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Abstract— Two major challenges in applying deep learning
to develop a computer-aided diagnosis of fundus images
are the lack of enough labeled data and legal issues with
patient privacy. Various efforts are being made to increase
the amount of data either by augmenting training images
or by synthesizing realistic-looking fundus images. However,
augmentation is limited by the amount of available data
and it does not address the patient privacy concern. In this
paper, we propose a Generative Adversarial Network-based
(GAN-based) fundus image synthesis method (Fundus GAN)
that generates synthetic training images to solve the above
problems. Fundus GAN is an improved way of generating
retinal images by following a two-step generation process
which involves first training a segmentation network to extract
the vessel tree followed by vessel tree to fundus image-to-image
translation using unsupervised generative attention networks.
Our results show that the proposed Fundus GAN outperforms
state of the art methods in different evaluation metrics. Our
results also validate that generated retinal images can be
used to train retinal image classifiers for eye diseases diagnosis.

Clinical relevance— Our proposed method Fundus GAN
helps in solving the shortage of patient privacy-preserving
training data in developing algorithms for automating image-
based eye disease diagnosis. The proposed two-step GAN-
based image synthesis can be used to improve the classification
accuracy of retinal image classifiers without compromising the
privacy of the patient.

I. INTRODUCTION

The main motivation of this research is to contribute to

solving the problem of the shortage of ophthalmologists in

Africa by implementing a robust image classifier for the au-

tomatic diagnosis of eye diseases that can reduce the burden

on the ophthalmologists by providing initial screening. In

Africa, it is known that there is a very low medical doctor to

population ratio. When it comes to eye doctors, this ratio is

even lower with 2.24 ophthalmologists per million people

in sub-Saharan Africa (SSA) [12]. This problem can be

mitigated by leveraging the latest machine learning (ML)

advancements to automate initial eye screening and reduce

the need for medical experts. However, getting annotated

data to train ML systems is challenging due to the high

cost of labeling data and the issue of patient privacy. Our

proposed method focuses on solving the shortage of training

data by generating synthetic retinal images that can be used

to train ML systems. Also, since the synthetic retinal images
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are artificially created, they do not come from any particular

patients, thus allaying patient privacy concerns.

The imaging process whereby a two-dimensional repre-

sentation of a three-dimensional retina is obtained by using

reflected light is called fundus imaging [2]. The image

obtained from this process is known as fundus image. In

this paper, we use the word fundus image, retinal image and

retinal fundus image synonymously. In retinal image analysis

applications, the availability of high-quality fundus images is

becoming increasingly critical [1] to build practical image-

based eye disease classifiers. However, annotated retinal

images are not available in sufficient amount. As a result,

generating synthetic fundus images has drawn attention in

recent years and some works have been done in the area of

synthesizing realistic-looking medical image data for retinal

image diagnosis.

Before the introduction of General Adversarial Networks

(GANs) [11], synthesizing realistic retinal images was at-

tempted by using a complex mathematical model of the eye

anatomy [3], [15]. [4] used a pair of retinal fundus images

with vessel tree segmentation to synthesize color retinal

images. The vessel tree was obtained using UNet [7] and

then this vessel tree was used to learn a mapping to retinal

image using image-to-image translation [16]. In their follow-

up work, [6] used an adversarial autoencoder to synthesize

the retinal vessel network and used this vessel map to

generate retinal image using GAN. Similarly, [14] trained

DCGAN [13] to generate vascular structure from noise and

generated the corresponding fundus image using cGAN [16].

In another work, [3] implemented a method of generating

fundus images from binary segmentation masks and then

[17] presented a synthetic retinal image dataset generated

using a variant of a gated recurrent unit [18]. Likewise, [5]

proposed MI-GAN to generate synthetic medical images and

their segmented masks.

However, the retinal images generated lack enough blood

micro-vessel details. The results obtained also suffer from

problems including having inconsistent diameter and geom-

etry of optical disk and macula, abnormal interruption, and

lack of enough details to distinguish between veins and

arteries [6]. These are critical features of the retina in a

clinical context if synthetic images are going to be used in

practice. The synthesized images in most of the methods

were evaluated using segmentation performance [3] and

traditional GAN metrics only. To address these challenges,

we design Fundus GAN, a two-stage Generative Adversarial

Network (GAN) for high-quality retinal image synthesis.

Inspired by the effectiveness of two-stage training for gen-

2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC)
Scottish Event Campus, Glasgow, UK, July 11-15, 2022

This work is licensed under a Creative Commons Attribution 3.0 License.
For more information, see http://creativecommons.org/licenses/by/3.0/

2185

20
22

 4
4t

h 
An

nu
al

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

BC
) |

 9
78

-1
-7

28
1-

27
82

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
EM

BC
48

22
9.

20
22

.9
87

17
71



erating high-quality fundus images for segmentation tasks,

we adopt the technique of two-stage training for generating

fundus images for training image classifiers. Specifically,

we utilize a patch-level modified version of UNet (PUNet-

33) based on [7] for generating the vessel tree. The vessel

tree is then converted to a fundus image using image-to-

image translation. In recent image-to-image translation tasks,

unsupervised generative attention networks with adaptive

layer-instance normalization technique [8] have exhibited

superior results in different domains including fundus and

angiography generation. We adopt this technique for the

challenge of vessel tree to fundus image translation. The

segmentation model is compared qualitatively and quanti-

tatively to different methods. We also validated the resulting

synthesized images by using them as training data for a

retinal image-based eye diseases classifier. This shows that

Fundus GAN can be potentially used to synthesize retinal

images to be used in increasing the number of retinal images

available for training eye diseases classifiers. The main

contributions of this paper are as follows:

1) Patch-level deep layered UNet (PUNet-33) segmenta-

tion network for segmenting retinal images.

2) Based on unsupervised generative attention networks

with adaptive layer-instance normalization for image-

to-image translation, we propose a vessel tree to fundus

image translation.

3) With PUNet-33 followed by vessel tree to fundus

image translation, we build a two-stage retinal image

generation network for generating retinal images with

different medical conditions, healthy or with different

pathological cases.

The rest of the paper is organized as follows. Section II

describes our materials and methods. In Section III and

Section IV, our experimentation and results are discussed,

while section V concludes the paper.

II. MATERIALS AND METHODS

A. Dataset

The dataset includes three groups for training and testing

segmentation, image-to-image translation, and classification

models. For training and validating PUNet-33, four publicly

available datasets (details provided in Table I), DRIVE [19],

CHASE DB1 [22], STARE [23], and HRF [21] are prepro-

cessed to get images that are cropped into smaller image

patches with a stride. The second stage of Fundus GAN,

image-to-image translation, is also trained and validated

using those datasets with their vessel structure.

B. Dataset Pre-processing (Image Patches)

In order to train and validate the model with multiple

images, overlapping image patches with a stride of s and

image patch resolution of patch dim are used from CHASE-

DB1 [22], DRIVE [19], STARE [23], and HRF [21] datasets.

As a result, the total images used are

npatches = n(
width− patch dim

s
+1)(

height − patch dim

s
+1)

(1)

TABLE I

DATASET: NUMBER OF IMAGE PATCHES FOR TRAINING, VALIDATING,

AND TESTING PUNET-33. EXCEPT FOR HRF, ALL THE OTHER

DATASETS’ IMAGES ARE CROPPED WITH A STRIDE OF 32 AND A PATCH

DIMENSION OF 128X128. DUE TO ITS VERY HIGH RESOLUTION, HRF IS

CROPPED WITH A STRIDE OF 128 AND PATCH DIMENSION 512.

Dataset
Original

Image Dim.
Image

Patch Dim.
Stride
Size

No. of Image
Patches

DRIVE 584x565 128 32 8400

STARE 700×605 128 32 5400

CHASE DB1 999×960 128 32 21168

HRF 3504x2336 512 128 16200

Where n is the number of images in the dataset and width

and height correspond to the resolution of the image. For

instance, for 40 images in the DRIVE dataset with a stride

of 32 and patch dimension of 128, we end up having 8400

image patches. We cropped 28 CHASE DB1, 20 STARE,

and 45 HRF images in this way. Table I contains the details

about all the datasets and the training image patches used.

C. Two Step Image generation

The architecture of Fundus GAN, the two-stage image

generation is shown in Fig. 1. A patch level UNet based

image segmentation is used to capture enough pathological

case details from the micro-vessels of the fundus image.

The vessel trees obtained from PUNet-33 and their corre-

sponding fundus images are then fed to the stage of an

unsupervised image-to-image translation network. In [8],

adding attention module and using adaptive layer instance

normalization function has shown to be critical to generate

realistic images in different domains. Inspired by this, we

adopted this unsupervised image-to-image translation with

attention module and adaptive layer instance normalization

technique for the vessel to fundus image translation as part

of the second stage of Fundus GAN. The details of the

architectures used in the two stages are discussed in the

following sub-sections.

1) Segmentation Network: The segmentation architecture

(PUNet-33) is based on the original UNet [25]. UNet is

shown to be effective in biomedical image segmentation

even with a low number of images. PUNet-33, similar to the

original UNet is built from contracting and expanding blocks.

However, PUNet-33 is patch level and has greater depth with

33 convolutional neural networks (CNN) layers. The first

half processes the image patches sequentially. After passing

through the downsampling path consisting of contracting

blocks and the corresponding symmetrical expanding blocks

in the upsampling path, each image patch is then positioned

in its corresponding location to form the full label of the

input image as shown in Fig.1.

2) Unsupervised Image-to-Image Translation Network:

Based on the success of U-GAT-IT [8] in generating images

in different domains, the second stage of Fundus GAN

incorporates an unsupervised method of translating vessel
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Fig. 1. Fundus GAN: the first stage is the patch level segmentation network—PUNet33 which segments the fundus image patches sequentially and produces
their corresponding vessel trees. The vessel trees obtained from PUNet-33 and their fundus image pair are then fed to an unsupervised image-to-image
translation network to produce the synthetic image. The synthetic image (Gen. image) is then used for training eye diseases classifier.

tree to fundus image with attention module and learnable

layer normalization function. The generator has a CNN-

based downsampling and residual blocks that compose the

encoder part. After passing through the attention module

the features are then decoded using adaptive residual and

upsampling CNN layers. The discriminator employs two

scales of PatchGAN [16] which classify image patches as

real or fake. As shown in Fig 1, both the generator and

discriminator include attention maps that help to focus on

semantically important regions. In addition, adding an adap-

tive layer instance normalization function enables learning

how to control the amount of change in the image features

from the dataset.

D. Multi-Class Classification

For eye disease classification, Inception model-v3 [24]

is used with ImageNet weights pre-loaded. This enables

transfer learning that provides image classification into mul-

ticlass classification with three classes as given in HRF [21]

dataset. The Inception model has two main components,

one for the feature extraction and the other for the sorting.

In our method, both the feature extraction and the sorting

layer components are enabled as that resulted in the best

performance. The final layer of the Inception model is set

up to enable computing loss for each class in multi-class

classification.

E. Evaluation

1) Evaluation Metrics: Our architecture is evaluated us-

ing segmentation metrics including F1-score, sensitivity,

specificity, and pixel accuracy for the segmented images by

PUNet-33. The performance improvement of the classifica-

tion task gained by the generated images is evaluated with

multi-class classification accuracy.

2) Experiments: First, different modifications of UNet

are investigated to obtain the best performing segmentation

model. Adding two contracting blocks and two expanding

blocks (10 CNN layers) to the original UNet and using small

patch images (PUNet-33) showed the best result. Hence,

PUNet-33 is selected for final experimentation. We trained

this architecture on four datasets, namely, HRF [21], DRIVE

[19], CHASE DB1 [22] and STARE [23]. For training and

validation, we used 4200, 15120, 4320 and 7920 image

patches from 20 DRIVE, 20 CHASE DB1, 16 STARE and

22 HRF images respectively. For testing, image patches of

23, 20, 8, and 4 images of HRF, DRIVE, CHASE DB1, and

STARE test images are used. All image patches are resized

to 128x128 and are converted to grayscale images. The best

result for PUNet-33 is obtained with batch size of 128 and

2000 epochs with learning rate 2×10−4.

The second stage of vessel tree to fundus image translation

is trained on pairs of vessel tree and fundus images of the

four datasets. Since the HRF dataset is the only dataset

with distinct pathological cases which contains images of

three different groups in healthy, diabetic retinopathy, and

glaucoma conditions, it is used as a final testing set of

Fundus GAN to generate the final results to be tested on

classification tasks. As suggested in the work U-GAT-IT [8],

this step is trained with a learning rate of 1×10−4 for 100

epochs. Different augmentation techniques, namely, random
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horizontal flip, resize, and random crop are used.

Finally, to test the benefit gained from the use of generated

images in the classification task, the classifier is trained on

the HRF image dataset using the Inception-v3 model. HRF

contains 45 images in which 15 are healthy, 15 are for

diabetic retinopathy, and 15 for glaucoma. The dataset is split

into 60%/40% train/test split per class. In the first classifica-

tion experiment, a classifier is trained on all real training

images from the three classes. Then, we continued our

experiments by incrementally adding from 25% up to 100%

of generated images into our dataset. Thus, we created a total

of five dataset groups as 100% real, 75%/25% real/generated,

50%/50% real/generated, 25%/75% real/generated splits, and

100% generated images. All of the dataset groups are then

tested on the real images.

III. RESULTS

A. Segmentation and image synthesis

Table II shows the performance of the segmentation model

on three datasets. We compared our segmentation network

to some of the best performing models in the area of retinal

image segmentation including UNet [25], M-GAN [5] and

RV-GAN [20]. For all the methods including ours, the results

shown are the average of the metrics over all test images

from each dataset as our goal mainly focuses on improving

segmentation in general. As illustrated in the table, our model

outperforms the other models in specificity and accuracy

while RV-GAN gives the highest F1-score. Fig 2 shows

example segmented image results on DRIVE dataset. PUNet-

33 segments the image to greater detail, whereas RV-GAN

gives a good result in terms of capturing the global structure

of the vessel. For our task of image generation, we want the

segmentation network to capture enough details.

Fig. 2. Segmentation results. The first column is the input image, the
second one is the ground label. The third one represents our result from
PUNet-33 and the fourth column is the segmentation result from RVGAN
[20] (Multi-scale GAN based segmentation)—the state of the art on DRIVE
segmentation. Being trained with patch images, PUNet-33 segments micro-
vessels, micro-branches and connections in detail as compared to RVGAN
as shown inside the red boxes. Where as, RVGAN captures the general
structure such as macro-branches in higher confidence.

TABLE II

PERFORMANCE COMPARISON BETWEEN PUNET-33, M-GAN [5] AND

RVGAN [20]. THE RESULT SHOWN IS THE AVERAGE OF EACH METRICS

ON DRIVE, CHASE DB1, HRF AND STARE DATASET

Method

Metrics UNet [25] M-GAN [5]
PUNet-33

(Ours)
RV-GAN [20]

F1-Score 0.774 0.803 0.828 0.842

Sensitivity 0.733 0.821 0.785 0.791
Specificity 0.985 0.987 0.993 0.989
Accuracy 0.961 0.980 0.985 0.959

Fig. 3. Sample generated images. PUNet-33 allows feeding important
pathological features which helps in translating the vessel tree to fundus
image in a class specfic manner. We generated images with three classes
healthy, glaucoma and diabetic retinopathy condition. For instance, the
generated fundus images with glaucoma condition contains compression
of blood vessels around the optic disc.

The extra details gained by using PUNet-33 allow cap-

turing important pathological features which feed distinctive

features to the image-to-image translation model. This im-

proves the identification of different kinds of eye diseases

when the generated image is used for classification. Sample

generated images are shown in Fig. 3. The generated images

contain features that are crucial in identifying pathological

cases, namely, diabetic retinopathy, glaucoma, and healthy.

B. Disease classification

The results from our experiments on five dataset groups

are presented in Table III. The table shows the best value

of the validation loss (Val loss) and validation accuracy (Val

acc) of each dataset group. The dataset with both synthetic
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TABLE III

COMPARISON OF THE PERFORMANCE OF GENERATED IMAGES AND

REAL IMAGES AS A TRAINING DATASET. VAL LOSS, VALIDATION

LOSS;VAL ACC, VALIDATION ACCURACY

Classification metrics (best values)
Dataset Val loss Val acc

100% Real images 0.822 0.833
75% Real + 25% Gen. images 0.785 0.854
50% Real + 50% Gen. images 0.765 0.872

25% Real + 75% Gen. images 0.791 0.825
100% Gen. images 0.805 0.777

and real funds images in a 1:1 mixture outperforms all the

other groups. Therefore, adding synthetic training data to real

image dataset helps to improve the accuracy of retinal image

classifier up to some threshold. The accuracy decreases as the

synthetic data starts to dominate the dataset. However, with

only generated images an accuracy of 77.7% is achieved,

which shows that a classifier can be trained only on synthetic

images in cases where no real labeled images are available.

IV. CONCLUSIONS

In this paper, we proposed a two-stage GAN-based retinal

image synthesis method to solve the problem of the shortage

of training fundus images and the concern of privacy in

retinal image data. We implemented a patch-level segmen-

tation network followed by unsupervised image-to-image

translation to synthesize retinal images from three different

diseases group. Our segmentation network outperforms state-

of-the-art architectures in pixel accuracy and specificity.

The results from our image synthesis model improved the

classifier’s accuracy when mixed with real image dataset to

train a classifier. In addition, we showed that eye-diseases

classifiers can be trained only on synthetic retinal images.
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