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ABSTRACT High-precision localization and machine learning (ML) are envisioned to be key technologies
in future wireless systems. This paper presents an ML pipeline to solve localization tasks. It consists of
multiple parallel processing chains, each trained using a different fingerprint to estimate the position of the
user equipment. In this way, ensemble learning can be utilized to fuse all chains to improve localization perfor-
mance. Nevertheless, a common problem ofML-based techniques is that network training and fine-tuning can
be challenging due to the increase in network sizes when applied to (massive) multiple-input multiple-output
(MIMO) systems. To address this issue, we utilize a subarray-based approach. We divide the large antenna
array into several subarrays, feeding the fingerprints of the subarrays into the pipeline. In our case, such an
approach eases the training process while maintaining or even enhancing the performance. We also use the
Nyquist sampling theorem to gain insight on how to appropriately sample and average training data. Finally,
an indoor measurement campaign is conducted at 3.7GHz using the Lund University massive MIMO testbed
to evaluate the approaches. Localization accuracy at a centimeter level has been reached in this particular
measurement campaign.

INDEX TERMS Channel measurements, deep learning, localization, massive MIMO.

I. INTRODUCTION

CELLULAR-based localization is expected to pave the
way for various location-aware applications such as

robotic navigation, emergency healthcare, and smart trans-
portation [1], [2], [3], [4], [5], [6], [7]. The technology
has undergone a significant improvement over the years,
and high-precision wireless localization has currently been
included as a key feature in the current fifth generation new
radio (NR) standard, with strict requirements on localization
accuracy [8].
Traditional localization approaches include proximity,

triangulation (trilateration), fingerprint matching, and simul-
taneous localization and mapping [7]. Proximity approaches
examine whether user equipment (UE) is close to pre-known
locations by analyzing received wireless signal characteris-
tics such as the received signal strength indicator (RSSI).
Triangulation or trilateration technology is used to estimate

UE locations from delays or angles according to geometry.
The general concept of fingerprint-based localization is to
establish a radio map for the area of interest by storing
channel features or fingerprints. The UE coordinates are
estimated by comparing the received fingerprints with the
previously stored fingerprints. Furthermore, with the aid of
ultra-wideband (UWB) [9] and/or massive multiple-input
multiple-output (MIMO) systems, it is possible to improve
positioning accuracy due to the high delay resolution in UWB
and the high angular resolution in massive MIMO [10], [11],
[12], [13], [14], [15], [16]. For example, the work in [10],
[15], and [16] proposed novel estimators to jointly estimate
angles and positions with large-scale arrays. The authors
in [11], [12], and [13] provided solutions for localization
by designing tracking filters to exploit and track important
propagation channel characteristics, i.e. the autocorrelation
function of the received signal and the phase of multipaths,
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respectively. Especially, [12] validated their methods via a
real massive MIMO testbed and showed that localization
accuracy can be significantly enhanced with the 40 MHz
bandwidth. [14] presented a direct localization method con-
sidering localization as a joint optimization problem, which
bypasses the channel estimation step and still achieves good
positioning accuracy.

All of the aforementioned localization methods belong to
the traditional signal processing family. The main challenges
are high algorithm complexity and requirements of the base
station (BS) array calibration [7]. On the other hand, machine
learning (ML) based localization algorithms have gained sig-
nificant interest [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32]. It is essential
to appropriately select both fingerprints and algorithms. One
can choose either the raw transfer function [17], [18], [19]
or various channel fingerprints such as RSS, power delay
profile (PDP), angular spectrum, correlation function, etc.,
[20], [21], [22], [23], [24], [25], [26], [28], and [27] as
learning features. Moreover, a variety of ML algorithms have
been investigated, which can be mainly classified into two
categories, namely the traditional ML family such as the
K-nearest neighbors (KNN), support vector machines, kernel
methods, random forest, Gaussian process regression, [21],
[22], [23], [32], and the deep learning family [17], [18], [20],
[24], [25], [26], [27], [28], [29], [30], [31]. Considering the
features of massive MIMO systems, there is also great poten-
tial to apply ML techniques with massive MIMO systems to
solve localization tasks. Early research [17], [18], [24] used
convolutional neural networks (CNN) for localization. The
work in [30] proposed an algorithm that trains an autoencoder
to first calibrate the antenna array. Then, the angle spectrum
is computed as a training feature. The work in [22] applied
Gaussian regression to perform localization with distributed
massive MIMO systems.

However, there are still some research gaps that need
to be further addressed: i) Most of the existing ML-based
localization algorithms directly output the position of the UE
without considering the uncertainty of the estimation, thus
lacking effective information fusion from different channel
fingerprints. ii) The size of the neural networks increases sig-
nificantly with the increasing number of antennas. This may
hinder the training and fine-tuning of the network. Therefore,
it is essential to develop efficient localization algorithms that
are suitable for the massive MIMO system. iii) A theoretical
analysis of the necessary training density is missing in the
literature. It is important to investigate the density of the train-
ing sample under different channel conditions, as training
data collection is a time-consuming task. To address those
limitations, our main contributions are as follows.1

1A preliminary version of this work [33] has been presented at
the 2023 IEEE International Conference on Communication. Unlike [33],
this paper presents new material on the subarray method and a detailed
analysis of the necessary training density. In addition, the pipeline in this
paper is used to estimate both the UE position and error variances.

• We apply a localization framework that blends channel
fingerprints that contain information from the delay and
angular domains, respectively. It is not necessary to
calibrate the whole BS array to obtain those channel
fingerprints.

• By dividing the whole array into subarrays, the network
size can be reduced, which facilitates the training pro-
cess while improving the localization performance.

• We apply the Nyquist sampling theorem to analyze how
to appropriately collect and average training data.

• Finally, an indoor measurement campaign with a mas-
sive MIMO testbed was conducted to evaluate our
approach. The results show that our pipeline can reach
centimeter-level positioning accuracy with only 20MHz
bandwidth for this measurement campaign.

The remainder of this paper is organized as follows.
In Section II, we introduce the signal model and briefly
discuss the selected fingerprints. In Section III, we present the
localization algorithms. Section IV illustrates the measure-
ment campaign, and Section V presents the results. Finally,
conclusive remarks are included in Section VI.

II. SYSTEM MODEL AND FINGERPRINT GENERATION
We consider the uplink of a single user massive MIMO
system, which uses orthogonal frequency division multiplex-
ing (OFDM) with F subcarriers. The UE has one antenna,
while the BS is equipped with M antennas. Each antenna
element is connected to an RF and a digital processing chain,
which allows the BS to simultaneously process the received
signals from all antennas. We assume that the UE moves at
walking speed, and the 2-D position of this UE is given by
pi(x0, y0) ∈ R2, shortened to pi in the following sections.
Taking into account the propagation channel, the transfer
function matrix Ypi = [ypi,1, . . . , ypi,F ] ∈ CM×F for all
subcarriers, corresponding to the position of the UE pi, can
be written as

Ypi = Hpi ⊙ 0 + N, (1)

where Hpi ∈ CM×F represents the uplink wireless propaga-
tion channel, 0 ∈ CM×F the complex coefficients (amplitude
scaling and phase drift) of all the M RF chains and F sub-
carriers. Additionally, ⊙ is the Hadamard product, and N ∈

CM×F denotes receiver noise at all M RF chains. When UE
moves, a total of T snapshots are recorded and T different
receive matrices Ypi are collected. Our aim is to find a
functional relationship between Ypi and pi, which falls into
the category of a regression (estimation) task.

ML-based localization algorithms have the potential to
achieve good performance if adequate channel fingerprints
are selected as the input to the algorithms. Such fingerprints
can be extracted from the raw received transfer function
Ypi . In this paper, we analyze two fingerprints, namely the
spatial covariance matrix and the truncated channel impulse
response (CIR), since they can be achieved with even an
uncalibrated array.
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A. SPATIAL COVARIANCE MATRIX
It is sometimes challenging to extract calibrated fingerprints
such as AoA due to the presence of the RF chain matrix 0,
see (1). Therefore, we consider using the covariance matrix
Ci = E{ypiy

H
pi } ∈ CM×M as a fingerprint. The main diagonal

elements of Ci (auto-correlation) indicate the received signal
power for each antenna, whereas the off-diagonal elements of
Ci represent the cross-correlation between different antennas.
Note that typically one can only estimate the covariance
matrix in practice with a limited number of samples to con-
duct the expectation operation. Suppose that for each position
pi, there exist in total Npi positions in the neighborhood
region of pi, whose channel responses are accessible. Those
Npi samples are inside a circular area, with pi as the center
and d as the diameter, i.e., ||pj−pi||2 ≤

d
2 , j = 1, 2, . . . ,Npi .

We then define the sample covariancematrix C̃i,Npi
∈ CM×M

to estimate Ci. Specifically,

C̃i,Npi
=

1
Npi

Npi∑
j=1

YpjY
H
pj . (2)

As shown in (2), C̃i,Npi
depends onNpi and thus d . A special

case is that if d = 0 and Npi = 1, Ci is estimated by only
correlating across all subcarriers of Ypi at a fixed position
pi. We name this specific matrix the one-sample covariance
matrix. Note that it is challenging to estimate Ci with this
matrix for a narrowband system, since channel responses
with respect to different subcarriers are strongly correlated.
In contrast, when d is larger than half a wavelength, a major
difference in the propagation channel can be observed and
C̃i,Npi

can therefore better approach Ci. If d is large enough,
the fingerprint C̃i,Npi

changes much more slowly than the
one-sample covariance matrix with the movement of the UE,
since the influence of small-scale fading is reduced due to
the average operation. Due to this, fewer training samples are
needed.

Since the sample covariance matrix C̃i,Npi
is a Hermitian

matrix, i.e., C̃i,Npi
= C̃H

i,Npi
, the upper minor diagonal ele-

ments contain the same information as the lower. To decrease
the computation complexity, we introduce another matrix
C̆i,Npi

∈ RM×M and a vector c̃i,Npi
∈ RM2

as

C̆i,Npi
= ltril

{
ℜ

[
C̃i,Npi

]}
+sltril

{
ℑ
[
C̃i,Npi

]}
c̃i,Npi

= vec
{
C̆i,Npi

}
, (3)

where ℜ{.} and ℑ{.} denote the operation to take the real
and imaginary parts of a given matrix, respectively. ltril{.}
represents a matrix operation that replaces all values above
the diagonal as zero while maintaining the other matrix
elements. The operation sltril{.} keeps all elements below
the diagonal and substitutes all the remaining matrix ele-
ments (including the diagonal elements) for zero. The vec{.}
operator denotes the operation of converting a matrix to a
vector.

FIGURE 1. A typical structure of an FCNN.

B. TRUNCATED CHANNEL IMPULSE RESPONSE
The fingerprint Ci does not contain channel information
from the delay domain; however, it is still important to
utilize the delay information to further improve the accu-
racy of localization. To this end, the truncated CIR matrix
4 ∈ CM×L is generated by calculating the inverse discrete
Fourier transform (IDFT) along each row ofYpi , followed by
choosing the first L delay elements. We introduce a vector
ξ ∈ R2ML , which includes all elements of 4. Specifically,
ξ = [vec{ℜ(4)}T , vec{ℑ(4)}T ]T .

III. ML-BASED LOCALIZATION APPROACH
A. NEURAL NETWORK BASICS
Neural networks have been widely used to solve various tasks
such as channel estimation, wireless sensing, etc., owing to
their excellent abilities to learn non-linear complex models
[34]. These models can generally be represented as a multi-
variate function f : RV1 → RV2 , where V1 and V2 represent
the dimensions of the learning characteristics and the goals,
respectively. An example of a typical fully connected neural
network (FCNN) is illustrated in Fig. 1, consisting of an input
layer, several hidden layers, and an output layer. Regarding
the input and output layers, the number of their nodes is
identical to V1 and V2, respectively. Specific to this 2-D
localization task, we view the output of the neural network
as a Gaussian distribution function, which can be determined
by the estimated position of the UE (p̂ = [p̂x , p̂y]T ∈ R2) and
the variance (σ̂ 2

= [σ̂ 2
x , σ̂

2
y ]
T

∈ R2).
Two processes are usually involved when training a neural

network, namely the forward and backward propagation pro-
cesses. In the forward propagation process, the input signals
enter the neural network through the input layer. Then it
propagates through multiple hidden layers and ultimately
reaches the output layer. At each layer, the output of a node
is determined by the inputs from the previous layers, the
respective weights and biases, and a non-linear activation
function that is specific to that node. For example, we suppose
that an FCNN has γi nodes in the i-th layer, the values of
which are collected by a signal vector xi = [x i1, . . . , x

i
γi
] ∈

Rγi . The value of the k-th node is calculated by applying a
weight vector w = [wi−1

1 , . . . ,wi−1
γi−1] ∈ Rγi−1 to the signal
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vector xi−1 in the previous layer. Specifically, x ik is computed
as

x ik = gi

( γi−1∑
j=1

x i−1
j wi−1

j

)
+ bi, (4)

where bi represents an optional bias term and gi(.) the activa-
tion function. The same propagation pattern is followed for
each layer, generating an output vector ν = [p̂, σ̂ 2].
To train the network, it is important to select an appropriate

training criterion, or the so-called loss function. A popular
criterion is the mean-square error (MSE), which measures the
differences between estimated localization coordinates and
the ground truth labels. However, the uncertainty of the pre-
dictions is not evaluated by MSE and therefore we consider
the negative log-likelihood (NLL) loss function instead [35].
Suppose that the entire training dataset contains in total Ntr
training samples. For the i-th sample, the network outputs
estimate the UE coordinate p̂i = [p̂xi , p̂yi ]

T
∈ R2 and the

variance vector σ̂ 2
i = [σ̂ 2

xi , σ̂
2
yi ]

T
∈ R2, while the ground truth

is pi = [pxi , pyi ]
T

∈ R2. Taking into account all Ntr training
samples, the loss function ψ is

ψ =
1

2Ntr

∑
i

( log σ̂ 2
xi σ̂

2
yi

2
+

(pxi − p̂xi )
2

2σ̂ 2
xi

+
(pyi − p̂yi )

2

2σ̂ 2
yi

)
.

(5)

Observe that ψ can be negative owing to the log term. After
selecting the training criterion, all hyperparameters, namely
all weights and bias terms in (4) in each layer, need to be
fine-tuned to minimize ψ . This optimization procedure can
be carried out by backward propagation, which propagates
the error signal back to each neural network layer to update
the weights. Due to page limitations, we avoid presenting the
mathematical derivations; however, the relevant material can
be found in [34].
As an evaluation procedure, we collect the test datasets and

select the NLL loss as the evaluation criterion [35]. As indi-
cated in (5), an under-confident variance estimate results in
the increase of the first term, while an over-confident variance
results in the increase of the second and third terms.

B. ML-BASED LOCALIZATION PIPELINE
We apply the idea of ensemble learning to the localization
task. As a popular ML approach, ensemble learning tar-
gets performance improvements by training multiple base
learners and then fusing their outputs [36]. Each learner
itself should individually deliver decent results, and it is also
important to embed enough diversity when selecting those
base learners. Based on this insight, we apply the processing
pipeline illustrated in Fig. 2. We select χ fingerprints and
feed each fingerprint to an individual processing chain. Those
fingerprints can be either the entire covariance matrix or sub-
matrices (see the subarray method in the following section)
or the truncated CIR. Each processing chain estimates 2-D
UE coordinates as well as the variances. Suppose that the

FIGURE 2. The positioning neural network structure.

j-th processing chain estimates the position of the UE and the
variance as p̂i,j = [p̂xi,j , p̂yi,j ] ∈ R2 and σ̂

2
i,j = [σ̂ 2

xi,j , σ̂
2
yi,j ] ∈

R2. By fusing all χ processing chains according to the max-
imum ratio combining (MRC) approach [37], p̂i and σ̂

2
i are

calculated as:

σ̂ 2
xi =

1∑
j 1/σ̂ 2

xi,j

, σ̂ 2
yi =

1∑
j 1/σ̂ 2

yi,j

(6)

p̂xi = σ̂ 2
xi (

∑
j

1
σ̂ 2
xi,j

p̂xi,j ), p̂yi = σ̂ 2
yi (

∑
j

1
σ̂ 2
yi,j

p̂yi,j ). (7)

However, the estimated variance by (6)may be overconfident,
especially when the network is overfitted. According to (6),
σ̂ 2
xi and σ̂

2
yi are less than each individual σ̂

2
xi,j and σ̂

2
yi,j , respec-

tively. This may increase the NLL, since σ̂ 2
xi and σ̂

2
yi act as

the denominators of the second and third terms, respectively.
To address this issue, wemultiply a factor χ with σ̂

2
i to get the

modified vector σ̂ 2
i,mod ∈ R2, which is the harmonic averages

of all estimated variances. Specifically,

σ̂
2
i,mod = χ σ̂

2
i . (8)

C. TRAINING ON THE SUBARRAYS
The size of the neural network increases significantly with
the number of antennas, which leads to a risk of over-fitting
problems. To address this problem, subarray methods can be
considered. In this paper, we use the covariance matrix as an
example, however, this method can be generalized to other
fingerprints. We assume that anM1×M2 rectangular antenna
array is equipped at the BS side. The spatial correlation
between channel responses of two antennas is reduced to a
large extent if they are separated larger than the coherence dis-
tance. Enlightened by this fact, we divide the whole antenna
into I subarrays and train I neural networks instead of feeding
the whole covariance matrix into the processing chain. The
subarrays are selected as follows.

We define a rectangular sliding kernel with a size of
N1 rows andN2 columns, which captures in totalN1N2 anten-
nas. We first place the kernel in the upper left corner of
the whole array, to select antennas that belong to the first
N1 rows and N2 columns. The sliding kernel then moves
S2 columns to the right and assigns its antennas to a new
group. When the sliding kernel reaches the last column,
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FIGURE 3. The subarray method.

it moves S1 rows downward, followed by moving S2 columns
to the left until the kernel hits the first column. This procedure
is repeated until the entire array is scanned by the kernel
and I = (⌊M1−N1

S1 ⌋ + 1)(⌊M2−N2
S2 ⌋ + 1) training groups are

formulated, where ⌊.⌋ denotes the floor function. We then
formulate I sample covariancematrices that correspond to the
UE position pi, which are denoted as Ĉ1

i,Npi
, . . . , ĈI

i,Npi
∈

CN1N2×N1N2 . These covariance matrices are fed into the
pipeline shown in Fig. 3, to obtain the estimated UE positions
and variances.

D. TRAINING DENSITY
A fundamental question of ML-based localization is to deter-
mine the number of necessary training samples. According
to the Nyquist sampling theorem, insufficient numbers of
training samples result in aliasing, which has a detrimental
effect on system performance. To figure out the necessary
training density, we apply this theorem to investigate max-
imum separation distances between two adjacent training
samples during the training process. Some degree of aliasing
is allowed since our task is to estimate the UE localization,
rather than perfectly reconstructing the propagation channels.
For convenience, we confine the scope of our approach to
uniform sampling.

We consider the vector c̃i,Npi
generated by (3), which

varies when UE moves to Q different positions. To simplify
this analysis, the UE position labels are assumed to be evenly
distributed along a straight line, and the geographical dis-
tances between these Q positions are δd . We define a matrix

Č = [c̃1,Npi
, . . . , c̃Q,Npi

] ∈ RM2
×Q to collect all those Q

channel response vectors. By performing the 1-D discrete
Fourier transform of Č along the horizontal axis, we can
formulate amatrix9 ∈ CM2

×Q that characterizes the channel
variations along those Q positions. Specifically,

9 = Č3, (9)

where 3 ∈ CQ×Q is the DFT matrix. We then define a spec-
trum window L, which covers consecutive L columns w.r.t.
the lower frequency components of9. Once L is selected, the
corresponding sampling distance 1d between two adjacent
samples can be calculated as

1d = Qδd/L. (10)

We then form those L columns into a new matrix 9L
∈

CM2
×L and define η as the ratio between the Frobenius norm

of 9L and 9, that is η =
||9L

||
2
F

||9||
2
F
. Here, η shows the extent

of aliasing of different sampling intervals. In the following
sections, we will analyze the influence of η on localization
accuracy and discuss the choice of 1d .

IV. MASSIVE MIMO MEASUREMENT CAMPAIGN
To validate our approach, an indoor measurement campaign
was carried out in the Lund University Humanities Lab
motion capture studio. Photos of the mocap studio are shown
in Fig. 4. We give a brief introduction to the measurement
campaign, while more details can be found in [38].

A. INTRODUCTION TO THE MEASUREMENT CAMPAIGN
In this measurement, we use a robot to carry the UE with
a single dipole antenna that is placed at a height of 1.73 m.
The parameter settings of our measurement system are sim-
ilar to those of the LTE system. Specifically, our system
occupies 20 MHz bandwidth which consists of 100 physical
resource blocks (PRBs), and each PRB has 12 subcarriers.
The subcarrier resource is allocated to multiple users in
such a way that each UE occupies every 12 subcarrier and
in total 100 subcarriers. Specific to this measurement, the
UE transmits uplink pilots on the 1st , 13th, 25th, . . . , 1188th

subcarriers to estimate the uplink channel and the estimated
channel responses are recorded every 10 ms. Those pilots
are received by the Lund University massive MIMO testbed
(LuMaMi) [39], with 100 active patch antennas operating at
a center frequency of 3.7 GHz (wavelength λ ≈ 0.081 m).
The antennas are separated by a distance of around 4 cm (half
wavelength at 3.7 GHz) in both the vertical and horizontal
directions. Since our objective is to exploit more information
from the azimuth compared to the elevation domain, a wide
4 × 25 antenna configuration is selected.

We analyzed 75 pre-defined robot trajectories, where the
robot was the only moving object and all other objects were
static. Ti channel snapshots have been recorded on the i-th
trajectory, and each snapshot was represented by a matrix
with dimension M × F (M = F = 100). A complex tensor
Ai ∈ CTi×M×F was then formulated to collect all snapshots.
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FIGURE 4. The indoor measurement campaign.

FIGURE 5. Measurement arrangement in the mocap studio, the
red dotted arrow shows the trajectory of the antenna.

While the robot was moving, the position of the antenna was
continuously recorded every 10 ms by the Mocap system.
The measurements began with locating the robot at the edge
of the predefined 4.2 × 2.5m2 measurement area. The robot
moved at a speed 0.1 m/s straight along the x direction; see
Fig. 5. Between different measurements, the robot wasmoved
approximately 5 cm along the y direction while maintain-
ing its orientation. This procedure was repeated 75 times to
densely scan the entire measurement area with approximately
a resolution of 5 cm in the y direction and 1 mm in the x direc-
tion. When scanning the whole measurement area, we collect
T =

∑
i Ti = 302500 channel snapshots. We define a tensor

A′
∈ CT ×M×N that combines all Ai. A′ is then normalized

by multiplying itself with a scalar so that the Euclidean norm
of A′ is equal to T MN . All T collected samples are divided
into two datasets, namely the training dataset withX samples
and the testing dataset with T −X samples. Training samples
are evenly distributed with a distance along the x-axis as1d .
If channel samples are not selected for training purposes, they
are used as testing data unless otherwise noted.

B. MEASURED PROPAGATION CHANNEL
CHARACTERISTICS
One UE position is selected (position A, see Fig. 5) to illus-
trate the measured indoor channel properties. We present the

power delay profile and the power of the transfer functions
for all 100 antennas in Fig. 6. The power delay profile shows
a typical indoor short-range channel characteristic: the first
few delay bins contain the majority of the power in the delay
domain. Such characteristics are also revealed in the transfer
functions in Fig. 6, showing significant variations in chan-
nel responses among different antennas, and the frequency
correlation is rather high. In contrast, the channel responses
vary much smoother between different sub-carriers for every
single antenna.

We evaluate the spatial correlation of the channel at dif-
ferent UE positions by computing the correlation coefficient
ρ (1d ) as

ρ (1d ) =
1
P ′

∑
px

{ ỹHpx ỹpx+1d√
||ỹpx ||2||ỹpx+1d ||

2

}
, (11)

where ỹpx ∈ CMN is achieved by reorganizing the received
channel matrix Ypi as a vector. P ′ denotes the total number
of UE positions, while1d denotes the distances between two
adjacent UE positions. To visualize the spatial correlation, the
absolute value of ρ (1d ) with respect to the first UE trajectory
is plotted according to (11) in Fig. 7. The separation distance
1d ranges from 0 to 2λ. As shown, a strong spatial correlation
can be expected when 1d ≤

1
8λ, however, it decreases

significantly for larger separations.
For all measurement data, the signal frequency point

SNR ranges from 1dB-11dB, which depends on the distance
between UE and BS and the constructive or destructive influ-
ence of small-scale fading.

V. RESULTS AND DISCUSSION
In this section, we evaluate our localization pipeline using the
measurement data set. We first investigate various channel
fingerprints and then demonstrate the localization accuracy
gain achieved by the subarray method. Spatial spectra of esti-
mated covariance matrices are generated, in order to further
evaluate the impact of training density on the localization
accuracy leveraging the Nyquist sampling theorem. Finally,
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FIGURE 6. Power delay profile and power of the transfer function
at position A.

FIGURE 7. Empirical spatial correlation function w.r.t one UE
moving trajectory.

we compare our approach with a classic K-nearest neighbors
(KNN) based and a CNN-based algorithm [40].

A. INVESTIGATION ON CHANNEL FINGERPRINTS
We first investigate two commonly used channel fingerprints,
namely, the truncated CIR and the one-sample covariance
matrix, which respectively capture the delay and spatial
domain CSI. It is a straightforward process to generate these
fingerprints. Their localization performances are compared
to the case when only using the channel transfer function.
To this end, we train 3 neural networks: network 1 trains on
the raw received transfer function Ypi itself; network 2 the
one-sample covariance matrix of the whole array with M =

100 antennas; network 3 trains on the truncated CIR in the
first Lw = 10 delay bins, which considers the limited system
bandwidth (20 MHz) and the typical indoor measurement
scenario with a strong line of sight (LoS) component; The

TABLE 1. Parameter settings of the neural network.

frameworks of the three FCNNs are programmed based on
Fig.1, which are illustrated in Table 1. Since it is important
to avoid the problem of vanishing gradient [41], we apply a
leaky rectified linear unit (LReLU) as the nonlinear activation
function at the input layer and all hidden layers as well. At the
output layer, softmax is applied as the activation function
to estimate the variances of the position, while LReLU is
applied to estimate UE positions. We initially set the learning
rates for the first FCNN as 10−5 while the second and third
as 10−4 and all the learning rates are reduced 20% every
10 epochs. Compared to our previous work [33], we reduced
the time complexity of Network 2 from O(M4) to O(M3).
Fig. 8 shows the localization accuracy of applying three

networks individually, as well as the accuracy when fusing
networks 2 and 3 according to (7). In Fig. 8 (a), 1d equals
to 1

8λ along all 75 robot trajectories, compared to Fig. 8 (b)
where 1d =

3
4λ. As presented in Fig. 8, training in trun-

cated CIR outperforms the raw transfer function, although
they embed the same CSI. We postulate that when training
on truncated CIR, the reduction in network size facilitates
the training process. The signal-to-noise ratio (SNR) is also
enhanced if the tail part of the CIRs is truncated since this
part includes only noise instead of useful CSI. Localization
accuracy when training on the one-sample covariance matrix
significantly outperforms the raw transfer function and the
CIR, although the delay domain information is not embedded
in this fingerprint. There are two potential explanations: i)
It is challenging to resolve multipath components due to
limited bandwidth and the propagation channel has a strong
LoS property. ii) Owing to the pre-processing, the angular
information can be better exploited by the neural network.
The fusion algorithm results in a slight improvement in local-
ization accuracy in comparison to using the pure one-sampled
covariance matrix, since the system bandwidth is limited
to 20 MHz and it is challenging to provide a good delay
resolution. However, the CSI in the delay domain is still
beneficial for localization tasks even with limited bandwidth.
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FIGURE 8. Positioning error cumulative density function with
respect to different training densities: (a) 1d =

1
8λ, (b) 1d =

3
4λ.

Thus, we believe that the delay domain information can
contribute more, under scenarios with rich multipath or for
a system occupying wider bandwidth. Compared to Fig. 8
(a), the localization accuracy shown in Fig. 8 (b) significantly
decreases. We postulate that when 1d =

3
4λ, the training

density is not sufficient to represent the instantaneous channel
properties.

We then calculate the NLL loss of all the aforementioned
localization algorithms in the training and test dataset, and
the results of the test data set are illustrated in Table 2.
As mentioned in Section III, this loss function considers the
localization accuracy and the estimated variance jointly. The
NLL loss of Network 3 is higher than that of the other two
networks, even though it delivers better localization accuracy.
We observe that the standard deviation predicted by network
3 is much smaller than the position error, which results
in a significant increase of the second and third terms of
(5). Based on this observation, network 3 is overconfident.
This problem is even more severe if we fuse the outputs
of Network 2 and Network 3 according to (6), because (6)
produces a fused variance that is smaller than that of all
individuals. In contrast, this problem can be alleviated by
calculating the harmonic averages of the estimated variances

TABLE 2. The NLL loss evaluated on the testing dataset.

TABLE 3. Antenna indexes in 5 groups.

TABLE 4. Network structure for each subarray.

of Network 2 and Network 3 according to (8). In the fol-
lowing section, we apply the subarray method to further
address this overconfidence problem and focus merely on
spatial channel fingerprints, considering the limited system
bandwidth.

B. ENHANCEMENT BY SUBARRAY METHOD
We apply the subarray method in order to address the
overconfidence problem and further enhance localization per-
formance. Specific to this measurement setup, we consider
the trade-off between complexity and localization accuracy
and formulate in total 5 subarrays, and each subarray has
32 antennas (N1 = 4 and N2 = 8). We present the antenna
indexes for each subarray in Table 3. The antenna indexes are
grouped in such a way that the physical distances between
each antenna are close to each other; therefore, the signals
captured by those antennas are strongly correlated. Note that
a few antennas belong to multiple groups, and thus the spatial
correlation information among antennas from different sub-
array groups is included as well. These subarrays are fed into
5 subnetworks that have identical network structures, which
are presented in Table 4. Compared to Network 2, the size
of each subnetwork is significantly reduced, which facilitates
the training process since it is easier to avoid overfitting. For
all those 5 networks, the activation functions and total training
epochs are the same as in Network 2. The initial learning rates
for all 5 networks are set at 2×10−4 and reduced 20 % every
10 epoch.
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FIGURE 9. Positioning errors of using subarrays and the
whole-array w.r.t. different training densities: (a) 1d =

1
8λ,

(b) 1d =
3
4λ.

Fig. 9 compares the localization performances of the sub-
array method with the whole array method. The localization
accuracy and the NLL loss, when 1d is 1

8λ and 3
4λ, are

shown in Fig. 9 (a) and (b), respectively. Fig. 9 shows that
the localization errors of all 5 groups are close to each other,
which is comparable to using the one-sample covariance
matrix of the entire array. The NLL loss w.r.t. the subarray
is much lower than the whole array. This indicates that the
subarray method better estimates the uncertainty. Localiza-
tion performance, in terms of both accuracy and NLL loss,
can be further improved by applying the MRC method to
fuse the outputs of all 5 subarrays. This result illustrates the
importance of selecting a proper training input, since the
performance gain can be clearly seen, even if the covariance
matrices of the entire array contain the same necessary infor-
mation as all subarrays altogether. However, we still observe
that if the training density is decreased, the localization accu-
racy will be degraded. Therefore, we address this problem in
the following sections by first investigating the influence of
training density on localization performance. At the next step,
more accurate estimated covariance matrices are calculated
by averaging more samples at different positions, and those
matrices are applied as the training fingerprints.

FIGURE 10. Spatial spectra of covariance matrices w.r.t. different
average distances: (a) d = 0 (one-sample covariance matrix),
(b) d = λ/2 (c) d = 2λ.

C. TRAINING DENSITY ANALYSIS USING NYQUIST
THEOREM
We apply the Nyquist Theorem to the measurement dataset to
analyze the influence of training densities. This paper focuses
on the covariance matrix as an example, but our method can
be generally applied to other channel fingerprints. The spatial
spectra of the covariance matrices with respect to different
average distances (d = 0, λ2 , 2λ) for all 75 measurements are
computed, according to (2)-(3) and (9). The spatial spectra
of the i-th measurement w.r.t. three distances are denoted as
9i,d=0, 9i,d=

λ
2
, 9i,d=2λ ∈ CM2

×Ti . To visualize the spectra,
we then select i = 75 and plot those three spatial spectra in
Fig. 10. As shown, when d increases, most of the spectral
energy is concentrated in the low-frequency region, indicat-
ing that the channel changes more slowly when the UEmoves
to different positions. This phenomenon can be explained
from a channel propagation perspective: small-scale fading
is smoothed out by the averaging operation so that the swift
change of channel responses cannot be observed. This allows
us to further reduce the necessary training samples.
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FIGURE 11. η′ with respect to sampling distance 1d .

We further investigate the relationship between the 1d
along the x-axis (see Fig. 5) and the level of aliasing noise
introduced to the system. Once 1d increases, the captured
spectrum window Li =

Ti
1d
δd in the i-th measurement

decreases, see (10), and more aliasing noise will be intro-
duced. To simplify the evaluation of the effect of aliasing
noise, 1d is selected to be the same for all 75 measure-
ment trajectories during the training phase. Based on this,

we define a parameter η′
=

∑
i ||9

Li
i,d ||∑

i ||9i,d ||
, to characterize the

extent of frequency aliasing. If η′ is closer to 1, the aliasing
noise is weak. We plot η′ with regard to three covariance
matrices in Fig. 11. If d = 0 and 1d exceeds the Nyquist
distance 1nqt =

1
4λ, η

′ drops apparently, and the influence
of aliasing noise is not trivial. Compared to d =

1
2λ, η

′ drops
more smoothly after 1nqt = 0.5λ. If d = 2λ, 1nqt increases
to λ. Even if 1d exceeds the Nyquist distance, η′ drops very
slowly, compared to d =

1
2λ. This indicates that the influence

of small-scale fading is rather weak.

D. COMPARISON BETWEEN DIFFERENT COVARIANCE
MATRICES
Fig. 12 illustrates the localization performances of three
aforementioned covariance matrices with different training
densities. To fairly compare performance, subarray methods
are applied and antennas are grouped in the same way as
in Table 3. All three networks are programmed according
to Table. 4. It can be observed from Fig. 12 that when 1d
further exceeds 1nqt , positioning accuracy decreases more
because the negative effect of the aliasing noise cannot be
ignored. The Nyquist distance 1nqt can be extended by
increasing the average distance d to covermore sampleswhen
formulating the covariance matrix. By comparing Fig. 12
(a), (b), and (c), we see that when d increases, both the
localization accuracy and the NLL improve, especially under
low training density. We postulate that three important factors
contribute to this improvement: (1) by averaging more sam-
ples, the noise energy is reduced and the SNR is increased;
(2) the system bandwidth is limited to 20 MHz, while the

coherence bandwidth for the channel is around 10 MHz.
Under this condition, Ci = E{ypiy

H
pi } cannot be represented

by the one-sample covariance matrix since many subcar-
riers are still strongly correlated. However, if we consider
different positions far enough from each other but within
the wide-sense stationary region, their corresponding channel
responses are weakly correlated. The estimated covariance
matrix C̃i,Npi

approaches better Ci. (3) When d is large,
C̃i,Npi

changes much more smoothly with different positions
due to the absence of small-scale fading and η′ drops much
more slowly. This guarantees that with the same training
density, less aliasing noise is introduced to the system.

E. COMPARISON WITH OTHER APPROACHES
We now compare our pipeline with other two representa-
tive approaches, namely, the traditional KNN localization
(naive fingerprinting) approach and the deep-learning-based
approach using CNNs [40].

1) KNN APPROACH
This approach first establishes a database that stores all
training fingerprints. When receiving a new localization
requirement, the BS finds the firstK closest fingerprints from
the database. In this paper, the estimated covariance matrix is
selected as the fingerprint. We denote ĈTr,i as the i-th training
fingerprint stored in the database and ĈTe as the fingerprint
with respect to a testing sample. We then define a scalar
li = ||ĈTr,i − ĈTe||

2
F . After calculating all Ntr distances li,

we select the first k = 4 lowest li and denote their coordinates
as p̃i. Applying the weighted KNN algorithm [42], the final
estimated position p̆ ∈ R2 is calculated as

p̆ =

4∑
i=1

wi p̃i, (12)

where the weight wi is defined as wi =
1/li∑
j 1/lj

.
Fig. 12 displays the localization accuracy of the KNN

method with respect to different 1d . For a fair compari-
son, the same training data are used here as our pipeline.
As a concern of the complexity issue, we randomly select
20000 testing channel samples rather than using all available
ones. We observe that the KNN methods perform better than
the pipeline if the channel is densely sampled. However, when
the training density is reduced, the neural network method
approaches and outperforms the KNN. This can be explained
as follows: when the channel is heavily oversampled, it is
possible to find a few pre-stored channel fingerprints in the
database, which are very similar to the test channel finger-
print. The localization accuracy is already good by directly
reading the coordinates of the closest fingerprints in the
database, let alone the further improvement by the interpo-
lation operation shown in (12). In comparison, the neural
networkmechanism estimates the UE position based on inter-
polating on the whole training datasets rather than the few
closest fingerprints, which results in suboptimal localization
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FIGURE 12. Comparison between positioning error of the pipeline and kNN method when using covariance matrices w.r.t. different
average distances as training fingerprints. (a) d = 0, one-sample covariance matrix, (b) d = λ/2 (c) d = 2λ.

accuracy. However, when the training density is reduced,
it cannot be guaranteed that the channel fingerprints in the
database are close to the test channel fingerprint. There-
fore, it only performs well if there exists such a fingerprint.
In contrast, the neural network is likely more suitable for the
localization task thanks to its nonlinear interpolation ability.
Bear in mind that KNNmethods generally require computing
the Euclidean distance between the testing fingerprint and
Nr prestored training fingerprints in total. This leads to a
high complexity in time, which is o(M2Nr ) according to (12).
In comparison, our pipeline has a better time complexity, that
is o(M3), since the antenna number M is much smaller than
Nr for most commercial devices. Even when M becomes
larger, one can use the subarray method to reduce the number
of antennas in each group and to reduce running time in
practice. On the other hand, if one wants to achieve a better
localization result using the KNN method, it is necessary
to pre-store sheer numbers of measurement samples in the
database. However, it is a resource-intensive endeavor to
construct such very densely sampled indoor measurement
datasets both in terms of finance and time manners, if the dis-
tance between adjacent samples is smaller than the Nyquist
distance (only a few centimeters at sub-6GHz frequency). For
most of the applications, one would spend less resources to
collect data, and thus lower densities are expected. Therefore,
the usage of the KNN method for a real-time operation sce-
nario is rather limited. From this perspective, the processing
pipeline still has its advantages even under the condition of a
high training density.

2) CNN BASED APPROACH
We then compare our localization approach with [40] that
trained a deep residual CNN to perform the indoor local-
ization tasks, where the open-source code is available. The
author in [40] first formulated a tensor Ypi ∈ RM×F×2 by
collecting the real and imaginary part of the raw received
complex transfer function Ypi . Then Ypi was converted to
the polar domain by calculating the amplitudes and phases
of each entry of the received transfer function matrix. This
formulated a tensor Ỹpi ∈ RM×F×2. The inverse Fourier
transform was also performed to obtain the CIR matrix

FIGURE 13. Positioning errors of our pipeline and localization
approach in [40] under LoS scenario.

4̃ ∈ CM×F and the corresponding tensor Ŷpi ∈ RM×F×2.
In the next step, the author formulated a tensor I ∈ RM×F×6

by concatenating Ypi , Ỹpi , and Ŷpi and sent this tensor to a
residual CNN. The network structure is programmed accord-
ing to [40], as well as the open source code. We modify the
size of the input layer, since the antenna number in our case
is 100 instead of 64. We plot the localization accuracy of
this approach in Fig.13, where 1d =

1
4λ and the training

percentage is around 5%. As illustrated, our pipeline has bet-
ter localization accuracy compared to [40] even with the use
of a one-sample covariance matrix for training. Localization
accuracy can be slightly improved if we increase the average
distance d to 1

2λ under this training density. We postulate that
our pipeline benefits from the pre-processing step as well as
the subarray method. We have also performed a time com-
plexity analysis of the convolutional neural network, which
is o(MF l1 l2CinCout ), where l1 and l2 represent the 2-D size
of the convolutional kernel and Cin and Cout the numbers
of input and output channels at each layer. In comparison,
the time complexity of our pipeline is o(M3). Consider that
M2

≤ F l1 l2CinCout for most commercial systems, we also
have advantages in terms of time complexity. Furthermore,
our system has the ability to predict uncertainty, which is an
additional advantage.
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FIGURE 14. Positioning errors of our pipeline under different
SNR.

F. INVESTIGATING DIFFERENT CASES
1) THE INFLUENCE OF SNR ON POSITIONING
ACCURACY
As stated in Section IV, the SNRs at the subcarriers range
between 1 and 11 dB in our measurement scenario. To further
test the performance of our localization pipeline, especially
under low SNR, synthetic white Gaussian noise is added to
our measurement data to emulate measurement environments
with mean SNR −5 dB, −10 dB, and −15 dB. Fig. 14 illus-
trates the localization accuracy of our algorithm that trains on
the covariance matrix (d =

1
2λ) in different SNR scenarios.

The percentage of training is around 2.5% and 1d =
1
2λ.

As illustrated, our algorithm still delivers good localization
performance under the −10 dB SNR scenario. Even when
the SNR drops to −15 dB, the localization accuracy is still
acceptable for applications such as indoor navigation. This
is because our processing pipeline can harvest the SNR gain
from correlating over other frequencies and averaging over
other one-sample covariance matrices in the neighborhood
region according to (2).

2) INVESTIGATING NLoS MEASUREMENT SCENARIOS
We investigate the localization performance of our proposed
pipeline in none-line-of-sight (NLoS) measurement scenar-
ios. To this end, our localization is applied to an open source
indoor measurement dataset [43]. We provide a brief intro-
duction to the NLoS measurement campaign and parameter
settings, while more details can be found in [40]. Fig. 16
illustrates the arrangement of indoor measurement, where 4
UEs, which occupy different subcarriers, move within the
four gray squares, each with a size 1.2 × 1.2 m. Each UE
is equipped with a dipole antenna that is placed at the height
of 0.4 m. The UE trajectories are densely sampled, resulting
in up to 252004 channel samples with geographical distance
between each sample 5 mm. The ground truth positions of
UE are recorded by a mechanical device with an error of less
than 1 mm. The base station consists of 64 patch antennas
operating at the center frequency 2.6 GHz, and all antennas
formulate a uniform rectangular arraywith size 0.56×0.56m.
The index of the antenna on the i -th row and the j -th column

FIGURE 15. Positioning errors of our pipeline and localization
approach in [40] under NLoS scenario.

TABLE 5. Antenna indexes in 4 groups.

is 8(i−1)+ j. A metal blocker with size 1.6×1.3 m is placed
between the base station and the UE, blocking the LoS com-
ponent. Each UE sounds the OFDM signal from the uplink
as a pilot for channel estimation, which has 100 subcarriers,
occupying in total 20 MHz.

The subarray method is also applied and 4 groups are
formulated, each group contains 36 antennas, and the antenna
indices are shown in Table. 5. The covariance matrices of
each subarray are formulated and sent to four individual
FCNNs for training. Each FCNN has the same structure as
Table.4, except the input layer size is 1296×1024. Figure.15
illustrates the localization performances of our pipeline when
using the estimated covariance matrix, compared with the
approach illustrated in [40]. Specifically, when we estimate
the covariance matrix, three average distances are investi-
gated, namely, d = 0 (one-sample covariance matrix), d =

0.5λ, and d = λ. The distances of the training samples
are 1

4λ in both horizontal and vertical directions. As illus-
trated, the algorithm in [40] achieves better performance than
training on the one-sample covariance matrix in the NLoS
scenario. However, if the average distance d increases over
1
2λ, the localization error decreases, and they outperform
[40]. We postulate that the one-sample covariance matrix is
more unstable under the NLoS scenario because the absence
of a prominent LoS component amplifies the effect of small-
scale fading. Therefore, in this scenario, it is challenging to
collect only one channel sample to estimate the covariance
matrix Ci at the position pi. Compared to other studies, when
the average distance d increases, the effect of small-scale
fading becomes weak and C̃i,Npi

can better approachCi. This
shows that if the covariance matrices are selected as a training
fingerprint in the NLoS scenario, it is more important to cover
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FIGURE 16. A demonstration of the indoor NLoS environment.

FIGURE 17. Comparison between different ways of constructing
the dataset.

more samples in the neighborhood region of pi than in the LoS
scenario. On the basis of the observation above, our pipeline
is also suitable for the NLoS scenario and can still achieve
better performances than the literature.

3) RANDOM SELECTION OF THE TRAINING SAMPLES
We now investigate the localization performance of our
pipeline, when the training data set is constructed by ran-
domly selecting training samples from the robot trajectory.
To enable a fair comparison, the network structures and
all other parameters, such as the training percentages of
the two datasets (evenly and randomly sampled), are the
same. Specific to our data set, the percentage of training
is 5% when the distance between two adjacent samples is
1d =

1
4λ. If 1d =

1
2λ, the training percentage drops

to 2.5%. Fig. 17 illustrates the localization accuracy of our
pipeline when we train on the one-sample covariance matrix.
As shown, the localization accuracy deteriorates when the
training samples are randomly selected. Therefore, the chan-
nel property may not be well captured, which deteriorates

the localization performance. This example illustrates the
importance of appropriately selecting training samples when
we construct the training datasets.

VI. CONCLUSION AND FUTURE WORK
This paper investigated the potential to applyML to amassive
MIMO system for solving localization tasks. We analyzed
a novel ML-based localization pipeline, which estimated
UE positions and variances by using different channel fin-
gerprints, including covariance matrices and truncated CIR.
For a system with a massive number of antennas, a sub-
array method was applied to facilitate the training process.
Furthermore, we applied the Nyquist sampling theorem to
investigate the effect of training density. An indoor massive
MIMO measurement campaign was conducted at 3.7GHz
using 20MHz bandwidth to evaluate our approaches, where
centimeter-level localization accuracy has been achieved.
Measurement results show that: 1) The information from both
the delay and angle domains contributes to the localization
performance, although in our case the delay domain CSI
contributes less than the angle domain CSI due to the limited
available bandwidth. 2) Compared to training on the whole
antenna array, the subarray method can achieve significant
enhancements in both positioning accuracy and better uncer-
tainty prediction quality. 3) As expected, the localization
accuracy decreases when the sampling interval is larger than
the Nyquist sampling distances. It is worth mentioning that
during the measurement campaign, the channel remained
stationary and no individuals were present. In upcoming
research, we will examine how the presence of people and
other moving objects, as well as the difference in the proper-
ties of the UE antenna at the training and testing phase, affect
the accuracy of the localization and apply transfer learning to
address possible problems. We will also investigate localiza-
tion pipelines that jointly process information from multiple
snapshots.
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