
To create intelligent networks with the ability to adapt to new situations
and changing needs, it will be necessary to decouple requirements from
solutions. Intent is the expression of the requirements that an autonomous
system needs to meet, which makes it a key concept in the creation of
intelligent networks.

JÖRG NIEMÖLLER,
RÓBERT SZABÓ,
ANDRÁS ZAHEMSZKY,
DINAND ROELAND

Intent-based operation is a new paradigm for
telecommunication systems that is essential to
the creation of autonomous networks.

■ Intent is a declarative information object that
defines the requirements that an autonomous
system and infrastructure are expected to fulfill [1].
An intent is never imperative: the receiving system is
not instructed to perform a particular action or
process. On the contrary, the system is free to choose
a solution strategy autonomously.

Intent allows the system to understand global
utility and the value of its actions. Consequently, the

autonomous system can evaluate situations and
potential action strategies rather than being limited
to following instructions that human developers have
specified in policies. This means that intelligent
decisions that were previously made exclusively by
human policy developers can become automated.

While intent builds the foundation by providing
information about requirements and utility, the
implementation of autonomous capabilities remains
a challenging task. We believe it can best be achieved
by a combination of artificial intelligence techniques
such as machine learning and machine reasoning
using knowledge-centric architecture and processes

Creating
autonomous networks

with intent-based
closed loops

✱ AUTONOMOUS NETWORKS

2 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ A P R I L 1 9 , 2 0 2 2

[2, 3, 4]. The result is a cognitive network based on
the vision of 6G as an innovation platform for
emerging use cases and applications [5].

Concepts of intent-based autonomous
operation
The TM Forum Autonomous Network Project
describes a reference architecture for network
operation software that is able to act autonomously
[6]. It defines a new function called the intent
management function (also known as the intent
manager) to coordinate intent-based operation [1].

Every autonomous domain contains an intent
manager. This is the endpoint of the intent interface
for managing the life cycle of the intent [7]. It also
coordinates the operation within the autonomous
domain to meet the requirements that the intent
formulates. This implies that it is able to detect
whether the intent has been fulfilled and, if not, find
and execute corrective actions.

The left side of Figure 1 shows the main
interactions of the intent management function
within a layered operation infrastructure. The intent
management function receives all intents directed
toward its autonomous domain. It also reports back
to the intent origin regarding its success in fulfilling
the intent, which closes an intent-based control loop.

The intent manager is aware of the system state
through measurements, analytics and other
information systems such as inventories. Comparing
the state to the intent shows if and where the system
is not meeting the requirements and indicates
whether or not corrective action is needed. As soon
as the intent management function finds a
preferential action strategy, it executes on it. It can act
through conventional management interfaces or, if
the targeted autonomous domain is intent-aware, it
can act by defining its requirements through an
intent.

At the highest level, intent-based operation could

Reporting

Intent

IntentState Action

Report

Report

Business intent manager

Service intent manager

RAN intent managerNetwork functions
intent manager

Requirement

Customer portal and ordering systems

Management Actuation

Intent management
function

Intent interface

Other (non-intent-based) interfaces

Figure 1 The intent management function and intent-based networking system stack

AUTONOMOUS NETWORKS ✱

A P R I L 1 9 , 2 0 2 2 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 3

Terms and
abbreviations
SMO – Service
Management and
Orchestration
UE – User
Equipment

start with customer and operator requirements.
Autonomous domains coordinated by their intent
management function would then make partial
decisions resulting in a more specific intent being
issued to the next level of operation. This process
ultimately arrives at a detailed distributed
configuration of the network capable of meeting the
high-level requirements that initiated the process.

The right side of Figure 1 provides an example of
three levels of intent-based operation. The intent
manager at the service level is part of a service
management and orchestration (SMO) system. In
this example, the solution at the service level has
impacts on the network function management as
well as on the RAN.

Cognitive intent management loop
The intent control loop between autonomous
domains is covered by standardization [1, 7]. The

remaining challenge is how the intent manager
interacts with the specific business logic within an
autonomous domain, so that they can together
translate an intent that expresses business needs
into detailed technical configurations.

Figure 2 illustrates how we have implemented an
intent management function. We have established a
generic cognitive loop that consists of five
components: measurement, issues, solutions,
evaluation and actuation.

Measurement of the system state is a continuous
activity used both to set goals (expressed as intents)
and to evaluate fulfillment of intent. The intent
manager needs to know which resource instances
are used to fulfill the intent as well as their
operational state. Knowledge of the current
performance of service components at their resource
instances makes it possible to determine if the
system is in breach of its intent and needs corrective

Measurement
What is going on in the system?

Issues
What needs to be fixed?

Solutions
What can be done?

Evaluation
What is the preferred action?

Evaluation agents

Proposal agents

Assurance
agents

Measurement agents
Infrastructure that is

controlled by the loop

Actuation
agents

Actuation
Implement

the solution!

Action

Action

Action

Action

Action

Action

IntentState

Figure 2 The cognitive intent management loop driven by machine reasoning

✱ AUTONOMOUS NETWORKS

4 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ A P R I L 1 9 , 2 0 2 2

action. However, as the intent can change, so can the
required measurements. The intent manager must
adapt its measurements accordingly by employing
measurement agents (specialist implementations of
measurement tasks) as required.

The issues stage focuses on identifying what
needs to be fixed. Issues are defined as requirements
(expressed by intents) that are not met by the system.
Examples include a required QoE metric that is not
reached or a required resource that is not available.
Assurance agents implement continuous monitoring
of state versus requirements and raise issues when
required. This can include a root cause analysis for a
more precise description of the issue, prioritization
of issues depending on their severity or waiting for
ongoing actions showing results.

In the solutions stage, proposal agents react to
issues and determine the available corrective action
strategies. Any number of differently implemented
proposal agents can be used at this stage, including
human designed policies and machine learned
policies that derive solutions from evidence data.
Multiple action strategies may be proposed, each of
them representing what the system can do to
address the issue.

In the evaluation stage, evaluation agents
determine the expected impact of an action on the
system state to determine which of the proposed
solutions can deliver the most positive effect on the
fulfillment of all currently valid intents. Predictive
models and digital twins will play a major role in this
step, as they make it possible to virtually explore
actions and their expected outcomes. The preferred
action proposal is the one expected to maximize
global utility by best fulfilling all intents. The
evaluation stage can also include detection of
conflict from actions that fulfill one intent at the
expense of degrading another. Evaluation can
therefore be a sanity mechanism with the potential
to save the network from risky actions and
degradations.

A solution with an overall preferential evaluation
proceeds to the actuation stage. Intent-based
systems can act by using an intent to define
requirements on the autonomous subordinate

system layer. Alternatively, they may act through
traditional interfaces by changing configurations of
invoking processes. Specialized actuation agents are
available to implement a different type of action-
taking. For example, in service intent management, a
proposal may be expressed by a TOSCA (Topology
and Orchestration Specification for Cloud
Applications) model and the actuation would
therefore be orchestration.

The entire intent management loop is based on
agents creating and consuming knowledge. Agents
both react to knowledge changes and create
knowledge. For example, proposal generation is
initiated by the appearance of the type of issue that
the proposal agent was implemented to handle. It
delivers a proposal for the issue through the creation
of a proposal description in the knowledge database.

Intents are introduced in standards [8, 9] as
ontology graphs. To enable a complete knowledge-
centric implementation of the intent management
loop, Ericsson has defined additional ontologies for
knowledge about state, issues, proposals and
predictions. This allows agent coordination through
a generic logical-reasoning-based implementation.
This loop is highly self-adaptive to changing intents.
As long as respective agents are available, the
machine-reasoning-based intent manager will
autonomously utilize them by composing a custom,
ad hoc workflow.

Within an SMO system, apps would typically be
used to implement domain-specific business logic.
They constitute agents and as such participate in
intent management.

The cognitive intent management loop in Figure 2
is not specific to any particular autonomous domain;

 THE ENTIRE INTENT
MANAGEMENT LOOP IS
BASED ON AGENTS CREATING
AND CONSUMING
KNOWLEDGE

AUTONOMOUS NETWORKS ✱

A P R I L 1 9 , 2 0 2 2 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 5

it is, rather, a template for implementing any intent
manager. The creation of an intent manager for a
particular autonomous domain is primarily an
implementation task of domain-specific agents.

Identifying solutions through resolution
Based on the concept presented in Figure 1 and the
work of the TM Forum Autonomous Network
Project, we have designed an autonomous network
with a multilayered architecture. Operation starts
with the intent expressing abstract business
requirements – a cost-efficient video service shall be
delivered to the silver-level user group, for example.
This specifies the subject of a video service, high-
level preference, such as cost efficiency and the
targeted user group as context.

A business intent manager would receive the
intent with business requirements. It would need to
translate this into an intent for a service intent
management function. This translation, or
resolution, would include selecting eligible service
blueprints from onboarded service definitions. They
would be further contextualized by interpretation
and transformation of the abstract requirements into
more concrete goals. Policies and apps would
typically implement the transformation business
logic. In our simple example, the customer group
would imply certain locations where the service
would need to be available. It would further translate
the business requirements of the service into an
expected user experience with goals about video
quality and availability.

An intent management function associated with
service management would receive these
requirements about the needed service within an
intent from the business intent manager. The main
objective of the service intent manager would be the

delivery of a service instance that fulfills this intent.
A key aspect of this process would be the
distribution of application and network function
components over the network and cloud
infrastructure. A solution proposal within the intent
management loop on the service layer would
describe the full topology of these artifacts.

Operator concerns, such as resource utilization,
energy consumption and cost, would be considered
by the policies that determine the solution. These
concerns may also be expressed by an intent and
constitute additional operator requirements.

In the solution-finding process, the requirements
on the service would be further translated into
lower-level requirements per component. For
example, a network function would be required in a
particular location with goals on latency and
bandwidth. This would contribute to delivering the
required user experience.

Executing the solution at service level typically
involves a service orchestrator that coordinates the
execution of distributed actions. Some of these
actions may involve sending further intents into
autonomous domains that are intent-aware and
contain an intent management function. In our
example, we focus on intent-based management of a
cloud-native function. A cognitive intent
management loop such as the one in Figure 2 also
coordinates the operation at this intent management
level.

The proposal agent used to determine a solution
strategy is mainly concerned with identifying all
atomic deployment function artifacts and allocating
them in the data center. Deployment function
candidates are still technology agnostic, but we
assume that there is a direct mapping of each atomic
function to some deployment artifacts that are
understood by the orchestrator or virtualization
manager of the administrative domain.

The deployment function candidates may contain
other functional dependencies such as the existence
of an operations and maintenance function. These
dependencies would be recursively resolved until
the process reaches a set of atomic functions that
satisfies all dependencies and their connectivity

 IN OUR EXAMPLE, WE
FOCUS ON INTENT-BASED
MANAGEMENT OF A CLOUD-
NATIVE FUNCTION

✱ AUTONOMOUS NETWORKS

6 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ A P R I L 1 9 , 2 0 2 2

requirements. The process may also involve
functional decomposition, when a logical function is
substituted with a set of atomic components. For
example, a gateway function is decomposed into
user plane and control plane components, each
adhering to some resiliency and scaling
requirements.

Ultimately, the multiple layers of resolutions for a
new business intent provide a service instance
design that is broken down to locations (such as data
centers and transport paths), deployment artifacts
(represented by Helm charts, for example) and initial
resource allocation with respect to bandwidth, QoS
class, virtual central processing units, memory,
storage and so on.

Solution proposals in each layer may come from a
distinct set of different resolution agents, or a
resolution agent may be able to propose multiple
solution alternatives. In the next step of the cognitive
intent management loop, the most preferential
solution may be chosen by an evaluation logic in each
layer.

Once the service is instantiated according to the
preferred solution, information becomes available
that enables service monitoring. This means the
intent management loop becomes an assurance loop
that takes corrective actions if the intent
requirements are not matched by the measured
system state.

Conflict detection and resolution
Typically, the solution that a proposal agent proposes
aims to improve one metric, which can be
problematic in cases with multiple requirements in a
single intent or multiple simultaneous intents. As
network resources are shared and limited, a proposal
that aims to solve an issue related to one metric
(when a requirement is not fulfilled) may have a
negative side effect on another metric, resulting in
unstable network behavior. Overcoming this
challenge requires the system to consider the effect
of any given action on all the metrics under
evaluation, as opposed to just the one that caused the
issue. In situations where multiple solutions to a
particular issue are proposed, the intent manager

needs to decide which action to approve.
Our implementation includes a conflict detection

and a conflict resolution component. Conflict
detection examines the outcome of a given action in
terms of its effect on all the metrics in the system. If
any of the metrics that were met before the action are
likely to be violated if the action is taken, those
potential negative side effects are considered to be
conflicts. In the conflict resolution step (part of the
evaluation in Figure 2), the intent manager evaluates
whether it should approve or reject the action.

In the prediction step (also part of the evaluation
in Figure 2), prediction agents estimate the effect of
the given action on all the metrics in the system. In
one option, the prediction is achieved by machine
reasoning rules inserted into the system by domain
experts. The rules are formulated through
experience and highlight key correlations between
action and measured metrics. For example, changing
user plane priority for some user equipment (UE)
means that the bandwidth will be shared differently
among all the UEs. Consequently, a change in
bandwidth means a change in QoE for a certain
application. From this, it can be concluded that
changing the user plane priority in the network will
lead to a change in the QoE. Based on historical
measurements, it is also possible to predict how
much the QoE is expected to change. Another
option for predictions is to utilize machine learning
and train models that predict the outcome of the
actions.

Next, an evaluation agent examines the proposed
actions and decides which one to take. It uses the
intent manager penalty to determine whether to
execute the action. The intent manager penalty is
calculated as the sum of the penalties of all the

 OUR IMPLEMENTATION
INCLUDES A CONFLICT
DETECTION AND A
CONFLICT RESOLUTION
COMPONENT

AUTONOMOUS NETWORKS ✱

A P R I L 1 9 , 2 0 2 2 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 7

intents handled by the given intent manager. The
penalty formula, which was submitted alongside the
requirements of an intent, is used to calculate the
penalty of the intent. The penalty formula
incorporates the cost of not fulfilling the intent.

In its simplest form, it is a constant value, if at least
one requirement is not fulfilled, and zero otherwise.
In its more sophisticated form, the formula gives a
higher value if the gap between the measured
value(s) and the target value(s) of the metric(s) is
high, and a lower one if the gap is low. As in the
prediction step, the impact of each action on all the
metrics is determined, so that the evaluation agent
can calculate the expected intent manager penalty
for each action. An action is approved if the intent
manager penalty is not expected to increase after
executing the action. In an extreme case, when all
the proposed actions are predicted to increase the
intent manager penalty, none of the actions will be
approved.

The evaluation agent can give feedback to the
proposal agent on the outcome of the action. For
example, if an action was rejected, the proposal
agent can incorporate this information to come to a
better proposal in the next round. However, if after
multiple attempts, the target of the corresponding
metric is still not reached, the intent manager can
utilize the escalation process to signal to the
submitter of the intent that it cannot be fulfilled.

Figure 3 illustrates an example use case that
features conversational video and low-latency
services. The first intent expresses that a
conversational video service is required and for 80
percent of the users the QoE should be higher than
4.0 (on a scale of 1 to 5). The second intent states that
a low-latency service is required, where for 99
percent of the UEs using the service the packet loss
should be less than 0.1 percent and the latency below
50 milliseconds. For the first intent, the penalty is 10,
while for the second, it is 1. In other words, it is more

Current penalties

Conversational video

Ev
al

ua
tio

n Evaluation

Action: increase priority
for conversational video

Prediction of metrics

Low latency

10

0

0

1

Conversational video

Low latency

Predicted penalties

Current state Predicted state

State
1

State
2

CV - QoE = 3.7

Legend:
CV - Conversational video
LL - Low latency
L - Latency
PL - Packet loss

LL - L = 40ms
LL - PL = 0.05%

…
…

…

CV - QoE = 4.2

LL - L = 44ms
LL - PL = 0.15%

…
…

…

Figure 3 Conflict detection and resolution example

✱ AUTONOMOUS NETWORKS

8 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ A P R I L 1 9 , 2 0 2 2

important to be able to fulfill the intent for the
conversational video than the intent for the low-
latency service, in cases of resource shortage
situations.

Based on the assumption that only the
conversational video service is active at the start,
and all requirements are fulfilled, the intent manager
penalty in the system will be zero. Then, at a later
point, the intent for the low-latency service is added.
After the required functions are deployed, and the
UEs start to use the service, the target of the metrics
for this service on packet loss and latency are met.
However, as a consequence of sharing the limited
network resources, the QoE for the conversational
video users drops and the metric’s current value is
below the target. At this point, the intent manager
penalty is 10 because one requirement of the intent
for the conversational video is unmet. This situation
is shown on the left side of Figure 3.

The fact that the QoE requirement is no longer
being met invokes a proposal agent that is capable of
proposing solutions to QoE issues. After considering
the alternatives, it proposes to increase the user
plane priority for the conversational video service.

Next, in the conflict detection step, a prediction
agent runs the rules to see if the proposed action will
have any side effects, and it discovers it will no longer
be possible to meet the packet loss target for the
other service if the proposed action is taken. The
predicted state is shown on the right side of Figure 3.

The evaluation agent is invoked to resolve the
conflict. It concludes that taking the action would
change the intent manager penalty from 10 to 1, and
therefore it decides to approve the action.

Conclusion
Our research indicates that a knowledge-centric and
machine-reasoning-based implementation of intent
management functions in networks offers
considerable advantages with respect to dynamic
self-adaptation to new situations and new
requirements as they arise. This approach has the
potential to achieve advanced levels of autonomy, far
surpassing what would practically be possible with
policy-driven automation. Agents have the ability to

find solutions in complex network topologies and
make evaluations based on digital-twin-style
prediction models. The proof of concept that we
have successfully implemented at Ericsson clearly
demonstrates that the technologies needed to create
highly capable autonomous networks are already
available today.

 THE PROOF OF CONCEPT
CLEARLY DEMONSTRATES
THAT THE TECHNOLOGIES
NEEDED TO CREATE HIGHLY
CAPABLE AUTONOMOUS
NETWORKS ARE ALREADY
AVAILABLE TODAY

AUTONOMOUS NETWORKS ✱

A P R I L 1 9 , 2 0 2 2 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 9

References
1. TM Forum Autonomous Network Project, IG1253 Intent in Autonomous Networks v1.1.0, January 2022,

available at: https://www.tmforum.org/resources/how-to-guide/ig1253-intent-in-autonomous-networks-v1-1-0/

2. Ericsson Technology Review, Cognitive technologies in network and business automation, June 28, 2018,
Niemöller, J; Mokrushin, L, available at: https://www.ericsson.com/en/reports-and-papers/ericsson-technology-
review/articles/cognitive-technologies-in-network-and-business-automation

3. Ericsson Technology Review, Cognitive processes for adaptive intent-based networking, November 11,
2020, Niemöller, J; Mokrushin, L; Mohalik, S.K; Vlachou-Konchylaki, M; Sarmonikas, G, available at:
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/network-compute-fabric

4. Journal of ICT Standardization, Intent-driven Closed Loops for Autonomous Networks, June 8, 2021,
Gomes, P.H; Buhrgard, M; Harmatos, J; Mohalik, S.K; Roeland D; Niemöller, J, available at:
https://journals.riverpublishers.com/index.php/JICTS/article/view/5829

5. Ericsson Technology Review, The network compute fabric – advancing digital transformation with ever-
present service continuity, June 30, 2021, Sefidcon, A; John, W; Opsenica, M; Skubic, B, available at:
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/network-compute-fabric

6. TM Forum Autonomous Network Project, IG 1230 Autonomous Networks Technical Architecture v1.1.0,
July 2021, available at:
https://www.tmforum.org/resources/how-to-guide/ig1230-autonomous-networks-technical-architecture-v1-1-0/

7. TM Forum Autonomous Network Project, IG 1253C Intent Life Cycle Management and Interface v1.1.0,
January 2022, available at:
https://www.tmforum.org/resources/standard/ig1253c-intent-life-cycle-management-and-interface-v1-1-0/

8. TM Forum Autonomous Network Project, IG1253A Intent Common Model v1.1.0, January 2022, available
at: https://www.tmforum.org/resources/standard/ig1253a-intent-common-model-v1-1-0/

9. TM Forum Autonomous Network Project, IG 1253B Intent Extension Models v1.0.0, January 2022, available
at: https://www.tmforum.org/resources/how-to-guide/ig1253b-intent-extension-models-v1-0-0/

Further reading
 ❭ Ericsson, Intent based networks, available at: https://www.ericsson.com/en/ai/intent-based-networks

 ❭ Ericsson Technology Review, Adaptive intent based networking, available at: https://www.ericsson.com/en/
reports-and-papers/ericsson-technology-review/articles/adaptive-intent-based-networking

 ❭ TM Forum Autonomous Network Project:
https://www.tmforum.org/collaboration/autonomous-networks-project/

 ❭ TM Forum IG 1253:
https://www.tmforum.org/resources/standard/ig1253-intent-in-autonomous-networks-v1-1-0/

✱ AUTONOMOUS NETWORKS

10 E R I C S S O N T E C H N O L O G Y R E V I E W ✱ A P R I L 1 9 , 2 0 2 2

AUTONOMOUS NETWORKS ✱

A P R I L 1 9 , 2 0 2 2 ✱ E R I C S S O N T E C H N O L O G Y R E V I E W 11

t
h

e
 a

u
t

h
o

r
s

Jörg Niemöller
◆ is an analytics and
customer experience expert
in Solution Area OSS. He
joined Ericsson in 1998 and
spent several years at
Ericsson Research, where
he gained experience
working with machine-
reasoning technologies and
developed an understanding
of their business relevance.
He is currently driving the
introduction of these
technologies into Ericsson’s
portfolio of Operations
Support Systems/Business
Support Systems solutions.
Niemöller holds a Ph.D. in
computer science from
Tilburg University, the

Netherlands, and a diploma
degree in electrical
engineering from the TU
Dortmund University,
Germany.

Róbert Szabó
◆ joined Ericsson in 2013
and currently works as a
principal researcher at
Research Area Cloud
Systems and Platform,
where he focuses on
distributed cloud, zero-
touch automation and
Network Functions
Virtualization. Before joining
Ericsson, he worked as an
associate professor at
Budapest University of
Technology and Economics
(BME) in Hungary. Szabó

holds both a Ph.D. in
electrical engineering and
an MBA from BME.

András Zahemszky
◆ is a master researcher at
Ericsson Research whose
work focuses on core
networks and network
automation. He is currently
leading research prototype
efforts in the area of end-to-
end network automation. He
joined Ericsson in 2007 after
completing an M.Sc. in
computer science at BME in
Hungary.

Dinand Roeland
◆ is a principal researcher at
Ericsson Research who
joined the company in 2000.

His current research
interests involve introducing
artificial intelligence
technologies into end-to-
end network architecture
with the goal of achieving an
autonomous cognitive
network. He has worked in a
variety of technical
leadership roles including
concept development,
prototyping, standardization,
system management and
project management.
Roeland holds more than 75
patents and an M.Sc. (cum
laude) in computer
architectures and intelligent
systems from the University
of Groningen in the
Netherlands.

