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Abstract— Machine learning is playing an increasingly criti-
cal role in health science with its capability of inferring valuable
information from high-dimensional data. More training data
provides greater statistical power to generate better models
that can help decision-making in healthcare. However, this
often requires combining research and patient data across
institutions and hospitals, which is not always possible due
to privacy considerations. In this paper, we outline a simple
federated learning algorithm implementing differential privacy
to ensure privacy when training a machine learning model
on data spread across different institutions. We tested our
model by predicting breast cancer status from gene expression
data. Our model achieves a similar level of accuracy and
precision as a single-site non-private neural network model
when we enforce privacy. This result suggests that our al-
gorithm is an effective method of implementing differential
privacy with federated learning, and clinical data scientists can
use our general framework to produce differentially private
models on federated datasets. Our framework is available at
https://github.com/gersteinlab/idash20FL.

I. INTRODUCTION

Machine learning and pattern recognition have been im-
portant tools in biomedical and clinical research to iden-
tify meaningful patterns between clinical measurements and
human disease [1], [2]. For example, models can predict
whether a patient has a certain type of cancer using gene
expression values as features [3], [4]. In the clinical setting,
machine learning allows for quick diagnosis of unclear
cases and provides information regarding the relationship of
important features with disease.

To make meaningful and accurate predictions, machine
learning algorithms must be trained on large numbers of
samples [5]. Obtaining a large enough sample size at a single
medical institution is often not possible; therefore, data from
multiple sites must be used. This creates concerns regarding
the privacy of training data [6]. Especially in the clinical
setting, institutional policies may not allow outside parties to
access medical data, whether or not the data is de-identified.
These restrictions can even be set at the country or continent
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level. For example, the General Data Protection Regulation
in the European Union prohibits hospitals and institutions
from sharing personal data with third parties [7].

Federated learning is a technique to train a shared neural
network on data kept at different sites [8]. In federated
learning, each site locally trains a network and combines this
network with networks trained at other sites. This approach
ensures that data owners from each site cannot access others’
data. Federated learning has been shown to be useful for
genomic and medical research, especially when dealing with
large amounts of data from different sites [9], [10]. However,
this decentralized training mechanism has privacy issues.
Studies have shown that neural networks tend to memorize
training data, and trained networks can be reverse-engineered
to determine samples used to train the network [11], [12]. To
remedy this problem, differential privacy can be used when
sites share model parameters.

Differential privacy is a method to ensure that single data
points in a dataset cannot be identified with the output of
summary statistics [13]. This is achieved by adding con-
trolled noise to outputs. A differentially private mechanism
ensures that summary statistics will not significantly change
whether an individual’s data is present or not, and thus
ensures that the individual’s participation to the data cannot
be inferred from the summary-level output. Mathematically,
differential privacy is defined as the following: let ε be a non-
negative number and A be a randomzied algorithm taking a
dataset as input. A is ε-differentially private if P[A(D1)] ≤
eε ·P[A(D2)], where D1 and D2 are datasets which differ by
only a single datapoint. This equation implies that the results
of an algorithm will not change significantly whether or not
an individual is in the dataset. Therefore, an algorithm which
satisfies this equation protects the individual’s privacy since
the algorithm’s output will not reveal information specific to
the individual. In practice, this is achieved by adding noise
from a Laplacian or Gaussian distribution to the results of
the algorithm. Note that small ε values correspond to higher
privacy.

Our model uses differential privacy to apply noise to
neural network weight parameters after training at each
site. This ensures that users cannot reverse-engineer network
weights to obtain information about members of the training
dataset.

We aimed to develop a general framework for privacy-
preserving federated learning which can be easily imple-
mented by clinical data scientists to solve a variety of clinical
prediction problems. To this end, we adopted the publicly-
available TensorFlow-Privacy package [14] for differential
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privacy. Note that TensorFlow-Privacy does not provide the
option of choosing the ε privacy level and instead takes
a ”noise multiplier” parameter for Laplacian or Gaussian
noise, which can then be converted into ε. However, for
users who are not experts in differential privacy, it is not
clear which noise multiplier corresponds to what ε value.
To address this issue, our generalized framework is capable
of taking epsilon values as input. It then performs neural
network training in federated setting following established
deep learning techniques including learning rate decay and
an early stopping criterion [15]. We developed a model
using this framework to predict breast cancer status from
gene expression data to demonstrate that this framework
can produce accurate predictions with high precision while
ensuring the privacy of individuals in the training dataset.

II. METHODS

Our algorithm operates on two levels: the server level
and the client level. At the server level, it performs the
following. Since TensorFlow-Privacy cannot accept an ε
value and instead expects a noise multiplier, we implemented
a simple linear search function which iterates through equally
spaced noise multipliers until finding a noise multiplier
which produces the desired ε value. The server is then
responsible for setting and updating the hyperparameters and
architecture of the neural networks and storing the current
averaged, or federated, neural network. It performs federated
iterations, in which it sends this neural network along with
hyperparameters to each client, receives trained weights back
from each client, and averages the weights it received to
produce a new federated weights for the network [16]. This
average is performed by weighting each set of neural network
weights by the fraction of total samples which the client
holds. The server also receives accuracy metrics for the
previously sent federated model from each network. If the
federated model has not improved for some set number of
iterations, the server will return the best-performing federated
model. Until then, the server will continue perform federated
iterations.

The clients are responsible for receiving the current fed-
erated weights and hyperparameters from the server. Prior
to training, the clients compute the accuracy of the neural
network with federated weights on a held-out validation and
test set, and send these accuracy metrics to the server. After
this, the clients train the network further based on locally
stored data. They then add differentially-private noise to the
trained weights before sending back them to the server.

Figure 1 consists of detailed flowcharts of the server and
client processes.

To test our framework, we used data provided by the
iDASH 2020 competition [17]. This data contained the gene
expression of 17,814 genes taken from 61 normal and 529
tumor samples. The samples were split among two clients
in four different ways. The splits are listed in Table 1.
Independent and identically distributed (IID) splits indicate
that the proportion of normal to tumor training data on both
clients was roughly the same, and equal splits indicate that

the overall number of examples on each client was roughly
the same.

III. RESULTS

After the data was split, each client randomly chose 10%
of its data as a validation set and another 10% of its data
as a test set. Finally, to prevent inherent bias towards either
condition, each client oversampled its normal training data
to meet the number of tumor training samples.

After finishing this initial process, differentially-private
federated training began. ε = {1, 5, 10, . . . , 45, 50} were
used. While it is known that ε > 5 does not provide
significant privacy benefits, high values of ε were tested to
observe patterns over a wide range of ε values.

TABLE I
DATA SPLIT CONDITIONS

Label Client 1 Client 2
Normal Tumor Normal Tumor

IID, Equal 31 264 30 265
IID, Unequal 15 132 46 397

Non-IID, Equal 14 281 46 248
Non-IID, Unequal 14 397 46 132

Table 2 indicates the model hyperparameters and Figure
2 demonstrates the network architecture for our setting.
Our network consisted of an input layer for 17,814 genes,
followed by a 20% dropout to improve model generalization.
We then fed the remaining values into layers of 100, 10, and
1 nodes. The 100 and 10 layers consisted of rectified linear
unit (ReLU) activation functions, while the 1 layer consisted
of a logistic activation function to produce binary output.

TABLE II
MODEL HYPERPARAMETERS

Hyperparameter Value
Early Stopping Patience 10

Batch Size 32
Client Epochs 20

Initial Learning Rate 0.0005
Server Learning Rate Decay 0.95

Delta 1
17814

`2 Norm Clip 10

Since the data splits and differential privacy were a random
process, we ran the model 20 times for each data split and ε
condition to collect metrics and measure performance. Figure
3 demonstrates the accuracy for different ε values in different
cases. The model maintains a median accuracy above 0.975
for all data split and ε cases, and actually achieves a median
accuracy of 1.00 for all ε cases when the data is IID and
equally distributed.

Finally, we compared our results against two benchmarks:
the same neural network architecture with neither federation
nor differential privacy and the same neural network architec-
ture with federation but without differential privacy. Figure
4 and Figure 5 show that differential privacy with federation
did not produce a large change in precision-recall or receiver
operating curve (ROC) metrics.
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Fig. 1. Flowcharts of the client (A) and server (B) algorithms.

Fig. 2. Diagram of the network architecture used when testing on the breast cancer dataset.

Fig. 3. Accuracy metrics on test data for different data split and ε cases.

IV. DISCUSSION

In this work, we intended to develop a simple framework
for differentially private machine learning and test the frame-
work on a clinical dataset. The above results indicate that
our framework can produce high accuracy and near-ideal
precision-recall metrics. These results, along with the ease
of implementing our framework, suggest that this technique

might way for clinical data scientists and bioinformatics
researchers to ensure privacy when training a federated
neural network. We also recognize that ε may not be an
easy parameter to navigate for scientists with no privacy
background. Therefore, in the future, combining federated
learning with differential privacy with recommendation sys-
tems on privacy budget would be beneficial [18].
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Fig. 4. Precision-recall curves for the non-federated, federated, and differentially private federated cases. The differentially private federated cases were
generated with a non-IID and unequal data split since this split best represents real-world data.

Fig. 5. Receiver operating characteristic (ROC) curves with area under curve (AUC) metrics for the non-federated, federated, and differentially private
federated cases. The differentially private federated cases were generated with a non-IID and unequal data split.

Recently, other solutions to privacy-preserving federated
learning have been proposed [19], [20]. These solutions em-
ploy principles of homomorphic encryption and secure multi-
party computation to reduce the amount of noise required to
achieve privacy. Since these solutions add less noise, they
produce more accurate results. However, homomorphic en-
cryption and secure multi-party computation migh introduce
large overheads to the system due to high computational
complexity [21], [22]. Our solution is promising in that it
requires no special infrastructure unless the suggested deep
learning framework requires GPUs. Additionally, clinical
data scientists with limited knowledge of differential privacy
can easily implement our solution since it uses a publicly
available package, which makes using differential privacy
much less difficult. In fact, implementing differential privacy
without a package requires significant knowledge of differen-
tial privacy theory, which most clinical data scientists do not
have. However, note that the privacy budgets in differential
privacy needs to be set by a knowledgeable user to prevent
potential privacy leakages.
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