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Abstract— Maintaining adequate hydration is important
for health. Inadequate liquid intake can cause dehydration
problems. Despite the increasing development of liquid intake
monitoring, there are still open challenges in drinking detection
under free-living conditions. This paper proposes an automatic
liquid intake monitoring system comprised of wrist-worn
Inertial Measurement Units (IMUs) to recognize drinking
gesture in free-living environments. We build an end-to-end
approach for drinking gesture detection by employing a novel
multi-stage temporal convolutional network (MS-TCN). Two
datasets are collected in this research, one contains 8.9 hours
data from 13 participants in semi-controlled environments,
the other one contains 45.2 hours data from 7 participants in
free-living environments. The Leave-One-Subject-Out (LOSO)
evaluation shows that this method achieves a segmental
F1-score of 0.943 and 0.900 in the semi-controlled and
free-living datasets, respectively. The results also indicate
that our approach outperforms the convolutional neural
network and long-short-term-memory network combined
model (CNN-LSTM) on our datasets. The dataset used in
this paper is available at https://github.com/Pituohai/drinking-
gesture-dataset/.

Clinical relevance— This automatic liquid intake monitoring
system can detect drinking gesture in daily life. It has the
potential to be used to record the frequency of drinking water
for at-risk elderly or patients in the hospital.

I. INTRODUCTION

Water balance is essential for health and life, as the
principal constituent of the human body is water [1], [2].
However, drinking water is frequently overlooked due to the
fast pace of work in daily life. Inadequate water intake is one
of the common causes of dehydration which is associated
with multiple acute and chronic diseases [3], [4]. Older
people have a higher risk of dehydration because of the
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diminution of the sense of thirst, the reduction of water
proportions in the body, and the decrease of mobility [5].

To prevent dehydration, water intake monitoring is critical.
Water intake records mainly rely on self-report logs clini-
cally. This approach is time-consuming and is prone to mak-
ing mistakes. An automatic liquid intake monitoring system
consisting of sensors and machine learning techniques can
address this issue. The systems can be broadly categorized
into two groups: ambient-based and wearable-based systems.

The ambient-based systems utilize cameras fixed in envi-
ronments (vision-based) or sensors embedded in containers
(container-based) [6]–[8]. The wearable-based implementa-
tions detect water intake by acoustic sensors or IMUs [9]–
[12]. Gomes and Sousa [11] developed an approach to detect
hand to mouth (HtM) movement using a wrist-worn IMU
and a random forest (RF) classifier. This approach detected
HtM with an F1-score of 85% in free-living environments
(Eating activities were excluded in their dataset). Senyurek
et al. [13] proposed a convolutional neural network and long-
short-term-memory network combined model (CNN-LSTM)
for detecting drinking gesture using IMU data acquired from
smartwatches. This approach achieved an F1-score of 87%
on a publicly available dataset collected from 11 participants
in the Leave-One-Subject-Out (LOSO) scheme. Their data
were collected in group conversation scenarios.

The performance of methods using wrist-worn IMUs is
promising in constrained or semi-constrained environments,
e.g., laboratory conditions, limited duration, or limited type
of daily activity. A more challenging problem arises when
dealing with practical scenarios. In free-living environments,
drinking is a sparse activity that distributes all over the day
(the duration ratio is less than 1/100) [14]. The drinking
gesture detection in a free-living environment, which is
characterized by a longer period and more complex null
class, is still an open question. The drinking gesture is
defined as a movement from raising the container to the
mouth until putting away the container and the null class
embodies all the other non-drinking activities in free-living
environments.

This paper aims to detect drinking gesture in free-living
environments by using wrist-mounted IMU sensors. To this
end, two datasets are collected: one contains 8.9 hours data
from 13 participants in semi-controlled environments, the
other one contains 45.2 hours data from 7 participants in
the free-living environments. We propose an end to end
approach by applying a novel multi-stage temporal convo-
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Fig. 1. Example of IMU sensor and experiment scene. Panel (a) indicates
the coordinate frame of IMU, panel (b) presents the location of the IMU
on hands, and panel (c) shows the scene of the experiment.

lutional network (MS-TCN) to detect the drinking gesture
from IMU signals. Additionally, this method can segment
the time interval of each drinking gesture.

II. METHODS

A. Data Collection

The off-the-shelf IMU sensor Shimmer31 is used in this
study. The Shimmer3 IMU contains a 3-axis accelerometer
unit, a 3-axis gyroscope unit, and a 3-axis magnetometer
unit. The signals from the accelerometer and gyroscope were
used in this study, hence 6 Degrees-of-Freedom (6 DoF).
Two IMUs were attached to the left and right wrists of the
participant, as presented in Fig. 1. The sampling frequency
is 64 Hz. During the experiment, the data were stored in
the SD card embedded in the sensor. After the experiment,
the data were transferred to a laptop via Shimmer docker
and the software Consensys2. The ethics committee of KU
Leuven has approved this research (Reference number: G-
2021-4025-R4), and the written informed consent from each
participant was collected. Two datasets were collected in the
experiment:

1) DX-I: The first dataset was collected in semi-controlled
environments from 13 participants. The total duration of this
dataset is 8.9 hours. The average duration of each participant
is 35.6±28.6 min. In each drinking session, Water/tea/cola
was provided to participants. A camera was used to record
the entire drinking session as the ground truth annotation.
They were asked to drink while sitting on chairs and a sofa,
and also drink while standing. Both hands could be used to
take the cups and drink, no matter whether the participant
is a left-hander or a right-hander. The data were collected
in the real work environment or home environment. They
can work on a laptop, talk, walk, eat chips, watch TV or
smoke. To collect more drinking gestures in this session, they
were required to drink with a higher frequency. This dataset
contains 410 drinking gestures (left hand : right hand : two
hands = 101:266:43).

2) DX-II: The second dataset was collected in free-living
environments. The data were taken at the locations that are
preferred by the participants, including work place and home.
Seven participants took part in this experiment. Three out of

1https://shimmersensing.com/product/shimmer3-imu-unit/
2https://shimmersensing.com/product/consensyspro-software/

the seven in DX-II also participated in DX-I. Each participant
joined the experiment for 6.5±2.0 consecutive hours (from
morning to afternoon or evening). The total duration of this
dataset is 45.2 hours. The participants can drink water at their
own pace. Each session contains daily life-related activities
including, but not limited to, drinking water, eating snacks,
eating lunch, working with laptops, watching smartphones
and walking. A camera was placed on the desk in the office
or at home to capture the drinking gesture. In total, there
are 304 drinking gestures in DX-II dataset (left hand : right
hand : two hands = 142:152:10).

B. Data Preprocessing

1) Downsampling and annotation: The sampling fre-
quency of the data is 64Hz, which results in high redundancy
for signal processing and requires a high computation cost;
hence, the data were down-sampled to 16Hz. The data from
each hand is annotated into two classes: Drinking (labelled
as 1) and Null (labelled as 0). The movement from raising
the left/right hand to the mouth with a container until
putting away the container from the mouth is considered
as a drinking gesture. The Null class contains all the other
daily activities during the experiment. ELAN [15] was used
to annotate the IMU signal. The total time spent on non-
drinking activities was much longer than the time consumed
on the drinking activity, which leads to the data being
unbalanced, especially for dataset DX-II. The duration ratio
of the annotated drinking gestures to null class is 1/27 and
1/196 in DX-I and DX-II, respectively. Fig. 2 shows the
example of the annotated signal.

2) Hand mirroring: It is common for people to drink
water using either of their hands to hold the container. That
is the reason we employ IMUs on left and right wrists.
We considered the participant’s right hand as the reference
and adjusted the orientation of the left-hand IMU coordinate
frame to the right-hand reference [16].

H̃r = Hl ×


−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 (1)

Where Hl is the original left-hand IMU signal and H̃r is
the mirrored data by reversing the direction of ax, gy and
gz from the left hand. Fig. 3 presents the example of hand
mirroring.

C. MS-TCN Model Architecture

An MS-TCN [17] is established by stacking several single-
stage TCNs (SS-TCN) [18] sequentially. Lea at al. [18] first
developed the SS-TCN by utilizing dilated convolution and
skip connection to recognize long-range temporal sequences
in vision-based action segmentation. To date, it has been
applied to the healthcare and disease diagnosis domain to
process time-series signals [19], [20]. The experiment [21]
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(a) (b)

Raise the cup

Sip

Put away the cup

Raise 
the cup

Sip Put away
the cup

Fig. 2. Example of drinking using the right hand in free living environments. Subfigure (a) presents the 3 min segment which contains two drinking
gestures (highlighted in grey box). Subfigure (b) shows the detail waveform of a drinking gesture from the right hand.

(a) (b)

Fig. 3. Example of left hand signal transform to right hand signal. Panel
(a) is the initial left hand signal, panel (b) is the mirrored signal. The grey
section represents one drinking gesture.

demonstrates its outstanding ability on time-series signal
processing.

Fig. 4 shows the structure of the model. The first stage
is the prediction generation stage, which takes each sample
points of IMU signals as input and generates the initial
prediction as output. The subsequent stages are refinement
stages which process the prediction generated by the previous
stage and refine it. It is to be noted that the input channels
in the first stage are different to those of the refinement
stages. The input channel in the first stage is the dimension
of the input IMU signal (6 dimensions), and the channel in
the remaining stages is defined by the number of classes (2
classes).

In every stage, the SS-TCN is comprised of a series of
L dilated residual layers (L is the number of layers). The
dilation factor is doubled at each layer such that dl = 2l−1

(1 ≤ l ≤ L). Each dilated residual layer consists of dilated
convolutions with RELU activation, a residual connection
that adds the input of the current layer and the convolution
result together, as shown in Fig. 5. The SS-TCN in Fig. 4 is
a non-causal type, which means the result depends not only
on the data in the past, but also on the data in the future.
After the last dilated residual layer, a softmax activation
is applied to generate prediction according to the feature
extracted from previous layers. The length of the receptive
field for non-causal SS-TCN (kernal size is 3) is calculated

Prediction

Refinement 
Stages

Prediction 
Generation 

Stage

IMU

Stage 1

Stage n Non-causal  SS-TCN

Non-causal  SS-TCN

prediction ground truth drinking gesture

𝑑 =1

𝑑 =2

𝑑 =4

𝑑 =1

𝑑 =2

𝑑 =4

Fig. 4. The framework of drinking gesture detection. From top to
bottom, the data from IMU are sent into the SS-TCN’s input layer firstly.
Secondly, a dilated non-causal MS-TCN model architecture is presented.
The initial prediction sequence generated from the first stage is refined by
the subsequent stages. The black line indicates the refined predictions, while
the grey section represents the ground truth drinking gesture. In the figure,
the dilation factor of each layer is shown by dl(l = 1, 2, 3...L).

as r(L) = 2L+1 − 1, where L represents the depth of the
network (number of layers) in each stage.

The loss function of the MS-TCN model is a combination
of the classification loss and the smoothing loss from each
stage. Firstly, a cross entropy loss is applied as the classifi-
cation loss of each stage:

Lcls =
1

T

∑
t,c

−yt,clog(ŷt,c) (2)

where yt,c represents the ground truth label, ŷt,c is the
predicted output for class c at time t.

Secondly, a truncated mean squared error (MSE) over
sample-wise log-probabilities [17] is used as the smoothing
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loss:
LT−MSE =

1

TC

∑
t,c

△̃2
t,c (3)

△̃t,c =

{
△t,c : △t,c ≤ τ

τ : otherwise
(4)

△t,c = |log(ŷt,c)− log(ŷt−1,c)| (5)

where T is the temporal length of data, C is the number of
classes, and ŷt,c is the probability of class c at time t.

The complete model loss L is obtained to combine the
two types of loss :

Ln = Lcls + λLT−MSE (6)

L =
∑
n

Ln (7)

where Ln is the loss at stage n, λ is a parameter to determine
the weights of the two losses. We select τ = 4 and λ = 0.15
for the loss function according to [17].

We adapted MS-TCN2 [17] to implement the 2-stage non-
causal MS-TCN. There are 128 filters in each layer, and
the kernel size is 3. The 30% dropout is applied after each
layer. According to experiments, the depth in each stage is
9 layers, so the receptive field is 1023 sample points. An
Adam optimizer with a learning rate of 0.0005 is applied to
train the model. It should be noted that there is a time delay
for prediction according to its non-causal architecture. The
time delay is obtained by taking half of the receptive field
divided by the sampling frequency (0.5×1023/16=32s).

D. Post-Processing

The outputs from the MS-TCN model are predictions on
each single hand. If the participant uses two hands to drink
simultaneously, the corresponding segments from both hands
will be labelled as 1. To eliminate the repetitive counting, an
OR operator is used to produce the final prediction.

E. Evaluation Scheme

The segmental F1-score is applied to assess the perfor-
mance [17], [18]. In order to calculate the segmental F1-
score, the intersection over union (IoU) of each predicted
drinking gesture is first calculated. The IoU is defined as
A∩B
A∪B , the overlap ratio between the time intervals of the
ground truth segment (A) and the predicted segment (B). Fig.
6 depicts the definition of True Positive (TP), False Negative
(FN) and False Positive (FP) in the segment-wise evaluation
scheme. If a segment’s IoU is higher than a selected threshold
k, it is considered as a TP (Fig. 6 TP1), otherwise it is an
FN segment (Fig. 6 FN1) or FP segment (Fig. 6 FP1). The
decision tree is as follows:

Segment =


TP, IoU ≥ k

FP, IoU < k, lengthgt < lengthp

FN, IoU < k, lengthgt > lengthp

(8)

Where lengthgt and lengthp are the temporal lengths of
the ground truth drinking gesture and predicted drinking

Basic dilated 
conv layer

1×1 conv 
(optional)

+

RELU

Input

Output

Fig. 5. The architectural elements of a dilated residual layer. In addition to
the residual connection, an 1×1 convolution is employed if the current layer
is the first layer from first stage (Input layer). In that case, the dimension
of the input is different to that of the output after the RELU activation, the
1×1 convolution can adjust it to the same dimension to enable the residual
connection.

FN1 FP1 TP1

TP2 FP2 TP3 FN2 FP3 FN3

Ground truth 
drinking gesture

Predicted drinking 
gesture IoU threshold: k=0.5

Fig. 6. Examples of the segment-wise evaluation. The threshold k is 0.5,
if the calculated IoU is under 0.5, then comparing the length of the ground
truth and prediction, FN1 is under-segmentation, FP1 is over-segmentation.
The IoU of the third case is high than 0.5, so it is TP1. If one ground truth
segment spans two predicted segments, we only count one, so there is 1
TP2 and 1 FP2. Similarly, there is 1 TP3 and 1 FN2 for the fifth case. If
there is a predicted segment without a ground truth segment or a ground
truth segment without a predicted segment, then there is 1 FP3 or 1 FN3.

gesture, respectively. Three thresholds k are selected as 0.1,
0.25 and 0.5 according to [17], [18]. Furthermore, if more
than one predicted segments exist within the interval of a
single ground truth drinking gesture, only one is counted
as a TP, while all others are FP (Fig. 6 TP2 and FP2).
Conversely, if a predicted segment spans multiple ground
truth drinking gestures, only one counts as TP, all others
are considered as FN (Fig. 6 TP3 and FN2). The segmental
F1-score is calculated as 2TP

2TP+FP+FN . The advantages of
the segment-wise evaluation scheme are twofold. Firstly, it
penalizes over-segmentation errors (Fig. 6 FP1) and under-
segmentation errors (Fig. 6 FN1); secondly, it allows minor
temporal shifts between ground truth and prediction, which
may be caused by annotation variability.

III. RESULTS AND DISCUSSION

We performed two sets of experiments in this study.
We first applied the MS-TCN model on DX-I and DX-
II separately using LOSO cross-validation to evaluate the
performance in semi-controlled environments and free-living
environments. Then the CNN-LSTM approach from [13]
was applied to our datasets as the benchmark. Table I
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TABLE I
SEGMENT-WISE PERFORMANCE WITH DIFFERENT MODELS ON TWO COLLECTED DATASETS.

Dataset Model k = 0.1 k = 0.25 k = 0.5
TP FP FN F1-score TP FP FN F1-score TP FP FN F1-score

DX-I CNN-LSTM [13] 402 74 8 0.907 395 75 14 0.899 380 77 27 0.880
MS-TCN 401 28 9 0.956 400 29 9 0.955 391 32 15 0.943

DX-II CNN-LSTM [13] 292 84 12 0.859 280 85 23 0.838 258 85 45 0.799
MS-TCN 294 34 10 0.930 286 37 15 0.917 277 38 25 0.900

presents the performance of segment-wise evaluation with
three thresholds (k=0.1, 0.25, and 0.5). The proposed method
outperforms the CNN-LSTM approach on two datasets.
When k=0.5, the F1-score for CNN-LSTM is 0.880 in semi-
controlled environments, lower than the F1-score for MS-
TCN (0.943). The performance reduction for CNN-LSTM
in free-living environments is significant (0.880→0.799),
whereas the MS-TCN model obtains a much higher F1-
score of 0.900. The number of FP segments is larger than
that of FN segments on both datasets. By investigating the
corresponding video and wrong predictions, we found that
the model tends to recognize some eating gestures (i.e.,
eating food with a hand) as drinking gestures. The CNN-
LSTM model suffers more on this.

IV. CONCLUSION

In this paper, we explored the MS-TCN model to detect
drinking gesture in free-living environments via two IMU
wristbands. The model was evaluated on two datasets. The
first dataset collected in semi-controlled conditions and the
second dataset collected in free-living environments were
used to evaluate the model’s performance. Experimental
results show that the MS-TCN model has a good capability
to detect drinking gesture in long-term free-living environ-
ments. The limitation of our approach is its inability to assess
the volume of consumed water. In the future, we plan to
collect more data in free-living environments to validate our
model and apply our approach on public available dataset to
further evaluate the performance.
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