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ABSTRACT Doubly-selective channel estimation represents a key element in ensuring communication
reliability in wireless systems. Due to the impact of multi-path propagation and Doppler interference in
dynamic environments, doubly-selective channel estimation becomes challenging. Conventional symbol-by-
symbol (SBS) and frame-by-frame (FBF) channel estimation schemes encounter performance degradation
in high mobility scenarios due to the usage of limited training pilots. Recently, deep learning (DL) has been
utilized for doubly-selective channel estimation, where long short-term memory (LSTM) and convolutional
neural network (CNN) networks are employed in the SBS and FBF, respectively. However, their usage is
not optimal, since LSTM suffers from long-term memory problem, whereas, CNN-based estimators require
high complexity. For this purpose, we overcome these issues by proposing an optimized recurrent neural
network (RNN)-based channel estimation schemes, where gated recurrent unit (GRU) and Bi-GRU units are
used in SBS and FBF channel estimation, respectively. The proposed estimators are based on the average
correlation of the channel in different mobility scenarios, where several performance-complexity trade-offs
are provided. Moreover, the performance of several RNN networks is analyzed. The performance superiority
of the proposed estimators against the recently proposed DL-based SBS and FBF estimators is demonstrated
for different scenarios while recording a significant reduction in the computational complexity and the GPU
execution time.

INDEX TERMS Wireless communications, channel estimation, deep learning, RNN, LSTM, GRU, Bi-
GRU.

I. INTRODUCTION

THE recent advances in beyond 5G networks enable
high data rates and low latency mobile wireless

applications [1], [2]. Wireless communications offer mobility
to different nodes within the network, however, the mobility
feature has a severe negative impact on the communication
reliability [3]. In such environment, the wireless channel
is said to be doubly-selective, i.e. varies in both time and
frequency. This is due to the propagation medium, where
the transmitted signals propagate through multiple paths,
each having a different power, delay, and Doppler shift
effect resulting from the motion of network nodes. Knowing
that the accuracy of the estimated channel influences the
system performance since it affects different operations at
the receiver like equalization, demodulation, and decoding.
Therefore, ensuring communication reliability using accurate

channel estimation is crucial, especially in high mobility
scenarios [4].

In general, a few pilots are allocated within the transmitted
frame in order to maintain a good transmission data
rate, where the state-of-the-art (SoA) channel estimation
schemes can be categorized into: (i) SBS estimators: the
channel is estimated for each received symbol separately [5],
[6]. (ii) FBF estimators: where the previous, current, and
future pilots are employed in the channel estimation for
each received symbol [7]. The higher channel estimation
accuracy can be achieved by using FBF estimators, since
the channel estimation of each symbol takes advantage from
the knowledge of previous, current, and future allocated
pilots within the frame. Unlike, SBS estimators, where only
the previous and current pilots are exploited in the channel
estimation for each received symbol. However, the allocated
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pilots are insufficient for accurately tracking the doubly-
selective channel. As a result, conventional SBS channel
estimation schemes use the demapped data subcarriers
besides pilot subcarriers to accomplish the channel estimation
task. This procedure is known as data-pilot aided (DPA)
channel estimation, which is unreliable due to the demapping
errors of the data subcarriers that are also enlarged from
one symbol to another, leading to accumulated error in the
channel estimation process. Moreover, the DPA-based chan-
nel estimation schemes such as spectral temporal averaging
(STA) [5] and time-domain reliable test frequency domain
interpolation (TRFI) [6] are impractical solutions as they rely
on many assumptions such as high correlation of the channel
within the received frame. In addition, they lack robustness
in highly dynamic environments. On the other hand, several
2D interpolation methods, such as radial basis function
(RBF) [8] and average decision-directed with time truncation
(ADD-TT) [9] are employed in the FBF channel estimation.
However, the performance of these interpolation methods
is limited when employed in high mobility scenarios, since
they use fixed interpolation parameters. Moreover, the well-
known FBF estimator is the conventional 2D linear minimum
mean square error (LMMSE) uses the channel and noise
statistics in the estimation, thus, leading to comparable
performance to the ideal case. However, it suffers from
high complexity making it impractical in real-case scenarios.
Therefore, investigating both SBS and FBF channel esti-
mators with a good trade-off complexity vs. performance
is a crucial need for improving the channel estimation
accuracy as well as maintaining affordable computational
complexity.

Recently, a great success of deep learning (DL) has
been witnessed in several wireless communications applica-
tions [10], [11], including localization [12], [13], [14], and
channel estimation [15], [16], [17], [18], particularly when
integrated with conventional SBS and FBF estimators. This
success is due to the robustness, low-complexity, and good
generalization ability of DL algorithms making their integra-
tion into communication systems beneficial. Motivated by
these advantages, DL algorithms have been integrated into
doubly-selective channel estimators in two different manners:
(i) feed-forward neural network (FNN) and LSTM networks
with different architectures and configurations are employed
on top of SBS estimators [19], [20], [21], [22], [23]. (ii) CNNs
are integrated into the FBF estimators [8], [9], [24], where
the estimated channel for the whole frame is considered as a
2D low-resolution noisy image and CNN-based processing is
applied as super-resolution and denoising techniques. These
SoA DL-based SBS and FBF still encounter a considerable
performance degradation due to the poor accuracy of the
employed initial channel estimation as in [20] and [21].
Moreover, they require high computational complexity due
to the employed DL architectures [8], [9], [24].
In order to achieve better performance-complexity trade-

off in different mobility scenarios according to the channel
correlation, this paper sheds light on the RNN-based channel

estimation in doubly-selective environments for both SBS
and FBF channel estimation, where an optimized RNN
networks represented by a GRU and bi-directional (Bi)-
GRU units are used in the proposed SBS and FBF channel
estimators, respectively. Thus, having a low-complexity and
robust channel estimation in different mobility scenarios.
The proposed GRU-based SBS estimator uses only one
GRU network instead of two as the case in the recently
proposed LSTM-based estimator [22]. After that, DPA
estimation is applied using the GRU estimated channel.
Finally, unlike [22] where FNN network is used for noise
elimination, in the proposed GRU-based estimators, time
averaging (TA) processing is employed as a noise alleviation
technique where the noise alleviation ratio is calculated
analytically. Moreover, motivated by the fact that Bi-RNN
is designed to perform 2D interpolation of unknown data
bounded between known data [25], the proposed Bi-GRU
channel estimator is designed to overcome the limitations of
the FBF CNN-based channel estimation schemes, where an
end-to-end 2D interpolation is performed by the proposed
Bi-GRU unit. In this context, the proposed Bi-GRU channel
estimator employs an adaptive frame design, where comb
pilot allocation is replaced by full pilot allocated symbols
that are inserted periodically within the transmitted frame.
As a first step, the channel is estimated at the inserted
pilot symbols, after that, Bi-GRU acts as an end-to-end 2D
interpolation unit to estimate the channel at the data symbols
without the need to any initial estimation. By doing this
interpolation, the proposed Bi-GRU based estimator is able to
further improve the estimation performance, unlike the CNN-
based estimators that work according to the noise mitigation
principle [26], [27] rather than doing actual interpolation.
Simulation results show the performance superiority of the
proposed RNN-based channel estimation schemes against the
SoA SBS and FBF channel estimators while recording an
outstanding computational complexity reduction represented
by the floating-point operations per second (FLOPS) and the
graphics processing unit (GPU) execution time. To sum up,
the contributions of this paper are listed below1:

• Proposing low-complexity and robust RNN-based chan-
nel estimation schemes, where an optimized GRU, and
Bi-GRU units are employed to accurately estimate the
doubly-selective channel in SBS and FBF fashions,
respectively.

• Employing GRU unit as a pre-processing module to
DPA and TA processing in SBS channel estimation.
Whereas an end-to-end 2D interpolation using Bi-GRU
unit is proposed for FBF channel estimation.

• Analyzing the appropriate RNN architectures to be
employed according to the average channel correlation
within the frame in different mobility scenarios, where

1We would like to mention that part of this work related to the Bi-RNN
based FBF channel estimation has been accepted for publication in the IEEE
ICC 2023 conference [28].
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the advantages of using the proposed optimized GRU
unit instead of regular LSTM unit are discussed.

• Showing that the proposed RNN-based channel estima-
tors record a significant superiority over the SoA SBS
and FBF channel estimators in terms of bit error rate
(BER) and throughput for different modulation orders,
mobility scenarios, and frame lengths.

• Illustrating the advantage of using the ensemble learning
(EL) algorithm [29] in the generalization of one DL
model that is robust against a range of Doppler
frequencies.

• Providing a detailed computational complexity analysis
for the studied channel estimators, where we show that
the proposed RNN-based channel estimators achieve
substantial reduction in the required number of FLOPS,
and the GPU execution time in comparison with the SoA
SBS and FBF channel estimators.

The remainder of this paper is organized as follows:
Section II presents the system model. The SoA DL-based
channel estimation schemes are thoroughly investigated
and discussed in Section III. Section IV illustrates the
framework of the proposed RNN-based channel estimation
schemes, besides providing a brief overview of the main
RNN networks integrated into the doubly-selective channel
estimation. In Section V, different modulation orders are used
to present simulation results, wherein the performance of the
studied estimators is examined in terms of BER. Detailed
computational complexity analysis is provided in Section VI.
Finally, Section VII concludes this study.
Notations: Throughout the paper, vectors are defined with

lowercase bold symbols x. Time and frequency domain
vectors are represented by x and x̃ respectively. Moreover,
the (i, k) element of x̃ is represented by x̃i[k], where i and
k denote the time and the subcarrier indices. We note that
x̃i ∈ CK×1, x̃i,d ∈ CKd×1, and x̃i,p ∈ CKp×1 refer to the full
OFDM symbol, data subcarriers, and the pilots, respectively,
whereKd , andKp are the number of data and pilot subcarriers.
Matrices are written as uppercase bold symbols X . Finally,
E [.] denotes the expectation operator and the conjugate
matrix of X is signified by X∗.

II. SYSTEM MODEL
Consider a frame consisting of I orthogonal frequency
division multiplexing (OFDM) symbols. The i-th transmitted
frequency-domain OFDM subcarrier x̃i[k], is denoted by

x̃i[k] =


x̃i,d [k], k ∈ Kd.

x̃i,p[k], k ∈ Kp.

0, k ∈ Kn.

(1)

where k refers to the subcarrier index, where 0 ≤ k ≤

K − 1. Moreover, d and p indices refer to the transmitted
data and pilot subcarriers, respectively. The total number of
subcarriers is divided into Kon = Kd + Kp subcarriers in
addition to Kn null guard band subcarriers, where x̃i,d ∈

CKd×1 and x̃i,p ∈ CKp×1 represent the modulated data
symbols and the predefined pilot symbols allocated at a

set of subcarriers denoted Kd and Kp, respectively. The
received frequency-domain OFDM subcarrier denoted as
ỹi[k] is expressed as follows

ỹi[k] = h̃i[k]x̃i[k] + ṽi[k], k ∈ Kon. (2)

Here, h̃i ∈ CKon×1 refers to the frequency response of the
doubly-selective channel at the i-th OFDM symbol. ṽi ∈

CKon×1 signifies the additive white Gaussian noise (AWGN)
of variance σ 2. As a matrix form, (2) can be expressed as
follows

Ỹ [k, i] = H̃[k, i]X̃[k, i] + Ṽ [k, i], k ∈ Kon, (3)

where Ỹ ∈ CKon×I and X̃ ∈ CKon×I denotes the received
and transmitted frames in frequency domain. Moreover, Ṽ ∈

CKon×I and H̃ ∈ CKon×I denote the AWGN noise and the
doubly-selective frequency response of the channel for all
symbols within the transmitted OFDM frame, respectively.

III. SoA DL-BASED CHANNEL ESTIMATION
This section presents the recently proposed SoA DL-based
SBS and FBF channel estimation schemes, where the
processing steps applied in each estimator are presented.

A. DL-BASED SBS CHANNEL ESTIMATION SCHEMES
In general, FNN and LSTM networks are employed in
the SBS channel estimation, where optimized FNNs are
integrated as a post-processing unit with conventional SBS
channel estimators as the case in the DPA-FNN [19],
STA-FNN [20], and TRFI-FNN [21]. On the other hand,
LSTM networks are utilized as a pre-processing unit in the
LSTM-FNN-DPA [22], and LSTM-DPA-TA [23] channel
estimators. Both implementations are helpful in improving
the accuracy of the channel estimation. However, the LSTM-
based estimation illustrates a considerable superiority over
the FNN-based estimation. In this context, and since we
are focusing on RNN-based channel estimation, this section
presents the steps applied in the LSTM-based channel
estimators.

We would like to mention that the conventional DPA
channel estimation aims at tracking the channel variation
within the received OFDM frame by applying a three-step
operation. First of all, the current received OFDM symbol is
equalized by the previously estimated channel, resulting in
an initial channel estimation. Next, a demapping operation is
applied to the initial estimated channel, such that

d̃ i[k] = D
( ỹi[k]
ˆ̃hDPAi−1[k]

)
,

ˆ̃hDPA0 [k] =
ˆ̃hLS[k]. (4)

D(.) refers to the demapping operation to the nearest con-
stellation point in accordance with the employed modulation
order. ˆ̃hLS signifies the LS estimated channel at the received
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FIGURE 1. Block diagram of the SoA LSTM-based SBS estimators.

preambles, such that

ˆ̃hLS[k] =

P∑
u=1

ỹ(p)u [k]

P3̃[k]
, k ∈ Kon, (5)

where 3̃ denotes the frequency domain predefined preamble
sequence. The final DPA channel estimates are updated in the
following manner

ˆ̃hDPAi [k] =
ỹi[k]

d̃ i[k]
. (6)

It is worth mentioning that conventional DPA estimation
is based on the basic LS estimation that suffers from
noise enhancement. In addition to that, due to the doubly-
selective channel variation, a significant demapping error
is recorded in (4). This demapping error is enlarged and
accumulated over the received frame resulting in a significant
degradation in performance. In order to address the limitation
of the conventional DPA channel estimation, the recently
proposed DL-based channel estimators employ LSTM prior
to the DPA estimation so that the demapping error can
be implicitly reduced, thus, improving the accuracy of the
channel estimation.

1) LSTM-FNN-DPA
The work proposed in [22] shows that employing the LSTM
processing prior to the DPA estimation could lead to a
significant improvement in the overall performance. In this
context, two cascaded LSTM and FNN networks for both
channel estimation as well as noise compensation. The
LSTM-FNN-DPA estimator employs the least squares (LS)
estimated channel at the current and previous received pilots
denoted by ˆ̃hi,p ∈ CKp×1 and ˆ̃hi−1,p ∈ CKp×1, such that

ˆ̃hi,p[k] =
ỹi,p[k]

x̃i,p[k]
,

ˆ̃hi−1,p[k] =
ỹi−1,p[k]

x̃i,p[k]
, k ∈ Kp. (7)

x̃i,p ∈ CKp×1 refers to the predefined pilot subcarriers. The
LS estimated channels in (7) are fed as an input to both LSTM
and FNN networks, where the LSTM-FNN estimated channel
is expressed as follows

d̃LSTM-FNNi,d [k] = D
( ỹi,d [k]
ˆ̃hLSTM-FNNi−1,d [k]

)
. (8)

Finally, the DPA channel estimation is applied using
d̃LSTM-FNNi,d , such that

ˆ̃hDLi,d [k] =
ỹi,d [k]

d̃LSTM-FNNi,d [k]
. (9)

We note that at the beginning of the frame (i = 1), ˆ̃hi−1,p
denotes the LS estimated channel at the received preamble
symbols as shown in (5). While this estimator can outperform
the FNN-based estimators, it encounters a high complexity
cost arising from the employment of two DL networks.

2) LSTM-DPA-TA
In our previous work [23], an optimized LSTM network is
used instead of two as implemented in the LSTM-FNN-DPA
estimator. In addition, noise compensation is made possible
by applying TA processing. This methodology only requires
the previous pilots ˆ̃hi−1,p besides the LSTM estimated
channel as an input. Then, the LSTM estimated channel is
employed in the DPA estimation as follows

d̃LSTMi [k] = D
( ỹi[k]
ˆ̃hLSTMi−1[k]

)
,

ˆ̃hLSTM0 [k] =
ˆ̃hLS[k],

(10)

ˆ̃hLSTM-DPAi [k] =
ỹi[k]

d̃LSTMi [k]
. (11)
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FIGURE 2. Block diagram of the SoA CNN-based FBF estimators.

AWGN noise alleviation can be achieved by further
applying TA processing such that

ˆ̄hDL-TAi,d = (1 −
1
α
) ˆ̄hDL-TAi−1,d +

1
α

ˆ̄hLSTM-DPAi,d . (12)

Here, α denotes the utilized weighting coefficient. In [23], the
authors use a fixed α = 2 for simplicity. Therefore, the TA
applied in (12) reduces the AWGN noise power σ 2 iteratively
within the received OFDM frame according to the ratio

RDL-TAq =

(
1
4

)(q−1)

+

q∑
j=2

(
1
4

)(q−j+1)

=
4q−1

+ 2
3 × 4q−1 .

(13)

This corresponds to the AWGN noise power ratio of
the estimated channel at the q-th estimated channel, where
1 < q < I + 1 and RDL-TA1 = 1 denotes the AWGN noise

power ratio at ˆ̃hLS. From the derivation of RDL-TAq , it can
be seen that the noise power decreases over the received
OFDM frame, i.e. the SNR increases, resulting in an overall
improved performance. The full derivation of (13) is found
in [23]. Even though the LSTM-DPA-TA improves the
performance compared to the LSTM-FNN-DPA estimator,
it still suffers from high computational complexity.Moreover,
in Section IV, we show that employing LSTM unit in the
channel estimation would affect the estimation accuracy
negatively due to the long memory of the LSTM unit,
where uncorrelated previous estimated channels are taken
into consideration to estimate the current channel. However,
the proposedGRU-based channel estimation provides a better
performance-complexity trade-off.

B. CNN-BASED FBF CHANNEL ESTIMATION SCHEMES
In [24], a CNN aided weighted interpolation (WI) channel
estimation schemes have been proposed. The WI-CNN
estimators use adaptive frame structure according to the
mobility scenario. The idea is to avoid using comb pilot
allocation and insert Q pilot OFDM symbols with different
configurations within the transmitted OFDM frame instead.
In this context, the WI-CNN estimators employ one, two,

and three pilot symbols in low, high, and very high mobility
scenarios, respectively. Following the selection of the frame
structure, the WI-CNN estimators proceed as follows

• Pilot symbols channel estimation: In order to estimate
the channel at the inserted pilot symbols, the basic LS
denoted as simple LS (SLS) estimation is applied using
the received preambles as shown in (5), and using each
received pilot symbol such that

ˆ̃hSLSq [k] =
ỹ(p)q [k]

p̃[k]
= h̃q[k] + ṽq[k], k ∈ Kon. (14)

where ṽq[k] represents the noise at the q-th received
pilot symbol, 1 ≤ q ≤ Q denotes the inserted pilot
symbol index, and ỸQ = [ỹ(p)1 , . . . , ỹ(p)q , . . . , ỹ(p)Q ] ∈

CKon×Q. Moreover, accurate LS (ALS) can be obtained
by applying the discrete Fourier transform (DFT)
interpolation of ĥq,L such that

ˆ̃hALSq = Fonĥq,L , k ∈ Kon, (15)

with ĥq,L ∈ CL×1 denotes the estimated channel
impulse response at the q-th received pilot symbol.
We note that the ALS and SLS are used for full pilot
(FP) allocation. However, if the number of channel taps
L is known, the channel estimation requires only L pilots
in each pilot symbol, where DFT interpolation can be
applied to the estimated channel impulse response ĥq,L
such that

ˆ̃hDFTq = Fonĥq,L , k ∈ Kon, (16)

where Fon ∈ CKon×L denotes the truncated DFT
matrices obtained by selectingKon rows, and L columns
from the K -DFT matrix.

• Data symbols channel estimation: After estimating the
channel at the inserted Q pilot symbols, the WI-CNN
estimator divides the received frame into several sub-
frames that are grouped as follows

ˆ̃Hq = [ ˆ̃hq−1,
ˆ̃hq], q = 1, · · ·Q, (17)
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ˆ̃hq refers to the implemented LS estimation. Then, the
estimated channel for the i-th received data OFDM
symbol within each sub-frame is calculated as a
weighted summation of the estimated channels at the
pilot symbols, such that

ˆ̃HWIf =
ˆ̃H f C f , (18)

where ˆ̃H f ∈ CKon×2 denotes LS estimated channels at
the pilot symbols within the f -th sub-frame. C f ∈ R2×If

denotes the interpolation weights of the If OFDM data
symbols within the f -th sub-frame. The interpolation
weights of C f are calculated by minimizing the mean
squared error (MSE) between the ideal channel H̃ f , and
the LS estimated channel at the OFDM pilot symbols
ˆ̃H f as derived in [30]. In the final step, optimized super
resolution CNN (SR-CNN) is employed on top of the
WI estimators in a low mobility scenario, whereas an
optimized denoising CNN (DN-CNN) is considered in
high mobility one.

The WI-CNN estimators suffer from high computational
complexity. Moreover, using noise alleviation CNNs is not
sufficient to accurately estimate the doubly-selective channel.
Therefore, we propose a Bi-GRU channel estimator that
performs 2D interpolation, unlike the SR-CNN and DN-CNN
networks, which are based on noise alleviation techniques.
As a result, performance superiority of the proposed Bi-
GRU channel estimator can be achieved while recording
a significant decrease of the computational complexity in
comparison to the WI-CNN estimators as illustrated in
Section V and Section VI.

IV. PROPOSED RNN-BASED CHANNEL ESTIMATION
SCHEMES
In this section, RNN main concepts and extensions are
first briefly introduced. Then, a detailed explanation of the
proposed RNN and Bi-RNN based schemes for SBS and FBF
channel estimation are presented, respectively.

A. RECURRENT NEURAL NETWORKS: REVIEW
RNN is a type of artificial neural network (ANN) designed
to work with sequential data. This sequential data can be
in the form of time series, text, audio, video etc. RNN
uses the previous information in the sequence to produce
the current output, where it is incorporated with memory to
take information from prior inputs to influence the current
output. This mechanism is the key essence to RNN success
in sequential problems, where the core concept of RNNs
is to keep/discard input data in a recurring manner. Hence,
the RNN can learn the important and unimportant data
contributing to predicting the current output. We note that
training and back-propagation operations in RNN are similar
to other forms of ANN, where RNN needs to be trained in
order to produce accurate and desired outputs. In general,
there exist three main types of RNNs [31], [32]: (i) Simple
RNN (SRNN), (ii) LSTM, and (iii) GRU. Themain difference

between them is in how the input data is processed by each
RNN.

The SRNN is useful when we need to look at recent
information only to perform a present task. Therefore, when
an SRNN is exposed to long sequences, it tends to lose the
information because it cannot store long sequences since it
focuses only on the latest output. This problem is commonly
referred to as vanishing gradients [33] that occurs during
the training phase, where useful gradients cannot propagate
from the output of the model back to the layers near the
input of the model. As a result, the RNN does not learn
the effect of earlier inputs and it is too difficult for RNN to
preserve information over many time steps, hence, causing
the short-term memory problem. To overcome this problem,
specialized versions of RNN like LSTM and GRU are
created.

The LSTM is a special kind of RNN capable of learning
long-term sequences. Unlike SRNN, where the input and
the previous output are processed by a simple activation
layer, in LSTM the process is slightly complex, where the
LSTM unit takes at each time input from three different
states represented by the current input state, the short-
term memory state, and the long-term memory state from
the previous LSTM unit. These inputs are controlled and
filtered by three main gates to regulate the information to
be kept or discarded before passing the updated information
to the next LSTM unit. First of all, we have the input gate
that decides what information is relevant to add from the
current input state. After that, the forget gate decides what
is relevant to keep from prior steps represented by the long-
term memory state. Finally, the output gate determines what
the next output should be by processing the current input,
the previous short-term memory, and the newly computed
long-termmemory to produce new short-termmemory which
will be passed on to the next time step. LSTM is capable
of learning long-term sequences, and predicting the current
output is influenced by the long sequence of previous outputs.
However, LSTM is not useful in all scenarios, especially,
when the successive inputs become uncorrelated over time.
Since predicting the current output will be affected by uncor-
related previous outputs, the prediction accuracy is negatively
affected.

To overcome the problems encountered by SRNN and
LSTM, GRU has been proposed to provide a trade-off by
using a shorter previous memory in comparison to LSTM.
GRU is based on the same concept as the LSTM, but with
optimized architecture, where it has only two gates, a reset
gate, and an update gate. The reset gate is used to decide how
much of the past information needs to be neglected, while
the update gate acts similarly to the forget and input gate of
an LSTM. It decides what information to throw away and
what new information to add from the current input as well as
determining the previous information that needs to pass along
to the next time step. We note that fewer training parameters
and faster execution can be achieved by using GRU instead
of LSTM.
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FIGURE 3. Correlation of the channel at the first and the last
OFDM symbol within the transmitted frame.

B. PROPOSED SBS RNN-BASED CHANNEL ESTIMATOR
It is worth mentioning that FNN network treats the initial
estimated channels separately, where it produces the output
for each input. By doing this single input-output mapping,
the FNN network is able to learn the frequency correlation
of the doubly-selective channel, besides correcting the initial
estimation error. On the contrary, RNN network treats the
initial estimated channel as a correlated sequence, where the
current estimated channel is computed using the previous
RNN estimated channels and the current initial estimated
channel. This process allows the RNN network to learn
both frequency and time correlation of the doubly-selective
channel, and thus, RNN outperforms FNN in the channel
estimation task. We note that the SoA RNN-based estimators
focus on the employment of different LSTM architectures
within the channel estimation process. However, the use
of LSTM is not beneficial in all scenarios as discussed in
this section due to its high computational complexity and
long previous memory. In this context, the proposed RNN-
based estimation scheme sheds light on the ability of GRU
in estimating doubly-selective channels with high accuracy,
tackling the limitations of the LSTM unit.

As discussed in Section IV-A, SRNN takes advantage of
the previously estimated channel only while estimating the
current one. Whereas, the LSTM has long-term memory,
whichmeans that estimating the channel at the current OFDM
symbol is affected by the older estimated channels. On the
other hand, GRU provides a trade-off between short-term
memory and complexity. Therefore, in order to decide which
RNN performs better in doubly-selective channel estimation,
we study the average correlation between the channel at the
first symbol and all successive symbols within the transmitted
OFDM frame, considering the frequency-time response, such
that

9i = E
[
h̃1h̃

∗

i

]
, 2 ≤ i ≤ I . (19)

Here, 9i is calculated for three mobility scenarios: (i) Low
mobility: fd = 250 Hz, (ii) High mobility: fd = 500 Hz,
and (iii) Very high mobility: fd = 1000 Hz. The detailed
properties of these channel models are provided in Section V.

As shown in Fig. 3, when the mobility increases, the
average correlation 9 starts to decrease exponentially.
However, as we can notice, 9i at the end of the received
frame reaches around 65% for low mobility scenario, while
it is around 40% in high and very high mobility scenarios,
with a drastic decrease in the overall 9i curve in very
high mobility scenarios. According to the 9i values in
different mobility scenarios, we can expect that the impact
of the estimated channels at earlier symbols would affect
negatively the accuracy of the estimated channel at advanced
symbols within the received OFDM frame. As a result, we
can conclude that, as the mobility increases, shorter RNN
memory is required in the channel estimation in order to
guarantee the best possible performance. This is due to the
fact that, when long RNNmemory is employed in a very high
mobility scenario, the older estimated channels negatively
impact the channel estimation at the current OFDM symbol
because the estimated channels become uncorrelated, i.e.
the value of 9 is low. In this context, the proposed RNN-
based channel estimation scheme employs an optimized
GRU unit instead of LSTM unit in the channel estimation
process due to its shorter memory. This results in improving
the accuracy of the channel estimation while recording a
significant decrease in computational complexity. Moreover,
we study the performance of the SRNN unit in order to have
a complete analysis of different RNN units.

As illustrated in Fig. 4, the RNN unit is first employed to
estimate the channel at the current data subcarriers, where
it takes as an input the previous LS estimated channels at
pilot subcarriers denoted by ˆ̄hi−1,p ∈ R2Kp×1, concatenated
with the previously RNN-based estimated channel at the data
subcarriers ˆ̄h8-TAi−1,d ∈ R2Kd×1. Thus, the input and output
sizes of the RNN unit are 2Kon and 2Kd , respectively. After
that, the RNN output is fed as an input to the DPA estimation
followed by TA processing in order to further mitigate
the impact of noise. We note that our proposed estimators
consider both time and frequency selectivity, where the
RNN-based pre-processing deals with the time selectivity
and the DPA estimation with the frequency selectivity.
Moreover, the RNN-based estimated channel is fed as an
input to theDPA estimation block, which further improves the
DPA estimation accuracy. The proposed RNN-based channel
estimation scheme proceeds as follows

d̄8i,d [k] = D
( ȳi,d [k]
ˆ̄h8i−1,d [k]

)
, k ∈ Kd, (20)

ˆ̄h8-DPAi,d [k] =
ȳi,d [k]

d̄8i,d [k]
, (21)

where 8 ∈ {SRNN,GRU} refers to the used RNN unit, and
ˆ̄h80,d =

ˆ̄hLS ∀ k ∈ Kd. Finally, to alleviate the impact of
the AWGN noise, TA processing is applied to the estimated
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FIGURE 4. Proposed RNN-based channel estimation schemes.

TABLE 1. Parameters of the proposed RNN-based channel
estimation scheme.

channel ˆ̄h8-DPAi similarly as performed in (12), such that

ˆ̄h8-TAi,d = (1 −
1
α
) ˆ̄h8-TAi−1,d +

1
α

ˆ̄h8-DPAi,d , (22)

where α = 2 for simplicity. We note that in doubly-
selective channel, each two successive symbols are correlated
regardless of the mobility scenario, therefore, using α =

2 gives equal weights for the previous and current estimated
channel. However, However, alpha can be fine-tuned by
studying the average channel correlation between each two
successive OFDM symbols, and then assigningmore accurate
weights to the previous and current estimated channels
in (22).

In the proposed scheme, RNN training is performed using a
high value of signal-to-noise ratio (SNR) = 40 dB to achieve
the best performance as observed in [34]. The reason is that
when the training is performed for low noise impact, the RNN
is able to better learn the channel correlation. In addition, due
to its good generalization ability, it can still perform well in
low SNR regions, where the noise is dominant. Moreover,
intensive experiments are performed using the grid search
algorithm [35] in order to select the best suitable RNN hyper-
parameters in terms of both performance and complexity.
Note that the mobility conditions can be assumed known

in most real case applications. For example, in vehicular
communications, the vehicle velocity is a known parameter
that can be exchanged between all vehicular network nodes
and it must be regulated according to the road conditions.
In urban environments (inside cities) the car velocity must
not exceed 40 Kmphr, and thus, the model trained on low
mobility can be employed. Consequently, the RNN training
is performed for each mobility scenario separately using
the same architecture and training parameters summarized
in Table 1. However, when velocity information is not
available, EL algorithm can be used to combine the
weights of several trained models so that one generalized
model can be employed in all mobility scenarios as
discussed in V.

C. PROPOSED FBF Bi-RNN-BASED CHANNEL
ESTIMATOR
Bi-RNN networks are designed to predict unknown data
that are bounded within known data [25]. They are based
on making the data flow through any RNN unit in both
directions forward (past to future), and backwards (future
to past). In regular RNN, the input flows in one direction,
whereas, in Bi-RNN the input flows in both directions to get
the advantage of both past and future information. By doing
so, the Bi-RNN network will be able to predict the unknown
information in the middle based on its correlation with the
known past and future information.

In this context, the proposed Bi-RNN channel estimator
aims to utilize the interpolation ability of Bi-RNN networks
in the FBF channel estimation instead of employing high-
complexity CNN networks as it is the case in the SoA
channel estimation schemes. The proposed Bi-RNN channel
estimation scheme uses Bi-GRU unit and it inherits the
adaptive frame design from theWI-CNN estimators as shown
in Fig. 5. Recall that WI-CNN channel estimation performs
WI interpolation at the data symbols, where CNN processing
is applied to alleviate the impact of noise. However, Bi-
RNNs perform 2D interpolation at the data symbols using
the estimated channel at the pilot symbols without the need
for any initial channel estimation at the data symbols. Thus,
the proposed Bi-RNN channel estimator can be adapted
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FIGURE 5. Proposed Bi-RNN based channel estimator block diagram.

to any existing protocols regardless of the pilot allocation
scheme. However, the employed Bi-RNN architectures
should be fine-tuned accordingly to meet the required per-
formance. The proposed Bi-RNN channel estimator proceeds
as follows

• ALS estimation at the inserted pilot symbols as per-
formed in (15), followed by zero insertion at all the
data symbols. Thereafter, the initial estimated channels
ˆ̃H in ∈ CKon×Id are converted to the real-valued domain
by stacking the real and imaginary values in one vector,
where ˆ̄H in ∈ R2Kon×Id .

• Bi-RNN end-to-end interpolation, where ˆ̄H in is fed as
an input to the optimized Bi-GRU unit. Accordingly,
the Bi-GRU unit learns the weights of the estimated
channels at the OFDM data symbols. Employing the 2D
interpolation using the proposed Bi-GRU unit leads to
a considerable performance superiority in comparison
with the WI-CNN estimators while recording a signifi-
cant decrease in the required computational complexity,
as shown in Section V. Also here the proposed Bi-
GRU architecture is optimized using the grid search
algorithm [35] and trained using the parameters listed
in Table 1. Moreover, similarly as performed in
Section IV-B, the performance of Bi-LSTM and Bi-
SRNN are investigated in Section V.

V. SIMULATION RESULTS
This section illustrates the performance evaluation of the
SoA and the proposed RNN and Bi-RNN based channel
estimation schemes in terms of BER and throughput.
Vehicular communications are considered as a simulation
case study, where three mobility scenarios are defined as: (i)

low mobility (v = 45 Kmph, fd = 250 Hz) (ii) High mobility
(v = 100 Kmph, fd = 500 Hz) (iii) Very high mobility (v =

200 Kmph, fd = 1000 Hz). The power-delay profiles of the
employed channel models are provided in Table 2. Moreover,
the performance of the studied channel estimators is further
evaluated using the QuaDRiGa channel model [36]. We note
that the QuaDRiGa channel model is a three-dimensional
geometry-based stochastic channel model that offers several
features including the small and large-scale fading as well
as the continuous-time evolution, therefore, it presents the
practical real-world characteristics of the wireless channels.

It is worth mentioning that in order to guarantee fairness
in the conducted simulations, the studied channel estimators
are trained using the same parameters shown in Table 1 that
are optimized using the grid search algorithm. Moreover,
simulation parameters are based on the IEEE 802.11p
standard [37], where for the SBS channel estimation,
comb-pilot allocation is employed such that KpI pilots are
used within the transmitted frame following the comb-
pilot allocation. Concerning the FBF channel estimation,
the ChannelNet and TS-ChannelNet estimators use KpI
pilots per frame, whereas the WI-CNN and the proposed
Bi-RNN channel estimators employ only KonQ pilots per
frame following the block-pilot allocation, where Kon =

52 denotes the number of employed subcarriers within the
transmitted OFDM symbol, and Q is the number of inserted
pilot symbols within the transmitted frame ((i) Low mobility:
Q = 1, (ii) High mobility: Q = 2, (iii) Very high mobility:
Q = 3). Therefore, the proposed Bi-RNN based channel
estimator is able to outperform the recently proposed SoA
FBF channel estimators employing fewer pilots with lower
computational complexity, resulting in higher transmission
data rates as discussed in Section V-B.We also note that these
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FIGURE 6. BER for I = 100, mobility from left to right: low, high, very high.

simulations are implemented using QPSK, 16QAM, and
64QAM modulation orders, the SNR range is [0, 5, . . . , 40]
dB. In addition, the performance evaluation is performed
according to the employed modulation orders, the mobility
scenarios, and variable frame length.

A. SBS CHANNEL ESTIMATION
1) MODULATION ORDER
For QPSK modulation order, we can notice from Fig. 6a
that FNN-based channel estimators can implicitly learn
the channel frequency correlation apart from preventing a
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TABLE 2. Characteristics of the employed channel models following jake’s doppler spectrum.

high demapping error arising from conventional DPA-based
estimation, where STA-FNN and TRFI-FNN outperform
conventional STA and TRFI estimators by at least 15 dB
gain in terms of SNR for BER = 10−3. However, STA-FNN
suffers from an error floor beginning from SNR = 20 dB,
particularly in very high mobility scenarios. This is due to
the STA frequency and time averaging operations that can
alleviate the impact of noise and demapping error in low
SNR regions. On the other hand, the averaging operations
are not useful in high SNR regions since the impact of
noise is low, and the STA averaging coefficients are fixed.
Therefore, TRFI-FNN is used to improve the performance
at high SNRs to compensate for the STA-FNN performance
degradation in the high SNR regions. We can clearly observe
that employing RNNs as a pre-processing unit rather than a
simple FNN in the channel estimation brings a significant
improvement in the overall performance. This is because
RNNs are capable of efficiently learning the time correlations
of the channel by taking the advantage of the previous
output apart from the current input in order to estimate the
current output. Even though the recently proposed LSTM-
based estimators are able to outperform the FNN-based
estimator, but using LSTM in the channel estimation is not
the best option, due to LSTM long-term memory problem.
In contrast, we can notice that the proposed GRU-DPA-TA
estimator is able to outperform the LSTM-DPA-TA estimator
by around 6 dB gain in terms of SNR for BER = 10−5,
especially, in very high mobility scenario. This is due to the
fact that LSTM employs long-term memory, thus, the current
estimated channel is affected by older estimated ones. This
process harms the performance as the mobility increases, and
the channel at successive received OFDM symbols becomes
uncorrelated. Whereas, the GRU uses shorter memory than
LSTM, Thus, leading to the superiority of the proposed GRU-
DPA-TA estimator in comparison with the LSTM-DPA-TA
estimator. However, we can notice that in low mobility
scenario, both LSTM-DPA-TA and GRU-DPA-TA estimators
achieve almost similar performance. This is because of the
negligible impact of Doppler interference in low mobility
scenario, thus, the channels at successive symbols within the
received OFDM frame are highly correlated. So, considering
long or short memory while estimating the current channel
will not lead to considerable performance degradation.
Concerning 16QAM and 64QAM modulation orders, the
proposed GRU-DPA-TA estimator outperforms the LSTM-
DPA-TA estimator by more than 5 dB and 7 dB gains in terms

of SNR for BER = 10−4 and BER = 10−3, respectively,
in very high mobility scenarios, as illustrated in Fig. 6b
and Fig. 6c. However, it can be noticed that FNN-based
channel estimators suffer from severe performance degrada-
tion when 64QAM modulation is employed. This is because
of the remarkable accumulated DPA demapping error that
cannot be eliminated by simple FNN architectures. A nice
observation can be noticed from Fig. 6 where employing
SRNN in the channel estimation performs similarly to the
LSTM-FNN-DPA estimator in all mobility scenarios. This
reveals that using SRNN combined with TA processing
records similar performance as LSTM combined with FNN.
In other words, the performance degradation caused by
the LSTM long-term memory is compensated by the FNN
network in the LSTM-FNN-DPA estimator. However, SRNN
unit can be used instead to eliminate the LSTM long-
term memory problem as well as mitigating the noise by
simple TA processing as the case in the SRNN-DPA-TA
estimator.

Fig. 7 illustrates the throughput of the studied SBS channel
estimators employing QPSK modulation. It can be seen
that the proposed RNN-based channel estimators perform
higher throughput than conventional and FNN-based channel
estimators, especially in low SNR regions. This is due to the
accurate channel prediction.

2) MOBILITY
The impact of mobility can be observed in Fig. 6. The
performance behavior is influenced by the following factors:
(i) channel estimation error, (ii) time diversity due to
increased Doppler spread, since the Doppler spread and the
time diversity gain are proportional, i.e. more time diversity
gain can be obtained in very high mobility scenarios, and (iii)
frame length. As shown in Fig. 6, where the frame length is
fixed (I = 100), the performance of all the studied channel
estimation schemes degrades with the increase of mobility.
This is because the channel estimation error increases with
the increase of Doppler frequency. Moreover, we can notice
that the conventional STA and TRFI channel estimators
suffer from severe performance degradation in the very high
mobility scenario, since the impact of the AWGN noise
and DPA demapping error is much more dominant than
the time diversity gain. On the contrary, the time diversity
gain is dominant in DL-based channel estimators, since DL
networks are capable of reducing the channel estimation error
resulting from the AWGN noise and the DPA demapping
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FIGURE 7. Throughput employing QPSK, mobility from left to right: low, high, very high.

FIGURE 8. BER employing very high mobility and QPSK, frame length from left to right: I = 10, I = 50, I = 100.

error, leading to a performance improvement in very high
mobility scenarios. Note that the net time diversity gain is
also related to the employed frame length, since increasing
the frame length increases the time diversity gain. This is
clearly illustrated in Fig. 8, where QPSK modulation order
with very high mobility is utilized. As we can notice, the
performance of the proposed RNN-based channel estimators
improves when a longer frame length is employed. It is worth
mentioning that, the proposed GRU-DPA-TA and LSTM-
DPA-TA estimators perform similarly when I = 10, since
in shorter frames the impact of long and short-term memory
cannot be clearly illustrated. On the contrary, when using
longer frames, i.e, I = 50 and I = 100, we can notice the
superiority of using the GRU-based estimator instead of the
LSTM-based one.

In order to further illustrate the importance of channel
tracking, Fig. 8 shows the performance of the proposed

GRU-DPA-TA channel estimator when the outdated esti-
mated channel is used. In this context, the received OFDM
symbols are equalized by the DL-based estimated channel at
the beginning of the frame. As shown in Fig. 8, equalizing
by the outdated estimated channel significantly degrades
the performance even when shorter frames are employed.
Therefore, this shows the importance of applying channel
tracking to guarantee good performance in different mobility
scenarios.

Fig. 9 illustrates the robustness of the proposed GRU-
DPA-TA channel estimator in addition to the LSTM-DPA-TA
and SRNN-DPA-TA channel estimators against the change
in Doppler frequency, where QPSK modulation is employed.
RNN training is performed on one Doppler frequency and
tested on the entire range of Doppler frequencies. In this
context, the entire range of Doppler frequencies is divided
into 3 ranges: (i) Low mobility (0 Hz - 300 Hz), (ii)
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FIGURE 9. Robustness against Doppler frequencies, SNR = 40 dB. RNN from left to right: SRNN, GRU, LSTM.

FIGURE 10. Robustness analysis of the proposed GRU-DPA-TA
channel estimator employing QPSK modulation.

High mobility (300 - 600 Hz), and (iii) Very high mobility
(600 Hz - 1000 Hz). As we can notice, training on one
Doppler frequency and testing on the same one gives
the best performance. However, training on the highest
Doppler frequency within each range shows a satisfactory
performance when tested on different Doppler frequencies
within the considered range. This can be explained by the
fact that when the model is trained on the worst conditions,
i.e., high Doppler frequency, it can perform well when tested
on better conditions, i.e., low Doppler frequency. However,
the opposite does not work, especially, in the case of
SRNN-DPA-TA channel estimator which suffers from severe
performance degradation when the trained model is tested
on higher Doppler frequencies due to its simple architecture.
Similarly, for the LSTM-DPA-TA channel estimator but with
smoother degradation. Therefore, training on lower Doppler
frequencies, (for example, fd = 250 Hz) and testing on
higher Doppler frequencies lead to a severe performance

TABLE 3. QuaDRiGa car-to-car channel model parameters.

degradation which is expected since the model is trained in
the absence of Doppler interference.

On the other hand, the proposed GRU-DPA-TA channel
estimator provides better robustness in comparison to the
other RNN-based channel estimators due to its ability to
learn the time correlation efficiently using its short memory.
It is worth mentioning that, further model generalization
can be achieved by using the concept of ensemble learning
(EL) in case the velocity range is not known, where the
weights of several trained models can be averaged in order to
produce one generalizedmodel as shown in Fig. 10, where the
model is trained on Doppler frequency and tested on different
Doppler frequencies considering the entire SNR range.
We note that in Fig. 9, the EL results are obtained by aver-
aging the weights of the trained models on 700 Hz, 800 Hz,
and 900 Hz. Therefore, the performance of the trainedmodels
can be generalized according to the requirements of real-time
applications.

3) PERFORMANCE EVALUATION USING QuaDRiGa
CHANNEL MODEL
The QuaDRiGa channel model is used in order to further
investigate the robustness of the proposed GRU-DPA-TA
channel estimation scheme. We consider a Car-to-Car chan-
nel model with the dual mobility feature [38] (Section 4.14).
In this scenario, we have two vehicles moving toward each
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FIGURE 11. BER performance employing QuaDRiGa channel
model. I = 100 employing QPSK modulation.

other on linear tracks considering the setup parameters as
shown in Table 3. QPSK modulation with I = 100 OFDM
symbols per frame.

Figure 11 shows the BER performance of the RNN-based
channel estimators. Performance degradation is noticed in
comparison to the VTV-SDWW channel model, Fig. 6. This
is due to simulating the large-scale fading effects, i.e., the
shadowing and the path loss in the QuaDRiGa channel model.
However, the proposed GRU-DPA-TA channel estimator
outperforms the other RNN-based channel estimators by at
least 5 dB gain in terms of SNR for a BER = 10−3. Again,
the long memory of the LSTM shows a negative impact
on the BER performance, unlike the proposed GRU-based
estimator. We note that employing LSTM unit with a larger
hidden size leads to a marginal performance improvement in
comparison to the optimized LSTM architecture. Therefore,
the proposed GRU-DPA-TA channel estimator provides a
good performance-complexity trade-off.

B. FBF CHANNEL ESTIMATION
In this section, performance evaluations of the CNN-based
estimators, conventional 2D LMMSE estimator as well as
the proposed Bi-RNN based channel estimator are discussed
using the same criteria as Section V-A. We note that we only
consider the ALS-WI-CNN among the WI-CNN estimators
since it has the best performance.

1) MODULATION ORDER
Fig. 12a and Fig. 12b depict the BER performance employing
QPSK and 16QAM modulation orders, respectively. The
performance of channel network (ChannelNet) and tempo-
ral spectral ChannelNet (TS-ChannelNet) accounts of the
predefined fixed parameters in the applied interpolation
scheme, where the RBF interpolation function and the ADD-
TT frequency and time averaging parameters need to be
updated in a real-time manner. On the contrary, in the

ALS-WI-CNN estimator there are no fixed parameters, and
the time correlation between the previous and the future
pilot symbols is considered in theWI interpolation operation.
These aspects lead to the performance superiority of the ALS-
WI-CNN compared to the ChannelNet and TS-ChannelNet
estimators. Although CNN processing is applied in the
ChannelNet, TS-ChannelNet, and ALS-WI-CNN estimators,
they suffer from a considerable performance degradation
that is dominant in very high mobility scenario. This show
that the CNN processing is not able to effectively alleviate
the impact of Doppler interference, especially in very high
mobility scenarios, where the proposed Bi-RNN based
channel estimation scheme outperforms the WI-ALS-CNN
estimator by at least 5 dB and 12 dB gain in terms of
SNR for a BER = 10−5 employing QPSK and 16QAM
modulations, respectively. We note that the robustness of
the proposed Bi-RNN based channel estimator against high
mobility is mainly due to the accuracy of the end-to-end
2D interpolation implemented by the utilized Bi-GRU unit.
Moreover, we can see that employing Bi-LSTM performs
similarly to the ALS-Bi-GRU estimator, this is due to the used
frame structure, where the variation of the doubly-selective
channel within each sub-frame is low. However, it can be
noticed that employing CNN performs better than the Bi-
SRCNN unit in low and high mobility scenarios, while using
Bi-SRCNN unit leads to around 2 dB gain in terms of SNR
for a BER = 10−4 in comparison with the ALS-WI-CNN
estimator in very high mobility scenario as shown in Fig. 12.
As a result, we can conclude that employing Bi-GRU unit
instead of CNN network leads to more accurate channel
estimation with lower complexity. Finally, we note that the
performance of the 2D-LMMSE estimator is comparable to
the performance of the ideal channel but it requires huge
complexity as we discuss in the next section, which is
impractical in a real scenario. Moreover, the proposed Bi-
RNN based estimator records almost close performance as
the 2D-LMMSE estimator. Therefore, the proposed Bi-RNN
based channel estimator is an alternative to the 2D-LMMSE
estimator where it provides a good performance-complexity
trade-off.

2) MOBILITY
The impact of mobility can be clearly observed in
Fig. 12b, where the performance of the ChannelNet and
TS-ChannelNet channel estimation schemes degrades as the
mobility increases, and the impact of the time diversity gain
is not dominant due to the high estimation error of the 2D
RBF and ADD-TT interpolation techniques employed in
the ChannelNet and TS-ChannelNet estimators, respectively.
In contrast, the time diversity gain is dominant in the
ALS-WI-CNN and the proposed Bi-RNN based channel
estimator, since the initial ALS and WI estimations are
accurate, thus, the SR-CNN and DN-CNN networks are
capable of overcoming the Doppler interference. However,
using the ALS estimation at the pilot symbols followed
by Bi-GRU unit for 2D interpolation at the data symbols
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FIGURE 12. BER for I = 100, mobility from left to right: low, high, very high.

reveal considerable robustness against mobility. This is due
to the ability of the optimized Bi-GRU unit to significantly
alleviating the impact of Doppler interference, where it can
be noticed that the proposed Bi-RNN estimator is able to out-
perform the ALS-WI-CNN estimators in different mobility
scenarios. As a result, the proposed Bi-RNN based channel
estimator provides a good performance-complexity trade-
off between the CNN-based estimators and 2D-LMMSE
estimator.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS
This section provides a detailed computational complexity
analysis of the studied channel estimation schemes. The
computational complexity analysis is performed according
to two criteria: (i) The number of FLOPS required by the
DL architecture used in each channel estimator.2 (ii) The

2We note that the number of FLOPS are calculated using the pytorch-
OpCounter package [39].

execution time, where the simulations are performed on
NVIDIA TITAN Xp GPU card (12 GB GDDR5X).

A. SBS CHANNEL ESTIMATION
Table 4 shows the FLOPS and the GPU execution time of the
studied SBS channel estimation schemes. We can notice that
the FNN-based channel estimation schemes, especially, STA-
FNN and TRFI-FNN record the lowest number of FLOPS
and execution time due to their optimized FNN architectures
in comparison to other schemes. Employing both LSTM
and FNN networks requires 255.84 kFLOPS as the case in
the LSTM-FNN-DPA channel estimation scheme. Moreover,
86.01 kFLOPS are required by the LSTM-DPA-TA channel
estimator. This significant decrease in the number of FLOPS
is due to optimized LSTM architecture as well as using
only one DL network in the channel estimation. However,
the proposed optimized GRU-DPA-TA estimator is able to
decrease the required number of FLOPS by around 82%
and 50% compared to the LSTM-FNN-DPA and LSTM-
DPA-TA channel estimators, respectively. In other words, the
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FIGURE 13. FLOPS of the studied DL-based SBS channel estimators.

FIGURE 14. FLOPS of the studied DL-based FBF channel estimators.

proposed GRU-DPA-TA estimator is 2x less complex than
the LSTM-DPA-TA estimator, at the same time, it achieves
a significant BER performance gain as well as recording a
practical execution time.

We would like to mention that the number of FLOPS
can be further reduced by using the SRNN-DPA-TA channel
estimator since it is 2x less complex than the GPU-DPA-
TA channel estimator. However, the RNN-DPA-TA estimator
performs similarly to the LSTM-FNN-DPA estimator as
shown in Section V. Finally, we note that a trade-off
between the desired performance and the accepted complex-
ity should be taken into account, in order to optimize the
use of the RNN-based channel estimators. Fig. 13 shows
the required FLOPS by various examined SBS channel
estimators.

B. FBF CHANNEL ESTIMATION
Table 5 shows the FLOPS and the GPU execution time of the
studied FBF channel estimation schemes. We can notice that

TABLE 4. FLOPS and GPU execution time of the studied SBS
channel estimation schemes.

the CNN-based channel estimation schemes do not provide
a good complexity vs. performance trade-off since a high
number of FLOPS is required. In contrast, the complexity
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TABLE 5. Flops and GPU execution time of the studied FBF
channel estimation schemes.

is significantly decreased by the proposed ALS-BiGRU
channel estimator which is 10x and 115x less complex than
the ALS-WI-SRCNN and the ALS-WI-DNCNN estimators,
respectively. Therefore, we can conclude that employing
the proposed optimized Bi-GRU network instead of CNN
networks in the channel estimation is more efficient, and
at the same time, it offers better performance and feasible
execution time. Fig. 14 illustrates the FLOPS of the studied
CNN-based FBF channel estimators.

VII. CONCLUSION AND FUTURE PERSPECTIVES
In this paper, RNN-based channel estimation in doubly-
selective environments has been investigated. The recently
proposed DL-based SBS and FBF channel estimators have
been presented and their limitations have been discussed.
In order to overcome these limitations, we have proposed
optimized RNN-based and Bi-RNN estimators for SBS
and FBF channel estimation respectively. Moreover, the
performance of several RNNs architectures including SRNN,
LSTM, and GRU has been thoroughly analyzed based
on the channel correlation within the received frame.
Moreover, we show that the proposed GRU and Bi-GRU
units result in a better performance-complexity trade-off
in different mobility scenarios. Simulation results have
shown the performance superiority of the proposed channel
estimators over the recently proposed DL-based SBS and
FBF estimators while recording a significant reduction
in computational complexity and execution time. As a
future perspective, advanced DL algorithms such as transfer
and meta-learning can be investigated in order to further
improve the online performance of the proposed channel
estimators and their generalization capabilities. Moreover,
working on interpretable and explainable theoretical DL
models is a crucial future step that would ensure the
reliability and transparency of employing DL networks in the
domain of wireless communications [40], especially, channel
estimation, where the intuitions behind our proposed work
can be further validated.
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