows:

wn(k) =

{
0 if Bn(k) = 0
wn(k − 1)+ 1 otherwise.

(11)

The average AoP for user n after a time span of K time
slots is given by

1n =
1
K

K∑
k=1

wn(k) (12)

and the average AoP of the overall system by1 = 1
N

∑
n 1n.

Since techniques such as EB incur capture effect [8] where
a transmitting device keeps transmitting on the channel for
some time, introducing short-term unfairness. In this work,
we use the average AoP to measure fairness as well as the
average delay budget of the packets. A higher AoP means the
scheme ismore unfair and has the higher delay and vice versa.
To illustrate the concept of fairness with AoP, let us consider
an example of 3 users where each user generates a single
packet that is successfully transmitted within K = 10 time
slots as depicted in Fig. 2. The average delay (number of time
slots taken by each user to transmit their packet is same for
both fair and unfair schemes, which is 4 time slots. However,
the scheme shown in Fig. 2a is clearly not fair since user
2 takes much more time slots to send its packet as compared
to the other two users. This short-term unfairness can be
captured with the average AoP and we see that the average
for the scheme in Fig. 2a is higher i.e., 1.23) than the one
shown in Fig. 2b which is 1.00.

IV. TRAFFIC MODELS
A. REGULAR TRAFFIC MODEL
In traditional RA schemes, the activation of MTDs and the
traffic arrival for each user is usually modeled by an inde-
pendent process. We call such traffic arrival as regular traffic

1This metric has a different connotation to age of information (AoI).
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arrival. Each device follows independent Bernoulli process
with average arrival rate λn to generate packets in regular
traffic model. The average arrival rate for the system for the
regular traffic arrival case can then be written as

λ =
∑
n

λn. (13)

However, for mMTC, it is highly likely that some devices are
correlated in terms of activation, i.e., some devices observe
the same physical phenomenon and activate together. For
instance, in industrial fault detection or fleet management,
some MTDs are highly likely to transmit at the same time
due to the activation of certain event. For instance, in flood or
quake detection or land sliding, there is a high chance that
devices closer to the event will start transmitting at once.
Several recent works have used a correlated activity model
to design access schemes for machine-type communication
(MTC) [22], [28], [29], [30]. Therefore, the assumption of
independent traffic arrival is not valid in this case. Moreover,
apart from correlated ED device activity, each MTD also
follows regular traffic model [31].

B. CORRELATED TRAFFIC MODEL
The correlated traffic model is a mix of the regular traffic and
ED traffic or alarm traffic as depicted in Fig. 3. We assume
that the regular traffic generation for each MTD follows
an independent random process such as Bernoulli process.
Similarly, the ED traffic also follows a random process on top
of the regular traffic arrival process. For ED traffic, certain
devices are spatially correlated and the ED traffic generation
for such devices is dependent on the occurrence of an event
in their vicinity. Regular traffic arrival and ED traffic arrival
processes are independent of each other.

To formulate this behaviour, we assume that N MTDs are
uniformly distributed in a given area. Each MTD can either
be in a regular state or alarm state, when active. We consider
L event epicentres that are scattered randomly and indepen-
dently across the given area. The location of the devices is
represented by x ∈ R2 and the location of the epicenter of
the events is denoted by y ∈ R2. We assume that all MTDs
are stationary and fixed to their locations or exhibit very low
mobility.

Let Exy denote the event when a device n ∈ N at location
x is triggered into alarm or ED mode by the activation of an
event with its epicenter at location y. Let Ēxy be the comple-
ment of Exy and pxy denotes the probability of a device n at
location x being triggered into alarm mode by the activation
of event at location y. Moreover, we define the probability of
device at location x being in ED mode is px. We write,

px = Pr
[
At least one event triggers MTD at x

]
= 1− Pr

[
No event triggers MTD at x

]
= 1−

∏
y∈L

Pr
[
Ēxy

]
(14)

= 1−
∏
y∈L

(1− pxy), (15)

FIGURE 3. MTC Network depicting N = 20 MTDs uniformly
distributed in a rectangular area with L = 3 event epicenters.
MTDs follow regular traffic and those within the range of the
event epicenter follow both regular and ED traffic.

where we have assumed that events are triggered indepen-
dently of each other.

Therefore, for the correlated traffic arrival model, each
MTD can either be at alarm (ED) state or regular state for
a given time slot k . We denote by Vx the state of device at
location x and we model the states at each time slot k by i.i.d
Bernoulli random variable as,

Vx(k) =

{
Regular with prob. 1− px
Alarm with prob. px

(16)

Moreover, we define with p the probability of an event being
active at location y. We assume that each event at epicenter y
triggers a subsetNy ⊆ {1, . . . ,N } of devices. The probability
of a device n going into alarm mode depends on the distance
of the device from the epicenter y of the event. Furthermore,
each MTD n can sense and report multiple events but at any
given time, we assume that it can report about only one event.
The MTDs are unaware of the actions, and events sensed by
other devices.

V. SUITABILITY OF MARL FOR RA SCHEME DESIGN
To design a RA policy for the multiuser MTC environment,
it is important to consider the suitability ofMARL algorithms
in general for scalability and in particular for the specific
characteristics of MTC system. There exists a large body
of the literature for medium access using RL in wireless
networks but only a few addresses the issues of scalability
(e.g., [41] and our recent work [24]). The distributed multiple
schemes designed with MARL do have scalability challenges
and this is even further exacerbated by the limitations of the
mMTC. The MTC system presents the following challenges
for MARL algorithms in designing a distributed RA policy:
1) Since the MTDs are low-powered and low-complexity

devices that are battery-operated, it is not feasible to per-
form learning on the devices and therefore, centralized
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TABLE 1. Suitability of some popular MARL for designing RA schemes for MTC systems.

training and decentralized execution (CTDE) method is
required for learning.

2) Usually, PS method is used for homogeneous agents,
and each agent’s ID is used in the observation (state)
vector to distinguish between agents. The homogeneous
agents are those that have the same state-space and
action-space. In our system model, since the devices2

have variable sleep cycles and they should be able to
join/leave the network, it is not feasible to use agent
identification. Therefore, we require each agent to have
a single policy using PS but at the same time, without
using agent IDs.

3) Any communication to exchange channel or device
information between MTDs is not energy efficient as
it will drain the battery of the devices. Therefore, the

2The terms agent, device and MTD are used interchangeably throughout
the paper.

devices do not communicate with each other, and they
do not know the actions taken by the other devices.

In Table 1, we provide the comparison of some popular
MARL algorithms and their suitability to the proposed sys-
tem model. Even though there are several MARL algorithms
found in the literature, we have given the comparison of
some well-known algorithms that employ the CTDE method
to learn policies. The aim of this comparison is not to pro-
vide an exhaustive survey of MARL algorithms but to make
a case for using a specific algorithm over the others for
the proposed system model. Interested readers are referred
to [42], a recent review paper of different MARL algorithms
addressing scalability challenges. Moreover, we are focusing
on DRL algorithms only.

Standard DQN [32] and actor-critic algorithms are
extended tomultiple agents using PS for homogeneous agents
in [43]. This method scales well to a large number of agents
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but it does not exploit any advantages of centralisation. More-
over, without using IDs of agents andwithout any cooperation
between agents, we have observed in our simulations that
these algorithms are not able provide better policies and they
have convergence issues. However, this might be the issue
for most of the centralized approaches. Our recent works [23]
and [24] use theDQNwith PS and in [24], we provided results
for up to 500 devices for the bursty traffic. Similarly, just like
the DQN can be extended to multiple agents using PS, one
can also use Soft Actor Critic method [40] with a local actor
and local critic that is shared among all users, where users’
individual observation is used to update the actor and critic at
each time step for all the users.

Other popular choices for MARL are multi-agent deep
deterministic policy gradient (MADDPG) [33] and the
recently proposed multi-agent proximal policy optimization
(MAPPO) [34]. In both MADDPG and MAPPO, the critic
network has a global view of the system, which is only
applied during the training phase and actor networks are
employed for each agent. An improved version of DDPG
is proposed in [44] to exploit temporal correlations and
improved computation cost. A major bottleneck of these
algorithms is the scalability due to the shared critic network,
even if the PS is considered. Since the shared critic network
has the observation space of all the agents, the size of the
observation space will grow exponentially with the number of
agents. Moreover, in a network where the number of agents
changes with time, it is inefficient to use the state-space of
all agents at the centralized critic. counterfactual multi-agent
policy gradients (COMA) [36] has a similar issue for scaling
to a higher number of agents because a shared critic is used in
it as well, just like MADDPG and MAPPO. In [45], an evo-
lutionary algorithm is proposed that is useful for multi-task
and multi-objective learning.

Some algorithms such as mean field MARL (MF-MARL)
[38] and multi-actor-attention critic (MAAC) [39] show good
scalability results but the major issue in these algorithms is
that they require communication between the agents, which
is not practical for our systemmodel. Furthermore, the results
for these algorithms are shown for a moderate number of
agents.

VDN [37] and QMIX [35] are both for cooperative
multi-agent learning in which joint action-values Qtot are
estimated from Q-values of individual agents that condition
only on local observations. One of the main differences
between these algorithms is that in VDN, the Qtot is calcu-
lated as a linear combination of the Q-values of each agent,
while QMIX employs a network that can compute Qtot as
complex non-linear combination of individual Q-values. This
way of learning also provides better scalability as compared
to MADDPG and MAPPO. QTRAN [46] improves upon
both VDN and QMIX and provides more general form of
factorization but it falls under the same category as VDN
and QMIX. For these reasons, we will focus on the VDN and
QMIX algorithms in our simulations.

VI. RL ENVIRONMENT AND MARL ALGORITHMS
A. THE ENVIRONMENT
We consider shared PRBs where each agent interacts with
the resources by taking an action and receiving common
feedback F(k) as observation. Let R(k) ∈ R be the immediate
reward that agents obtains at the end of time slot k after
receiving the feedback. The reward is calculated for all the
agents. In this work, the agents are assumed to be fully
cooperative and hence they all share the global reward. For
this reason, the subscript n is not used with R(k). The action
space of each agent is A and each device can either transmit
on channel m, i.e., An(k) = m or it can stay silent, i.e.,
An(k) = 0. The state of each device is the history tuple
defined in (7) and (8) for IDs = 0 and IDs = 1 cases,
respectively. The immediate reward depends on the agent n
action An(k) and other agents’ actions An′ (k), n′ ̸= n. The
accumulated discounted reward for an agent is defined as

∞∑
k ′=0

γ k
′

R(k + k ′ + 1), (17)

where γ ∈ [0, 1) is a discount factor.
Therefore, the reward function to maximize the packet

success rate can then be defined as,

R(k) =
N∑
n=1

Gn(k), ∀n ∈ N (18)

where Gn(k) is calculated using (5).
The environment is assumed to be partially observable as

each agent is unaware of the actions taken by the other users.
At each time slot k , each agent n obtains the feedback F(k)

from the receiver, updates its history and then feeds Sn(k) to
the proposed algorithm, whose output are the Q-values for
all the available actions. Each agent n follows the policy π

by drawing an action An(k) from the following Boltzmann
distribution,

π (a|s) =
eQ(a,s)/τ∑
ã∈A e

Q(ã,s)/τ
, ∀a ∈ A, (19)

where 0 < τ <∞ is the temperature parameter which is used
for exploration. We decrease the value of τ to 0 gradually to
make the agent more greedy.

B. DEEP Q-NETWORK (DQN)
DQN represents the action-value function using a neural
network that are characterized by parameter θ . The target
network is parameterized by θ− that are periodically copied
from θ during training. The DQN and its variants use a replay
buffer to store the transitions (s, a, r, s′), where s is the actual
state, s′ is the next state that is observed after taking action a
and receiving reward r . The learning updates are applied on
the experience samples (s, a, r, s′) ∼ U (D), that are drawn
at random with uniform distribution as mini-batches of size z
from D and by minimizing the following loss function,

L(θ ) =
z∑
i=1

[(
yDQNi − Q(ai, si; θ )

)2]
, (20)
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where yDQNi = ri + γ maxa′i Q(a
′
i, s
′
i; θ
−) is the target value

for the ith iteration. Since all agents use the same Q-network,
we do not use subscript n.
The agents are trained using PS method, where they share

the parameters of the same network, i.e., follow the same
policy [43]. The policy is learned by using the experiences
of all the agents simultaneously. However, as each agent
receives different observations and the action selection is
stochastic as in (19), this allows different behaviour between
agents.

Since the environment is partially observable, the agents
can benefit from using RNN such as gated recurrent unit
(GRU) that can facilitate learning from previous history.
A DQN making use of RNN is referred to as DRQN.

C. VALUE DECOMPOSITION NETWORKS (VDN)
VDN [37] take advantage of centralization and aim to learn
the joint action value function Qtot (s, a), a linear value
decomposition from the team reward signal, where s is the
joint observation of the agents and a is the joint action of
agents. The VDN algorithm decomposes theQtot as the linear
combination of the individual Q-values of each agent, i.e.,

Qtot (a, s) ≈
N∑
n=1

Q(an, sn; θ ), (21)

Since we are using a single network for all the agents, we use
θ without subscript n. The loss function of theVDN algorithm
can be calculated in the same way as DQN, i.e.,

L(θ ) =
z∑
i=1

[(
ytoti − Qtot (ai, si; θ )

)2]
, (22)

where

ytoti = ri + γ max
a′i

Q(a′i, s
′
i; θ
−) (23)

is the target value for the iteration i.
In this way, each agent performs an action selection locally

based on its own centrally learned Q-value in a decentralized
manner.Moreover, theVDNmethod employs RNNorDRQN
to calculate Q-values for each agent.

D. QMIX
The QMIX [35] algorithm improves the VDN and it can
represent much richer class of action-value functions. QMIX
applies the following constraint on the relationship of Qtot
and each individual action-value Qn,

∂Qtot
∂Q(an, sn)

≥ 0 ∀n ∈ N , (24)

to ensure that mixing network has positive weights. Intu-
itively, it shows that if theweights of individual value function
Qa are negative, less weightage is given to that agent for coop-
eration. Moreover, as opposed to VDN,Qtot is calculated in a
complex non-linear way. QMIX uses a separate feed-forward
neural network as a mixing network that takes individual

TABLE 2. Simulation parameters.

agents’ outputs and mixes them monotonically to produce
Qtot to enforce the constraint in (24) [35]. The weights of
the mixing network are produced by a separate hypernetwork
to ensure that they are non-negative. The loss function is
calculated in the same way as given in (22).

E. COMPUTATIONAL COMPLEXITY
The only difference between the computational complexity of
VDN and QMIX as compared to the DRQN is that VDN and
QMIX require computing Qtot during the training. If J is the
number of layers in the neural network with U being the size
of input layer, then the number of multiplications through the
network is given by, Wn = Ud1 +

∑J−1
j=1 djdj+1 where dj is

the number of units in jth layer. Therefore, the computational
complexity for each device at each time step is given by
O(Wn). Similarly, the computations of the network for N
agents at each time step can bewritten asW =

∑N
n=1Wn+W̃ ,

where W̃ is the complexity of calculating Qtot for the VDN
and QMIX. Obviously, the calculation of Qtot is not required
and therefore W =

∑N
n=1Wn for DRQN. Therefore, the

training complexity for E episodes, N agents and K time
slots is given by O(EKW ). The Qtot computation by VDN
is negligible as compared to the QMIX as it is a linear combi-
nation individual Q-values of the agents, whereas QMIX uses
additional neural network to calculateQtot . For QMIXwe can
write the computational complexity W̃ = Ũ d̃1+ d̃1d̃2, where
we have used ˜ to denote the corresponding notations of the
mixer neural network in QMIX.

The complexity of the proposed MARL algorithms is high
as compared to the EB schemes. However, the expensive
computations are only required during the training phase at
the central unit. For the scenarios of interest, each device
follows a static policy that rarely requires an update.

VII. SIMULATION RESULTS AND DISCUSSION
In the following experiments, we use the VDN [37] method
to learn RA policies for different values of N andM . We use
the neural network with two layers of size 256 and a GRU
layer of 64 neurons before the final layer of size M . The
parameters used during the training of the network are pre-
sented in Table 2. The algorithm is given in Algorithm 1. The
temperature parameter τ is updated after every K τ time slots.
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Algorithm 1 Training Phase of the Proposed Algorithm

Define N , τ, γ ∈ [0, 1], λn,∀n ∈ N , h and K
Initialize Sn = 0,Bn = 0,∀n ∈ N

for each episodedo
for each time slot k = 1, . . . ,Kdo

Generate traffic for all MTDs, i.e., B̃n ∼
Bernoulli(λn) for regular traffic, and B̃n ∼
Bernoulli(p) for ED traffic, ∀n ∈ N
Update buffer Bn = min(1, (B̃n + Bn))
for each agentn = 1, . . . ,Ndo

Observe input Sn and feed it to DRQN
Generate the estimate of Q(an, sn; θ ),
∀an ∈ A
Choose action according to (19)
Receive feedback F(k) from the receiver
Calculate Gn(k) using (5)
Update buffer Bn
Observe the next state Sn

end
Compute reward R(k) using (18)
Store (S(k),A(k),R(k), S ′(k))
in the replay buffer D,
where A(k) = (a1(k), . . . , aN (k))
Set S(k)← S ′(k)
Sample a minibatch of size z
for each transition i in minibatch, do

Calculate ytoti using (23)
Calculate loss L(θ ) using (22)
Apply gradient descent on L(θ ), i.e.,
θ ← θ − α∇θL(θ ), to update Q-values
if mixer = VDN:

Calculate Qtot using (21)
elseif mixer = QMIX:

Calculate Qtot using QMIXer [35]
for every K θ time slots:

Update θ−← θ

for every K τ time slots:
Update τ

end
end

In all the experiments, we use experience replay to accumu-
late each agent’s experience and the learning is performed
with CTDE method. An agent’s ID is one-hot encoded vector
that is appended with the observation Sn(k) of each agent.
We will first provide results for regular traffic in which we
also compare the results for different MARL algorithms such
as QMIX and DRQN with VDN and then we present our
results for the correlated traffic arrival model.

A. RESULTS FOR REGULAR TRAFFIC
For regular traffic, we employ two ways of training all algo-
rithms: (i) using agents’ IDs in the observation vector, which
is a commonway of training for CTDE, and (ii) without using

FIGURE 4. Average throughput during training with VDN
algorithm for different values of N and to compare the cases
when using IDs and not using IDs. The results are for
λn = 0.3 and (K,N) = (2000,8), (K,N) = (3000,16) and
(K,N) = (5000,50).

TABLE 3. Average throughput and average AoP values for the
proposed algorithm compared to the BEB for the learned
policies shown in fig. 4

them. We denote IDs = 0 as the case when agent IDs are not
used and IDs = 1 as the case when we incorporate agent IDs
in the observation space.

We show the results in terms of average throughput (nor-
malized reward) and AoP. The learning process and how
average throughput of the system increases for different val-
ues of N is shown in Fig. 4. We used K = 2000, 3000,
and 5000 per episode during training for N = 8, 16 and 50,
respectively. We increased K per episode as N grows to allow
better learning for each value of N . Moreover,M = 2 is used
to N = 8 and 16 and M = 5 is used when N = 50. The
average throughput and average AoP after testing is shown in
Table 3. Clearly, the case IDs = 1 outperforms BEB, slotted
ALOHA theoretical throughput (i.e., 1/e), and the case when
IDs= 0. The case IDs = 0 provides much lower average
throughput and as the number of devicesN grows, the average
throughput also decreases which is not surprising because
agents decrease the transmit probability as N grows.

Moreover, we calculate whether the learned policy is fair
or not in two different ways as depicted in Fig. 5. First,
we show how many packets per user have been successful as
in Fig. 5a and the second, the AoP of individual users (which
shows both packet delay and fairness) as shown in Fig. 5b.
We observe that using IDs incurs a significant unfairness
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FIGURE 5. Distribution of successful packets and AoP among MTDs for N = {8,16,50} and λn = 0.3. We used VDN for
both IDs = 1 and IDs = 0 cases. All cases tested for K = 500 time slots.

among devices as a subset of MTDs are starved out and they
never get a chance to send a packet. Surprisingly, no IDs
case provides much better fairness among devices. It is due to
the inherent way the MARL algorithms with CTDE behave,
we see that the case where IDs are omitted, provides us better
fairness as compared to the other case. When we use IDs in
the state space, devices are only concerned about achieving
a better throughput. But when we do not use IDs, there’s no
such coordination that exists during the centralized training,
which could allow the MTDs to come up with an unfair
consensus.

To understand this, let us take the case of N = 8. For
VDN, IDs = 1 case, it is clear that there are some devices
that have sent 0 packets and there are a few devices that have
sent most of the packets (95th percentile is 1070 and 25th

percentile is around 443). Similarly, in Fig. 5b for N = 8,
the average AoP value, which is the mean point and the
distribution of AoP among each device shows a significant
difference between 75th percentile (627) and 25th percentile
(0.8). On the other hand, for VDN, IDs= 0 case, the number
of successful packets sent by each device are around the
mean value (493) for all percentiles, i.e., 75th percentile is
around 500 and 25th percentile is around 486. Similarly, the
average AoP value as shown Fig. 5b and in Table 3 for VDN
ID= 0 case is much lower (5.5), which is the indication of
fairness. Similar conclusion can be drawn for N = 16 and
N = 50.
The case when IDs= 0 allows agents update the policies as

if it is a single agent (hence single policy). This is unlike the
IDs = 1 case in which, even if the state-space is the same for
agents, they behave differently. This way we achieve better
trade-off without using agent IDs, which is also scalable and
allows devices to join/leave the network without identifica-
tion. These plots also show that IDs = 1 case outperforms
the BEB in terms of average throughput, but BEB has better
average AoP than IDs = 1 case. The average throughput
of BEB technique is higher than IDs = 0 case for higher
values N but no IDs case exhibits much better throughput-
fairness tradeoff, as evident from average AoP values. The

case where agents IDs are used is most unfair because
of the reward signal that only cares about maximizing the
throughput.

Obviously, one can learn a policy by designing a reward
function that enforces the devices to be fair even when agent
IDs are incorporated; however, such a scenario is not of our
interest in this paper.

1) COMPARISON BETWEEN VDN, QMIX AND DRQN
We used VDN algorithm to learn RA schemes for IDs and no
IDs cases. In Fig. 6, we compare the performance of VDN
with QMIX and DRQN for N = 8 and M = 2. Both VDN
and QMIX use mixer networks to calculate the total Q-value
Qtot and exploit the benefits of centralized learning. However,
DRQN does not take any such advantage of centralized train-
ing. For this reason, both QMIX and VDN algorithms learn
a policy that maximizes the throughput for the case when
agent IDs are incorporated (IDs= 1) and QMIX outperforms
VDN. Interestingly, the DRQN learns only a slightly better
policy when IDs = 1 as compared to the case when agent
IDs = 0, again, due to the major difference that it doesn’t
take any advantage of centralization as opposed to the VDN
and QMIX. However, in Fig. 7, QMIX and VDN clearly learn
a policy that is unfair when IDs= 1, VDN being more unfair
than QMIX. On the other hand, the DRQN for this case has
lower AoP and relatively much fairer policy than VDN and
QMIX. It does not imply that DRQN is a better algorithm
than VDN and QMIX. In fact, QMIX outperforms VDN and
both outperform DRQN as far as the objective (maximizing
throughput) is concerned. Another interesting observation is
that the learned policies are very similar between all the
algorithms for IDs = 0 case and it is evident from both
Fig. 6 and Fig. 7. They are fair but it seems that exploiting
centralization advantages without using agent IDs does not
provide significant improvements.

B. RESULTS FOR CORRELATED TRAFFIC
For correlated traffic arrival, we consider the example as
shown in Fig. 3, in which N = 20 MTDs are uniform
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FIGURE 6. Average throughput comparison of different MARL
algorithms during training, for N = 8 and λn = 0.3.

FIGURE 7. The AoP comparison among MTDs for different MARL
algorithms for N = 8 and λn = 0.3.

FIGURE 8. Average throughput and average AoP for different
values of λ̄ when N = 20, L = 3 and λ = 0.3.

randomly distributed in a rectangular area of unit size. The
MTDs follow Bernoulli process with average arrival rate λ =
0.3 for regular traffic. We consider L = 3 event epicenters
uniformly distributed at random. The MTDs belonging to
each epicenter are given in Table 5. The events become

TABLE 4. Number of times each event was activated for
K = 10,000 time slots for different event activation probabilities
λ̄.

TABLE 5. MTDs Reporting the events as in fig. 3.

active following another independent Bernoulli process with
total average event activation probability given by λ̄. If the
probability of a given event is given by p then,

λ̄ = pL. (25)

The overall average arrival rate of the system is then
λ + λ̄. Note that if a regular and ED packets both arrive
at the same time slot in the device n’s buffer, the regular
traffic packet is dropped, and the priority is given to the ED
packet.

The training and the testing is performed for different
values of λ̄ as shown in Table 4, with a fixed value of λ. The
training for each λ̄ is performed over 60 episodes and K =
2000 time slots per episode. Since are interested in designing
an access policy for the MTDs deployed in an area, whenever
an event l happens, the MTDs in the vicinity of the event or
the MTDs closer to the epicenter of the event becomes active.
For this, we calculate the probability of a device at location x
becoming active due to the event happening at epicenter y as
pxy in the following way:

pxy =

{
1 if dxy ≤ dth
0 otherwise,

(26)

where dxy = ∥x − y∥ and dth is the threshold distance.
We assume that the events are atomic in nature, i.e., if an
event becomes active in time slot k , it activates MTDs within
dth. Each MTD activated by an event has one packet each to
transmit and the MTDs remain active until their packets are
successfully transmitted.

Since we want to learn the same policy for each agent,
we do not use agent IDs for correlated traffic arrivals case
and we only consider VDN IDs = 0 case since have seen
that VDN performs better as compared to the QMIX and
DRQN, Moreover, it is not considered that the ED traffic has
any priority over regular traffic. All events are of the same
nature and the same reward function as the regular traffic
is used. Fig. 8 shows the average throughput and average
AoP for different values of λ̄. The value λ̄ = 0 means that
there is only regular traffic and it can be seen in Fig. 8 that
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FIGURE 9. The comparison of successful packets per user and AoP of each user for ED traffic model for
(K,N) = (10000,20), L = 3, λ = 0.3 and λ̄ = 0.07.

as the λ̄ increases, the average throughput and the average
AoP both increase, which is natural because when there is
more traffic, there are more packets being successful but they
require more time to be transmitted, hence the higher AoP. By
further zooming in on individual MTDs, it can be observed
how each MTD is behaving in correlated traffic scenario.
In this case, agent IDs are not incorporated in the state-space
of agents. Fig. 9 shows successful number of packets and AoP
per device and the correlated traffic with regular traffic arrival
scenario are compared. Clearly, only users that are involved in
reporting any event have higher throughput as well as higher
AoP. Obviously, when few users become active together, they
will take more time to resolve collision and to send their
packets successfully. The reason to show these plots is that
the RL-based algorithms adapt to the traffic changes as the
devices that are not involved in reporting any events have
similar AoP and packet success rate to the regular traffic
case, and only the MTDs belonging to events change their
policies. The baseline BEB does not really adapt or care
whether the devices are involved in events. The throughput
is high for BEB for devices that are receiving more packets
which is not surprising but in the AoP plot in Fig. 9b, there
are devices that are not involved in reporting any events but
they have higher AoP for BEB as opposed to the proposed
algorithm.

C. SCALABILITY AND ROBUSTNESS ANALYSIS
We compare the learned policies of VDN, QMIX and DRQN
for no IDs case and show how robust the policy learned
is by each algorithm if it is scaled for a higher number
of devices. The performance of each algorithm in terms of
average throughput is shown in Fig. 10. We denote with Ntr
the number of devices during training, and the number of
devices for testing is denoted by Ntest. The average arrival
rate of the system is λ = 0.3. The results are simulated for
3 different random seeds and the best performances are shown
in Fig. 10.

We show that the VDN has more robust policy than both
QMIX and DRQN. For λ = 0.3, the policy learned for Ntr =

4 performs the same Ntest = 4, 8, 16 and the throughput
starts dropping after that. It is because the policy learned
for Ntr = 4 has higher λn = λ/Ntr and as the number of
devices grow, the collisions are not resolved and hence the
average throughput drops to almost 0. On the other hand, the
policy learned for a relatively higher number of devices such
as Ntr = 16 is robust for the number of devices less than Ntr
and also scales for a large number of devices.

Intuitively, for instance, when Ntr = 4 and λ = 0.3, then
λn for smaller Ntr has higher arrival rate or in other words,
the MTDs observe packet arrival more frequently than λn for
larger Ntr and therefore, devices learn to be more aggressive
in terms of their transmissions to empty their buffers and
such policy does not perform well for a very large number
of devices.

Furthermore, the policy of QMIX has worse performance
as compared to both VDN and DRQN. Moreover, QMIX
without incorporating agent IDs is not as effective and not
as robust as compared to the VDN.

D. ABLATION STUDY
The proposed algorithm considers only two parameters, i.e.,
the previous action An(k − 1) and the feedback signal F(k)
and their history of past h time slots is used to learn the
access policy. The ablation study is performed to investigate
the influence of the exclusion of past actions from the state
space, which leaves only the broadcast feedback signal F(k)
for learning and it is shown in Fig. 11.

Clearly, including the past actions help to learn a better
policy especially for ID= 1 case. Agents can learn quicker
and converge faster if the previous action is considered. The
policy is not affected much with the exclusion of An for
IDs= 0 case and it because the agents are unable to cooperate
effectively without knowing the identification and hence the
policy for this case has convergence issues.
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FIGURE 10. Average Throughput performance of the learned
policy for λ = 0.3 for different Ntr and tested for Ntest.

FIGURE 11. Average throughput during VDN training when last
action is not used in the state space Sn vs Sn\{An} for N = 8.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed MARL-based RA schemes
for multi-user multi-channel mMTC network that use the
broadcast feedback commonly received by all the MTDs
to reduce signalling. We have shown that even when the
optimization objective is to maximize throughput, not incor-
porating agent IDs provides a fair use of resources by each
agent and, thus, results in a better throughput-fairness trade-
off; not only when compared to the BEB scheme but also
when IDs are used. This is supported by the analysis of
successful packet distribution per user and the average AoP.
We also show that incorporating agents IDs is not suitable
for mMTC systems, as we aim to design a fair and a scalable
scheme. Although using the agents’ identification is useful
for the policy convergence in MARL, the scalability analysis
showed that the proposed algorithms (where agents IDs are
omitted for learning) scales well for lower average arrival
rates and that the learned policy is more robust for VDN as
compared to the QMIX and DRQN.

Additionally, it is shown that RL-based algorithms can
adapt to changes in traffic, whereas EB schemes are not
made aware of such changes. The selected traffic model is
representative of more complex scenarios with a correlated

traffic arrival model along with the regular traffic. Results
showed that the users learnt the correlation and adapted to
the traffic variations.

Future works could consider prioritizing events to learn a
scheme where the devices with high priority send their pack-
ets with low latency. For systems where the devices are fixed
and known, the use of agent IDs could be further exploited
to design a reward that is fair and that better exploits the
correlation between devices. Other possible extensions may
consider introducing certain degree of coordination among
devices or group of devices to avoid throughput reduction
when the number of devices increases.
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