
Autonomously operated and self-adapting networks will make it possible to
utilize the capabilities of 5G networks in new business models and achieve
an unprecedented level of efficiency in service delivery. Intents will play a
critical role in achieving this zero-touch vision, serving as the mechanism
that formally specifies what the autonomous system is expected to do.

JÖRG NIEMÖLLER,
LEONID MOKRUSHIN,
SWARUP KUMAR
MOHALIK,
MARTHA VLACHOU-
KONCHYLAKI,
GEORGE SARMONIKAS

5G networks introduce unprecedented
flexibility and dynamic adaptation into
service delivery and network resource
utilization. In the business layer, this is
reflected in the ability to offer customizable
service products with detailed agreements
on functional and non-functional
characteristics as well as fast delivery.
Dynamic adaptation to changes within
the constraints of stringent requirements
on lead and reaction times is beyond the
capacity of a human workforce. Extensive
automation will be necessary to overcome
this challenge.

■ The zero-touch paradigm implies that the
operation of services and the underlying networks
is autonomous and does not require human
intervention. To achieve this, the zero-touch system
must be able to handle the complexity caused by
continuous changes to the system at the same time
that it delivers services to users and manages issues
such as the cost of resources versus the budget
available, the legal compliance of the service and
the security of the setup. This is challenging for
technical systems in real-world scenarios.

For example, successful service operation
requires each service to be properly provisioned and
assured to deliver the promised function with agreed

Cognitive processes

networking
for adaptive intent-based

✱ INTENT-BASED NETWORKING

2 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ N O V E M B E R 1 1 , 2 0 2 0

performance metrics. Complexity arises as a result
of changes to contracts, products, customer
preferences, the business strategy or the
environment in which the service is being offered.
Users may start exhibiting new behavior, leading
to varying service usage patterns and network loads,
or the network may change due to upgrades,
reconfiguration or outages. Some changes may
be regular and predictable, whereas others are
sudden and surprising.

To manage all of these concerns autonomously
and adapt its behavior appropriately, a zero-touch
system must understand every aspect of what is
expected of it. Each requirement and goal must be
carefully defined in order for technical processes to
derive suitable and optimized actions to manage it.
These definitions are known as intents.

From the perspective of a human operator, an
intent expresses the expectation of what the
operational system is supposed to deliver and how
it behaves. In light of this, we define intent as
“formal specification of all expectations including
requirements, goals and constraints given to a
technical system.”

The role of intents in cognitive networks
Everything an autonomous system needs to know
about its goals and expected behavior must be
defined with intents. The system will not perform
any operation unless it relates to the fulfillment
and assurance of an intent, which means that all
goals – including those that may have been
considered “common sense” in human-operated
systems – must be expressed as intents.

An intent in an autonomous system is ideally
expressed declaratively – that is, as a utility-level goal
that describes the properties of a satisfactory
outcome rather than prescribing a specific solution.
This gives the system the flexibility to explore
various solution options and find the optimal one.
It also allows the system to optimize by choosing
its own goals that maximize utility.

Unlike traditional software systems, where
requirements are analyzed offline to detect and
resolve conflicts prior to implementation, intents
are added to an autonomous system during runtime.
Adaptation to changed intent as well as conflict
detection and resolution are therefore essential
capabilities of an autonomous system.

One of the benefits of expressing intents as utility-
level goals is that it helps the system cope with the
conflicting objectives of multiple intents. This is vital,
because an autonomous system often has to take
multiple intents into account before making a decision.

For example, an autonomous system may have
one intent to deliver a service with high QoE,
while another may be to minimize resource
spending. It can resolve such conflicts either
explicitly from weights that introduce relative
importance or implicitly from properties of
preferential outcomes as defined in utility-level goals.

Expectations originate from contracts or business
strategy and remain constant when the underlying
system is replaced or modified. Consequently,
when setting up the intents, it is important that
they are formulated in an infrastructure-agnostic
way, so that they can be transferred across system
generations and implementations.

Terms and abbreviations
AI – Artificial Intelligence | BSS – Business Support Systems | CEM – Customer Experience Management |
IOT – Internet of Things | KPI – Key Performance Indicator | OSS – Operations Support Systems |
RDF – Resource Description Framework | SLA – Service Level Agreement | SLO – Service Level Objective |
SLS – Service Level Specification | SON – Self-Organizing Networks | TOSCA – Topology and
Orchestration Specification for Cloud Applications | VNF – Virtual Network Function

INTENT-BASED NETWORKING ✱

N O V E M B E R 1 1 , 2 0 2 0 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 3

In short, the intent establishes a universal
mechanism for defining expectations for different
layers of network operation. It expresses goals,
utility, requirements and constraints. It defines
expectations on service delivery as well as the
behavior of the autonomous operational system
and the underlying network.

Service-specific intents
One essential type of intent relates to the
specification of services. Service-specific intents
state expected functional and performance
characteristics. Service Level Agreements (SLAs),
Service Level Specifications (SLSs), Service Level
Objectives (SLOs) and TOSCA (Topology and
Orchestration Specification for Cloud
Applications) [1] models are all examples of
service-specific intents that are used on
different levels in the operations stack.

SLAs are business support systems (BSS) objects.
Service-specific intents based on SLAs specify the
promised service and include expected performance
details and business consequences such as payment
for delivery and penalties when failing.

SLSs/SLOs define the service delivery details
at operations support systems (OSS) level.
Based on this input, autonomous OSS would
plan detailed tasks to realize the service delivery.
TOSCA models would be used to express
further technical details the OSS generate
(expectations from orchestration and assurance).

In multiple stages, the autonomous operation
makes decisions about further details. Higher-level
intent is the input leading to the lower-level intent
that is used to distribute specific goals to subsystems.
For example, SLAs/SLSs are the intents that
express a terminal goal of the OSS. The OSS then
decide which TOSCA model would be the best
option to deliver the promised performance with
minimal resource usage. The selected TOSCA

model is the instrumental goal of OSS and becomes
an intent and terminal goal for the orchestrator.

This pattern of making decisions based on a given
intent and taking action by sending lower-level
intents to subsystems is the key interwork
mechanism of intent-based operation, according to
which the entire operations stack of autonomous
networks is built.

Strategic and behavioral intents
Beyond all the service-specific intents that an
autonomous system must have, it also requires
guidance on how to handle strategic and
behavioral concerns. Traditionally implemented
in the form of manually coded policies, this type
of guidance steers general system behavior and
supports the type of decision-making that has
traditionally been based on human intuition and
experience, along with knowledge about context
and operator strategy. Intent-based operation
makes it possible for operators that want to handle
these concerns in a more dynamic fashion to
replace manually coded policies with strategic
and behavioral intents.

This is useful in cases where the operator
chooses to require a default minimum security
level that differs from that which is implemented
into the service, for example. In these cases,
dedicated intent can be used to set the security
level for all services that do not specify it directly.

With regard to legal compliance, services may
be delivered in multiple markets where different
rules apply. A legal-compliance intent requires
compliance and potentially specifies the details.

Since there is always a risk of service degradation
when changes are initiated and risky actions may
sometimes lead to a higher margin, risk-management
intents can be used to convey how the operator
wants the autonomous system to balance risks
versus potential gain.

Reporting/escalation intents steer how the
autonomous system interacts with the human
workforce by reporting progress status on
intent fulfillment and seeking manual decision
in escalations.

 [THE INTENT] EXPRESSES
GOALS, UTILITY, REQUIREMENTS
AND CONSTRAINTS

✱ INTENT-BASED NETWORKING

4 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ N O V E M B E R 1 1 , 2 0 2 0

Formally expressing an intent
An autonomous system requires intents to be
formally defined in a machine-readable and
processable way, but the broad range of
considerations involved and their abstract
semantics are often difficult to structure.
Techniques from knowledge management and
semantic modeling enable the creation of an
ontology of intent, based on an extensible
metamodel. Resource Description Framework
(RDF) [2] and RDF Schema [3] standards can be
used for knowledge modeling.

 Technical functions such as contract and order
management would directly use RDF objects to
communicate intent. Intent specified directly by
human operators would require an intuitive
frontend, potentially using natural language.

Intent handling
The operation of services within an intent-based
network also requires the introduction of intent-
handling functions in the operations stack and
functional architecture. An intent- handling
function receives the intents, decides which

actions must be taken to optimally fulfill all given
intents and implements its decisions.

Intent-handling functions have a knowledge base
that contains the intent ontology. They also have
machine-reasoning capabilities to realize knowledge-
driven decision-making processes.

Machine reasoning plays a key role in intent
handling, with its capability to understand abstract
concepts from diverse domains and provide precise,
specialized conclusions based on precedent and
observation. Probabilistic modeling contributes
quantification of risk and uncertainty, which is essential
to make informed decisions when facing conflicting
goals and new situations.

Figure 1 shows how the intent-handling function
works. While its implementation is domain-specific,
its interface is generic. It receives intents that express
all types of expectations. It is equipped with policies
and artificial intelligence (AI) models that implement
the capabilities needed for analyzing the system state
and finding optimized operational actions based
on observations from the operated environment.
The intent handler also reports the fulfillment and
assurance status of its intents.

Figure 1 The intent-handling function

Intent-handling
function

Agents

Decision ActuationKnowledge ModelsPolicies Services

Intent Intent Intent

Intent ActionIntent

Report

Report

Network

INTENT-BASED NETWORKING ✱

N O V E M B E R 1 1 , 2 0 2 0 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 5

The API (application programming interface) of
the intent-handling function is domain-independent.
Its main objective is to manage the life cycle of
intents. It implements methods to set, modify and
remove intents and send reports. Intent is
constructed based on a common intent meta-model
and its details are specified according to domain-
specific information models. Intent management is
therefore primarily knowledge management.

Figure 2 provides an example of how intent-
handling functions can be combined to realize

a complete intent-driven operations system.
Every major system layer and subsystem domain,
including BSS, OSS, orchestration and network
management, contains an intent-handling function.
Intent originates from functions such as contract
 and order management. Additional intents can be
entered directly through portals.

Introducing the cognitive layer
Lexico defines cognition as: “… the mental
action or process of acquiring knowledge

✱ INTENT-BASED NETWORKING

6 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ N O V E M B E R 1 1 , 2 0 2 0

Figure 2 Intent-driven multi-layer operations system

Customer portal

Network Cloud IoT

Business portal

Operations portal

SON

OSS intent handler

BSS
intent

handler

Orchestration Network manager

Customer
engagement

Business
level

Operational
level

Operational
domains

Network and
resource level

Contact and order
management

and understanding through experience and
the senses.” [4] As it is designed to perform the
equivalent operational tasks of understanding
through experiencing and sensing, an autonomous
system is, therefore, a technical implementation
of cognition.

Creating an intent-handling function that
understands complex and abstract intent semantics,
derives the optimal target state and plans actions
for transitioning the system into this state is a
challenging task. The function must be able to
explore options, learn from precedents and assess
the feasibility of actions based on their expected
consequences.

By combining well-understood AI techniques
within a flexible architecture, we have designed
a cognitive system that specializes in autonomous
service and network operation. We refer to it as the
cognitive layer, and its role is to serve as an interface
between business operations and the network/
environment, as shown in Figure 3.

The cognitive layer consists of three essential
components: a knowledge base, a reasoning engine
and an agent architecture. The knowledge base

contains the ontology of intents along with domain-
specific knowledge such as the current state of the
system. The domain-independent reasoning engine
uses the knowledge graph and serves as the central
coordinator function for finding actions, evaluating
their impact and ordering their execution. Finally,
the agent architecture allows any number of models
and services to be used. Agents can contain
machine-learned models or rule-based policies,
or implement services needed in the cognitive
reasoning process.

To be usable, an agent needs to be registered and
described in the knowledge base. Its description can
be added and modified at any time, allowing life
cycles of the models, policies and supplementary
services to be decoupled from the overall life cycle
of the cognitive layer.

The agent metadata contains a description of the
agent interface, along with its function, role and
capabilities. For example, we have implemented a
machine-learned model that can propose radio base
station configurations that optimize the service
experience. This model is registered as an agent
in the role of a “proposer” for configuration actions.

180%
160%
140%
120%
100%
80%
60%
40%
20%

0%

170%

Relative bitrates for the same video quality (lower is better)

H.264 VP9 HEVC AV1 VVC

120%
100% 100%

60%

Figure 3 Functional architecture of the cognitive layer

Business intent
Business
operations

Cognitive
layer

Network and
environment

Visualization, approval, escalation, monitoringGoals, SLA, behavior

Knowledge:
Descriptions of objects and

relations between them

Data:
Efficient storage and
retrieval of objects Machine learning and modeling

Observations Actions

Radio Core CEM BSS IoT

Dynamic
knowledge
update

Agents:
Modules for machine

learning, policies,
actuation, etc.

Reasoning:
Access to knowledge

via inference

Request for inference

Composition

ML
Data and
streams

INTENT-BASED NETWORKING ✱

N O V E M B E R 1 1 , 2 0 2 0 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 7

The separate life cycle makes it possible for the
model to be replaced with an improved version
when available, independent of the cognitive layer
release cycles.

We have also demonstrated agents in the role of
“predictor” with the ability to estimate the effect
of actions on key performance indicators (KPIs).
An agent in an “observer” role would monitor data
sources, keeping knowledge about the state up-to-
date. An agent in the “actuator” role can implement
actions in the network by utilizing, for example,
established network management functions.

How the cognitive layer works
The successful operation of the cognitive layer
depends on smooth interaction between the
reasoning engine and the knowledge base.
The reasoning engine continuously executes
a process that tries to find actions to close the
 gap between the current observed state and the
wanted state, according to the intent. It collects
proposals, obtains predictions on the effect of
each proposal, evaluates gain versus risk and
certainty, prioritizes actions and executes its
decisions. Specialist agents are used intensively
in every step of the process.

The reasoning engine is an adaptive knowledge-
driven composer that can instantiate the cognitive
process following changes in intent, state and
context. It can dynamically compose specialized
agents and add them into the process if their
capabilities and roles match the needs according
to intent and context. This is, for example, how the
cognitive layer obtains action proposals from
agents that are implementing suitable models.

In cases where the capabilities of multiple agents
match the requirements of a role, each of them
can be used simultaneously to generate alternative

solution strategies, resulting in a diverse set of
options for the prediction and evaluation steps
that follow. This coexistence of agents makes it
possible to combine rule- and policy-based
implementations with machine-learned alternatives
in the same system, enabling the system to acquire
new advanced abilities without losing current ones.

The cognitive process is a perpetual loop that
starts again directly after the previous iteration has
finished. Any degradation of the network or issues
with services would be visible in the observed state.
By trying to close the gap to the wanted state set by
intent, the cognitive layer implicitly addresses
incidents. Even without explicit issues, the
continuous cognitive process would still seek actions
for further optimization. It could, for example, try to
deliver the same services with reduced resources.

Through its reasoning-based core process, the
cognitive layer reaches a high degree of dynamic
adaptability to new situations. This is in stark
contrast to systems that have been realized through
rule-based policies and fixed workflows, where every
supported situation needs consideration at design
time through suitable branches in the decision tree
and diversifying rules. Existing rule-based policies
can, however, still be used in the cognitive layer
through integration as agents. This opens an upgrade
path from legacy automation, with AI-based models
added gradually.

Example use case
To demonstrate how the cognitive layer works,
we have experimented with a use case that optimizes
the provisioning decisions for the deployment of a
virtual network function (VNF). The source of the
intent is an SLA that specifies the service to be
delivered along with the KPI targets that have
been promised to the customer. Our example
use case requires that the VNF be deployed
with strict targets on latency and throughput.

We started by developing the required proposer
and predictor agents in an offline data science
process. We then deployed the service in a test
environment and exposed it to a range of usage loads.
We also explored deployment options by variating

 SPECIALIST AGENTS
ARE USED INTENSIVELY
IN EVERY STEP OF
THE PROCESS

✱ INTENT-BASED NETWORKING

8 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ N O V E M B E R 1 1 , 2 0 2 0

parameters of the underlying TOSCA model.
Combined with measured KPIs, these variations
create training data sets for learning a model that is
capable of connecting deployment options to
expected performance. This exercise created a
proposal agent that is able to recommend a TOSCA
model configuration optimized for the latency and
throughput figures required by the SLA.

In our experiment, online fulfillment – from
receipt of the SLA to optimized deployment –
is fully autonomous and controlled by the reasoning
process of the cognitive layer. When the intent
derived from the SLA arrives in the knowledge base,
the reasoning loop starts processing it. The reasoner
finds that the agent learned in the test environment
matches the needs and requests a proposal.
The agent delivers a TOSCA model fully configured
and optimized for the requested KPI target and
proposes to deploy accordingly.

The cognitive layer then uses prediction and
evaluation agents to assess the proposal. In this case,
our prediction agent contains a state-action model –
a probabilistic graph based on Markov decision
process modeling. The model is continuously
learned from observing states and the results of
observed actions. It has the ability to estimate the
probability of expected result states for proposed
actions, enabling informed decisions about actions
considering their risk.

In the evaluation step, the autonomous system
detects and resolves all remaining conflicts between
intents. It also decides on escalations if the risk of the
proposed deployment or uncertainty of the models is
too high. If escalation is required, the cognitive
process requests the support of a human technician,
presents the situation including proposals and
predictions, and asks for approval.

While the cognitive layer can operate fully
autonomously, it knows when the human workforce
wants to be involved. The exact threshold for
escalation is at the discretion of the operator and is
determined by behavioral intent. If the system gains
human trust as a result of presenting many good
actions, the threshold for fully autonomous decisions
can be lowered.

When a proposed action is selected after verifying
that the impact on all intents is advantageous and
risk is reasonably low, it is then handed over for
execution to the orchestrator behind the actuation
agent. This concludes the first intent-handling loop
after the new intent for the new SLA was introduced
to the cognitive layer. The gap between the new
intent and the current state was particularly wide
since the new service was not yet provisioned.
This gap narrowed through a provisioning action.
Further iterations continuously monitor the service
deployment, optimize it when possible or heal when
needed. In this way, the continuous cognitive
operation process provides fulfillment and
assurance of expectations formulated as intents.

Conclusion
Zero-touch autonomy is an ideal beyond reach
as long as artificial intelligence (AI) cannot
match human capability to reason and decide
within complex dependencies and broad domains.
However, by using a combination of currently
available and well-understood AI techniques
within a flexible architecture, it is possible to reach
a high degree of practical autonomous operation.

Our use case example demonstrates how the
cognitive layer that we have developed can enable
autonomous operation with the use of intents.
It is built with an agent architecture that decouples
the life cycles of the agents. It is coordinated by
knowledge-driven reasoning that composes
machine-learned models and legacy implementations.
It evaluates action impact on intent fulfillment and
makes decisions based on expected gains and risks,
while resolving conflicting goals and maximizing
utility. It can adapt to new situations through
learning. The resulting system can execute many
of the cognitive considerations human technicians

 ONLINE FULFILLMENT
IS FULLY AUTONOMOUS
AND CONTROLLED BY THE
REASONING PROCESS

INTENT-BASED NETWORKING ✱

N O V E M B E R 1 1 , 2 0 2 0 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 9

Further reading
 ❭ Ericsson Technology Review, Cognitive Technologies in Network and Business Automation, 2018,

Niemöller J; Mokrushin, L, available at: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-
review/articles/cognitive-technologies-in-network-and-business-automation

 ❭ Ericsson, AI by Design, available at: https://www.ericsson.com/en/ai-and-automation

References
1. OASIS, TOSCA Version 2.0, Committee Specification Draft 02, June 25, 2020, available at: http://docs.

oasis-open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html

2. W3C, RDF 1.1 Concepts and Abstract Syntax, W3C Recommendation, February 25, 2014, available at:
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

3. W3C, RDF Schema 1.1, W3C Recommendation, February 25, 2014, available at: https://www.w3.org/TR/
rdf-schema/

4. Cognition, Lexico.com, available at: https://www.lexico.com/definition/cognition

make when they operate services and networks
manually. However, the cognitive layer does
this with continuous attention and near-
immediate reaction.

The adaptive reasoning capabilities of the
cognitive layer enable effective management of
growing network complexity, dramatically reducing

the need for humans to manually modify
policies or participate in online decision-making.
This frees up the human workforce to
concentrate on offline tasks such as executing
data science processes, optimizing the available
models and defining business strategies that
are implemented by intent setting.

✱ INTENT-BASED NETWORKING

10 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ N O V E M B E R 1 1 , 2 0 2 0

INTENT-BASED NETWORKING ✱

N O V E M B E R 1 1 , 2 0 2 0 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 11

t
h

e
 a

u
t

h
O

r
s

Jörg Niemöller
◆ is an expert in analytics
and customer experience.
He joined Ericsson in 1998
and has since held multiple
positions in research as well
as in system management
for core network and digital
services. His current focus
is innovation in OSS through
architecture and solutions
for autonomous network and
service operation. Niemöller
holds a Ph.D. in computer
science from Tilburg
University, the Netherlands,
and a diploma degree in
electrical engineering from
the TU Dortmund University,
Germany.

Leonid Mokrushin
◆ is a principal researcher at
Ericsson Research. With a
background in computer
science and formal methods,
he is currently focusing on
knowledge-intensive
symbolic AI systems and
their practical applications

in the telecom domain.
Mokrushin joined Ericsson in
2007 after postgraduate
studies at Uppsala University
in Sweden, where he
specialized in formal
verification of real-time

systems. He holds an M.S.
in software engineering
from Peter the Great St.
Petersburg Polytechnic
University, Russia.

Swarup Kumar
Mohalik
◆ is a principal researcher at
Ericsson Research who
joined the company in 2015.
His expertise is in the areas
of AI and formal methods,
and his work primarily

focuses on applying them to
service automatization and
the Internet of Things (IoT).
He has research experience
in the areas of formal
specification and verification
of real-time embedded
software and AI planning
techniques. Mohalik holds
a Ph.D. in computer science
from the Institute of
Mathematical Sciences,
Chennai, India, and a post-
doctoral fellowship at LaBRI,
University of Bordeaux,
France.

Martha Vlachou-
Konchylaki
◆ is a director of technology
strategy specializing in AI
and data strategy. She joined
Ericsson in 2015 and has
been working within different
groups within Ericsson,
from machine learning
prototyping and business
development to AI strategy.
Vlachou-Konchylaki holds an
M.S. in machine learning
from the KTH Royal Institute

of Technology in Stockholm,
Sweden, and a B.Eng.
in electrical and computer
engineering from the
University of Patras, Greece.

George Sarmonikas
◆ joined Ericsson in 2013
after several years of
working for mobile
operators. He currently leads
AI business innovation within
Digital Services. Prior to this,
he was responsible for
product management
of Ericsson’s customer
experience management
(CEM) and analytics
portfolio, including assets
for subjective experience
scoring. Sarmonikas holds
both an M.Sc. in
communication systems
and an M.Eng. in electronic
engineering and computer
science from the University
of Bristol in the UK, as well
as a graduate diploma in
artificial intelligence from
Stanford University, US.

