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Abstract— Epilepsy is a life-threatening disease affecting
millions of people all over the world. Artificial intelligence
epileptic predictors offer excellent potential to improve epilepsy
therapy. Particularly, deep learning models such as
convolutional neural networks (CNN) can be used to accurately
detect ictogenesis through deep structured learning
representations. In this work, a tiny one-dimensional stacked
convolutional neural network (1DSCNN) is proposed based on
short-time Fourier transform (STFT) to predict epileptic
seizure. The results demonstrate that the proposed method
obtains better performance compared to recent state-of-the-art
methods, achieving an average sensitivity of 94.44%, average
false prediction rate (FPR) of 0.011/h and average area under
the curve (AUC) of 0.979 on the test set of the American
Epilepsy Society Seizure Prediction Challenge dataset, while
featuring a model size of only 21.32kB. Furthermore, after
adapting the model to 4-bit quantization, its size is significantly
decreased by 7.08x with only 0.51% AUC score precision loss,
which shows excellent potential for hardware-friendly wearable
implementation.

I. INTRODUCTION

Nearly 60 million people in the world suffer from epilepsy,
a common and serious brain disease which can affect people of
all ages [1]. Epilepsy is characterized by unprovoked seizures,
and can cause other health problems [2], which may be
life-threatening. Long-time medication is a common method
to control epilepsy, which can cause some undesirable side
effects such as medication resistance [3]. It is especially
important for epileptic patients to know when a seizure will
happen to allow taking suitable mitigation measures in
advance. To this end, seizure prediction can help them
improve their well-being.

In clinical practice, brain electrical activities can be
measured by multiple channels through a collection of
electrodes installed on the scalp or exposed surface of the
brain to collect scalp Electroencephalogram (sEEG) signals
and intracranial EEG signals, respectively [4]. Thus long-term
EEG monitoring to process neural signals is critical to patients
due to the chronic characteristic of epilepsy. Hence,
low-power acquisition and processing of EEG signals should
be considered for wearable biomedical devices as well as
implanted devices.

Seizure prediction is usually viewed as a binary
classification problem between the preictal and non-preictal
classes [3]. As shown in Fig. 1, the preictal state is the period
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Figure 1. An example of multi-channel EEG recording for canine.
Interictal state means seizure-free period, whereas ictal relates to the
seizure onset period. The preictal state is the pre-seizure period, while
the postictal state is the post-seizure period. The seizure prediction
horizon (SPH) represents a period between preictal state and ictal
state, where it is ideal to execute medical intervention or to apply risk
mitigation measures.

before a seizure onset, while a non-preictal state can be one of
three states: interictal (seizure-free), ictal (during a seizure)
and postictal (after seizure). The main challenge of the seizure
prediction problems is classifying signals into preictal and
interictal states [3] with high sensitivity and low false alarm
rate, which validates prediction while minimizing disturbance
to the normal patients activities [5]. To this end, the recent
development of promising deep learning techniques enabled
significant performance improvements of seizure prediction
methods. Truong et al. [6] developed a generalized
retrospective and patient-specific seizure prediction method
using STFT and CNNs, with average sensitivity of 75% and
average false prediction rate (FPR) of 0.21/h on the American
Epilepsy Society seizure prediction challenge dataset. Zhao et
al. [7] explored energy-efficient seizure prediction, through
feeding a direct end-to-end time-domain signal to a CNN, with
an average sensitivity of 93.48%, average FPR of 0.063/h, and
average AUC of 0.977 on the same dataset. Liu et al. [8]
proposed a multi-view CNN to predict seizures, by combining
time domain and frequency domain features in a CNN, with an
average AUC of 0.837 on the same dataset.

Although, deep learning methods often achieve
state-of-the-art results compared to traditional machine
learning approaches, power consumption is significantly
increased due to the size of existing deep learning models. By
analyzing the trade-off between power consumption and
performance, we propose means to reduce energy
consumption while minimizing performance losses. To
achieve this, a hardware-friendly tiny CNN for epileptic
seizure prediction is proposed. Our main contributions can be
summarized as follows:

1) A one-dimensional stacked CNN (1DSCNN) is proposed
to predict epilepsy seizure for wearable biomedical devices.
The proposed method outperforms existing methods in
spite of a very competitive small model size.

2) Various quantization schemes are applied to the proposed
1DSCNN model for evaluating the impact of different bit
widths on model performance.

The remainder of this paper includes the description of the
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TABLE I. PER-SUBJECT CHARACTERISTICS OF THE DATASET: NUMBER OF
CHANNELS, SIZE OF THE PREICTAL SEGMENTS, SIZE OF THE INTERICTAL

SEGMENTS, AND INTERICTAL HOURS

Subject Channels Preictal
segments

Interictal
segments

Interictal
hours

Dog 1 16 24 480 80.0
Dog 2 16 42 500 83.3
Dog 3 16 72 1440 240.0
Dog 4 16 97 804 134.0
Dog 5 15 30 450 75.0
Patient 1 15 18 50 8.3
Patient 2 24 18 42 7.0

adopted methodology in Section II, our results are reported
and discussed in Section III, finally, our main findings and
conclusions are reported in Section IV.

II. METHODOLOGY

A. Dataset
In this work, the challenging and widely used dataset

provided during the American Epilepsy Society seizure
prediction challenge [9] is adopted as the benchmark dataset to
compare various prediction methods. The dataset consists of
iEEG recordings from five dogs and two human patients with
naturally occurring epilepsy. Details about the collected
information using an ambulatory monitoring system are
shown in Table I. More specifically, recordings from four of
the dogs are obtained through 16 subdural electrodes and the
remaining dog through 15 electrodes, sampled at 400 Hz. One
patient is recorded through 15 subdural electrodes, while the
other patient through 24 electrodes, sampled at 5000 Hz.
These are long-duration recordings, spanning from multiple
months and up to a year. Also, in this dataset, interictal data
segments are required to be at least one week before or after
any seizure, while preictal data segments cover one hour
before a seizure with a five-minute seizure horizon. The
annotated dataset is divided into two parts for each subject
through five-fold stratified cross-validation [10]: 80% training
set and 20% testing set. Then, 20% of the training set is used as
validation set.

B. Preprocessing
The preprocessing stage consists of data segmentation,

resampling, and a short-time Fourier transform (STFT).
During data segmentation, each 10-minute preictal or
interictal segment is sliced into 20-second clips without
overlap to augment the dataset. Then, each 20-second clip is
resampled at 400 Hz for convenient processing. Before
feeding the data to CNN, the initial raw iEEG data is converted
into a two-dimensional time-frequency representation. Based
on the non-stationary nature of iEEG signals, which highly
depend on time, STFT is employed to convert time-series EEG
signals into time-varying frequency components [11].

The raw iEEG signal is converted into 24 frequency bands
according to brain wave frequencies from 0.1 Hz to 190 Hz as
shown in Fig. 2. More specifically, delta (0.1-2, 2-4 Hz), theta
(4-6, 6-8 Hz), alpha (8-10, 10-12 Hz), beta (12-21, 21-30 Hz),
low-gamma (30-40, 40-50, 50-60, 60-70, 70-80, 80-90,
90-100 Hz) and high-gamma (100-110, 110-120, 120-130,
130-140, 140-150, 150-160, 160-170, 170-180, 180-190 Hz)
[12]. When applying STFT, there is a trade-off between time

Figure 2. The mean value of spectrum amplitude in 24 frequency
bands from 0.1 to 190 Hz of a 10-minute segment for a single
channel.

resolution and frequency resolution. The 20-second window
length is selected to guarantee a frequency resolution over
0.1Hz. A rectangular window shape is used because it reduces
the main lobe width in the frequency domain, thus improving
the frequency resolution [13]. Given an occurrence of
abnormal brain discharge, the energy of the pre-seizure state is
assumed to be concentrated in certain frequency bands. Hence,
to reduce complexity and foster deployment on wearable
biomedical devices, the mean value of the spectrum amplitude
in each band is proposed as input features for the CNN. For
each subject, the input consists of a 20-second clip, the CNN
outputs one prediction for every time clip. The input size is

.24channelsofNumber

C. CNN Architecture and Training Settings
With the recent developments in bioinformatics, CNN is

an attractive approach to analyze EEG signals [14] through the
extraction of low-level features to be fed in subsequent layers
to represent high-level features. In this work, a
one-dimensional stacked CNN (1DSCNN) is proposed to
predict epilepsy seizure. The overall CNN architecture is
shown in Fig. 3. The stacked convolutional layer, initially
proposed in VGGNet [15], presents two advantages: the depth
of the neural network is improved and the amount of
parameters is reduced under the condition of ensuring the
same receptive field. Compared to two-dimensional CNN (2D
CNN), one-dimensional CNN (1D CNN) can extract not only
interior image pixels, but also more details about low-level
features, such as edge shape, among multi-channels. As
described in Fig. 3, firstly, 16-channel iEEG signals are passed
through one 1DSCNN block to extract cross information
between different channels at the same time. Then, two
1DSCNN blocks follow to improve the generalization of the
model. The ReLU function is used for each layer. Finally, a
Softmax layer follows to perform classification. The Adam
optimizer is used for training, with a varying learning rate
from 10-3 to 5-4, 1 and 2 of 0.9 and 0.999 respectively. The
learning rate is decreased if the validation error is not
improved. Batch normalization and dropout are applied during
training to prevent overfitting. The model in this work is
implemented in Python 3.6 using Keras 2.3.1 with a
Tensorflow 1.13.1 backend. The model is configured to run in
parallel on two NVIDIA Tesla V100 graphics cards.

D. CNN Quantization
For meeting the time and energy constraints in wearable
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Figure 3. Architecture of the proposed convolutional neural network.

biomedical devices, we quantize the CNN weights and
activations through re-training to reduce computation time,
memory requirements, and power consumption [16]. We
evaluate the impact of quantization on model performance
using different bit widths. During the forward pass, weights
and activations are quantized as fixed-point values with the
same precision through uniform symmetric signed and
uniform asymmetric signed quantization, respectively [17].
The scaling factor is a power of two, which allows the scaling
to be computed using bit shifts instead of multipliers [18].
Moreover, the Tanh function is used instead of the ReLU
function [7] due to the improvement of AUC scores. During
the backward pass, the gradient is propagated by full-precision
weights and straight-through estimators (STE) [19]. We note
that no quantization is applied to the input and output layers.

III. RESULTS AND DISCUSSION

A. Evaluation Metrics
A rigorous evaluation methodology is used to assess model

performance on each subject of the dataset through five-fold
cross-validation. Sensitivity, false prediction rate (FPR) and
area under the ROC curve (AUC) are computed to evaluate
our approach and compared with recent state-of-the-art works.
Sensitivity is the percentage of correctly classified 20-second
seizure clips among the total number of 20-second seizure
clips. FPR is defined as the false positive rate per hour [6].
AUC is the area under the receiver operating characteristic
curve (ROC), which illustrates the diagnostic ability of a given
classifier.

B. Performance Analysis
Table II shows the evaluation results of the proposed

1DSCNN model, achieving an average sensitivity of 94.44%,
an average FPR of 0.011/h, and an average AUC of 0.979 for
all subjects on the dataset. Median and deviation values for
AUC are presented in Fig. 4 through five-fold cross-validation,
where the yellow line in the box and the edge of the box refer
to median and quartile values of AUC, respectively. And the
bar of box varies from minimum to maximum values of AUC.
It is observed that Dog 1 is the subject for which seizures are
hardest to predict, because even after tuning hyperparameters
as best as we can, the AUC of Dog 1 remains the lowest
among all subjects.

Table III compares our method with other state-of-the-art

TABLE II. PER-SUBJECT EVALUATION RESULTS: SENSITIVITY, FALSE
PREDICTION RATE (FPR) AND AREA UNDER THE ROC CURVE (AUC)

Subject Sensitivity(%) FPR(/h) AUC

Dog 1 91.11 0.013 0.926

Dog 2 97.70 0.001 0.998

Dog 3 95.42 0.003 0.978

Dog 4 92.27 0.003 0.974

Dog 5 96.78 0.001 0.999

Patient 1 97.22 0.008 0.998

Patient 2 90.56 0.045 0.979

Average 94.44 0.011 0.979

TABLE III. COMPARSION WITH OTHER STATE-OF-THE-ART METHODS

Method Sensitivity(%) FPR(/h) AUC Model Size

Truong et al.[6] 75.00 0.210 - 0.76MB

Zhao et al.[7] 93.48 0.063 0.977 45.22kB

Brinkmann et al. [12] - - 0.860 -

Iryna et al. [3] - - 0.810 0.56MB

Liu et al. [8] - - 0.837 1.79MB

This work 94.44 0.011 0.979 21.32kB

methods on the same dataset. Model size is reported for 32-bit
full precision parameters. The comparison results demonstrate
the proposed 1DSCNN model achieves the best sensitivity,
FPR, and AUC at the lowest model size. It is worth noting that,
although the average AUC score of our method is 0.002 higher
than Zhao et al. [7], our model has less than half the size of
their model, showcasing the potential of our model for
wearable biomedical devices.

Fig. 5 demonstrates AUC scores and model size after
different quantization levels. Compared to the full precision
(FP) baseline, 8-bit quantization reduces model size by 3.79
times, with only 0.31% AUC score loss. Moreover, 4-bit
quantization reduces model size by 7.08 times with only a
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Figure 4. Per-subject AUC box plot: median and deviation of AUC
scores through five-fold cross-validation.

Figure 5. Comparison of the proposed methods with other state-of-
the-art methods: AUC versus model size.

0.51% reduction in AUC score. Finally, 2-bit and 1-bit
quantization reduce the model size by 12.54 and 20.30 times
with 2.35% and 9.09% AUC score loss, respectively. Hence,
4-bit quantization shows great promise for wearable
biomedical devices, significantly reducing the model size at a
tolerable precision loss. Fig. 5 compares results obtained with
1DSCNN implemented at various precisions ranging from
floating point to 1 bit with other state-of-the-art methods.
Compared to Zhao et al. [7], a 4-bit quantized 1DSCNN
reduces the model size 15.02 times with only 0.31% AUC
score loss. More notably, compared to Liu et al. [8] and Irina et
al. [3], 1-bit quantization significantly reduces by 1704.76 and
533.33 times the model size while offering 6.33% and 9.88%
AUC score improvement, respectively. The reason why the
model size of Liu et al. [8] is so large is that their model
exploits two-dimensional inputs and employs more layers.
While Irina et al. [3] adopts large receptive field filters and
input size. These comparisons show the proposed methods
outperform existing state-of-the-art methods.

IV. CONCLUSION

This paper proposes a one-dimensional stacked CNN
(1DSCNN) for epilepsy seizure prediction with a model size
suitable for wearable biomedical devices. Compared to recent
state-of-the-art methods, the proposed 1DSCNN achieves the
best performance with the lowest model size on the American
Epilepsy Society Seizure Prediction Challenge dataset. When

combined with quantization, our method is hardware-friendly,
easing its deployment in wearable biomedical devices. Further
work will consider advanced binary quantization methods of
CNN to further improve the AUC of tiny models which are
suitable for biomedical implanted devices.
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