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ABSTRACT Federated Learning (FL) offers a collaborative training framework, aggregating model param-
eters from decentralized clients. Many existing models, however, assume static, predetermined data classes
within FLa frequently unrealistic assumption. Real-time data additions from clients can degrade global
model recognition of established classes due to catastrophic forgetting. This is exacerbated when new
clients, unfamiliar to previous participants, join sporadically. Additionally, there’s an imperative for client
data privacy. Addressing these, we propose the Privacy-Preserving Federated Class-Incremental Learning
(PP-FCIL) approach. This methodology ensures content-level privacy and significantly alleviates the risk of
catastrophic forgetting in FCIL. To our knowledge, this is the first research seeks to embed differential privacy
into the FCIL settings. Specifically, we introduce a dual-model structure that uses adaptive fusion of new and
old knowledge to obtain a new global model. We also propose a multi-factor dynamic weighted aggregation
strategy that considers several factors, such as data imbalance timeliness of the model, to speed up global
model aggregation and accuracy. For privacy protection, we use Bayesian differential privacy to provide
more balanced privacy protection for different datasets. Finally, we conducted experiments on CIFAR-100
and ImageNet to compare our method with other methods and verify its superiority.

INDEX TERMS Federated learning, class-incremental learning, catastrophic forgetting, local differential
privacy, dynamic aggregation.

I. INTRODUCTION

FEDERATED learning (FL) is a recent advancement
in distributed machine learning (ML). It permits data

collection and processing at the client level, subsequently
transmitting updated ML parameters to a central server for
amalgamation. Its main goal is safeguarding edge and per-
sonal data, while facilitating effective ML across diverse
parties or computational nodes [1], [2]. To date, FL has
seen effective applications in healthcare [3], [4], intelligent
robotics [5], [6], autonomous driving [7], [8], among other
domains.

FL offers a notable advantage in enabling local training
without exchanging personal data between the server and
clients, thereby protecting clients’ data from being eaves-
dropped by hidden adversaries [9], [10], [11], [12], [13].

However, with the growing emphasis on data security and
individual privacy, privacy preservation has gained promi-
nence, especially in big data applications and distributed
learning setups [14], [15], [16]. It has been shown in sev-
eral studies that even if only gradients are uploaded, they
are still subject to model inference attacks, membership
inference attacks, and so on, leading to private information
leakage [17], [18], [19], [20]. To prevent information leakage,
a natural approach is to add artificial noise, with differential
privacy (DP) being one prominent example [21], [22]. Exist-
ing works on DP-based learning algorithms include local DP
(LDP) [23], [24], DP-based distributed SGD [25], and DP
meta-learning [26].

We observed that nearly all existing federated learning
(FL) methods [27], [28], [29], [30] assume a static learning
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process, where the local data of clients remains fixed and
unaltered over time. However, in the real world, this assump-
tion is unrealistic as clients’ local data often grows over time.
Moreover, with continuous data accumulation, catastrophic
forgetting (CF) can occur, leading to a significant decline
in model performance [31], [32]. CF is when a neural net-
work trained on the original task crashes and decreases its
performance on the original task after training on a new task.
CF occurs when the neural network’s weights are influenced
by the new task’s data and objectives, causing the original
task’s knowledge to be corrupted or overwritten. This is more
likely to happen when the neural network has fewer parame-
ters and the complexity and diversity of the tasks are higher.
The effect of CF is to limit the ability of neural networks
to continual learning and the ability to adapt to new tasks
in changing environments while retaining knowledge of old
tasks. These abilities is essential for developing AI, which
needs to deal with a wide variety of problems rather than
focusing on a single task. Additionally, in practical appli-
cations, the timing when some clients join the FL training
is flexible, and they might introduce new categories of data
unseen by other clients. Employing existing FL methods in
such scenarios can also lead to CF [33].

To solve these practical problems, we study a challeng-
ing problem called Federated Class-Incremental Learning
(FCIL). Unlike traditional FL, in the FCIL setting, each local
client continuously collects training data according to its pref-
erence, while new clients with unseen new classes may join
the FL training at any time. Another pivotal concern of our
study is privacy security within FCIL. To our knowledge, this
is the first research seeks to embed differential privacy into
the FCIL settings. In addition, the performance of the FCIL
model can be significantly affected by issues such as wire-
less signal distortion and global aggregation errors, which
arise from resource-constrained IoT devices. Therefore, it is
crucial to design an innovative and communication-efficient
model aggregation solution tailored for FCIL.

In this paper, we introduce a novel Privacy-Preserving Fed-
erated Class-Incremental Learning (PP-FCIL) approach. This
approach is a groundbreaking effort to address the real-world
FCIL challenges while ensuring data privacy. Specifically,
our approach employs a dual-model structure designed to
retain previous knowledge while adeptly adapting to new
information, significantly reducing the issue of catastrophic
forgetting. We also use model compression to maintain the
stability of the dual-model structure and reduce memory
pressure on clients. For privacy preservation, considering
that in FCIL, clients need to upload gradients frequently,
which can lead to greater vulnerability to different ways of
attack, we introduce a Bayesian differential mechanism that
corrects noise intensity according to data distribution and
provides more balanced privacy preservation for different
datasets. Additionally, based on data balancing optimization,
we propose a multi-factor dynamic weighted aggregation
strategy that considers timeliness, accuracy, and frequency of

participation inmodel aggregation of local models to improve
convergence speed and accuracy of the global model.

Our main contributions are as follows:

• Pioneering Privacy Security in FCIL: While tackling
the challenging FCIL issues, we also focus on protecting
client privacy. To our knowledge, this is the first research
that seeks to embed differential privacy into the FCIL
settings.

• Dual-Model Structure: We introduce a dual-model
structure to avoid catastrophic forgetting problems using
a dual-model adaptive feature fusion strategy to dynami-
cally balance old and new knowledge while maintaining
stability through model compression.

• Novel Approach in Bayesian differential privacy:We
introduce a novel approach to measure privacy loss
in Bayesian differential privacy that enables users to
customize privacy budgets based on data distribution
across datasets. Compared with traditional differential
privacy models, Bayesian differential privacy not only
upholds privacy protection but also elevates the quality
of service.

• Multi-Factor Dynamic Weighted Aggregation Strat-
egy:We design a multi-factor dynamic weighted aggre-
gation strategy considering several factors, such as data
imbalance and model timeliness. Additionally, we uti-
lize Mahalanobis distance to select clients participating
in the aggregation process. Compared with traditional
FedAvg algorithms, our method significantly improves
the convergence speed and accuracy of the global model.

The remainder of the paper is organized as follows.
In Section II, we overview the related work, including
federated learning, privacy protection and federated class-
incremental Learning. Sections III and IV introduce the pre-
liminaries and problem description. In Section V, we describe
our approach in detail. We present the experiments and eval-
uations in Section VI. Section VII concludes the paper.

II. RELATED WORK
A. FEDERATED LEARNING
Federated Learning (FL) [33], [34], [35], [36] primarily trains
a decentralized global model by aggregating the network
parameters from various local models. McMahan et al. [37]
proposed an average-weighted strategy to aggregate multiple
local models during the collaborative learning of a global
model. Subsequently, they developed the FedProx frame-
work [38] to tackle the data heterogeneity challenges inherent
in federated local models. Additionally, [39] introduced a
penalty regularizer in the objective function, promoting local
models to learn shared optimal results. To reduce commu-
nication overhead in federated learning, Chen et al. [40]
edsigned a time-aggregation mechanism that employs syn-
chronous learning. This mechanism aggregates deeper layers
during the final iterations and shallower layers in each
iteration. References [33] and [35] designed a Bayesian
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non-parametric strategy to aggregate model parameters of
local clients. Peng et al. [41] relied on domain adaptation
technology [42], [43] to improve the generalization per-
formance on unsupervised target domains at the local side
under federated learning settings. Qu et al. [44] addressed
the performance degradation of heterogeneous data across
local clients when deployed on different devices with sig-
nificant shifts. Ding et al. [45] presented the concept of
feature hotness metrics to address disparities in optimization
speeds across different features, leading to a notable enhance-
ment in federated learning performance. Liu et al. [46]
employed a two-layer optimization strategy to derive ‘‘gra-
dient of gradients’’ insights from local data. They further
introduced two mechanismsdynamic weight assignment and
meta-knowledge sharingto address the heterogeneity issue.
Yang et al. [47] achieves comparable recognition accuracy
on edge devices, broadening the scope of federated learning’s
potential applications. However, none of the above methods
can learn new classes consecutively in a streaming manner
and suffer from catastrophic forgetting of old classes when
local memory is limited to store old classes.

B. PRIVACY PROTECTION
Due to its strictly provable property, differential privacy is one
of the most representative methods used in federated learning
to preserve privacy. One widely adopted approach is the
differential privacy stochastic gradient Descent (DP-SGD)
algorithm proposed by Song et al. [48]. This method seg-
ments the gradient and incorporates noise during training,
ensuring that the resulting deep model adheres to (ε, δ)-
differential privacy. Furthermore, Abadi et al. [25] proposed
Moment Account based on DP-SGD. The method obtains
a smaller privacy loss by choosing an appropriate scale of
noise and fragmentation thresholds. Dong et al. [49] pro-
posed Gaussian differential privacy (GDP) and defined f-DP
to accurately describe the optimizer’s consumed privacy
in each epoch. In recent years, Wei et al. [50] proposed
a novel framework called NbAFL for preventing informa-
tion leakage in federated learning. The method works by
adjusting the variance of artificial noise to meet the DP
requirements under different protection levels. Hu et al. [51]
developed a sparse amplification privacy technique, merging
stochastic sparsification and gradient perturbation, to bol-
ster privacy assurances while minimally impacting model
accuracy. Wang et al. [52] tackle the limitations of conven-
tional federated learning algorithms by incorporating three
differential privacy mechanisms. These enhancements aim to
boost model efficacy while ensuring robust user data pro-
tection. In this paper, we employ the Bayesian differential
mechanism [53] to tailor noise based on data distribution,
offering enhanced privacy assurance for similarly distributed
data. Concurrently, we also propose a general method for
accounting for privacy based on Bayesian differential privacy
algorithm, which improves the practicality of differential
privacy.

C. FEDERATED CLASS-INCREMENTAL LEARNING
Class-incremental learning (CIL) [31], [54], [55], [56] aims
to continuously identify new classes in the real world, which
is widely used in image classification tasks [57]. Existing
CIL methods [58] can be categorized into three groups:
learning without access to old classes, generative replay
of old classes, and exemplar memory construction of old
classes. When training data for old classes is unavailable,
Kirkpatrick et al. [59] propose compensating for biased
optimization caused by new classes. In contrast, [60], [61]
employ knowledge distillation to address performance degra-
dation (i.e., catastrophic forgetting) on old classes. For
generative replay of old classes, [62] relies on adversar-
ial learning to design a memory replay generator for old
classes and overcomes catastrophic forgetting by perform-
ing replay alignment. Additionally, [32] proposes a dual
cooperative model that includes a memory generator to syn-
thesize old class and a task solver to address forgetting.
Reference [63] considers distilling causal relations of class-
imbalanced training samples. Simon et al. [64] propose
an improved knowledge distillation technology and utilize
geodesic path to measure the similarity between old and new
predictions. Meanwhile, [65], [66], [67] design an adaptive
network to balance stability and plasticity. Furthermore, [68]
introduces the transformer framework to address forgetting
on old classes by designing expandable task tokens. However,
addressing the FCIL problemwith existing CILmethods [31],
[58], [62], [69] requires strong prior knowledge about where
and when to collect new classes, which is impractical and vio-
lates the requirement of privacy preservation in the real world.

To date, less work has been done on FCIL studies.
Dong et al. [70] address the issue of incremental class learn-
ing in federated learning with the Global-Local Forgetting
Compensation model (GLFC). This method counteracts the
forgetting of old classes at local client levels by implementing
gradient compensation loss for class perception and distilla-
tion loss for class semantic relationships. And in LGA [71],
Dong further improves the model performance. However,
both GLFC and LGA need a proxy server to achieve their best
performance, leading to high communication costs and pri-
vacy issues. Based on Enhancer-Transformer, Liu et al. [72]
proposed a framework called FedET for communication-
efficient federated class incremental learning. This method
uses Enhancer and Transformer modules to absorb and trans-
fer new knowledge, respectively, and proposes an enhancer
distillation method to solve the problems of local forgetting
caused by new classes of new tasks and global forgetting that
is not independently and identically distributed. However,
neither LGA nor FedET considers data privacy security and
requires more computational resources and storage space
when dealing with local forgetting.

III. PRELIMINARIES
In this section, we detail the critical premises involved in our
scheme, including federated learning, differential privacy and
incremental learning.
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A. FEDERATED LEARNING
We consider a federated learning architecture optimized
with FedAvg, the backbone of commonly-adopted federated
learning algorithms. Assuming that there are K clients par-
ticipating in federated learning, each client has a local private
data set Di =

{
xki , y

k
i

}
(k = 1, 2, . . . ,K ), where xki and yki

are the feature vector and label respectively. Let nk and n be
the data set sizes of the k-th client and all clients respectively,
ρ (xi, yi;ω) is the loss of using the model parameter ω to pre-
dict the sample (xi, yi). Before participating in the federation
training, all clients will uniformly determine the local model
training objectives, namely:

min
ω∈Rd

ρ(x, y;ω) = min
ω∈Rd

1
n

n∑
i=1

ρ (xi, yi;ω) . (1)

In the federation training process, the objective equation
can be transformed into:

ρ(x, y;ω) =
K∑
k=1

nk
n
Lk (xk , yk ;ω) , (2)

where Lk
(
xk , yk ;ω

)
= n/nk

∑
i∈Di ρ

(
xi, yi;ω

)
is the objec-

tive equation of client k , n =
∑K

i=1 |Di| =
∑K

i=1 nk is the size
of the data set constructed by all the clients participating in
the federation learning, nk = |Di| represents the local dataset
of client k .

The server first initializes the client’s local model param-
eters. In each round of communication t , clients with pro-
portion F will be randomly selected to communicate directly
with the server. Then, each client participating in the feder-
ated learning downloads the current global model parameters
from the central server and updates their local models syn-
chronously. The server will aggregate the uploaded model
parameters to optimize the global shared model further:

ωt+1← ωt − η

K∑
k=1

nk
n
fk , (3)

where fk = ∇Lk (xk , yk ;ωt) is the average loss on the local
dataset of client k . For each client k , ωk

t+1 ← ωt − ηfk ,
combined with the above formula, then:

ωt+1←

K∑
k=1

nk
n

ωk
t+1. (4)

B. DIFFERENTIAL PRIVACY
1) CLASSIC DIFFERENTIAL PRIVACY
(ε, δ)-DP provides a strong criterion for privacy preservation
of distributed data processing systems. It provides an infor-
mation theory security guarantee that the output result of the
function is not sensitive to any specific record in the data set.
We will now formally define DP as follows.
Definition 1 ((ε, δ)-DP [21]): A random function

(algorithm)M:X → Rwith domainX and rangeR satisfies
(ε, δ)-DP, if for all measurable sets S ⊆ R and for any two

adjacent databases Di, D′i ∈ X ,

Pr [M (Di) ∈ S] ≤ eε Pr
[
M

(
D′i

)
∈ S

]
+ δ, (5)

where Pr [M (Di) ∈ S] /Pr
[
M

(
D′i

)
∈ S

]
is the privacy

loss. ε > 0 is privacy budget, which can denote the degree
of privacy preservation, and the smaller it is, the better the
privacy preservation is, but the more noise is added, and the
data usability is decreased. δ represents the probability that
the privacy loss breaks the privacy budget.
Definition 2: For numerical data, a Gaussian mechanism

defined in [21] can be used to guarantee (ε, δ)-DP. According
to [21], we present the following DP mechanism by adding
artificial Gaussian noise.

In order to ensure that the given noise distribution n ∼
N

(
0, σ 2

)
preserves (ε, δ)-D where N represents the Gaus-

sian distribution, we choose noise scale σ ≥ c1s/ε and the
constant c ≥

√
2 ln(1.25/σ ) for ε ∈ (0, 1). In this result,

n is the value of an additive noise sample for a data in the
dateset, 1s is the sensitivity of the function s given by 1s =
maxDi,D′i

∥∥s (Di)− s
(
D′i

)∥∥, and s is a real-valued function.

2) BAYESIAN DIFFERENTIAL PRIVACY
Our privacy-preservation scheme includes Bayesian differen-
tial privacy [53]. This method offers a privacy loss accounting
technique that is more efficient than the traditional moments’
accountant.
Definition 3: Bayesian differential privacy. A random

function (algorithm)A:X → Rwith domainX and rangeR
satisfies (εµ, δµ)-Bayesian differential privacy. There are any
two brother datasets Di, D′i ∈ X , differing in a single data
record x ′ ∼ µ(x), and for all measurable sets S ⊆ R it holds
that:

Pr [M (Ai) ∈ S] ≤ eεµ Pr
[
M

(
A′i

)
∈ S

]
+ δµ. (6)

The basic properties of Bayesian differential privacy and
related proofs can be found in the literature [73]. To derive
tighter sequential composition, an alternative definition that
implies the above can be used:

Pr
[
LM

(
ω,Ai,A′i

)
≥ εµ

]
≤ δµ, (7)

where LM
(
ω,Ai,A′i

)
= log Pr[M(Ai)=ω]

Pr[M(A′i)=ω] is used to
represents the privacy loss random variable. Besides,
Pr

[
LM

(
ω,Di,D′i

)
≥ εµ

]
depends on ω and x ′, where ω

is the randomness of the outcome and x ′ is the additional
example.

The definition of Bayesian differential privacy is very sim-
ilar to the definition of classical DP. The difference is that
it considers the randomness of x ′ and satisfies two assump-
tions [53]:
• All data records are not limited to a particular dataset but
rather a specific type of data (e.g. emails, MRI images,
etc.) or a mixture of such types.

• All data records are exchangeable.
This means that the Bayesian DP can provide worse-case

guarantees than the classical DP.
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FIGURE 1. Incremental learning.

Definition 4: Rényi divergence of λ between distributions
P and Q, denoted as Dλ(P∥Q) as:

Dλ(P∥Q) =
1

λ− 1
log

∫
p(x)

[
p(x)
q(x)

]λ−1

dx

=
1

λ− 1
log

∫
q(x)

[
p(x)
q(x)

]λ

dx, (8)

where p(x) and q(x) are corresponding density functions of P
and Q.
Definition 5: Privacy Cost. Define as the privacy cost of

the iteration t:

ct (λ) = logEx

[
eλDλ+1(pt∥qt )

]
, (9)

where pt = p(ω(t)ω(t−1),D), qt = p(ω(t)ω(t−1),D′).pt and
qt denotes the distribution of private outcomes.

C. INCREMENTAL LEARNING
The core principle of incremental learning is that deep learn-
ing models can continuously acquire new data knowledge,
maintaining a balance between new and old knowledge. The
classification model can perform multi-class tasks on these
previously learned classes as new classes are continually
added.

In image classification, each incremental step introduces n
old classes and m new classes. The goal is to train a model
to test the classification performance on n + m classes. The
representation of old and new class samples is as follows:

Xn = {(xi, yi), 1 ≤ i ≤ N , yi ∈ [1, . . . , n]} , (10)

Xm = {(xi, yi), 1 ≤ i ≤ M , yi ∈ [n+ 1, . . . , n+ m]} , (11)

where N and M represent the number of old and new class
samples, respectively, and xi and yi denote the image and its
corresponding class label.

Incremental learning, mimicking human learning patterns,
is devised to handle continuous data streams. It learns from
new samples without forgetting old knowledge, as depicted
in Fig. 1.

Incremental learning algorithms possess several key
features:
• Continuous learning of new knowledge: Unlike tradi-
tional machine learning algorithms, incremental learn-
ing can learn new knowledge continuously and update

the model, addressing the issue of continuous data
streams and reducing training time.

• Avoids reprocessing old samples: Incremental learning
applies only new data without requiring the training data
of old knowledge.

• Retains old knowledge: In practical applications, a pro-
ficient incremental learning system retains old knowl-
edge while assimilating new, capable of recognizing
previously learned old samples.

IV. PROBLEM DESCRIPTION
In this section, we outline federated incremental tasks, pri-
vacy threat model and the efficiency issue that must be
addressed.

A. FEDERATED INCREMENTAL TASKS
Most existing models make an unreasonable assumption that
the data classes in the FL framework are predetermined and
fixed beforehand. The issue arises when local clients receive
new classes successively, leading to limited memory to store
old classes. This assumption significantly reduces the recog-
nition performance of the global model on old classes, also
known as catastrophic forgetting. Furthermore, introducing
new local clients that collect novel and unseen classes adds
to the irregularity in FL training, further exacerbating catas-
trophic forgetting of old classes. Therefore, one of the issues
this article seeks to address is handling incremental tasks in
FL and mitigating catastrophic forgetting.

B. PRIVACY THREAT MODEL
Similar to traditional FL, there are primarily two roles in
FCIL: a server responsible for aggregating the global model
and K clients, each possessing their own data. The objective
for the clients is to collaboratively train a machine learning
model on the server using their individual data while ensuring
privacy. Throughout this process, the original data from the
clients is not uploaded to the server. However, studies [17],
[18], [19], [20] have shown that merely transmitting gradi-
ents can still be susceptible to various attacks. To address
these issues, researchers typically modify the original data
to prevent privacy leaks, such as using differential privacy,
generalization, and perturbation. However, while protecting
privacy, these methods also alter sample features that affect
the accuracy of the analytical service model. Therefore, how
to guarantee privacy-preservation while improving the qual-
ity of the service model remains another pressing issue in this
paper.

C. EFFICIENCY ISSUE
In traditional federated learning, the weighted aggrega-
tion of the global model is determined based on the data
size contributed by participating users. For example, in the
FedAvg algorithm, participating users with larger local train-
ing datasets significantly impact the global model. However,
this approach can lead to model skewness, which can affect
the convergence speed and accuracy of the global model,
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especially when faced with severely imbalanced data or users
with varied data quality. In FCIL, this issue is further ampli-
fied, necessitating consideration of other factors. Therefore,
how to design a dynamic aggregation algorithm that aligns
with FCIL is a critical issue that this paper aims to explore.

V. OUR PROPOSED SCHEME
In this section, we will discuss in detail the solutions to
the three problems in Section IV. Specifically, they include
framework design, Federated incremental learning based on
dual-model, Local Bayesian differential privacy, and Multi-
factor dynamic weighted aggregation strategy.

A. FRAMEWORK DESIGN
In our framework, we use C1,C2,. . . ,Ck to represent K
clients, each of which has its own corresponding data set
D1,D2,. . . ,Dk , let Dk

=
{
Dk
t
}T
t=1 denote a sequence of

training data of client k , whereDk
t =

{
X k
t ,Yk

t
}
is the coming

dataset at round t . X k
t and Yk

t denote data and corresponding
labels. For different step i and j,X k

i ∩X
k
j = ∅ and Y

k
i ∩Y

k
j =

∅. The server represents the cloud server that aggregates the
local models. In the t round, each client Ci uses its local
dataset to train the local model with the model parameters
represented by ωi

t .
We have used local Bayesian differential privacy mecha-

nism, Multi-facto dynamaic weighted aggregation algorithm
and Federated incremental learning algorithm based on the
fusion of dual models in the framework. Below we will detail
these techniques and how to utilize them.

B. FEDERATED INCREMENTAL LEARNING BASED ON
DUAL-MODEL
The current federated learning approach typically involves
training a federated model on a static dataset, which is
not updated dynamically. However, in real-world scenarios,
client data is often subject to change and requires dynamic
updates. We are aware that incremental learning often leads
to the catastrophic forgetting problem. Similarly, if we train
the previous federated model directly with newly added
data, it will also result in catastrophic forgetting. To address
this issue, we have proposed a federated incremental learn-
ing algorithm that utilizes dual-model fusion. The specific
approach is as follows:

1) CONSTRUCTING DUAL-MODEL
In order to construct a dual model, the training dataset must
first be processed. To ensure the sensitivity of the federated
model to old samples, we take into account memory limi-
tations. Therefore, after completing model training at each
stage, we select a small number of representative paradigm
samples from the old samples. By using both the new samples
and the paradigm samples, an incremental local model is
obtained through joint training during the incremental learn-
ing stage.

We use the Herding algorithm [74] to select paradigm
samples from the old samples. First, calculate the class mean
µ of the round t training data for client k:

µ =
1

|Dkt |

∑
x∈nkt

�s(x), (12)

where |Dkt | is the size of the training data volume for the t-th
model aggregation client k and�s is the feature extractor. If p
paradigm samples are selected, then the paradigm samples Skt
are:

sp← argmin
x∈Dkt

∥∥∥∥∥∥µ−
1
p

�s(x)+
p−1∑
i=1

�s (si)

∥∥∥∥∥∥ , (13)

Skt ←
{
s1, s2, . . . , sp

}
. (14)

In the initial step, we train with Dk
1 , resulting in the model

ωk
1 . Due to memory limitations, we can’t store the entirety

of Dk
1 . Instead, we select a subset Sk1 and store it in the

memory bank. At round t (t > 1), we train the model ωk
t

using Dk
t ∪ S

k
t−1. Upon completion of the model training, the

memory bank is updated with the subset Skt . Throughout the
incremental learning process, we consistently iterate through
training the model and updating the memory bank.

2) DESIGNING THE LOSS FUNCTION
In order to achieve a balance between model stability and
plasticity during the training of the dual-model, we have
introduced a loss function that considers three aspects: clas-
sification loss to address class imbalance, distillation loss
to preserve old knowledge, and SupCon loss to learn new
knowledge [75].

a: CLASSIFICATION LOSS
In FCIL scenario, as new data classes are added, the model
tends to increasingly classify data into these new classes.
To address this issue, we adopted the Balanced Softmax
approach proposed in [76] as a replacement for the softmax
activation function. Consequently, the classification loss is
defined as follows:

LC = −
Kt∑
i=1

σy=i log hi(x), (15)

where x and y represent the input image and its corresponding
label, respectively. σy=i is an indicator function. Kt denotes
the total number of classes in the t round. hi(x) is the output
probability for the i-th class, and is computed as follows:

hi(x) =
nieZi(x)∑Kt
j=1Zj(x)

, (16)

where ni is the number of samples in i-th class and Zi(x) is the
i-th output logit of Zmix . The Balanced Softmax significantly
alleviates the adverse effects of data imbalance without intro-
ducing additional computational overhead during training.
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FIGURE 2. Framework design. (Note that the figure only describes one iteration process.)

b: DISTILLATION LOSS
While the dual-model reutilizes the old model, it remains
imperative to conduct knowledge distillation to control the
retention of old knowledge within the mixed features Fmix .
We denote �old and the output probabilities of the current
dual-model as ĥi(x) and hi(x), respectively. The distillation
loss is then adopted as follows:

LD = −
Kt−1∑
i=1

ĥi(x)log(hi(x)), (17)

ĥi(x) =
eẐi(x)/τ∑Kt−1
j=1 eẐj(x)/τ

, hi(x) =
eZi(x)/τ∑Kt−1
j=1 eZj(x)/τ

, (18)

where τ represents the temperature, and Kt−1 denotes the
number of old classes in the round t . Ẑi(x) and Zi(x) are
the output logits for the i-th class from Zmix and Zold ,
respectively.

In the knowledge distillation scenario, there exist twomod-
els, an old model and a current dual model. Specifically,
we calculate the output probability of the old model and use
it as the training target for the student model. By minimizing
the difference in output probabilities between the old model
and the new model (knowledge distillation loss), the student
model can learn the knowledge of the old model and perform
well on the new tasks.

c: SUPCON LOSS
The second branch of the dual-model is tasked with learn-
ing new knowledge and extracting new features, denoted
as Fnew. We aspire for Fnew to be distinguishable and
expressive rather thanmerely passively acquired intermediate
features during the end-to-end training process. To achieve
this, we employ the Supervised Contrastive Learning (SCL)
approach, inspired by the work of Khosla et al. [77], which
leverages both labels and data augmentation to constrain
�new. Specifically, to compute the SupCon loss, we use the

projection head Gt to map Fnew to a new space:

Gt (Fnew) = ϕ(M2 · ϕ(M1 · Fnew + b1)+ b2), (19)

where M1 and M2 are weight matrices, b1 and b2 are bias
terms, and ϕ is the ReLU activation function.

Let Dk:all
t =

{
X k:all
t , †k:allt

}
denotes the union of training

data ˆDk
t in t round for client k and its augmentation. For a

given input image x and its corresponding label y, we define
p(x) as the positive set. This set comprises images from the
same class within X k:all

t but excludes x. Specifically:

p(x) =
{
xi ∈ X k:all

t |xi ̸= x, yi ̸= y
}

. (20)

Thus, the SupCon loss is formulated as:

LS = −
1
|p(x)|

∑
xi∈p(x)

log
ez·zi/τ∑

xj∈X k:all
t

ez·zj/τ
, (21)

where z, zi, and zj are the corresponding projection features
of x, xi, and xj, respectively. τ is the temperature scalar.

d: FINAL OBJECTIVE
The loss function of the dual-model is:

L = (1− λ)LC + λLD + ϱLS , (22)

where λ =
Kt−1
Kt

is used to balance classification loss and
distillation loss, and ϱ is a hyper-parameter adjusting the
weight of the SupCon loss.

3) DUAL-MODEL ADAPTIVE FEATURE FUSION
For Fold and Fnew, we posit that a straightforward addition
or concatenation operation might compromise the intrinsic
knowledge embedded within them. Consequently, we pro-
pose a method of adaptive feature fusion to get a more
expressive and separable set of mixed features, denoted as
Fmix , which is beneficial for imbalanced classification.
Fnew offers superior classification performance for images

of new classes. This is because �new is trained based on
all data and the SupCon loss. Similarly, Fold demonstrates

156 VOLUME 2, 2024



Xiao et al.: Privacy-Preserving Federated Class-Incremental Learning

FIGURE 3. Dual-model Strategy. The dual-model strategy
comprises two feature extractors, namely �old and �new , along
with a dual-model adaptive feature fusion module, �dAff .
At round t for client k, we freeze the model trained previously at
round t − 1 to serve as �old to preserve existing information.
Subsequently, we introduce a trainable network, �new , with a
consistent architecture to learn new knowledge.

enhanced classification capabilities for images of old classes,
given that �old is inherently designed to classify the old
classes. To optimally harness the information from both Fold
and Fnew, we introduce the following dual-model adaptive
feature fusion module [75]:

Fmix = �dAff (Fold ,Fnew)
= Fold ⊗1+ Fnew ⊗ (1−1). (23)

The ⊗ and 1 represent the multiplications between matri-
ces and the weight of each channel, respectively. We use the
channel attention mechanism proposed in [78] to compute the
fusion weights 1:

1 = σm (W2ϕ (W1(Fold ))) , (24)

where σm is the Sigmoid function and ϕ is the ReLU activa-
tion function.1 is a simple gatingmechanismwith a Sigmoid
function. �dAff consist of two fully connected layers W1 ∈

R
C
r ×r and W2 ∈ RC×C

r , r is the reduction ratio.
The specific implementation process of Dual-model Adap-

tive Feature Fusion is as follows:

• Initial Processing: The input channel descriptor,
denoted as Fold , is first processed by the initial fully-
connected layer. This layer assimilates the weightsW1 to
produce an intermediate representation.

• Nonlinear Transformation: This intermediate repre-
sentation is then subjected to a nonlinear transformation
using the ReLU activation function, resulting in a new
intermediate state.

• Deducing Modulation Weight: The second fully con-
nected layer takes this newly derived representation and
deduces the channel’s modulation weight 1 by assimi-
lating the weights W2.

• Final Fusion: The final step involves calculating Fmix
to obtain the fused model.

Furthermore, focusing on the channels proves sufficient in
this approach [78], yielding significant improvements with
only aminimal increase in computational demand and param-
eter count.

4) MODEL COMPRESSION
Since we use �new in every round of training, this leads to an
infinite increase in the size of the dual-model. In order to pre-
serve the dual-model’s two-branch structure and alleviate the
pressure on client storage caused by the model’s increase in
size, we compress the dual-branch feature extraction network
�t into a single-branch network �′t :

LM = (1− λ)LC + λ0
∥∥Fmix − F ′mix∥∥2 , (25)

where λ =
Kt−1
Kt

, F ′mix is the mixed feature of t − 1 round,
and 0 is a hyper-parameter controlling the weight of feature
distillation loss. Compressing the model necessitates addi-
tional knowledge integration time, thereby incurring extra
computational costs. However, experimental results indicate
that the increased computational costs are justified, given the
improvements in model performance.

C. LOCAL BAYESIAN DIFFERENTIAL PRIVACY
Compared with classical DP, BDP can add the noise based
on the client’s local data distribution, which makes the
noise addition more reasonable. Besides, we propose a Local
Bayesian Account to monitor the privacy loss of clients in
the FCIL by utilizing the principle and advanced composition
theorem of BDP. The implementation steps are as follows:

(1) During training, computing the privacy cost ct (λ)
for each iteration of the local model requires knowledge
of the data distribution µ(x), which is difficult to do in
FCIL. According to Definition 5, we need to estimate
Ex

[
eλDλ+1(pt∥qt )

]
.

(2) We use a subsampled Gaussian noise mechanism
for privacy-preserving FCIL. Thus, the output distribution
p(ω(t)ω(t−1),D′) is calculated as follows [53]:

p
(
w(t)w(t−1),D′

)
= (1− q)N

(
gt , σ 2

)
+ qN

(
g′t , σ

2
)

,

(26)

where gt and g′t are the non-private outputs of t iterations.
They correspond to the cases without x ′ and with x ′, respec-
tively. σ is the noise parameter of the mechanism and q
represents the probability of data sampling.

(3) According to p(ω(t)ω(t−1),D′) and Definition 4, the
cost of privacy is given by:

ct (λ) = logEx

[
Ek∼B(λ+1,q)[e

k2−k
2σ2
∥gt−g′t∥

2
]
]

= ogEx

[
λ+1∑
k=0

(
λ+ 1
q

)
qk (1− q)(λ+1−k)e

k2−k
2σ2
∥gt−g′t∥

2

]
,

(27)

where B(λ + 1, q) represents the binomial distribution, and
λ+1 and q are the number of experiments and the probability
of success, respectively.

(4) Therefore, the privacy cost of each iteration is summed
up to obtain the privacy cost of the whole learning process.
To ensure that the privacy cost does not exceed the privacy
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budget, for a fixed ε, ct (λ) must satisfy the following condi-
tion [53]:

logδ ≤
T∑
t=1

ct (λ)− λε. (28)

In conclusion, we have advanced the Bayesian differential
privacy framework to embrace local Bayesian differential
privacy. Specifically, Steps 1 and 2 outline the methodology
for determining the privacy cost in each iteration of federated
learning. Step 3 introduces a precise formula to compute this
per-iteration privacy cost. Lastly, Step 4 presents an inequal-
ity to ensure that the cumulative privacy cost throughout the
learning procedure remains within a predefined privacy bud-
get. By introducing noise to the model parameters, attackers
are unable to obtain precise output results through querying
the model, thus preventing them from recovering the training
data or inferring whether a specific sample belongs to the
model’s training data or not based on the output results.

D. MULTI-FACTOR DYNAMIC WEIGHTED AGGREGATION
STRATEGY
In the context of federation incremental learning, the com-
munication pressure between clients and central servers will
gradually increase and the speed of model aggregation will
slow down due to increasing data. To address this problem,
we propose a multi-factor dynamic weighted aggregation
strategy and Federal Preferred client Strategy by the follow-
ing methods:

1) DATA BALANCING WEIGHTED AGGREGATION
FedAVG only considers the amount of data in the training set
of participating clients to influence themodel aggregation(the
larger the amount of data the more impact the client has
on the global model), which may lead to the global model
being heavily skewed towards the participating clients with
large amounts of data and does not handle incremental data.
To address this issue, we propose incremental weight, which
influence the aggregation strategy by modifying the weight
values of the clients model.

The incremental weight of the client k can be calculated
using the following formula:

I kt =
|dkt |

|Dkt−1| + |d
k
t |

, (29)

where |Dkt−1| denotes the sample size of data for client k at
round t − 1 and |dkt | denotes the incremental sample size
of data for that client at round t . The incremental weight
I kt indicates the proportion of the number of newly added
samples from the client k to the total number of samples in
the client k .
We define a parameter depth value θkt = θkt−1 − (I kt ·

θkt−1), which represents new data added to the local dataset
after the client has completed its iterative learning, and to a
certain extent, reflects the degree of update at the client. The
initial value of θkt can be set to |Dk0|/|D0|, |Dk0| denotes the

original sample size of data for client k , and |D0| denotes the
original sample size of data for all client. During the time
interval between downloading and uploading parameters by
the client, new training data is generated and the depth values
are updated to some extent.

In order to ensure that clients with larger depth values have
smaller parameter weights and a relatively smooth decay pro-
cess, the inverse tangent function is chosen as the incremental
weighted decay function in this paper:

γ kt = tanh(θkt + α) =
eθ

k
t +α
− e−(θ

k
t +α)

eθ
k
t +α + e−(θ

k
t +α)

, (30)

where a is α hyperparameter, set according to the size of the
data. Then the aggregation strategy changes to:

ωt =

K∑
k=1

γ kt · ω
k
t . (31)

2) TEMPORALLY WEIGHTED AGGREGATION
With the increase in the number of clients to be involved and
the uncertainty of the random participant selection method,
some clients may not be involved in the model aggregation
process of the federated learning system for a long period
of time. As a result the model parameters of these clients
remain unchanged for a long period of time and their local
model parameters may differ significantly from the federated
model parameters. In order to avoid the excessive impact on
the federated model when the clients that have not joined the
federated learning for a long time participate in the aggre-
gation, some scholars have proposed a Temporally Weighted
Aggregation algorithm [40], [79] that is conducive to improv-
ing the convergence speed of the federated model,the basic
formula of which is as follows:

T kt = (
e
2
)−(t−tk ). (32)

Temporally Weighted Aggregation algorithm affixes
timestamps to all clients involved in federated learning.
Where t represents the number of federated model training
rounds, tk represents the training round (timestamp) of the
client k whose model was last updated, and e is the base of the
natural logarithm. The equation can be interpreted to mean
that the parameter information uploaded by participants with
more frequent model updates will be givenmore weight in the
model aggregation process, given that the participants’ local
datasets are of equal size.

Then the aggregation strategy changes to:

ωt =

K∑
k=1

|Dkt |
|Dt |
· T kt · ω

k
t . (33)

3) MULTI-FACTOR DYNAMIC WEIGHTED AGGREGATION
The weighted aggregation algorithm optimized based on data
balance considers the influence of the size of each partic-
ipating user’s local dataset on model aggregation and the
weighted aggregation algorithm based on model timeliness
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considers the time span between the last communication
round that a client participated in model aggregation and
the current communication round of federated model aggre-
gation. Additionally, because the accuracy of each client’s
trained model may vary, aggregating models with the same
weight for poorly and highly accurate models will slow down
the convergence speed of the model. To address this issue,
we consider increasing the weight ratio of highly accurate
client models in model aggregation, with the specific formula
as follows:

Akt =
βkt

βt
, (34)

where βt represents the sum of the accuracy of local models
of all participating clients in the current round of model
aggregation on their respective local training sets at round t ,
while βkt represents the size of the accuracy of the local model
of participating client k on the local test set at round t .
Generally speaking, the client models that participate in

model aggregation more frequently are closer to the final
trained model. Therefore, we also consider the weight pro-
portion of the total number of times that a client model
participates in model aggregation during the model aggrega-
tion process, with the specific formula as follows:

Rkt = (
rkt
rt
+ 1)/2, (35)

where rt represents the total number of times all client mod-
els participate in model aggregation in round t , while rkt
represents the total number of times client k participates in
model aggregation at present in round t . The calculation of
Rkt is shown in Algorithm 1. Note that in the sixth line of
Algorithm 1, we compress Rkt to between 0.5 and 1 to prevent
extreme values from having an impact on the model.

It is worth noting that Eq. (32) focuses on the last round
in which the client participated in the aggregation, while
Eq. (35) focuses on the total number of times the client
participated in the aggregation.

Algorithm 1 Rounds_ratio (at Round t)
Input The set of selected clients SCt , the frequency of client
k participation in aggregation rkt
OutputWeight proportion Rkt
1: Initialize rt ← 0
2: for each client k ∈ SCt in parallel do
3: rt ← rt + rkt
4: end for
5: for each client k ∈ SCt in parallel do
6: Rkt ← (rkt /rt + 1)/2
7: end for
8: Ft ← {Rkt }
9: return Ft

Combining all of the above factors, we obtain
the multi-factor dynamic weighted aggregation strategy,

which is:

ωt =

K∑
k=1

(a · γ kt + b ·
|Dkt |
|Dt |
· T kt + c · A

k
t + d · R

k
t ) · ω

k
t ,

(36)

where, a, b, c, and d are hyper-parameters, and a + b +
c + d = 1. Multi-facto Dynamaic Weighted Aggregation
Algorithm is an improvement upon the FedAvg algorithm that
aims to mitigate the influence of other factors on the model’s
accuracy.

4) FEDERAL PREFERRED CLIENT STRATEGY
In traditional federated learning, the clients participating
in federated learning are mostly determined by setting a
fixed proportion or based on a set fixed threshold. However,
in FCIL, this approach has many shortcomings.
• In FCIL, the client’s local dataset is constantly grow-
ing, simply randomly selecting a subset of participants
according to the communication ratio can easily lead to
a skewed training process for global models.

• Depending on a fixed threshold can sometimes be time-
consuming, and in the later stages of training, the global
model may fluctuate and struggle to converge.

Our system assigns a weight value to each client. Before
each round of communication, the server calculates and sorts
the weight values of all clients, and then selects a subset
of clients based on a pre-set proportion F . If a client is not
selected, they accumulate local parameter information and
proceed to the next round of learning iterations until they are
selected again.

It is worth noting that the weight value calculation is
carried out throughout the learning process. Whether selected
or not, the weight value must be computed after the upcoming
round of learning.

To obtain a comprehensive and accurate one-dimensional
performance indicator that accurately describes the participa-
tion level of each customer, we useMahalanobis distance [80]
to calculate the accuracy, loss, and kappa feature vectors
of customers. We use the sum of Mahalanobis distances
between each client’s performance indicators and those of
other customers as the client’s rank value SD. The larger the
weight value, the less similarity in performance indicators;
vice versa.

Assuming that the sub-ends of two factories are repre-
sented by x = (xacc, xloss, xkappa) and y = (yacc, yloss, ykappa),
respectively, the formula for calculating the covariance of x
and y is: formula for calculating the covariance of x and y is:

p =
∑
ij

Cov(xi, yi) = E[(xi − µx)(yi − µy)], (37)

where µx = E[xi], µy = E[yi].
The calculation formula ofMahalanobis distanceMD(x, y)

of two non-independent and identically distributed client x
and y is:

MD(x, y) =
√
(x − y)T p−1(x − y). (38)
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Algorithm 2 SeverExecution
Input: Total number of clients K , participation proportion F
Output: Global model ωt
1: Initialize a, b, c, d
2: for each client k ∈ 1, 2, . . . ,K do
3: tk ← 0
4: rkt ← 0
5: end for
6: for each rount t = 1, 2, . . . do
7: m← max(K · F, 1)
8: Mt ← order(SD1, SD2, . . . , SDk )
9: The set of selected clients SCt ← (top m set of Mt )
10: Ft ← Rounds_ratio(SCt , rkt )
11: for each client k ∈ SCt in parallel do
12: ωk

t , γ
k
t ← Execution of Algorithm ClientUpdate

13: βt = βt + βkt

14: T kt ← ( e2 )
−(t−tk ), Akt ←

βkt
βt
, Rkt ← Ft [k]

15: end for
16: ωt ←

∑K
k=1(a ·γ

k
t +b ·

|Dkt |
|Dt |
·T kt + c ·A

k
t +d ·R

k
t ) ·ω

k
t

17: for each client k ∈ SCt do
18: rkt ← rkt + 1
19: tk ← t
20: end for
21: return ωt (Send it to all clients)
22: end for

TABLE 1. The effect of scale factor F on model performance on
CIFAR-100 (T = 10 and K = 50).

Then it is concluded that the weight value of the clients is:

SDi =
K∑
j=0

MD(xi, yj), (39)

where, i ̸= j, K represents the number of all clients.

VI. EXPERIMENT AND EVALUATION
To validate the effectiveness of our method, we build a fed-
erated learning model and simulate our experiments. And we
also evaluated the performance of our scheme.

A. EXPERIMENT SETTING
1) BENCHMARK PROTOCOL
We follow the benchmark protocol proposed in [31]: for
a given multi-class classification dataset, the classes are
arranged in a fixed random order. Each method is then
trained in a class-incremental way on the available training
data. After each batch of classes, the resulting classifier is
evaluated on the test part data of the dataset, considering

Algorithm 3 ClientUpdate (at round t)

Input: Paradigm samples Skt−1, compressed module �old ,
previous FC layer FCt−1
Output: Local model ωk

t , data balance weighting factor γ kt ,
new FC layer FCt
1: Get the global model ωt−1 from the Server
2: if |Dkt | then
3: I kt ← |d

k
t |/(|D

k
t−1| + |d

k
t |)

4: θkt ← θkt−1 − (I kt · θ
k
t−1)

5: else
6: θt ← t
7: end if
8: γ kt ← [eθ

k
t +α
− e−(θ

k
t +α)]/[eθ

k
t +α
+ e−(θ

k
t +α)]

9: V k
t ← Dkt ∪ S

k
t−1

10: for epochs do
11: for mini-barches x in V k

t do
12: x ′ = augmentation data on x
13: Fold = �old (x), Fnew = �new(x)
14: Fmix = �dAff (Fold ,Fnew) = Fold ⊗ 1 + Fnew ⊗

(1−1)
15: Zmix = FCkt (Fmix), Zold = FCkt−1(Fold )
16: Train ωk

t by loss:
17: L = (1 − λ)LC(Zmix) + λLD(Zmix ,Zold ) +

ϱLS (Gt (Fnew),Gt (�new(x ′)))
18: end for
19: end for
20: Compress model by LM
21: Obtain ωk∗

t ← local Bayesian differential privacy
22: Obtain skt ← {s1, s2, . . . , sa} of D

k
t

23: UPdate Skt ← skt ∪ S
k
t−1 in memory

24: return ωk∗
t → ωk

t , γ
k
t , FCt−1

only those classes that have already been trained. Note that,
even though the test data is used more than once, no over-
fitting can occur, as the testing results are not revealed to
the algorithms. The result of the evaluation are curves of the
classification accuracies after each batch of classes. If a single
number is preferable, we report the average of these accura-
cies, called average incremental accuracy (Avg). Therefore,
average incremental accuracy (Avg) is used throughout the
experiments in this paper.

We divided all classes into T steps in our experiments
and fixed the memory bank’s size. We use the CIFAR-100
(ImageNet) dataset, where client local data is incremented
in batches of 5, 10, and 20 classes at a time (20, 10, and
5 steps), each containing a random amount of data. A total
of 100 classes of data are trained for each client. All exper-
iments were repeated 10 times, and the average value of the
classification performance of the corresponding parameters
was compared and analyzed.

2) DATA AUGMENTATION
To obtain better experimental results, we utilized several data
augmentation methods to create a more extensive training
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TABLE 2. Comparisons in terms of accuracy on CIFAR-100
dataset when the number of Tasks T = 5.

TABLE 3. Comparisons in terms of accuracy on ImageNe dataset
when the number of tasks T = 5.

dataset, including cropping, flipping, and colour distorting.
Firstly, we randomly cropped the CIFAR-100 (ImageNet)
image with the scale of [0.2, 1] and resized it to 32 × 32
(224 × 224). Then, we applied horizontal flipping with a
50% probability and color distortion with a 50% probability
for image augmentation. Finally, we converted the images
to grayscale with a 30% possibility. We assigned each client
100 classes.

3) IMPLEMENTATION DETAILS
We evaluated the performance of our scheme through sim-
ulations on the CIFAR-100 and ImageNet datasets. The
implementation of our algorithms is based on PyTorch-
implemented federated learning and DP-SGD. We utilized
a 32-layer ResNet as the backbone network for CIFAR-100
and an 18-layer ResNet for ImageNet. Throughout all experi-
ments, the models were trained using an SGD optimizer with
an initial learning rate of 0.1 andmomentum of 0.8. The batch
size was established at 128, with weight decay parameters set
at 0.001 for CIFAR-100 and 0.0005 for ImageNet, respec-
tively. The dual-model underwent training for 160 epochs on
CIFAR-100 and 90 epochs on ImageNet, with learning rate
reductions by a factor of 10 following the 80th and 120th
epochs for CIFAR-100, and the 30th and 60th epochs for
ImageNet. Furthermore, we used a noise parameter sigma of
0.5 and a privacy budget epsilon of 8 for differential privacy.

B. PERFORMANCE EVALUATION OF FCIL
1) PERFORMANCE COMPARISON
In this section, wIn detail, we compare our method with
the following baselines in the FL scenario: iCaRL [31],
BiC [69], PODNet [58], DyTox [68], GLFC [70], LGA [71],
FedET [72]. It is worth noting that for comparison purposes,
we did not apply differential privacy in this experiment.
Therefore, we did not use our local Bayesian differential
privacy strategy (Ours1).
As shown in Tables 2 - 7, we executed an extensive set of

comparative experiments to assess the accuracy of our model
against other methods on both the CIFAR-100 and ImageNet
datasets. For these experiments, the number of consecutive
learning tasks was designated as T = {5, 10, 20}. The Avg
(%) column denotes the average incremental accuracy across
the various tasks, and the Imp (%) column indicates the
improvement in Avg (%) of our method compared to other
methods. It is worth stating that among these methods, LGA
and FedET are the current state-of-the-art methods, but our
scheme only slightly lags behind FedET on the CIFAR-100
dataset at T = {5, 10}. However, our method outperformed
all baseline methods when T increased to 20.

Based on the presented results in Tables 2-7, we have the
following conclusions:

• Our dual-model facilitates collaborative training of a
global class-incremental model by local clients and
consistently outperforms other methods in incremen-
tal tasks. This underscores our model’s efficacy in
addressing the challenge of forgetting within the FCIL
framework.

• The dual-branch structure demonstrates a more effective
approach in identifying optimal solutions for all classes
during training compared to the single-branch structure,
underscoring the superiority of our method.

• Our dual-model achieved state-of-the-art performance
against other comparison methods when tested on dif-
ferent types of consecutive learning tasks (i.e., T =
{5, 10, 20}). This demonstrates the resilience and effec-
tiveness of our dual-Model in addressing cataclysmic
forgetting under various experimental settings in FCIL.

2) ABLTION STUDIES
This subsection provides qualitative ablation studies to high-
light the efficacy of each component within our dual-model
across various experimental scenarios.

a: EFFECT OF SCALE FACTOR F
We tested and validated the scale factor F of clients partici-
pating in federated training to ensure the high efficiency and
performance of our scheme. We set T = 10 and the total
number of clients K = 50. Additionally, we conducted com-
parison experiments (randomly selected) with the case where
our preferred client strategy was not used (None-OP). The
results presented here are all average incremental accuracy
and do not use differential privacy (Ours1).
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TABLE 4. Comparisons in terms of accuracy on CIFAR-100 dataset when the number of tasks T = 10.

TABLE 5. Comparisons in terms of accuracy on ImageNet dataset when the number of tasks T = 10.

TABLE 6. Comparisons in terms of accuracy on CIFAR-100 dataset when the number of tasks T = 20.

TABLE 7. Comparisons in terms of accuracy on ImageNet dataset when the number of tasks T = 20.

Table 1 shows the effect of different scale factor F values
(i.e., the number of clients participating in federated training
in each round) on the performance of the model in various

aspects. As shown in the table, as the number of clients
participating in federated training increases, the performance
of the model also improves to a certain extent. To obtain
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FIGURE 4. Abltion studies on CIFAR-100 when T = 5 (left), T = 10 (middle) and T = 20 (right).

FIGURE 5. Abltion studies on ImageNet when T = 5 (left), T = 10 (middle) and T = 20 (right).

assurance of the experiment’s fairness and verify the validity
of our scheme, we set F = 0.5 and K = 50 for most
experiments.

b: EFFECTS OF DIFFERENT COMPONENTS
As shown in Fig. 4 and Fig. 5. Ours1-w/oCIL, Ours1-w/oKD,
Ours1-w/oSCL represent the performance of training pro-
posed dual-model without utilizing the classification lossLC ,
distillation loss LD and SupCon loss LS .

Compared with Ours1, Ours1-w/oCIL exhibits an average
accuracy decrease ranging from 3.05% to 6.26%. This result
underscores the significant improvement in accuracy brought
about by the Balanced Softmax across various experimental
settings. Moreover, it indicates that the Balanced Softmax
can effectively address the class imbalance challenge inherent
in CIL. In addition, Ours1 surpasses Ours1-w/oKD by a
substantial margin, showing an increase of 8.42% to 16.26%
in average accuracy on benchmark datasets. This result cor-
roborates thatLD is adept at addressing the distillation losses
arising from the retention of old knowledge. Furthermore,
the performance of Ours1-w/oSCL witnesses a decrease in
average accuracy by 2.2% to 3.58%. It confirms that LS is
effective in alleviating the losses incurred due to the acquisi-
tion of new knowledge in CIL.

Additionally, we conducted ablation experiments focusing
on the dual-branch structure using the CIFAR-100 dataset.
Specifically, we utilized a single-branch structure (BiC)
as the baseline model and refined it employing our loss
function. As shown in Table 8, the results reveal that the
Balanced Softmax can enhance accuracy across various
experimental settings. This provides evidence for its efficacy
in addressing the class imbalance challenge in FCIL. Notably,
the most significant factor impacting the performance of
both models is the distillation loss, underscoring its pivotal
role in determining model efficacy in FCIL. We deduced
that while the single-branch approach makes the new data
classes distinguishable after incorporating the SupCon loss,
it inadvertently neglects the retention of previously acquired
knowledge. It can be seen that under the same experi-
mental conditions, the accuracy of the two-branch structure
significantly surpasses that of the single-branch structure,
suggesting that the strategy of reutilizing old knowledge in
the two-branch structure is viable.

c: SENSITIVE STUDY OF HYPER-PARAMETERS
In our approach, the parameter ϱ modulates the weight of
the SupCon loss within the loss function, while 0 is utilized
to adjust the weight of the feature distillation loss during
the model compression phase. We performed a sensitivity
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TABLE 8. Comparison of the effects of each component.

TABLE 9. Sensitive study of hyper-parameters in aggregation
(T = 10, K = 50).

analysis to explore the implications of different values of
ϱ and 0 on both CIFAR-100 and ImageNet datasets when
T = 10.

The effect of the hyper-para ϱ is shown in Fig. 6.
We observe that the model exhibits the lowest accuracy when
ϱ = 0, signalling that SupCon loss significantly enhances
the performance of our model. This enhancement can be
attributed to the model’s proficiency in learning expres-
sive representations by employing SupCon loss at �new.
Simultaneously, it reutilizes prior representations at �old and
leverages �dAff to derive a hybrid representation, encapsulat-
ing both forms of information.

The effect of the hyper-para 0 is shown in Fig. 7. It is evi-
dent that when 0 is not 0, the model’s performance remains
relatively stable. Notably, the model achieves its peak perfor-
mance when 0 is 15. Furthermore, the results demonstrate
that our model exhibits robustness to variations in ϱ and 0.

In Equation (36), the aggregation formula is controlled by
four hyper-parameters [a, b, c, d]. To investigate the impact
of different weight values on model performance, we selected
and compared seven sets of weight values. As shown in
Table 9, the values of a and b greatly influence the model’s
performance. Optimal results are achieved when the hyper-
parameters [a, b, c, d] are set to [0.3, 0.5, 0.1, 0.1].

C. PRIVACY STUDIES
In the previous experiments, we did not use our local
Bayesian differential privacy strategy. Therefore, in this part
of the experiments, we will experiment with local Bayesian
differential privacy and analyse the security and privacy of
our scheme.

1) EFFECT OF DIFFERENTIAL PRIVACY ON ACCURACY
In this experiment, we evaluate the performance of our
scheme in privacy preservation by fixing T (the number

FIGURE 6. The effect of the hyper-parameter ϱ.

FIGURE 7. The effect of the hyper-parameter 0.

of consecutive learning tasks) and K (the total number
of clients). The benchmark experiments include ‘‘Ours1’’
and ‘‘DP’’. ‘‘Ours1’’ means no privacy-preserving methods
were considered when training neural networks. This method
provides maximum performance for the privacy-preserving
model. ‘‘DP’’ refers to a content-level privacy-preserving
method that uses classic differential privacy.

Moreover, to thoroughly investigate the applicability of
LBDP in FCIL scenarios, we also compare it with the
more advanced differential privacy schemes proposed in
NbAFL [50] and Fed-SPA [51].We use ‘‘LBDP’’ to represent
the local Bayesian differential privacy mechanism used in our
scheme, which is set to local differential privacy so that each
client accumulates its privacy loss. We set the same param-
eters for all methods: a noise parameter sigma of 0.5 and
a privacy budget epsilon of 8. We conducted experiments
on the CIFAR-100 dataset, and the results are all average
incremental accuracy.

As shown in Fig. 8, we fix T and compare the impact of
each differential privacy method on the model performance
for different numbers of clients. It can be seen that in the FCIL
scenario, the effect of LBDP on the model performance is not
much different from that of NbAFL and Fed-APS, which are
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FIGURE 8. Effect of differential privacy on accuracy on
CIFAR-100 (T = 5).

FIGURE 9. Effect of differential privacy on accuracy on
CIFAR-100 (K = 50).

all very close to the baseline method Non-DP and only lag
behind NbAFL and Fed-APS at K = 100.
Fig. 9 demonstrates the experimental results at various

values of T when K = 50. It is easy to see that LBDP leads
all baseline methods across the board when T increases to
20. This indicates that in more complex FCIL scenarios and
with the same privacy budget, using LBDP can achieve better
performance with less sacrifice.

2) PRIVACY ANALYSIS
We employ the local Bayesian differential privacy mecha-
nism to address privacy issues at the content level. Within
the differential privacy framework, the infusion of suitably
calibrated noise into the dataset impedes algorithms from
querying the dataset to extract precise information therein.
As a result, an attacker cannot get the customer’s personal
data records or content directly from the compromised gra-
dient. Local Bayesian differential privacy in our scheme
provides a (ε, δ)-differential privacy guarantee, and its related
proofs can be found in the literature [73]. Furthermore, in this
paper, we made two improvements:

TABLE 10. Efficiency studies on CIFAR-100 (T = 10, K = 50).

• Local Bayesian differential privacy (LBDP) adds noise
based on data distribution. It introduces varying noise
levels for datasets with different distributions, making
the scale of noise addition more rational and thereby
providing enhanced privacy protection.

• We adjusted Bayesian differential privacy into a local
differential privacy model. We designed a new quantifi-
cation method of privacy loss that allows each client to
calculate its privacy loss locally in the iterative mech-
anism. Experiments demonstrate that under the same
privacy budget, LBDP achieves superior model perfor-
mance.

In addition, the old knowledge is compressed after we train
the dual-branch model, which also protects the privacy of our
clients to a certain extent. Besides, our experimental results
show that LBDP can provide better privacy protection for
FCIL with the same privacy budget. Thus, our scheme can
provide at least content-level privacy protection.

D. EFFICIENCY STUDIES
1) EFFECT OF DIFFERENT COMPONENTS ON
EFFICIENCY
We use multi-factor dynamic weighted aggregation strat-
egy to improve the speed of model aggregation. Model
compression also reduces the pressure on the local stor-
age of old knowledge. To fully evaluate the complexity
and performance, we have analyzed multiple dimensions,
including training time, compression time and average incre-
mental accuracy, as shown in Table 10, Ours-w/oMdwa,
Ours-w/oMc represent the performance of training proposed
dual-model without utilizing multi-factor dynamic weighted
aggregation strategy and Model compression. In addition,
we have set up a single-branch model (Ours-w/oSingle) for
comparison. We conduct experiments on the CIFAR-100
dataset, setting T = 10.
Compared to Ours-w/oMdwa, the training time and com-

pression time were reduced by 9 minutes and 3 minutes,
respectively, and Avg increased by 1.58%, indicating that our
multi-factor dynamic weighted aggregation strategy effec-
tively accelerates model aggregation.

In addition, themulti-factor dynamicweighted aggregation
strategy also has some gains in terms of model compres-
sion time and Avg. Furthermore, comparing Ours-w/oMc,
we achieved a 15 minute improvement in training time at the
expense of 20 minutes of compression time, but only a 2.02%
reduction in Avg. It is worth mentioning that by compressing
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the dual-branch structure to a single-branch structure, local
clients need only half the memory to save old knowledge.
Hence, the sacrifice is worthwhile for clients with limited
local resources.

Similarly, comparingOurs-w/oSingle, we sacrifice 13min-
utes of training time and 20 minutes of compression time,
respectively. Still, we can perform model compression at any
time before the next incremental task, increasing the degree
of training freedom. Meanwhile, compared to the 12.74%
improvement in model performance, the additional compu-
tational cost is tolerable.

2) COMPUTATIONAL COMPLEXITY ANALYSIS
In FCIL, clients often have limited computing and storage
resources. Therefore, for the proposed method to be of practi-
cal use, we have to make a good trade-off between improving
the performance of the global model and increasing the com-
plexity of the local model.

In this paper, we introduce a dual-model structure to
address the catastrophic forgetting problem in FCIL. Given
that the server’s computational resources are typically abun-
dant, we assume that executing Algorithm 2 on the server
does not encounter computational bottlenecks. For the client,
the Algorithm 3 needs to be executed continuously during the
training process. It is evident that the primary computational
pressure for clients stems from paradigm sample selection,
model fusion, and model compression.

We use the Herding algorithm for paradigm samples selec-
tion. For each data point x, we utilize the feature extractor �s
to obtain its features. We assume the complexity of feature
extraction to be O(Fs). Therefore, for |Dkt |, we easily con-
clude that the computational complexity isO(Fs×p2×|Dkt |),
which implies that its computational complexity is mainly
affected by the number of paradigm samples p to be selected.
We believe that in our approach, this is a key step in con-
structing the dual-model, which can significantly alleviate the
problem of forgetting old knowledge in FCIL. Therefore, it is
perfectly acceptable compared to the improvement in model
performance.

As for model fusion, analyzing Eq. (23) and Eq. (24),
we can know that the key is that we use the channel attention
mechanism, which has two fully-connected layers. Therefore,
we can get its computational complexity as O(C2/r +C)→
O(C2), where C is the number of channels. It can be learned
from [78] that the computation time of Eq. (24) is usually at
the millisecond level, so model fusion consumes very little of
the client’s computational resources.

According to Eq. (25), we know that the computational
complexity of model compression is (O(C×H ×W )), where
H and W are the size of the matrix. Obviously, the number
of data and the size of the model will have a direct impact
on the time for model compression. However, clients can
save half of the storage space, and we can perform model
compression at any time before the next incremental task
comes, thus increasing the freedom of training. Therefore,

the computational cost due to model compression is also
acceptable.

VII. CONCLUSION
In this paper, we focused on addressing a real-world FL chal-
lenge named Federated Class-Incremental Learning (FCIL),
and we proposed a Privacy-Preserving Federated Class-
Incremental Learning (PP-FCIL) approach, which is a pio-
neering exploration to tackle the real-world FCIL problem
under privacy preservation. Compared with existingmethods,
we used both old and new knowledge to train new local
models, ensuring that the models have better accuracy while
alleviating the problem of catastrophic forgetting. At the same
time, to ensure the privacy requirements of clients, we used
local Bayesian differential privacy to adjust the privacy bud-
get allocation for different datasets before the data left the
client. This adjusted the degree of noise addition to improve
the quality of service of the model while providing more fine-
grained privacy protection. For global model aggregation,
we proposed a multi-factor dynamic weighted aggregation
strategy to improve the aggregation speed of global models
and the performance of federated learning. The experimental
results show that our method is effective and superior to the
current state-of-the-art methods.
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