
Autonomously operated and self-adapting networks will make it possible to 
utilize the capabilities of 5G networks in new business models and achieve 
an unprecedented level of efficiency in service delivery. Intents will play a 
critical role in achieving this zero-touch vision, serving as the mechanism 
that formally specifies what the autonomous system is expected to do. 
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5G networks introduce unprecedented 
flexibility and dynamic adaptation into 
service delivery and network resource 
utilization. In the business layer, this is 
reflected in the ability to offer customizable 
service products with detailed agreements  
on functional and non-functional 
characteristics as well as fast delivery. 
Dynamic adaptation to changes within  
the constraints of stringent requirements  
on lead and reaction times is beyond the 
capacity of a human workforce. Extensive 
automation will be necessary to overcome 
this challenge. 

■ The zero-touch paradigm implies that the 
operation of services and the underlying networks  
is autonomous and does not require human 
intervention. To achieve this, the zero-touch system 
must be able to handle the complexity caused by 
continuous changes to the system at the same time 
that it delivers services to users and manages issues 
such as the cost of resources versus the budget 
available, the legal compliance of the service and 
the security of the setup. This is challenging for 
technical systems in real-world scenarios.

For example, successful service operation  
requires each service to be properly provisioned and 
assured to deliver the promised function with agreed 
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performance metrics. Complexity arises as a result  
of changes to contracts, products, customer 
preferences, the business strategy or the 
environment in which the service is being offered. 
Users may start exhibiting new behavior, leading  
to varying service usage patterns and network loads, 
or the network may change due to upgrades, 
reconfiguration or outages. Some changes may  
be regular and predictable, whereas others are 
sudden and surprising. 

To manage all of these concerns autonomously  
and adapt its behavior appropriately, a zero-touch 
system must understand every aspect of what is 
expected of it. Each requirement and goal must be 
carefully defined in order for technical processes to 
derive suitable and optimized actions to manage it. 
These definitions are known as intents.

From the perspective of a human operator, an 
intent expresses the expectation of what the 
operational system is supposed to deliver and how  
it behaves. In light of this, we define intent as  
“formal specification of all expectations including 
requirements, goals and constraints given to a 
technical system.”

The role of intents in cognitive networks
Everything an autonomous system needs to know 
about its goals and expected behavior must be 
defined with intents. The system will not perform 
any operation unless it relates to the fulfillment 
and assurance of an intent, which means that all 
goals – including those that may have been 
considered “common sense” in human-operated 
systems – must be expressed as intents.

An intent in an autonomous system is ideally 
expressed declaratively – that is, as a utility-level goal 
that describes the properties of a satisfactory  
outcome rather than prescribing a specific solution. 
This gives the system the flexibility to explore  
various solution options and find the optimal one.  
It also allows the system to optimize by choosing   
its own goals that maximize utility. 

Unlike traditional software systems, where 
requirements are analyzed offline to detect and 
resolve conflicts prior to implementation, intents  
are added to an autonomous system during runtime. 
Adaptation to changed intent as well as conflict 
detection and resolution are therefore essential 
capabilities of an autonomous system.

One of the benefits of expressing intents as utility-
level goals is that it helps the system cope with the 
conflicting objectives of multiple intents. This is vital, 
because an autonomous system often has to take 
multiple intents into account before making a decision. 

For example, an autonomous system may have  
one intent to deliver a service with high QoE,  
while another may be to minimize resource  
spending. It can resolve such conflicts either  
explicitly from weights that introduce relative 
importance or implicitly from properties of 
preferential outcomes as defined in utility-level goals.

Expectations originate from contracts or business 
strategy and remain constant when the underlying 
system is replaced or modified. Consequently,  
when setting up the intents, it is important that   
they are formulated in an infrastructure-agnostic  
way, so that they can be transferred across system 
generations and implementations.

Terms and abbreviations
AI – Artificial Intelligence  |  BSS – Business Support Systems  |  CEM – Customer Experience Management  |  
IOT – Internet of Things  |  KPI – Key Performance Indicator  |  OSS – Operations Support Systems  |  
RDF – Resource Description Framework  |  SLA – Service Level Agreement  |  SLO – Service Level Objective  | 
SLS – Service Level Specification  |  SON – Self-Organizing Networks  |  TOSCA – Topology and 
Orchestration Specification for Cloud Applications  |  VNF – Virtual Network Function
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In short, the intent establishes a universal 
mechanism for defining expectations for different 
layers of network operation. It expresses goals, 
utility, requirements and constraints. It defines 
expectations on service delivery as well as the 
behavior of the autonomous operational system  
and the underlying network. 

Service-specific intents
One essential type of intent relates to the 
specification of services. Service-specific intents 
state expected functional and performance 
characteristics. Service Level Agreements (SLAs), 
Service Level Specifications (SLSs), Service Level 
Objectives (SLOs) and TOSCA (Topology and 
Orchestration Specification for Cloud 
Applications) [1] models are all examples of 
service-specific intents that are used on  
different levels in the operations stack. 

SLAs are business support systems (BSS) objects. 
Service-specific intents based on SLAs specify the 
promised service and include expected performance 
details and business consequences such as payment 
for delivery and penalties when failing. 

SLSs/SLOs define the service delivery details  
at operations support systems (OSS) level.  
Based on this input, autonomous OSS would  
plan detailed tasks to realize the service delivery. 
TOSCA models would be used to express  
further technical details the OSS generate 
(expectations from orchestration and assurance).

In multiple stages, the autonomous operation 
makes decisions about further details. Higher-level 
intent is the input leading to the lower-level intent 
that is used to distribute specific goals to subsystems. 
For example, SLAs/SLSs are the intents that 
express a terminal goal of the OSS. The OSS then 
decide which TOSCA model would be the best 
option to deliver the promised performance with 
minimal resource usage. The selected TOSCA 

model is the instrumental goal of OSS and becomes 
an intent and terminal goal for the orchestrator. 

This pattern of making decisions based on a given 
intent and taking action by sending lower-level 
intents to subsystems is the key interwork 
mechanism of intent-based operation, according to 
which the entire operations stack of autonomous 
networks is built. 

Strategic and behavioral intents
Beyond all the service-specific intents that an 
autonomous system must have, it also requires 
guidance on how to handle strategic and 
behavioral concerns. Traditionally implemented  
in the form of manually coded policies, this type  
of guidance steers general system behavior and 
supports the type of decision-making that has 
traditionally been based on human intuition and 
experience, along with knowledge about context 
and operator strategy. Intent-based operation 
makes it possible for operators that want to handle 
these concerns in a more dynamic fashion to 
replace manually coded policies with strategic  
and behavioral intents.

This is useful in cases where the operator   
chooses to require a default minimum security  
level that differs from that which is implemented  
into the service, for example.  In these cases, 
dedicated intent can be used to set the security  
level for all services that do not specify it directly.

With regard to legal compliance, services may  
be delivered in multiple markets where different 
rules apply. A legal-compliance intent requires 
compliance and potentially specifies the details.

Since there is always a risk of service degradation 
when changes are initiated and risky actions may 
sometimes lead to a higher margin, risk-management 
intents can be used to convey how the operator 
wants the autonomous system to balance risks 
versus potential gain. 

Reporting/escalation intents steer how the 
autonomous system interacts with the human 
workforce by reporting progress status on  
intent fulfillment and seeking manual decision  
in escalations.

  [THE INTENT] EXPRESSES 
GOALS, UTILITY, REQUIREMENTS 
AND CONSTRAINTS   
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Formally expressing an intent
An autonomous system requires intents to be 
formally defined in a machine-readable and 
processable way, but the broad range of 
considerations involved and their abstract 
semantics are often difficult to structure. 
Techniques from knowledge management and 
semantic modeling enable the creation of an 
ontology of intent, based on an extensible 
metamodel. Resource Description Framework 
(RDF) [2] and RDF Schema [3] standards can be 
used for knowledge modeling. 

 Technical functions such as contract and order 
management would directly use RDF objects to 
communicate intent. Intent specified directly by 
human operators would require an intuitive 
frontend, potentially using natural language. 

Intent handling
The operation of services within an intent-based 
network also requires the introduction of intent-
handling functions in the operations stack and 
functional architecture. An intent- handling 
function receives the intents, decides which 

actions must be taken to optimally fulfill all given 
intents and implements its decisions.

Intent-handling functions have a knowledge base 
that contains the intent ontology. They also have 
machine-reasoning capabilities to realize knowledge-
driven decision-making processes. 

Machine reasoning plays a key role in intent 
handling, with its capability to understand abstract 
concepts from diverse domains and provide precise, 
specialized conclusions based on precedent and 
observation. Probabilistic modeling contributes 
quantification of risk and uncertainty, which is essential 
to make informed decisions when facing conflicting 
goals and new situations. 

Figure 1 shows how the intent-handling function 
works. While its implementation is domain-specific,  
its interface is generic. It receives intents that express  
all types of expectations. It is equipped with policies 
and artificial intelligence (AI) models that implement 
the capabilities needed for analyzing the system state 
and finding optimized operational actions based  
on observations from the operated environment.  
The intent handler also reports the fulfillment and 
assurance status of its intents. 

Figure 1  The intent-handling function 
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The API (application programming interface) of 
the intent-handling function is domain-independent. 
Its main objective is to manage the life cycle of 
intents. It implements methods to set, modify and 
remove intents and send reports. Intent is 
constructed based on a common intent meta-model 
and its details are specified according to domain-
specific information models. Intent management is 
therefore primarily knowledge management.

Figure 2 provides an example of how intent-
handling functions can be combined to realize  

a complete intent-driven operations system.  
Every major system layer and subsystem domain, 
including BSS, OSS, orchestration and network 
management, contains an intent-handling function. 
Intent originates from functions such as contract 
 and order management. Additional intents can be 
entered directly through portals. 

Introducing the cognitive layer
Lexico defines cognition as: “… the mental  
action or process of acquiring knowledge  
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Figure 2  Intent-driven multi-layer operations system
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and understanding through experience and  
the senses.” [4] As it is designed to perform the 
equivalent operational tasks of understanding 
through experiencing and sensing, an autonomous 
system is, therefore, a technical implementation  
of cognition.

Creating an intent-handling function that 
understands complex and abstract intent semantics, 
derives the optimal target state and plans actions  
for transitioning the system into this state is a 
challenging task. The function must be able to 
explore options, learn from precedents and assess 
the feasibility of actions based on their expected 
consequences. 

By combining well-understood AI techniques 
within a flexible architecture, we have designed  
a cognitive system that specializes in autonomous 
service and network operation. We refer to it as the 
cognitive layer, and its role is to serve as an interface 
between business operations and the network/
environment, as shown in Figure 3. 

The cognitive layer consists of three essential 
components: a knowledge base, a reasoning engine 
and an agent architecture. The knowledge base 

contains the ontology of intents along with domain-
specific knowledge such as the current state of the 
system. The domain-independent reasoning engine 
uses the knowledge graph and serves as the central 
coordinator function for finding actions, evaluating 
their impact and ordering their execution. Finally, 
the agent architecture allows any number of models 
and services to be used. Agents can contain 
machine-learned models or rule-based policies,  
or implement services needed in the cognitive 
reasoning process. 

To be usable, an agent needs to be registered and 
described in the knowledge base. Its description can 
be added and modified at any time, allowing life 
cycles of the models, policies and supplementary 
services to be decoupled from the overall life cycle  
of the cognitive layer.

The agent metadata contains a description of the 
agent interface, along with its function, role and 
capabilities. For example, we have implemented a 
machine-learned model that can propose radio base 
station configurations that optimize the service 
experience. This model is registered as an agent  
in the role of a “proposer” for configuration actions. 
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Figure 3  Functional architecture of the cognitive layer
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The separate life cycle makes it possible for the 
model to be replaced with an improved version  
when available, independent of the cognitive layer 
release cycles. 

We have also demonstrated agents in the role of 
“predictor” with the ability to estimate the effect  
of actions on key performance indicators (KPIs).  
An agent in an “observer” role would monitor data 
sources, keeping knowledge about the state up-to-
date. An agent in the “actuator” role can implement 
actions in the network by utilizing, for example, 
established network management functions.

How the cognitive layer works
The successful operation of the cognitive layer 
depends on smooth interaction between the 
reasoning engine and the knowledge base.  
The reasoning engine continuously executes  
a process that tries to find actions to close the 
 gap between the current observed state and the 
wanted state, according to the intent. It collects 
proposals, obtains predictions on the effect of 
each proposal, evaluates gain versus risk and 
certainty, prioritizes actions and executes its 
decisions. Specialist agents are used intensively  
in every step of the process. 

The reasoning engine is an adaptive knowledge-
driven composer that can instantiate the cognitive 
process following changes in intent, state and 
context. It can dynamically compose specialized 
agents and add them into the process if their 
capabilities and roles match the needs according  
to intent and context. This is, for example, how the 
cognitive layer obtains action proposals from  
agents that are implementing suitable models.

In cases where the capabilities of multiple agents 
match the requirements of a role, each of them  
can be used simultaneously to generate alternative 

solution strategies, resulting in a diverse set of 
options for the prediction and evaluation steps  
that follow. This coexistence of agents makes it 
possible to combine rule- and policy-based 
implementations with machine-learned alternatives 
in the same system, enabling the system to acquire 
new advanced abilities without losing current ones.

The cognitive process is a perpetual loop that 
starts again directly after the previous iteration has 
finished. Any degradation of the network or issues 
with services would be visible in the observed state. 
By trying to close the gap to the wanted state set by 
intent, the cognitive layer implicitly addresses 
incidents. Even without explicit issues, the 
continuous cognitive process would still seek actions 
for further optimization. It could, for example, try to 
deliver the same services with reduced resources. 

Through its reasoning-based core process, the 
cognitive layer reaches a high degree of dynamic 
adaptability to new situations. This is in stark 
contrast to systems that have been realized through 
rule-based policies and fixed workflows, where every 
supported situation needs consideration at design 
time through suitable branches in the decision tree 
and diversifying rules. Existing rule-based policies 
can, however, still be used in the cognitive layer 
through integration as agents. This opens an upgrade 
path from legacy automation, with AI-based models 
added gradually. 

Example use case
To demonstrate how the cognitive layer works,  
we have experimented with a use case that optimizes 
the provisioning decisions for the deployment of a 
virtual network function (VNF). The source of the 
intent is an SLA that specifies the service to be 
delivered along with the KPI targets that have 
been promised to the customer. Our example  
use case requires that the VNF be deployed  
with strict targets on latency and throughput. 

We started by developing the required proposer 
and predictor agents in an offline data science 
process. We then deployed the service in a test 
environment and exposed it to a range of usage loads. 
We also explored deployment options by variating 

  SPECIALIST AGENTS 
ARE USED INTENSIVELY
IN EVERY STEP OF 
THE PROCESS   

✱ INTENT-BASED NETWORKING

8 E R I C S S O N  T E C H N O L O G Y  R E V I E W  ✱  N O V E M B E R  1 1 ,  2 0 2 0



parameters of the underlying TOSCA model. 
Combined with measured KPIs, these variations 
create training data sets for learning a model that is 
capable of connecting deployment options to 
expected performance. This exercise created a 
proposal agent that is able to recommend a TOSCA 
model configuration optimized for the latency and 
throughput figures required by the SLA. 

In our experiment, online fulfillment – from 
receipt of the SLA to optimized deployment –  
is fully autonomous and controlled by the reasoning 
process of the cognitive layer. When the intent 
derived from the SLA arrives in the knowledge base, 
the reasoning loop starts processing it. The reasoner 
finds that the agent learned in the test environment 
matches the needs and requests a proposal.  
The agent delivers a TOSCA model fully configured 
and optimized for the requested KPI target and 
proposes to deploy accordingly. 

The cognitive layer then uses prediction and 
evaluation agents to assess the proposal. In this case, 
our prediction agent contains a state-action model – 
a probabilistic graph based on Markov decision 
process modeling. The model is continuously 
learned from observing states and the results of 
observed actions. It has the ability to estimate the 
probability of expected result states for proposed 
actions, enabling informed decisions about actions 
considering their risk. 

In the evaluation step, the autonomous system 
detects and resolves all remaining conflicts between 
intents. It also decides on escalations if the risk of the 
proposed deployment or uncertainty of the models is 
too high. If escalation is required, the cognitive 
process requests the support of a human technician, 
presents the situation including proposals and 
predictions, and asks for approval.

While the cognitive layer can operate fully 
autonomously, it knows when the human workforce 
wants to be involved. The exact threshold for 
escalation is at the discretion of the operator and is 
determined by behavioral intent. If the system gains 
human trust as a result of presenting many good 
actions, the threshold for fully autonomous decisions 
can be lowered.

When a proposed action is selected after verifying 
that the impact on all intents is advantageous and 
risk is reasonably low, it is then handed over for 
execution to the orchestrator behind the actuation 
agent. This concludes the first intent-handling loop 
after the new intent for the new SLA was introduced 
to the cognitive layer. The gap between the new 
intent and the current state was particularly wide 
since the new service was not yet provisioned.  
This gap narrowed through a provisioning action. 
Further iterations continuously monitor the service 
deployment, optimize it when possible or heal when 
needed. In this way, the continuous cognitive 
operation process provides fulfillment and 
assurance of expectations formulated as intents. 

Conclusion
Zero-touch autonomy is an ideal beyond reach  
as long as artificial intelligence (AI) cannot  
match human capability to reason and decide 
within complex dependencies and broad domains. 
However, by using a combination of currently 
available and well-understood AI techniques 
within a flexible architecture, it is possible to reach 
a high degree of practical autonomous operation. 

Our use case example demonstrates how the 
cognitive layer that we have developed can enable 
autonomous operation with the use of intents.  
It is built with an agent architecture that decouples 
the life cycles of the agents. It is coordinated by 
knowledge-driven reasoning that composes 
machine-learned models and legacy implementations. 
It evaluates action impact on intent fulfillment and 
makes decisions based on expected gains and risks, 
while resolving conflicting goals and maximizing 
utility. It can adapt to new situations through 
learning. The resulting system can execute many  
of the cognitive considerations human technicians 

  ONLINE FULFILLMENT  
IS FULLY AUTONOMOUS  
AND CONTROLLED BY THE 
REASONING PROCESS   
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Further reading
 ❭ Ericsson Technology Review, Cognitive Technologies in Network and Business Automation, 2018, 

Niemöller J; Mokrushin, L, available at: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-
review/articles/cognitive-technologies-in-network-and-business-automation

 ❭ Ericsson, AI by Design, available at: https://www.ericsson.com/en/ai-and-automation
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make when they operate services and networks 
manually. However, the cognitive layer does  
this with continuous attention and near-  
immediate reaction.

The adaptive reasoning capabilities of the 
cognitive layer enable effective management of 
growing network complexity, dramatically reducing 

the need for humans to manually modify  
policies or participate in online decision-making.
This frees up the human workforce to  
concentrate on offline tasks such as executing  
data science processes, optimizing the available 
models and defining business strategies that  
are implemented by intent setting. 
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