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ABSTRACT Visible Light Communication (VLC) is a promising enabling technology for the
next-generation wireless networks, as it complements radio-frequency (RF)-based communications by
providing wider bandwidth, higher data rates, and immunity to interference from electromagnetic sources.
However, due to its unique characteristics, VLC is highly sensitive to the line-of-sight (LoS) blockage.
Recently, intelligent reflecting surface (IRS) has been proposed as an innovative solution that dynamically
reconfigures the wireless environment. The present contribution proposes a two-stage resource management
framework in an indoor VLC system: In the first stage, a maximum possible fairness (MPF) algorithm is
presented in order to maximize the fairness amongst the users. In the second stage, deep Q-learning is
exploited in order to maximize the overall spectral efficiency (SE). The corresponding numerical results have
shown that the proposed DQL-MPF framework exhibits superior performance in terms of both the overall SE
and Jain’s Fair Index, achieved at a fast convergence rate. More specifically, when the noise power is high
and the number of users is relatively large, the DQL-MPF algorithm achieves a more than tenfold overall
SE compared to the Baseline scheme. Moreover, the synergy between the MPF and the DQL algorithms
is investigated. To this end, we demonstrate that the MPF algorithm maximizes the fairness amongst the
users while the DQL algorithm maximizes the overall SE and improves the robustness against the noise. Our
results also highlight the effectiveness of the proposed algorithm in leveraging the increasing number of IRS
elements for optimized performance.

INDEX TERMS Visible light communications (VLC), intelligent reflecting surfaces (IRS), deep Q-learning
(DQL), spectral efficiency.

I. INTRODUCTION

THE ever-growing demand for high data rate wireless
services and the exponential growth of the number

of connected devices necessitate the development of new
innovative solutions that complement radio frequency (RF)
communications. It is well known that RF-based commu-
nication has been lately facing several challenges, such

as spectrum scarcity and high energy consumption, which
results in a significant carbon footprint [1]. Visible light
communication (VLC), on the other hand, is a promising
technology that has been recognized as an enabler for future
networks [2], since in an abundant, open, and unlicensed
spectrum, VLC may be employed for both lighting and
high-speed data communication.
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Yet, VLC is sensitive to line-of-sight (LoS) blockage, i.e.
the link between the access point (AP) and the photodetector
(PD) is required for reliable communications. However, LoS
blockage is particularly common in indoor VLC systems,
which might have a negative impact on the corresponding
achievable performance. This is due to a fairly common
assumption that users’ devices point upward towards the ceil-
ing [3], [4], [5], [6]. This assumption is unrealistic because
devices are typically subject to random orientation which
affects the quality of LoS links, as demonstrated in [7]. There-
fore, while designing and analyzing VLC systems, random
receiver orientation must be considered.

Intelligent reflecting surface (IRS) is a new technology
that holds great potential in improving the performance of
wireless communication systems. In VLC systems, where
communication performance is heavily reliant on the avail-
ability of LoS pathways, a blocked LoS path can be alleviated
by modifying the wireless propagation channel. The mirror
array-based IRS [8] and the metasurface-based IRS [9] are
the most used hardware designs for IRS in VLC systems.
The former is based on geometric optics such as Snell’s law
of reflection, and each unit may spin along two independent
and orthogonal axes, much like micro-electro-mechanical
systems (MEMS). However, the metasurface-based IRS is
composed of arrangements of sub-wavelength metallic or
dielectric structures that are used to manipulate the wave-
length, the polarization, and the phase of incident light waves.
As a result, IRS can be used to mitigate the blockage dilemma
in VLC systems. In addition to these two types of hardware
designs, a third type has been proposed - the liquid crys-
tal (LC)-based re-configurable intelligent surface (LC-based
RIS) VLC, which offers the advantage of tunability and
light amplification. According to [10] LC-based RIS can
improve the VLC signal detection and transmission range.
Recently, Amr et al. studied the temporal characteristics
of VLC channels using IRS and radiometric concepts. The
study accounts for power delays and shows the impact of
system parameters on the temporal characterization of the
two IRS-based VLC systems. In another environment, the
authors in [11] explores the use of IRS in underwater wire-
less communication (OWC) systems. More specifically, they
derive a closed-form expression for the outage probability
under underwater attenuation, pointing error, and turbulence
effects. The authors in [12] presented a novel approach of
using mirrors to improve the illumination uniformity and
throughput of an indoor multi-element VLC system architec-
ture through optimizing the problem of LED-user association
using a heuristic technique.

A. RELATED WORKS
Recently, Q-learning has sparked a rapidly growing interest
among researchers and engineers in various fields. Q-learning
is a subset of reinforcement learning in which Q tables
store optimal sequences of actions that maximizes the future
reward. Several studies have used Q-learning to improve
the performance of wireless networks [13], [14], [15].

More specifically, the deep reinforcement learning (DRL)
algorithm was introduced in several IRS-assisted wireless
communication studies to solve difficult non-convex opti-
mization problems and to improve the performance in such
networks. Huang et al. [16] proposed a DRL technique for
relay selection in IRS-assisted cooperative networks to max-
imize throughput. More specifically, they proposed a joint
relay selection and IRS reflection coefficient optimization
for cooperative networks. In [17], a multi-agent deep rein-
forcement learning-based scheme is investigated, where the
DRL is employed to realize a buffer-aided relay selection
scheme for an IRS-assisted secure cooperative network. The
authors in [18] proposed a dueling double deep Q-network
(D3DN) to optimize the performance of the IRS in a multi-
robot network, motivated by the benefits of non-orthogonal
multiple access and IRS. In this context, they proposed a
framework in which the IRS is deployed at an AP and NOMA
is used at the AP to serve multiple robots. In a mobile IRS
scenario, the authors in [19] proposed a model in which IRSs
are mounted on intelligent robots for flexible deployment.
A deep deterministic policy gradient (DDPG) framework is
used to optimize power allocation and the phase shift. Finally,
the works in [20] and [21] investigated the optimization of
the total achievable rate of multi-hop multi-user IRS-assisted
wireless terahertz (THz) communication systems. To increase
the network’s capacity, they proposed a DRL algorithm to
learn the optimal beamforming.

Several recent studies have investigated the optimization
of IRS-assisted VLC systems. The authors in [22] proposed
sine-cosine (SC) optimization algorithm to maximize the
SE of an indoor VLC system with an IRS mirror array,
although only a single-user scenario was considered. In a
related study, the authors in [23] explored the use of IRS to
improve link reliability inVLC systems using non-orthogonal
multiple access (NOMA). They proposed a joint optimization
framework based on the genetic algorithm (GA). In addi-
tion, a DRL-based framework was proposed in [24] for an
IRS-assisted VLC to maximize secrecy capacity. Finally,
Sun et al. [25] proposed the frozen variable algorithm and
the minorization-maximization algorithm to iteratively max-
imize the overall SE in an IRS-assisted VLC system.

B. MOTIVATION AND CONTRIBUTIONS
The integration of IRS technology with VLC systems has
gained significant attention in recent years, highlighting the
need for an effective optimization framework to maximize
their combined potential. This framework should take into
account practical scenarios involving multiple users and
random device orientation. A key aspect to consider for
enhancing system performance is the joint optimization of
the LED-user association, power allocation, and IRS mirror
orientation. Several notable works have demonstrated the
effectiveness of the joint optimization approach

Despite the growing interest in this area, none of the
existing studies have specifically focused on optimizing the
overall spectral efficiency (SE) of multi-user IRS-assisted
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VLC using DQL, while taking into account random device
orientation. Compared to DQL, heuristic techniques may
not be able to adapt to changing environments or may
not consider all possible solutions, leading to suboptimal
results. In contrast, a DQL-based optimization framework
can dynamically adapt its strategy based on the current envi-
ronment, which can result in better performance and faster
convergence to optimal solutions. Additionally, DQL can
handle more complex problems and scenarios where heuris-
tics may not be applicable or may be difficult to design. In this
work, our key contributions can be summarized as follows:

In this work, our key contributions can be summarized as
follows:

• We present an optimization framework for an
IRS-assisted VLC system, which jointly optimizes the
IRS mirror orientations, LED-user associations, and
LED power allocations. This framework incorporates
Jain’s fairness index [26] to guarantee equitable resource
allocation among users.

• We propose a two-stage approach consisting of the DQL
and MPF algorithms, which collaboratively maximize
the overall spectral efficiency (SE) of the multi-user
IRS-assisted VLC system while maintaining fairness
among users, as indicated by Jain’s fairness index.

• Our simulation results highlight the superiority of the
proposed DQL-MPF algorithm in comparison to several
benchmark methods, such as the genetic algorithm (GA)
[27]. The synergistic effect between the MPF and DQL
algorithms is apparent, as the joint DQL-MPF strategy
outshines both the individual DQL and MPF methods
in terms of spectral efficiency and fairness. Moreover,
our results show that the enhanced performance persists
and maintains its superiority even with an increasing
number of IRS elements, demonstrating the scalability
and effectiveness of the proposed approach.

• By introducing the novel MPF algorithm in tandem with
the DQL algorithm, we substantially decrease the com-
putational complexity and establish a more efficient and
equitable resource allocation scheme for IRS-assisted
VLC systems.

C. NOTATION
Vectors and matrices are denoted by lower and upper case
boldface symbols, respectively. Therefore, ai denotes a vec-
tor, in which i represents its ith element. Also, with Ai,j,
we denote a matrix with i as an index for the column, and j as
an index for the row. E (·) denotes the statistical expectation,
U(.) denotes the uniform distribution function, [A]T is the
transpose operation for the matrix A, and len(A) denotes a
function that returns the number of elements in the matrix A.

II. SYSTEM AND CHANNEL MODELS
We consider the downlink of an IRS-assisted time-division-
multiple-access (TDMA) VLC system, where L LEDs serve
K users and an IRS with N units. It is assumed that each

LED serves a single user in a single time slot, resulting
in multi-user interferences (MUI) between different LEDs.
Without loss of generality, it is assumed that the VLC channel
state information (CSI) is known at the system controller,
which can be achieved using various channel estimation
methods [28].

A. CHANNEL GAIN OF LoS
Suppose that the k th user is served by the l th LED, the associ-
ated LoS direct gain in VLC generally follows the Lambertian
model, which is given by [25]

h(1)k,l

=


(m+ 1)APD

2πd2k,l
cosm(8)T (ξ)G (ξ) cos (ξ) , 0≤ξ ≤ξFoV

0, otherwise,

(1)

where m = −1/ log2(cos(21/2)) denotes the Lambertian
index, and 21/2 is the semi-angle at half illuminance of the
LED.The physical area of the photodetector (PD) is denoted
by APD, the distance between the k th user and the l th LED is
denoted by dk,l , whereas 8 and ζ are the angles of irradiance
and incidence, respectively. The optical filter gain is denoted
by T (ξ), and G(ξ ) is the optical concentrator gain with
respect to field-of-view (FoV), which is given in [29].

The orientation of the user’s device is not affected by 8.
On the contrary, ξ is heavily influenced by the device’s ori-
entation. The cosine of ξ can be calculated using the device’s
polar angle, α, and azimuth angle, β, as follows [22]:

cos (ξ) =

(
xl − xk
dk,l

)
sin (αk) cos (βk) +

(
yl − yk
dk,l

)
sin (αk)

× sin (βk) +

(
zl − zk
dk,l

)
cos (αk) , (2)

where (xl, yl, zl) and (xk , yk , zk ) are position vectors describ-
ing the LEDs and user’s locations, respectively. Based on
the modeling study in [30], the polar angle can be modeled
using the Laplace distribution with a mean and standard
deviation of 41◦ and 9◦, respectively. Moreoever, its value is
typically restricted to the range [0,(π/2)]. Finally, the yaw
angle follows a uniform distribution β ∼ U [−π, π].

In the considered scenario, we assume multiple LEDs and
multiple users. Based on this, the channel gain matrix for the
LOS components is given by

H (1)
=

[
h(1)1 , h(1)2 , . . . , h(1)K

]
, (3)

where each column denotes the direct gain vector k between
LEDs and the k th user, and is given by

h(1)k =

[
h(1)k,1, h

(1)
k,2, . . . , h

(1)
k,L

]
. (4)

B. CHANNEL GAIN OF NLoS
In general, the NLoS paths in the considered VLC sys-
tem include reflection, diffraction, scattering, and penetration
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paths. The penetration paths are frequently ignored in VLC
due to the extremely high visible light penetration loss. The
diffraction path is also negligible due to the nanoscale of
wavelength. Based on the surface properties of the reflec-
tor, light reflection can be divided into two types: diffusely
reflected link and specularly reflected link. It has been shown
in [8] that the specular reflection is generally considered
as the significant NLoS component in IRS-assisted VLC,
while the diffuse reflection is ignored. Accordingly, the NLoS
channel gain can be rewritten with a focus on the specular
reflection component. In our study, we are only considering
the first reflections off the mirrors, as this is the most signif-
icant contribution to the NLoS channel gain in IRS-assisted
VLC systems. Accordingly, the NLoS channel gain can be
rewritten as [25]

h(2)k,n,l

=


ρk (m+ 1)

APD
2π

(
dn,l + dk,n

)2
× F × cos

(
ξnk

)
0 ≤ ξnk ≤ ξFoV

0, otherwise,

(5)

where ρk is the reflection coefficient of the IRS element, dn,l
is the distance between the l th LED and the nth reflective
surface, dk,n is the distance between the nth reflective surface
and the k th user. Based on this, the function F is given by

F = cosm
(
8l
n

)
cos

(
ξ ln

)
cos

(
8n
k
)
T (ξ)G (ξ) , (6)

where 8l
n is the angle of irradiance from the l th LED to

nth reflective surface, ξ ln is the angle of incidence on the nth

reflective surface, cos
(
ξnk

)
accounts for the random device

orientation from the nth reflective surface to k th user, and
finally, 8n

k is the angle of irradiance from the nth reflective
surface to k th user, and is defined by [22]:

cos
(
8n
k
)

=
(xk − xn)
dk,n

sin (ϕn) cos (ωn) +
(yk − yn)
dk,n

× cos (ϕn) cos (ωn) +
(zk − zn)
dk,n

sin (ωn) , (7)

where (xn,yn,zn) represent the coordinates of the IRS.
Next, we define a three-dimensional matrix H (2) to denote

the NLoS channel gain, which consists of slices as follows:

H (2)
k = diag

(
h(2)T1 , h(2)T2 , . . . , h(2)TK

)
, (8)

in which each column denotes the NLoS gain vector between
the l th LED, the nth IRS element, and the k th user, and is given
by

h(2)k,l =

[
h(2)k,1,l, h

(2)
k,2,l, . . . , h

(2)
k,N ,l

]
. (9)

C. INSTANTANEOUS RECEIVED SIGNAL OF
IRS-ASSISTED VLC
In this subsection, we calculate the instantaneous received
signal in one time slot. To this end, a user association matrix
F, a power allocation matrix P are defined to describe the

behavior of transmitters, and finally, the matrices 4 and �

denote the yaw angles of the IRS mirrors, and the roll angles
of IRSmirrors, respectively. These fourmatrices are variables
to be jointly optimized at a later stage. Skipping specific
enumeration of each since user association and power control
are well established.

1) USER ASSOCIATION
The relationship between transceivers is described using the
vectors the vectors y = [y1, y2, . . . , yK ]T transmitting infor-
mation and x = [x1, x2, . . . , xL]T received, as

x = Fy (10)

In fk ∈ RL+1
+ if fl,k = 1 the k th user accepts the l th LED’s

service.

2) EMISSION POWER
A diagonal power matrix P = diag (P1,P2, . . . ,PL) indi-
cates the emission power on LEDs, so that the transmit signal
can be expressed as x̃ = Px, whereas the received signal,ŷ(1)k
for the k th user can be expressed as

ŷ(1)k = ρkh
(1)T
k x̃ρkh

(1)T
k Pfkyk + ρk

K∑
i=1,i̸=k

h(1)Tk Pfiyi, (11)

where the two components denote the useful signal and the
MUIs, respectively.

3) IRS CONFIGURATION
Thirdly, an IRS configuration which consists of two matrices,
the roll angle matrix, which is defined as � = [ω1, ω2, . . . ,
ωN ], where ωn is the roll angle for the nth unit. The second
matrix in the IRS configuation is the yaw matrix, which is
given by 4 = [ϕ1, ϕ2, . . . , ϕN ] where ϕn is the yaw angle for
the nth unit.

Considering the channel model in indoor VLC, which is
determined mainly by the locations of the transceivers, any
movement of the transmitter/receiver/reflector may signifi-
cantly change the channel gain, resulting in the high spatial
resolution of the VLC channel. The specular reflection path
can be considered as an extended path emitted from the imag-
ing LED. Therefore, a single IRS unit cannot serve two or
more PDs simultaneously. Hence, the NLoS received signal
of the k th user can be expressed as

ŷ(2)k,l = ρk

N∑
n=1

h(2)k,n,l (ωn, ϕn)Plxl fl,k (12)

= ρkh
(2)
k,l (�, 4)Plxl fl,k (13)

where h(2)k,l (�, 4) is the NLoS channel gain for a given
IRS configuration. It follows that the overall NLoS signal is
obtained using

ŷ(2)k =

L∑
l=1

ŷ(2)k,l (14)
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FIGURE 1. The IRS-assisted VLC system model with DQL-MPF server.

= ρk

[
h(2)Tk,1 (�, 4)P1x1, . . . ,h

(2)T
k,L (�, 4)PLxL

]
fk

(15)

= ρk

[
h(2)Tk,1 (�, 4) , . . . ,h(2)Tk,L (�, 4)

]
Pdiag (x) fk

(16)

= ρk

[
H(2)

k (�, 4)
]T

Pdiag (Fy) fk . (17)

Notably, the equation diag (Fy) fk = yk fk holds due to the
orthogonality among fk . Finally, the above formula can be
further rewritten by replacing the last two multiplicators as

ŷ(2)k = ρk

[
H(2)

k (�, 4)
]T

Pfkyk . (18)

To sum up, the received signal of the k th user is comprised
of the LoS component ŷ(1)k , the NLoS component ŷ(2)k , and
wk denotes the additive white Gaussian noise at the receiver.
Therefore, the resultant received signal ŷk can be expressed
as [25]

ŷk = ŷ(1)k + ŷ(2)k + wn (19)

The proposed system model is shown in Fig. 1. The
TDMA-based IRS-assisted system is optimized in real-time
through the deep Q-learning with maximum possible fairness
(DQL-MPF) algorithm server. More specifically, the users
upload the state of the system to the DQL-MPF server, which
then applies the joint resource management for the configu-
ration of the IRS mirrors, the power allocation of the LEDs,
and the association between the LEDs and the users at a
given time slot. The main goal is to maximize the overall

SE. In the following sections, the joint optimization problem
is formulated, and the proposed optimization framework is
proposed.

III. PROBLEM FORMULATION
Due to several unique constraints, such as the nonnegative and
real-valued signal, illumination requirements, and sensitivity
to geometric locations, the classic Shannon capacity formula
cannot be used to exactly describe the VLC channel capacity
[31]. Accordingly, the authors in [32] proposed a tight lower
bound for dimmable VLC systems, where the capacity for-
mula is in continuous form as

C =
1
2
W log2

(
1 +

eτ 2P2

2πσ 2

)
(20)

whereW , τ , P, and σ 2 denote the modulation bandwidth, the
responsivity of the PD, the optical power, and the variance
of the Gaussian noise, respectively. This formula primarily
serves as an introduction to the modified Shannon capacity
for VLC systems for a single user. Subsequently, the SE of
the k th user is given by for a multi-user scenario considering
the additional complexity introduced with this setting is

Rk =
1
2
log2

(
1 +

e
2π

δk

)
(21)

where δk indicates the individual signal-to-interference-plus
noise ratio (SINR), which can be expressed as

δk =

ρ2
k

[{
H(2)

k (�, 4) + h(1)k
}T

Pfk

]2
σ 2
k + τ 2k

K∑
i=1,i̸=k

{
h(1)Tk Pfi

}2
var (yi)

(22)
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This term takes into account the idea of interference that
is absent in the previous formula. Here in (22), var (yi) =

1 denotes the variance of the interference signal yi, and σ 2
∈

R+ denotes the variance of wk .
After analyzing the individual SINR for each user, the

overall SE is then formulated as

R =

K∑
k=1

Rk (�, 4,P,F) (23)

This optimization framework mainly employs the overall
spectral efficiency in its computations to optimize the entire
system’s performance rather than each user’s performance.
The goal is to utilize the spectrum as efficiently as possible
as the bandwidth is normalized and not a decision variable in
this context. Prior to the problem formulation, we introduce
Jain’s Fairness Index [26], which is a widely used metric for
quantifying the fairness of resource allocation among users in
communication systems. The index is defined as follows:

J =

(∑K
k=1 Rk

)2
K

∑K
k=1 R

2
k

(24)

where the value of Jain’s Fairness Index ranges between
0 and 1, with higher values indicating better fairness among
the users. An index value of 1 indicates perfect fairness,
where all users have the same data rate, while a value of
0 indicates the worst possible fairness, with one user obtain-
ing all the resources. Incorporating Jain’s Fairness Index into
the optimization problem (P1) will be beneficial as it enables
our proposed algorithm to achieve a balance between maxi-
mizing the overall system spectral efficiency and ensuring fair
resource allocation among the users. By jointly optimizing
the IRS yaw matrix 4, the IRS roll matrix �, the power
allocation matrix P, and the user association matrix F, while
considering the fairness criterion, the algorithm will not only
increase the sum-rate but also allocate resources more equi-
tably among users. This approach will lead to a more efficient
and fair system, improving the overall user experience in the
visible light communication network, namely

max
�,4,P,F

R · J (P1)

s.t. Rk ≥ Rk,min ∀k ∈ (1, ..,K ) , (P1.a)
L∑
l=1

Pl ≤ Pmax , (P1.b)

Pmin ≤ Pl ≤ Pmax ∀l ∈ (1, ..,L) , (P1.c)

fl,k ∈ {0, 1} , ∀l ∈ {1, . . . ,L} ,

∀k ∈ {1, . . . ,K } (P1.d)
K∑
k=1

fl,k ∈ {0, 1} , ∀l ∈ {1, . . . ,L} (P1.e)

−π

2
≤ ϕn ≤

π

2
∀n ∈ {1, . . . ,N } (P1.f)

−π

2
≤ ωn ≤

π

2
∀n ∈ {1, . . . ,N } , (P1.g)

where the minimum data rate requirement is denoted by the
constraint (P1.a). The total power limitation imposed by the
VLC system is denoted by the constraint in (P1.b), whereas
(P1.c) denotes the individual illumination constraint. Next,
constraints (P1.d) and (P1.e) indicate that a single transmitter
cannot carry information symbols for multiple users at the
same time. The constraints in (P1.f) and (P1.g) result from the
IRS yaw matrix and IRS roll matrix definitions, respectively.
Finally, it is assumed that the channel state information (CSI),
denoted by matrices H(1) and H(2), are known by using VLC
channel estimation techniques. Note that the IRS configura-
tion subproblem is proven to be typically non-deterministic
polynomial time (NP)-hard [33]. Therefore, the complexity of
pursuing the optimal solution of (P1) suffers from exponential
explosion. Accordingly, we solve the above optimization
problem by a two-stage DQL-based algorithm. In the fol-
lowing, we present a two-stage algorithm to address the
optimization problem (P1). The first stage introduces the
Maximum Possible Fairness (MPF) algorithm, while
the second stage involves designing and implementing a deep
Q-learning framework.

A. STAGE 1: MAXIMUM POSSIBLE FAIRNESS
ALGORITHM
At this stage, the IRS frame is divided into D segments, with
each segment optimized and dedicated to a single user. The
MPF algorithm can maximize fairness in situations where
the number of IRS mirrors is not evenly divisible by the
number of users, and also maintain fairness when divisibility
occurs. By optimally allocating and dividing mirrors to each
user in the IRS-assisted network, the MPF algorithm seeks
to maximize fairness among users. The operational steps of
the MPF algorithm are outlined below, and a summary is
provided in Algorithm 1.

1) Initialize the IRS-assisted VLC parameters withN total
mirrors, K total users, H(1), H(2), and an index n for
the IRS segments. Additionally, use the variable dec for
decrementing the number of segments, rem for check-
ing if there is a remainder, and stop for terminating the
algorithm.

2) Continue running the algorithm until the remainder is
0 and each user is allocated an IRS segment.

3) Initially, check if the number of mirrors N is divisible
by the number of users K .

4) If not divisible, decrement 1 from K until N
5) Divide the IRS frame into K − dec segments.
6) Sort the segments in ascending order based on the CSI.
7) Detach the major segment from the IRS array and

assign it the lowest channel gain. This segment will
have a higher number of mirrors; hence, assigning it the
lowest channel gain will improve the degraded channel.

8) Check if the remaining number of IRS Srem mirrors is
divisible by K − dec.

9) If divisible, split the remaining segments into K − dec
segments, concatenate them with all the major seg-
ments in SJ , and set stop to 1.
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Algorithm 1MPF Algorithm
Input: IRS elements array with N mirrors, K number

of users, H(1),H(2)

Output: SJ , which is a matrix that includes D IRS
segments for K users.

1 Initialization: n = 0, dec = 0, rem = 1, stop = 0.
2 while rem! = 0 do
3 Set remainder to N if rem ! = 0 then
4 Set dec TO dec + 1

5 Set D to (K - dec) Split IRS array into D segments
Sort D segments based on channel gains in
ascending order Detach the major segment as Sn

6 Assign Sn with the lowest channel gain
7 Set the remaining segments to Srem
8 if len(Srem) % (K - dec) == 0 then
9 Split Srem into (K - dec)
10 Concatenate (S1,S2,. . . ,Sn) to SN
11 Concatenate (SN , Srem)
12 Set (SN , Srem) to SD
13 Set stop to 1
14 Return SJ
15 else
16 Update N to [N - len(Sn) ]
17 Update n to [n + 1]
18 Update K to K − 1
19 Continue

20 End

10) Otherwise, update the number of mirrors by subtracting
the number ofmirrors in themajor segmentSn, and start
over.

We provide a walk-through example for Algorithm 1 in
Appendix A. It is important to note that in SD, the segments
with a higher number of mirrors will be assigned the lowest
channel gains from the estimatedH(2), thereby enhancing the
overall performance of the IRS-VLC system.

While the MPF algorithm allows for optimizing the dis-
tribution of mirrors in a multi-user TDMA-based IRS-VLC
system, other parameters still need optimization. Solely rely-
ing on theMPF algorithmwill not yield optimal performance.
In the second stage, we propose an optimization framework
that leverages the output of the MPF algorithm and employs
a deep Q-learning algorithm to jointly optimize the power
allocation of the LEDs, the association between users and
LEDs, and the roll angle� and yaw angle4 of the IRS frame.
Instead of optimizing each mirror’s individual orientation,
our approach optimizes the segments resulting from the MPF
algorithm during stage 1.

B. STAGE 2: DEEP Q-LEARNING BASED OPTIMIZATION
Before we dive into the specifics of our algorithm that utilizes
Deep Reinforcement Learning (DRL) technique, let’s first

briefly explain the core principles of DRL. Reinforcement
Learning (RL) is a specific branch of machine learning that
trains an agent to make the best possible decisions in a given
environment by maximizing its rewards. Based on its actions,
the agent may receive either positive or negative rewards.
Typically, RL problems are represented as Markov Decision
Processes (MDPs), which illustrate the process of sequential
decision-making. On the other hand, DRL uses a DeepNeural
Network (DNN) to estimate the value function or the policy
in RL.

The key components of RL can be summarized as follows:
1) State space (S) - The current state of the environment

at time t . It is a representation of the environment
that captures the relevant information needed to make
decisions.

2) Action space (A) - The decision made by the agent at
time t based on the current state. Actions can change
the state of the environment.

3) Reward (us,s′,a) - A scalar value that reflects the
desirability of the current state-action pair. It is a feed-
back signal that guides the agent towards maximizing
long-term cumulative rewards.

4) Policy (π ) - A mapping from states to actions
that defines the behavior of the agent. The policy
can be deterministic or stochastic, depending on the
environment.

5) State-action value (Qπ (s, a)) - The future cumulative
reward of taking action at at a given state st and follow-
ing the policy thereafter.

At time step t , the agent starts with an action at , by which
the environment transitions from state st to the next state s′.
As a result, the agent receives an immediate reward u′, which
is stored in a buffer B.
The primary goal of an agent in RL is to maximize the

discounted future cumulative reward, which is given by

Ut =

∞∑
i=0

γ iut+i, (25)

where γ is the discound factor, which is used to account for
the future cumulative reward by finding an optimal policy,
denoted as π∗. The optimal policy is expected to map the best
actions with all the possible states. In order to achieve this, the
Q-value function [34] can be used as a guide, and is obtained
using

Qπ (st , at ) = E[ut + γQπ (s′, a′)|st , at ], (26)

where E[·] denotes statistical expectation, and a′ is the next
action taken by the agent in state s′. The optimal policy
π∗ that maximizes the long-term cumulative discounted
reward also maximizes the expected Q-value function, and
is obtained using the following equation:

Qπ∗ (st , at ) = E[ut + γ max
a′

Qπ∗
(s′, a′)|st , at ], (27)

where the optimal policy, denoted as π∗, is designed to
maximize the expected Q-value function. This policy plays
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a crucial role in the training and updating process of the
Deep Q-Network (DQN), which aims to approximate the
action-value function Qπ∗ (s, a). It is recalled that the experi-
ence tuple is defined as et = (st , at , ut , s′). The agent saves its
experiences in a buffer D =

{
e1 e2 .. et

}
that is used to train

the DQN using the gradient descent algorithm [35]. While
using all data in each iteration is ideal for DQN training, doing
so becomes prohibitively expensive when the training set is
large. A more effective technique is known as mini-batch,
which involves evaluating the gradients for each iteration
using a random subset of the replay buffer D. The loss
function is defined as follows:

L(W) =

∑
e∈D

(u+ γ max
a′

Qπ∗ (s′, a′, Ŵ)︸ ︷︷ ︸
target

−Qπ∗ (s, a,W))2,

(28)

where (28) denotes the DQN’s loss function for a random
mini-batch D at time slot t and Ŵ denotes the quasi-static
target parameters that are updated every t time slots. Finally,
the optimal weights are obtained using

W∗
= argmin

W
L(W). (29)

In order to minimize the loss function defined in (28), the
weights of the DQN are updated at every time step t using a
stochastic gradient descent (SGD) algorithm on a mini-batch
sampled from the replay buffer D. To this effect, the SGD
algorithm will update the weights W in an iterative process
with a learning rate of µ > 0 as follows [35]:

Wt+1 = Wt − µ ▽ Lt (Wt ). (30)

C. POLICY SELECTION
In general, Q-Learning is regarded as an off-policy algorithm,
which means that it estimates the reward for future actions
and adds a value to the new state [34] without actually adher-
ing to any greedy policy. We consider a nearly greedy action
selection policy in light of this. Twomodes of the near-greedy
policy are:

1) Exploration: The agent experiments with various
actions at each time step t in an effort to find an
effective action at .

2) Exploitation: The agent selects an action at time
step t that maximizes the state-action value function
Qπ (s, a;Wt ) based on the previous experience.

The agent in the near-greedy policy has an exploitation rate
of 1 - ϵ and an exploration rate of ϵ, where 0 < ϵ < 1. The
hyper-parameter ϵ controls the trade-off between the agent’s
exploitation rate and exploration rate. The agent executes a
specific action at at a predetermined current state st for each
time step t . As a result, the agent moves into a target state
s′ := st +1 and is rewarded positively or negatively us,s′,a[t].

The period of time during which the agent interacts with
the environment is referred to as an episode, with each
episode lasting T time steps. The dimension of the input layer

is set to the number of states in S, and the dimension of the
output layer is set to the number of possible actions in A.
We chose a smaller depth for the hidden layer because it has a
significant impact on computational complexity. As a result,
we chose a depth that strikes a reasonable balance between
performance and computational complexity.

D. DQL FRAMEWORK SETUP
At each time step t , the algorithm calculates the overall SE in
the considered IRS-assisted VLC network, which is given in
(23). In what follows, we provide some details on the action
space, state space, and the reward function.

1) STATE SPACE
All possible states form the state space, denoted as S. In this
paper, the state space S contains the power allocation for the
LEDs in the VLC network, the user-LED association matrix,
and the yaw angle ϕj of the jth segment in the IRS frame, and

roll angleωj of the jth segment in the IRS frame. Accordingly,

the resultant state space is: S =


p1 p2 .. pL
f1 f2 .. fK
ω1 ω2 .. ωJ
ϕ1 ϕ2 .. ϕJ

 .

2) ACTION SPACE
All the actions can be taken by the agent from the action
space, denoted as A. The possible actions in the action space
A are:

• Increase / Decrease the power of the l th LED by a step
size of 3l , where 3l is a fixed value to be added to (or

subtracted from) each Pl , such that
L∑
l=1

Pl ≤ Pmax and

Pmin ≤ Pl ≤ Pmax∀l ∈ (1, ..,L) .

• Change the permutation of the user-LED association
matrix F such that fl,k ∈ {0, 1} , ∀l ∈ {1, . . . ,L} ,

∀k ∈ {1, . . . ,K } ∀l ∈ {1, . . . ,L}

• Increase / Decrease the yaw angle ωk of the jth segment
by step size ζ , where ζ is a fixed value to be added to
(or subtracted from) the value of the yaw angle of the jth

IRS segement, such that the yaw angle is
−π
2 ≤ ϕj ≤

π
2 ∀j ∈ {1, . . . , J}

• Increase / Decrease the roll angle ωj of the k th segment
by step size ν, where ν is a fixed value to be added to (or
subtracted from) the value of the roll angle of the jth IRS
segement, such that the roll angle is
−π
2 ≤ ωj ≤

π
2 ∀j ∈ {1, . . . , J} .

The total number of actions in the action space A are calcu-
lated using |A| = (2L) + (2K ) + (4J ).

3) REWARD FUNCTION
The reward function plays an essential role in the RL
algorithm. We use the product of the overall spectral effi-
ciency (23) and Jain’s Fairness index (24) as a reward. The
product of both equations represent the immediate reward ut
returned after choosing action at in state st .
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TABLE 1. IRS assisted VLC system parameters [25].

TABLE 2. Deep Q-Learning hyper-parameters.

Having described the State Space, Action Space, and the
Reward Function, in the following, we describe in detail the
operational steps of the DQL-MPF algorithm as follows:

1) The IRS-assisted VLC network environment is initial-
ized according to Table 1. The DQL hyper-parameters
are initialized as in Table 2. The policy networkweights
Wt are randomly initialized.

2) In each episode, the entire state space is reset to the
initial values to improve the learning experience. Sim-
ilarly, the roll angles in � and the yaw angles in 4 are
initialized to the value of 0◦.

3) DQL-MPF uses the ϵ-greedy algorithm to select an
action from the action space for a given state in our
time-sequential decision process.

4) To allow the exploration of the action space, τ is ran-
domly sampled from a uniform distribution.

a) If the sampled value is less than or equal to the
value of ϵ, then the agent takes a random action.

b) Otherwise, the agent will select an action based
on the learned policy at=arg max Qπ (s, a;Wt ),

which aims to maximize the cumulative future
reward.

5) In order to maximize the Q-value, which is constructed
from the policy network outputs, the agent observes the
next state and performs the following set of possible
actions:
a) Increase or decrease the power of the l th LED,

by a step size ε.
b) Change the permutation of the user-LED associ-

ation matrix.
c) Increase or decrease the yaw angle ϕj of the jth

segment, by step size ζ .
d) Increase or decrease the roll angle ωj of the jth

segment, by step size η.
6) Following (23), compute the overall SE based on the

new sets of 4, �, P, and F. Next, store the result as a
reward ut .

7) If the agent tries to exceed the constraints of the
IRS-VLC system, abort the episode.

8) Following that, st , s′, at , and ut are stored in the replay
memory buffer D, which has a capacity ofM.

9) Using the gradient descent algorithm with a learning
rate µ, a mini-batch is sampled from the buffer and is
used to train the policy network to minimize the loss
function, which is given by (28).

10) The resulted loss L(W) at time step t is recorded and
the next state s′ is updated as current state st .

E. COMPUTATIONAL COMPLEXITY OF THE PROPOSED
ALGORITHM
It is crucial to analyse the computational complexity of the
proposed algorithm. Therefore, we are presenting a theorem
that shows how many iterations are needed for Algorithm 2
to converge, namely
Theorem 1: For an indoor IRS assisted VLC system with

K users L access points, and Dsegments, the computational
complexity of the proposed Algorithm 2 is given by:

O((8J2 + 8JK + 8JL + 2K 2
+ 4KL + 2L2)

×H+ K + C1). (31)

Proof: First, the DQL agent observes the state of the
system, executes the most valuable action, and calculates
the reward based on (23). Assuming that the computational
complexity of calculating the reward is C1, which is directly
proportional with K , L, and J . Second, the MPF is respon-
sible for generating IRS segments by iteratively updating the
number of elements in each segment. The worst-case scenario
occurs when the algorithm updates the number of elements
K times, yielding a maximum complexity of O(K ). Finally,
it is known that the size of the state space and the size of
the action space have a significant role in the complexity of
the deep Q-learning algorithm. Following [36], the computa-
tional complexity of the Q-learning algorithmwith the greedy
policy is estimated to beO(S×A×H) each iteration, where
S is the number of states, A is the number of actions, and H
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Algorithm 2MPF-DQL Algorithm
Input: IRS elements array with total number of N

mirrors and K number of users,H(1), H(2)

Output: The optimal roll angle matrix �, and the
optimal yaw angle matrix 4 for Dsegments,
the optimal power allocation matrix P, and
the optimal user association matrix F

1 Initialize time, actions, states, and replay buffer D
2 functionMPF(N ,K ):
3 Execute Algorithm 1
4 Return SJ
5 end function
6 SJ = MPF(N ,K )
7 while No convergence or Not aborted do
8 while t < T do
9 t := t+1
10 Observe current state st
11 ϵ = max(ϵ.d, ϵmin)
12 Sample τ ∼ Uniform(0,1)
13 if τ ≤ ϵSelectarandomactionat then

14 else
15 Select an action based on
16 at=arg max Qπ (s, a;Wt )

17 if Rk < Rk,min∀k ∈ (1, ..,K ) or
18 −π

2 > ωj > π
2 or

19 −π
2 > ϕj > π

2 ∀ Sj ∈ {S1, . . . ,SJ } or

20
L∑
l=1

Pl > Pmax or

21 Pmin > Pl > Pmax ∀ Pl ∈ (P1, ..,PL) then
22 Abort episode.

23 Compute the overall SE based on (23).
24 Store experience et = (st ,at ,us,s′,a, s′) in D.
25 Minibatch sample from D, ei = (si,ai,ui,si+1).
26 Set yi := ui + ι maxa′ Qπ∗ (si+1, a′

;Wt ).
27 Obtain the optimal weightsW⋆ by performing

SGD on ((yi - Qπ∗ (si,ai,Wt ))2

28 UpdateWt := W⋆ in the DQN.
29 Record the Loss Lt .
30 Update st := s′.

is the number of steps per episode. It is recalled that the size
of the state space is K + L + 2J , and the size of the action
space is 2K + 2L + 4J . Therefore, the amount of work per
iteration is

O((8J2 + 8JK + 8JL + 2K 2
+ 4KL + 2L2) ×H). (32)

Based on this and by incorporating O(K ) and C1 into (32),
equation (31) is deduced, which completes the proof. □

IV. ACHIEVED RESULTS AND DISCUSSION
In this section, the effectiveness of the proposed algorithm
in the considered IRS-assisted VLC system is investigated.

FIGURE 2. MPF algorithm distribution of mirrors versus Baseline
scheme (split the last cell(s)) with N = 200 and K = 6.

For the simulation setup, we assume the size of the room is
8m × 8m × 3m, with four LEDs evenly spaced throughout
the roof at the following locations: (2 m, 2 m, 3m), (2 m,
6 m, 3 m), (6 m, 2 m, 3 m), and (6 m, 6 m, 3 m). The users
are randomly distributed on a plane, which is 1 m above the
ground. Additionally, an IRS frame with mirrors is set up
against one of the room’s walls, and all units are distributed
evenly across a rectangle with the coordinates (0 m, 1 m,
1.5 m) and (0 m, 7 m, 2.5 m) as its corners,where each mirror
has an area of 30 cm × 10 cm.

It is assumed that each user’s NLoS channel is blocked by
a homogeneous media with a probability of 50%. Table 1
contains all the simulation parameters. In what follows,
we compare the overall SE of the MPF, DQL-MPF and the
genetic algorithm [27]. We refer to the ‘‘Baseline’’ scheme,
which relies on fixed power allocation and fixed LED-user
association, as the benchmark for comparison. The associa-
tion of LEDs and users in this scheme is determined based on
the distance between the LED and the user, with the closest
user to a certain LEDbeing associatedwith it. The power allo-
cation in the Baseline scheme is fixed, meaning that the power
is allocated equally among the different LEDs. Additionally,
the Baseline scheme uses a fixed IRSmirrors orientation at 0◦

and follows an IRS mirrors distribution strategy as depicted
in Fig. 2. Finally, the DQL-MPF algorithm was realized and
trained on a PC equipped with Nvidia GPU 2080Ti and a
20-core 2.6 GHz processor. Note that we have developed our
framework using Python and TensorFlow library [37]. The
Deep Q-Learning hyper-parameters are shown in Table 2.
To begin with, we investigate the effectiveness of the MPF
algorithm, in maximizing the fairness among the users in the
TDMA-based IRS-VLC system.

Fig. 5 illustrates the comparison of Jain’s Fairness Index
for the MPF algorithm and the baseline scheme, with N =

200. It can be observed that the MPF algorithm consis-
tently achieves higher fairness compared to the baseline
scheme when N is not divisible by K . For example, when
K = 7, the MPF algorithm achieves a fairness index of
0.99, while the baseline scheme only achieves 0.93. This
demonstrates the effectiveness of the MPF algorithm in max-
imizing fairness among users by adaptively allocating IRS
segments, while also highlighting its superiority over the
baseline scheme in scenarios where the divisibility condition
is not satisfied.
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FIGURE 3. MPF algorithm distribution of mirrors with
N = 200 and different values of K .

FIGURE 4. The interplay between the agent and the IRS-VLC
system environment using reinforcement learning.

FIGURE 5. Jain’s Fairness Index using MPF algorithm, and the
Baseline scheme, with N = 200.

Building on the observations from Fig. 5, Fig. 6 examines
the performance of the MPF algorithm by depicting the over-
all SE versus the noise power for both K = 7 and K =

FIGURE 6. Overall SE versus noise power using MPF algorithm,
and the Baseline scheme, with N = 200, K = 7 and K = 11.

11 users. It is demonstrated that the MPF algorithm offers
an improved overall SE throughout the entire noise power
range for both scenarios. In particular, the MPF algorithm
outperforms the Baseline scheme that employs gain-based
ordering by more than 2.5 bps/Hz for all the cases where the
noise power is greater than 10−5 W. In contrast, there is a sig-
nificant performance drop when using the Baseline scheme
with no gain-based ordering, and it approaches 0 when the
noise power is 10−4 W, whereas the Baseline with gain-based
ordering achieves 2.5 bps/Hz for K = 6 and 0.6 bps/Hz
for K = 11. This further reinforces the effectiveness and
superiority of the MPF algorithm in maximizing system per-
formance, both in terms of fairness and spectral efficiency.

The behavior of the MPF algorithm is almost identical for
the two scenarios, but the performance gap between the MPF
algorithm and the Baseline schemes has increased signifi-
cantly due to the increased unfairness among the users in the
IRS-VLC system when moving from K = 7 to K = 11.
In particular, when the noise power is 10−4 W, the MPF
algorithm achieves 5 bps/Hz for K = 11, while the Baseline
scheme with gain-based ordering achieves a lower SE than in
the K = 7 scenario.

Fig. 7 shows a convergence analysis for the proposed
algorithm and the GA with maximum possible fairness
(GA-MPF). Please refer to Table 3 for the detailed parameter
settings used in the GA benchmark. Additionally, Table 4
shows the time per iteration for each algorithm. It can
be observed that the DQL-MPF algorithm converges after
470 iterations, with a maximum overall SE of 20.9 bps/Hz.
On the other hand, the GA-MPF algorithm achieves an
overall SE of 19.85 bps/Hz, despite taking 2281 itera-
tions. Notably, the MPF algorithm shows a considerable
performance enhancement when combined with the DQL
algorithm or the GA. For instance, the DQL-MPF algorithm
achieves 20.1% higher overall SE, compared to the DQL-only
algorithm. Similarly, the GA without the MPF algorithm
yields 15.82 bps/Hz, which is 20% lower than the GA-MPF
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FIGURE 7. Convergence analysis for the proposed algorithm, and
the GA algorithm, with N = 200 and K = 7.

TABLE 3. Genetic algorithm parameters.

counterpart. We can deduce that combining the DQL with
the MPF algorithm in the considered system can signifi-
cantly improve the overall SE. In addition, after the initial
convergence, minimal time will be required from the agent
to re-optimize the parameters for any changes that may
arise from the indoor environment. This feature ensures
that the proposed method maintains its effectiveness in real-
time applications, even when faced with evolving conditions
within the indoor scenario. Furthermore, the Random IRS
Orientation curve is introduced as a baseline comparison.
As expected, it demonstrates the lowest performance due to
its inherent randomness and inability to effectively exploit
the benefits of the IRS. The Random IRS Orientation curve
achieves a maximum SE of only 11.1 bps/Hz, substantially
lower than the other techniques discussed, which further
highlights the importance of optimizing the IRS orientation
to achieve an improved overall spectral efficiency.

In Fig. 8, we depict the overall SE versus the noise power
for the DQL-MPF algorithm,MPF-only algorithm, and Base-
line with no gain-based ordering, considering both K =

6 and K = 11 users with N = 200. The DQL-MPF
algorithm demonstrates noticeable robustness against the
increasing noise power, maintaining a consistent overall SE
of around 20 bps/Hz for up to 10−5 W. In contrast, the

TABLE 4. Comparison of time taken per iteration for each
algorithm.

FIGURE 8. Overall SE versus noise power using DQL-MPF
algorithm, MPF algorithm, and the Baseline scheme, with
N = 200, K = 6, and K = 11.

MPF-only algorithm starts dropping much earlier, i.e., when
the noise power is 10−6 W. This improved robustness of
the DQL-MPF over the MPF algorithm is expected, as the
DQL-MPF algorithm benefits from better adaptability and
broader control over the considered IRS-VLC system. More-
over, the DQL-MPF algorithm consistently delivers superior
performance compared to the other algorithms, even when
handling a relatively high number of users, such as K = 11.
For instance, at a noise power level of 10−5 W, the DQL-MPF
algorithm achieves 20.1 bps/Hz, significantly outperforming
the Baseline scheme, which reaches only 1.5 bps/Hz.

Lastly, Fig. 9 presents a comparison of the overall
SE against the number of IRS mirrors for the proposed
DQL-MPF algorithm and the two baseline algorithms. It is
evident that the proposed algorithm surpasses both baseline
algorithms, achieving a significantly higher overall spec-
tral efficiency with an increasing number of IRS mirrors.
Remarkably, our algorithmwith just 200 IRS elements attains
the performance level of the ‘‘baseline with gain order-
ing’’ algorithm with 1000 IRS elements. This implies that
the baseline scheme required an additional 800 IRS ele-
ments to match the performance of our proposed algorithm.
Conversely, the baseline algorithm with gain ordering out-
performs the one without gain ordering. This observation
underscores the effectiveness of the DQL-MPF algorithm
in leveraging the increased number of IRS mirrors to opti-
mize spectral efficiency. Importantly, the performance of all
algorithms reaches a saturation point, attributable to the fact
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FIGURE 9. Overall SE versus noise power using DQL-MPF
algorithm, MPF algorithm, and the Baseline scheme, with
N = 200 and K = 11.

that these mirrors merely reflect and are dependent on the
active VLC access points, which have power limitations due
to illumination constraints.

V. CONCLUSION
In this work, we proposed a deep Q-learning-based resource
management framework to maximize the overall SE of
a TDMA-based IRS-assisted VLC network. The proposed
framework consists of two main stages: the first stage exe-
cutes the maximum possible fairness (MPF) algorithm to
divide the IRS mirrors into segments optimally, and each
segment is optimized and dedicated to serving a single user.
Next, we leverage the DQL algorithm to train an agent in
order to jointly optimize the orientation of each IRS segment,
the power allocation of the LEDs, and the LED-user associa-
tion matrix. To this effect, the obtained results demonstrated
that the DQL-MPF algorithm has a superior performance
compared to the other baselines and offers very minimal
run-time complexity to converge, at around 94 seconds. It was
also shown that using the sole DQL algorithm will not max-
imize the fairness among the users in the considered system.
On the other hand, using the MPF algorithm can maximize
the fairness among the users, but the system will be prone to
the increased noise power. Therefore, it was shown that it is
best to combine both algorithms to maximize the fairness, the
overall SE, and the robustness against the noise power.

APPENDIX A
A WALK-THROUGH EXAMPLE FOR THE MPF
ALGORITHM
Assuming an IRS-assisted VLC systemwithK = 7 users and
N = 200 mirrors. We present the detailed numerical steps on
how the MPF algorithm will reach the final solution.

1) In the first loop:
• The algorithmwill check ifN = 200 is divisible by
K = 7. Since it is not divisible, it will decrement

one fromK and check again ifN = 200 is divisible
by K = 6. Since it is not divisible, it will again
decrement one from K , resulting in K = 5, and
now 200 is divisible by 5, and we had to decrement
2 times to reach the divisibility.

• Now, the algorithm will have 5 segments, equally
having 40 mirrors. Srem1 ={
len (S1) = 40, len (S2) = 40, len (S3) = 40,

len (S4) = 40, len (S5) = 40,

}
where len(.) is a function that returns the number
of elements in the a matrix.

• The algorithm will detach S1, and concatenate the
remaining segments in Srem.

• Next, the algorithm will assign the mirrors of
S1 with the lowest channel gains from H(2).

• Check if the number of mirrors in Srem which is
160 is divisible by (K − dec) = 5.

• Since 160 is divisible by 5, the algorithm will
update the total number of mirrors to N = 160,,
increment the index of the major segment by 1
n = n + 1, decrement the number of users K to
K − 1.

2) In the second loop:

• The algorithmwill check ifN = 160 is divisible by
K = 6. Since it is not divisible, it will decrement
one fromK and check again ifN = 160 is divisible
by K = 5.

• Now it is divisible, the algorithm will have 5 seg-
ments, equally having 32 mirrors Srem2 ={
len (S2) = 32, len (S3) = 32, len (S4) = 32,

len (S5) = 32, len (S6) = 32.

}
• The algorithm will detach S2, and concatenate the
remaining segments in Srem.

• Next, the algorithm will assign the mirrors of
S2 with the second lowest channel gains fromH(2).

• Check if the number of mirrors in Srem which is
128 is not divisible by (N − dec) = 5.

• Obviously 128 is not divisible by 5, therefore,
it will update the total number of mirrors to N =

128,,increment the index of themajor segment by 1
n = n+1 = 2, and decrement the number of users
K to K − 1.

3) In the third loop:

• The algorithmwill check ifN = 128 is divisible by
K = 5. Since it is not divisible, it will decrement
one fromK and check again ifN = 128 is divisible
by K = 4. Now it is divisible, and we had to
decrement 1 time to reach the divisibility.

• Now, the algorithm will result into 4 segments,
equally having 32 mirrors.

Srem3 =

{
len (S3) = 32, len (S4) = 32,
len (S5) = 32, len (S6) = 32.

}
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• The algorithm will detach S3, and concatenate the
remaining segments in Srem3.

• Next, the algorithm will assign the mirrors of
S2 with the third lowest channel gains from H(2).

• Check if the number of mirrors in Srem which is
96 is divisible by (N − dec) = 4.

• It follows that 96 is divisible by 4, resulting in the
following number of elements for the segments:

Srem4 =

{
len (S4) = 24, len (S5) = 24,
len (S6) = 24, len (S7) = 24.

}
• Finally, we concatenate S1, S2, S3, and Srem4,
resulting in the following number of elements for
all the IRS array segments: SJ =
len (S1) = 40, len (S2) = 32, len (S3) = 32,
len (S4) = 24, len (S5) = 24, len (S6) = 24,

len (S7) = 24.

 .
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