
  

  

Abstract— Current machine learning techniques for dementia 
diagnosis often do not take into account real-world practical 
constraints, which may include, for example, the cost of 
diagnostic assessment time and financial budgets. In this work, 
we built on previous cost-sensitive feature selection approaches 
by generalising to multiple cost types, while taking into 
consideration that stakeholders attempting to optimise the 
dementia care pathway might face multiple non-fungible budget 
constraints. Our new optimisation algorithm involved the 
searching of cost-weighting hyperparameters while constrained 
by total budgets. We then provided a proof of concept using both 
assessment time cost and financial budget cost. We showed that 
budget constraints could control the feature selection process in 
an intuitive and practical manner, while adjusting the 
hyperparameter increased the range of solutions selected by 
feature selection. We further showed that our budget-
constrained cost optimisation framework could be implemented 
in a user-friendly graphical user interface sandbox tool to 
encourage non-technical users and stakeholders to adopt and to 
further explore and audit the model - a humans-in-the-loop 
approach. Overall, we suggest that setting budget constraints 
initially and then fine tuning the cost-weighting 
hyperparameters can be an effective way to perform feature 
selection where multiple cost constraints exist, which will in turn 
lead to more realistic optimising and redesigning of dementia 
diagnostic assessments. 
 

Clinical Relevance— By optimising diagnostic accuracy 
against various costs (e.g. assessment administration time and 
financial budget), predictive yet practical dementia diagnostic 
assessments can be redesigned to suit clinical use.  

 

I. INTRODUCTION 

Dementia is exacerbated by gradually ageing societies and 
the current sub-optimal dementia care pathway [1]. The latter 
impacts everything from diagnosis to management of care 
(e.g. [2], [3]). Cognitive and functional assessments (CFAs) 
form a key component of the dementia diagnosis process 
within the clinical care pathway [4]. However, CFAs can vary 
in terms of diagnostic accuracy, sensitivity and specificity [4], 
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and they are not always administered in a standardised way 
across clinical practices [1]. In addition to the difficulty of 
diagnosing dementia, clinicians’ consultation time is also 
typically limited, within the order of minutes [5], [6], [7]. This 
opens up opportunities for machine automation to aid 
dementia diagnosis [1].  

Recently, there has been a rapid increase in research 
activities in dementia data science, especially on applying 
machine learning to classify (‘diagnose’) the severity of 
dementia, particularly Alzheimer’s disease (AD), which is the 
most common dementia type [1], [5] This has been facilitated 
by openly available dementia datasets [1]. Such open datasets, 
together with longitudinal and clinical datasets, often come 
with large number of variables (i.e. data features), and hence 
feature selection is often used [8].  

A practical use of feature selection would be to guide, as 
clinical decision support, effective clinical diagnosis using 
only a small subset of data features [9]. However, although 
feature selection has been used extensively in dementia data 
science [6], [9], [10], [11], the practical costs of dementia 
assessments have not been put into much consideration. As far 
as we know, within dementia data science, only one previous 
study has been identified that incorporated cost-sensitive 
feature selection methods, penalising CFA features that take 
longer to administer in the evaluation criteria [7]. A limitation 
of this work was that the hyperparameter used to weight the 
cost function in the feature selection method is non-intuitive 
and has no clear and obvious meaning to the user. 
Furthermore, the data used in that study were CFAs and 
demographics, but in clinical settings additional biological 
features may also be involved as part of the diagnostic 
assessment [1]. More importantly, additional types of costs 
(e.g. financial budgets) were not considered. For instance, the 
most accurate diagnostic methods may not be cost-effective if 
they involve, for example, very expensive neuroimaging 
scans. Hence, in more realistic budget-constrained situations, 
budget threshold(s) should be incorporated into the feature 
selection optimisation process.  
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In this work, we formally generalise a previous cost-
sensitive approach [12] to multiple cost types, while setting 
maximal total costs (e.g. maximal total cost budget). We then 
apply this generalised algorithm to an open dementia dataset, 
incorporating not only CFAs, but also various types of 
neuroimaging and other biomarker data. We then show how 
the algorithms operate in practice by using both assessment 
time and financial budget as examples for the different cost 
types. The effects of cost hyperparameters and maximal costs 
on the classification model performance will be investigated. 
Further, to encourage non-technical stakeholders to be more 
involved in the adoption of our proposed model, our 
algorithms are embedded within a user-friendly graphical user 
interface (GUI) such that specific cost values and constraints, 
and thus, the model can be edited or updated.  

II. METHODS 

A. Data Description and Cost Estimation 
We used the dataset generated by [7] for our feature 

selection. The authors used the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) open datasets 
(adni.loni.usc.edu) and combined CFA sub-features (specific 
queries) from Mini Mental State Examination (MMSE) [3], 
Montreal Cognitive Assessment (MoCA) [13], Alzheimer’s 
Disease Assessment Scale (ADAS) [2], Functional Activities 
Questionnaire (FAQ) [14], Everyday Cognition – Patient scale 
[15], Geriatric Depression Scale [16], and Neuropsychological 
Battery (NB) and used multiple methods of feature selection 
to generate a set of 35 sub-features which were frequently 
selected, and assigned time costs in seconds to these sub-
features [7]. In this dataset, Clinical Dementia Rating Sum-of-
Boxes (CDR-SB) rating was used as a measure of dementia 
severity [7]. Following [7], CDR-SB was also re-coded into 3 
categories: Cognitively Normal (CN); Mild Cognitive 
Impairment (MCI); and Alzheimer’s Disease (AD) 
(comprising mild, moderate and severe AD cases). 

In our study, high-level neuroimaging and cerebrospinal 
fluid based biomarker data was added to the dataset as proof 
of concept to investigate feature selection under multiple 
budget constraints. Financial costs for acquiring these 
biomarkers were estimated from the literature [17], [18], [19]. 
Detailed information about the data features, including 
biomarker features, and their associated time and financial 
costs, is shown in Table I in the Appendix. Note that we did 
not consider waiting time, technician time, data acquisition 
time, and biomarker data analytical time when considering the 
biomarkers. Besides, such timescales are usually much longer 
than the assessment times for administering the CFAs; these 
time costs are not fungible with the time costs for 
administering CFAs, which must take place within a brief 
clinician appointment. Hence, for simplicity and clarity, we set 
the assessment time costs of all biomarker assessment items to 
be zero. In a similar vein, the financial costs for CFAs will 
generally be much smaller than the biomarkers. Hence, we set 
the financial costs of all CFA assessment items to be zero.  

B. Cost-sensitive Feature Selection Methods 
Cost-sensitive correlation-based feature selection (CFS): 

Correlation-based feature selection (CFS) [20], [21] evaluates 
the worth of every possible subset of features by considering 
the individual predictive ability of each feature along with the 

degree of redundancy between them, with a best-first-search 
algorithm through the feature space (see Algorithm 1 below). 
The CFS algorithm finds an optimal set of features which 
correlate with the class variable and do not correlate with each 
other. It uses a "Merit" heuristic to evaluate the best feature 
set, described by 

 

𝑀𝑒𝑟𝑖𝑡 = !"!"

#!$!(!&')"""
       (1) 

where 𝑘 is the number of features in the set, 𝑟)* is the average 
feature-class correlation, and 𝑟** is the average feature-feature 
correlation. In the implementation in the FSelector package 
[21], the correlation between discrete features is measured by 
mutual information [22], and for continuous features the 
correlation coefficient is used. It can be seen that the merit 
heuristic incorporates a penalty to favour smaller sets of 
features over larger sets. The function then uses a best-first 
search to find the set of features with the highest merit. See 
Algorithm 1 below.  

Algorithm 1 CFS Using Best-First-Search Algorithm 

1. Set stopping criterion n to avoid time-consuming search of 
the whole search space 

2. Initialise a best-first search through combinations of 
features with a start state – the empty set of features 

3. Initialise an OPEN list containing the start state, a CLOSED 
list that is empty, and initialise the BEST combination as the 
start state 

4. Let S be the set of features from OPEN with the highest 
’merit’ as in Eq. (1) 

5. Remove S from OPEN and add to CLOSED 

6. Generate all the children of S by adding single features to 
S, and add each child of S to the OPEN list 

7. If Merit(S) > Merit(BEST), then set BEST to S 

8. If BEST changed in the last n iterations, return to 4. 

9. Return BEST. 

The cost-sensitive feature selection framework laid out in 
[12] was used to modify the CFS implementation in FSelector 
[21] to incorporate feature costs as detailed in [7]. Cost-
sensitive CFS incorporates a cost weighting parameter, 𝜆, 
which can be varied to reflect different values of cost 
weighting for the features. If 𝜆 is set to zero, the algorithm 
performs like a typical CFS without (time) cost. This 
modification for cost sensitivity can be generalised to any 
feature selection algorithm which has an evaluation function. 
We used CFS here as it performed better than other feature 
selection algorithms in other work with the same dataset [7]. 

Cost-sensitive CFS [12] extends the CFS algorithm by 
adding a cost penalty to the Merit function as shown:  

                𝑀𝑒𝑟𝑖𝑡 = !"!"

#!$!(!&')"""
− λ ∑ ,#

$
#%&
!

     (2) 
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where 𝐶- is the feature cost of item i, which in this case is the 
time of each assessment item, and λ is the cost weighting 
parameter which can be varied to increase or decrease the 
importance of feature cost in the merit heuristic.  

 Cost-sensitive CFS with budget thresholds: In this work, we 
have adapted cost-sensitive CFS further to incorporate a 
budget constraint as shown:  

 

𝑀𝑒𝑟𝑖𝑡

=

0, 𝑖𝑓0 𝐶-
!

-.'
> 𝐵

𝑘𝑟)*

3𝑘 + 𝑘(𝑘 − 1)𝑟**
− λ

∑ 𝐶-!
-.'

𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

 

where 𝐵 is the budget threshold for some cost type. This means 
that feature sets which exceed the budget threshold are simply 
not evaluated. If there are instead N (> 1) types of cost, then 
the merit function can be generalised as follows: 

𝑀𝑒𝑟𝑖𝑡 

=

0, 𝑖𝑓0 𝐶-
!

-.'
> 𝐵/

𝑘𝑟)*

3𝑘 + 𝑘(𝑘 − 1)𝑟**
− λ

∑ 𝐶-!
-.'

𝑘 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4) 

 

for any cost type j.  

C. Data Modelling and Testing 
The algorithm in Section II.B was implemented in R by 

adapting the code from the FSelector package [21]. The 
parameter n in the best-first search was increased from the 
default of 5 to 14 for more thorough exploration of the search 
space. The maximum and minimum values of the cost 
weighting hyperparameters 𝜆' and 𝜆0, corresponding to the 
two cost types in the data, were ascertained through trial and 
error. The budget thresholds were disabled for initial 
exploration of the data, and 𝜆' and 𝜆0 were varied from 
maximum to minimum in a stepwise manner, for a total of 176 
iterations of the algorithm with different 𝜆/ values. 

For validating the selected item sets, the data was split into 
80% training data and 20% testing data. A random forest 
model for each selected feature set was built and tuned using 
10-fold cross-validation on the training data. The resultant 
models were then tested on the withheld testing data. The 
multiclass receiver operating characteristics (ROC) area-
under-curve (AUC) of these models was then calculated by the 
process defined in [23] using the pROC package [24]. This 
method of calculating multiclass AUC extends the binary 
AUC concept to multiple classes (in our case, 3 classes) by 
calculating the pairwise AUCs of each class against every 
other class and then averaging the results. 

Both budget constraints were varied in tandem. 𝐵' was 
assigned values from 100 to 2000 in intervals of 100 in turn. 

𝐵0 was assigned the values (0, 250, 500, 750, 1000, 2000, 
2250, 2500, 2750, 3000) – every possible combination of 
financial costs in this dataset. Thus, the algorithm was run 200 
times for each selected value of 𝜆'. At a later part of the 
evaluation, the 𝜆0 parameter for financial costs was set 135 to 
0 throughout (due to its erratic relationship with financial 
budget). The 𝜆' parameter for assessment time costs was set 
to 0 for the first iteration of this experiment, and then the 
experiment was repeated twice more, once with 𝜆' set to 0.004 
(the value associated with the median selected item set) and 
once with 𝜆' set to 0.009 (the largest value that produced an 
item set with an associated AUC above 0.85). The model AUC 
associated with each item set selected in this process was 
calculated as above. 

D. GUI Development 
The method for estimating assessment item time costs used 

in [7] can be refined for future use through humans-in-the-loop 
approach. For instance, clinicians who work with dementia 
patients may have access to their own estimates of assessment 
times. It may also be the case that the financial costs of 
different dementia assessments may vary between different 
locations [25]. We developed a GUI-based sandbox-like 
toolbox using the abovementioned optimisation algorithms to 
allow non-technical users to input their own cost estimations 
and budget thresholds, build a new model, and obtain a new 
optimal set of diagnostic assessments that suit their situation 
and use. We implemented the GUI in R Shiny [26] using the 
DT package in R [27] to create an editable data table.  

 

III. RESULTS 

As proof of concept for our proposed generalised 
algorithm as described in Section II.B, we vary the cost 
weighting parameters, 𝜆' and 𝜆0, and the budget thresholds, 
𝐵' and 𝐵0, where subscripts 1 and 2 denote assessment time 
cost and financial cost, respectively. This will help determine 
whether the multiple-cost budget-constrained version of the 
cost-sensitive CFS algorithm is effective and practical.  

A.  Relationship between Assessment Time, Financial Cost 
and Classifying AD Severity 
With no budget threshold set, most of the selected item sets 

were highly predictive (high AUC values) of classifying AD 
severity (CN, MCI or AD), as can be seen in Fig. 1. Moreover, 
as financial cost decreased (lighter colours), assessment time 
increased while AD classification AUC increased before 
saturating at around 0.9. Hence, there was a trade-off between 
financial cost and assessment time, and between assessment 
time and classification AUC. The most accurate item set, 
consisting only of CFA values, achieved a multiclass AUC 
score of 0.9 (Fig. 1, farthest top-right corner), although this 
item set was very costly in terms of assessment time duration. 
Further, although the algorithm was run 176 times with 
different values of the 𝜆/.',0 hyperparameters, only 18 unique 
item sets were selected. It turned out that most of the item sets 
incorporated both CFA values and biomarker features. 
However, 3 item sets incorporated no CFA values, and had 
limited predictive value (Fig. 1, ~0 assessment time), and 3 
item sets incorporated only CFA values (Fig. 1, light yellow 
squares, with assessment times of 538, 568 and 1764 seconds).  
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Figure 1. AUC of selected item sets by assessment time cost and financial cost 
(legend).  

B. Budget Constraints More Intuitive than Cost Weighting 
Parameters 
After investigating the interplay between AD-

classification AUC, assessment time and financial cost, we 
next seek to understand how the hyperparameters 𝜆/.',0 can 
affect the total assessment time and total financial cost. We 
found that varying the 𝜆' hyperparameter for the assessment 
time cost budget generally led to a decrease in the total 
assessment time for selected CFA items, but the relationship 
was nonlinear nor well predictable (Fig. 2a). Similarly, by 
varying the 𝜆0 hyperparameter for the financial cost budget, 
we found no apparent trend with regards to the total financial 
costs in the selected item set (Fig. 2b). Thus, while the use 
and value of cost-sensitive feature selection was apparent 
from the results, the 𝜆 hyperparameters for cost weighting 
were imprecise and inefficient to optimise the algorithm, 
especially when multiple budget constraints must be 
considered.  

Instead of using the hyperparameters 𝜆/ to control the 
feature selection algorithm, we now used the total budget 
thresholds, varying 𝐵' from a minimum of 100 to a maximum 
of 2000, and varying 𝐵0 from a minimum of 0 to a maximum 
of 3000. We found that it was possible to control the 
algorithm easily and intuitively. In particular, the algorithm 
consistently returned results close to the user-specified budget 
threshold on both budgets (Figs. 2c and d). In fact, there is an 
almost one-to-one linear relationship between user-specified 
total time (financial) budget and the selected total time (total 
financial cost).  

 

 
Figure 2. Evaluation of total assessment time and total financial cost with 
respect to their corresponding hyperparameters 𝜆! and 𝜆", and 𝐵! and 𝐵". (a) 
Total assessment time cost generally decreases when the cost-weighting 

hyperparameter 𝜆! increases, but the relationship is not monotonic but 
fluctuates. (b) Almost random relationship betwen total financial cost and 
cost-weighting hyperparameter 𝜆". (c) There is an almost one-to-one linear 
relationship between between the 𝐵! value supplied by the user and the total 
assessment time cost. (d) The relationship between 𝐵" and the total financial 
cost is exact and direct.  

 

C. Cost Weighting Parameters Provide Variability in 
Assessment Time, Classification Accuracy and Feature 
Types 
As the 𝜆0 hyperparameter for adjusting sensitivity to 

financial costs appeared to have little effect on the algorithm, 
as shown in Fig. 2b, this parameter was set to 0 and not 
investigated henceforth. To examine the impact of the budget 
threshold parameter, the budget thresholds for both cost types 
were varied simultaneously in a stepwise manner as described 
in Section II.C. We then varied hyperparameter 𝜆' with 
respect to the assessment time costs and model classification. 

As illustrated in Fig. 3, we found 𝜆' to have a strong effect 
on both the classification AUC and assessment time. For 
instance, when 𝜆' was set to 0 (Fig. 3, circles), the algorithm 
found relatively few item sets that fit within the time budget 
constraints (18 unique item sets were found from 200 
variations of budget constraints, all of which consisted only 
of CFA items). At the other end, when 𝜆' was set to a high 
value of 0.007 (Fig. 3, squares) again relatively few item sets 
were found (9 item sets) and with the exception of one 
instance, which selected a single CFA assessment (RAV 
LT:immediate), only biomarker features were selected.  

With an intermediate value of 𝜆'(= 0.004), the algorithm 
generated a larger selection of item sets, selecting 50 different 
item sets containing both neuromarker and CFA assessments, 
out of the 200 variations of budget constraints that were 
tested. Therefore, even when budget constraints are specified, 
there is an important role for the cost-weighting 
hyperparameters. Non-optimal values of these parameters 
produce limited options for the user, as shown by the circle 
and square markers in Fig. 3. The intermediate value of 𝜆' 
appears to introduce more variety into the feature selection 
procedure. It should also be noted that without budget 
constraints, when only 𝜆' and 𝜆0 were varied, 18 distinct 
feature sets were selected from 176 iterations of the 
algorithm. Here, 50 distinct sets were selected from 200 
iterations of the algorithm. The introduction of budget 
constraints has also increased the variety of selected item sets.  

It should be noted that the range of AUCs of feature sets 
selected under the budget-constrained condition were 
comparable to the range of AUCs shown in Fig. 1. Hence, it 
is reasonable to conclude that the presence of the budget 
condition imposes little penalty on the effectiveness of the 
feature selection algorithm. 

Unsurprisingly, some of the selected feature sets produced 
much greater diagnostic accuracy, as measured by multiclass 
AUC, than others. The four biomarker and neuromarker 
features, when not combined with CFA items, were not 
diagnostically accurate (AUC of 0.72) with an associated 
financial cost of 3000 (Fig. 3, top left square) The maximal 
AUC of 0.902 was achieved when 𝜆' was set to 0, i.e. no cost 
weighting on assessment time. Here, an item set consisting 
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only of CFA features with an associated total assessment time 
of 1764 seconds (24 minutes) was selected (Fig. 3, top right 
circle.) When assessment time was considered by the feature 
selection evaluation function, with 𝜆' set to 0.004, (Fig. 3, 
triangles) the maximal AUC achieved was 0.890, with an 
associated assessment time cost of 448 seconds and financial 
cost of 2250 (top-most purple triangles with assessment time 
of 448 seconds).  

Figure 3. AUCs and associated costs of budget-constrained feature sets, with 
values of 𝜆! set to 0 (circles), 0.004 (triangles,) and 0.007 (squares), and 
𝜆" set to 0. The relationship between budget constraints specified by user 
and the associated costs is shown in Fig. 2.  
 

D. User-friendly GUI for Humans-in-the-loop Modelling 
Based on the GUI application and associated code 

developed by [7], and licensed under the Academic Free 
License 3.0, we developed a user-interface GUI for selecting 
diagnostic items under multiple budget constraints. This 
software application is made available at https://niamh-
m.shinyapps.io/DementiaPathway/. 

An overall view of the application is shown in Figure 4a. 
The application is navigated through a tabbing system. Upon 
opening the application, there is a tab that displays a selection 
box (Fig. 4a, right) which allows users to choose any subset 
of the assessment items in our dataset for analysis. The cost 
weighting parameters for assessment time costs and financial 
costs can be varied with slider inputs (Fig. 4a, left). 
Alternatively, assessment time constraints and budget 
constraints may be entered via text inputs within the textboxes 
(Fig. 4a, left). 

The selected items are displayed in an editable data table 
(Fig. 4b) in another tab, in which the user can make further 
edits to the time costs or financial costs associated with these 
features in accordance with their expertise. Assessment time 
constraints and budget constraints can be entered via text 
inputs within a textbox. The algorithm is activated with a 
"Run Tests" button (Fig. 4a, left). Feature selection is 
performed using user-chosen set of parameters. The resulting 
set of features are used to build an RF classifier on a random 
80% of the training data. The multiclass AUC of the model 
will be calculated on the remaining 20%. Finally, the AUC, 
total assessment costs, total financial costs and the feature 
importance in the RF model of all selected features can then 
be displayed in the Results tab (Fig. 4c).  

IV. DISCUSSION 

On the one hand, many machine learning algorithms, 
especially in dementia data science research, ignore real-world 
practical constraints [7]. On the other hand, cost-benefit 
studies in healthcare, particularly on dementia, do not involve 
machine learning algorithms [25], [28]. In this work, we bridge 
this gap by developing machine-learning for classifying AD 
severity incorporating practical, real-world costs and budget 
constraints.  

 

 
Figure 4. A GUI for stakeholders to perform budget-constrained feature 
selection. (a)-(c): Steps for editing, selecting and output. (a) Selection of 
assessment items and adjusting hyperparameters. (b) Edit various costs based 
on user’s perspective. (c) Display selected features and total costs.  

In this paper, we have generalised an optimisation 
algorithm for feature selection involving multiple cost types 
and constraints and demonstrated its effectiveness in 
classifying AD severity using an open-source data. As proof 
of concept, we included data from CFAs with associated 
assessment time costs, and data from neuroimaging and CSF-
based biomarkers with associated financial costs. Building on 
top of this multi-cost-based optimisation algorithm, we have 
developed a user-friendly GUI sandbox-like tool for non-
technical stakeholders to set multiple budget limits and 
assessment time costs depending on their expertise and 
financial budgets. As outcome of this tool, the optimal subsets 
of AD assessment features will be suggested. 

Algorithm wise, we have extended a previous framework 
for cost-sensitive feature selection by [12] and the time-cost 
assessment approach by [7] and developed a more practical 
and intuitive algorithm through our proposed budget-threshold 
implementation. In fact, we propose here that the extended 
algorithm can most effectively be deployed by specifying the 
cost budget constraints first and then fine tuning the cost-
weighting (𝜆/) hyperparameters.  

It should be noted that in this work, although the maximal 
AD severity classification (AUC) accuracy was only very 
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slightly higher than that of [7], even with additional data 
features (neuroimaging markers and CSF-based biomarkers) 
incorporated, our approach allows the possibility of selecting 
different data types. For instance, when weight of assessment 
time costs is very high (e.g. too many patients for consultation) 
then biomarker features are suggested.  

A limitation of this work is the use of coarse-grained 
neuroimaging. While CFA data outperformed neuroimaging 
data in this dataset, this result should not be generalised. The 
CFA data was previously selected using feature selection [7], 
while instead of using complex neuroimaging data we have 
used only a single representative value for the MRI and FDG-
PET scans, as proof of concept for the multiple cost 
constraints. It should be noted that diagnosis based on 
neuroimaging data can be highly accurate [29], [30]. Future 
work will utilise more detailed neuroimaging data, and a larger 
selection of CFA assessments. Another key limitation of this 
work is that group-based feature selection is not used. In more 
realistic situations, many data features (e.g. all the information 
associated with a particular neuroimaging scan) can be 
acquired with a single cost expenditure. To allow for proper 
cost-sensitive feature selection on neuroimaging and 
biomarker data, group-based cost-sensitive feature selection 
will be implemented. Further, data features and their costs may 
not be independent of each other, as we have assumed in this 
work, but may have more complex interrelationships.  

Finally, we have implemented a GUI sandbox-like tool on 
top of our proposed algorithm, for easy accessibility by a wide 
variety of users. In future work, this application tool will be 
made available to various stakeholders and feedback will be 
used to further improve the application. As the GUI tool is 
sufficiently flexible, future work may incorporate other 
machine learning models including interpretable/explainable 
algorithms and data types, and extended to other domains (e.g. 
other diseases). In general, we believe that such tool can 
provide a platform for bridging the gap between machine 
learning research and clinical uptake through the humans-in-
the-loop route.  

APPENDIX 

APPENDIX TABLE I 

FEATURES AND ASSOCIATED COSTS. 

Feature 
Name Description 

Time 
Cost 
(sec) 

Financi
al Cost 
(£) 

 Biomarker Features   

TAU.bl Tau levels (CSF) 0 250 

ABETA.bl Amyloid-Beta levels (CSF) 0 250 

FDG.bl 
Average FDG-PET (angular, 
temporal, posterior cingulate) 0 2000 

Entorhinal.bl Entorhinal Atrophy (MRI) 0 500 
RAVLT. 
immediate 

Rey Auditory Verbal Learning 
Test - Immediate Total 900 0 

 
CFA Features 

FAQBEVG 
Heating water, making a cup of 
coffee, turning off the stove. 60 0 

FAQEVENT Keeping track of current events. 60 0 

FAQFINAN 
Writing checks, paying bills, or 
balancing checkbook. 60 0 

FAQFORM 
Assembling tax records, 
business affairs, or other papers. 60 0 

FAQGAME 

Playing a game of skill such as 
bridge or chess, working on a 
hobby. 60 0 

FAQMEAL Preparing a balanced meal. 60 0 

FAQREM 

Remembering appointments, 
family occasions, holidays, 
medications. 60 0 

FAQSHOP 

Shopping alone 
(clothes/household 
necessities/groceries). 60 0 

FAQTRAVL 

Traveling out of the 
neighborhood, driving, or 
arranging to take public 
transportation. 60 0 

FAQTV 

Paying attention to/ 
understanding TV 
program/book/magazine. 60 0 

MMDATE What is today's date? 30 0 

MMMONTH What is the month? 30 0 

MMobjects 

Naming Objects - 
Immediate/Delayed Total 
(composite variable) 300 0 

Q4SCORE Delayed Word Recall 266 0 

Q1SCORE Word Recall Task 266 0 

Q7SCORE Orientation (date/place etc) 266 0 

Q8SCORE Word Recognition 266 0 

Q13SCORE Number Cancellation 266 0 
CATANIMS
C 

Category Fluency (Animals) - 
Total Correct 150 0 

TRABSCOR Trails B 200 0 

BNTTOTAL 
Boston Naming Test- Total 
Score 600 0 

GDMEMOR
Y 

Do you feel you have more 
problems with memory than 
most? 28 0 

LANG6 
Understanding the point of what 
other people are trying to say. 60 0 

LANG9 
Understanding spoken directions 
or instructions. 60 0 

MEMORY1 
Remembering a few shopping 
items without a list. 60 0 

MEMORY2 
Remembering things that 
happened recently. 60 0 

MEMORY3 
Recalling conversations a few 
days later. 60 0 

MEMORY5 Repeating stories or questions. 60 0 

MEMORY6 
Remembering the current date or 
day of the week. 60 0 

ORGAN2 
Balancing the checkbook 
without error. 60 0 

ORGAN3 
Keeping financial records 
organized. 60 0 

PLAN1 
Planning a sequence of stops on 
a shopping trip. 60 0 

PLAN4 
Thinking things through before 
acting. 60 0 

PLAN5 Thinking ahead. 60 0 
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