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Abstract— Cytokine release syndrome (CRS) is a noninfec-
tious systemic inflammatory response syndrome condition and
a principle severe adverse event common in oncology patients
treated with immunotherapies. Accurate monitoring and timely
prediction of CRS severity remain a challenge. This study
presents an XGBoost-based machine learning algorithm for
forecasting CRS severity (no CRS, mild– and severe–CRS
classes) in the 24 hours following the time of prediction
utilizing the common vital signs and Glasgow coma scale (GCS)
questionnaire inputs. The CRS algorithm was developed and
evaluated on a cohort of patients (n=1,139) surgically treated
for neoplasm with no ICD9 codes for infection or sepsis during
a collective 9,892 patient-days of monitoring in ICU settings.
Different models were trained with unique feature sets to mimic
practical monitoring environments where different types of
data availability will exist. The CRS models that incorporated
all time series features up to the prediction time showcased
a micro-average area under curve (AUC) statistic for the
receiver operating characteristic curve (ROC) of 0.94 for the 3
classes of CRS grades. Models developed on a second cohort
requiring data within the 24 hours preceding prediction time
showcased a relatively lower 0.88 micro-average AUROC as
these models did not benefit from implicit information in the
data availability. Systematic removal of blood pressure and/or
GCS inputs revealed significant decreases (p<0.05) in model
performances that confirm the importance of such features
for CRS prediction. Accurate CRS prediction and timely
intervention can reverse CRS adverse events and maximize the
benefit of immunotherapies in oncology patients.

I. INTRODUCTION

Infection and injury [1], [2] as well as certain immunother-
apies [3] can trigger amplified inflammatory responses of
the human body known as Systemic Inflammatory Response
Syndrome (SIRS). SIRS is associated with common symp-
toms and signs including: fever or hypothermia, tachycardia,
tachypnea, and leucocytosis or leucopoenia [4]. The defini-
tion for SIRS is overly sensitive in acute-care settings [2].

Cytokine Release Syndrome (CRS) is a serious noninfec-
tious SIRS condition that develops rapidly following certain
types of immunotherapy and cancer treatments [3], [5]. It
is critical to detect the development and severity of CRS
and prompt for timely clinical attention and intervention.
The healthcare costs and likelihood of clinical complications
multiply as patients deteriorate to severe stages of CRS
[6]. Almost half of patients in early CAR-T cell treatment
trials required intensive care management following infusion
[7]. Time is of the essence when CRS can become severe.
This necessitates a patient monitoring system and automated
artificial intelligence algorithms that can detect CRS onset
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or early stages of CRS well in advance and allow for
early intervention to produce better clinical and therapeutic
outcomes with lower healthcare delivery costs.

Machine learning-based solutions can offer earlier insights
into SIRS conditions. We have previously showcased how
early prediction of sepsis [8], an infection-related SIRS
condition, solutions need to consider the environments in
which they will be deployed, what data will be available in
these environments and what populations they will be applied
on. The solutions in this work allow for monitoring across
different patient environments including remote settings.

There is a paucity of research regarding the remote contin-
uous monitoring of CRS patients. The task is made harder
by the ambiguous application of CRS definition [9]. The
malaise, fever, hypoxia, and hypotension that define CRS are
common to many conditions, and it often falls on clinicians
to make a determination that the condition is CRS. Previous
works have used clinical tests to separate noninfectious and
infectious inflammatory responses (e.g. [2]).

CRS is often studied as a side effect of cancer treat-
ments, especially immunotherapies [3], [5]–[7], [10]. It is
a noninfectious systemic inflammatory response in oncology
patients that fit the grading definitions for CRS [9]. This
study presents machine learning algorithms to predict the
CRS grades in the 24 hours following the prediction time
using common vital signs and questionnaires obtained in ICU
patients receiving treatments for neoplasms and having no
ICD9 codes indicative of infectious disorders or sepsis.

II. METHODOLOGY
A. Dataset and Patient Cohort Extraction

MIMIC3 [11] is an extensive dataset consisting of elec-
tronic health records (EHRs) from tens of thousands of
intensive care unit (ICU) patient stays. These records in-
clude: patients’ demographic information, ICD9 discharge
diagnoses, events during the patients’ stays such as manually
recorded vitals, labs, and treatments.

To begin CRS model development, we extracted a cohort
of oncology patients from the MIMIC3 dataset that did not
have indications of infection nor sepsis to explain an immune
response. The designation of a patient as an oncology patient
without infection or sepsis was made via ICD9 codes. Rassek
et al. [12] grouped neoplasm ICD9 codes, which were used
to define oncology patients (ICD9 codes: 140-239). Patients
were excluded if they had an infection indicated by having
an ICD9 code for an infectious disorder as identified in
Rassek et al. [12]. Sepsis patients were also excluded; these
patients had the following ICD9 codes: 995.91 (sepsis),
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995.92 (severe sepsis), and/or 785.52 (septic shock). For
patients with multiple stays in the dataset, only the first was
included. Additionally, we excluded patients who were under
the age of 18 and patients who died during their admission as
these patients are graded differently [9], [13]. After filtering
for these inclusion and exclusion criteria, n= 1,139 patients
with 9,892 days of patient data were extracted.

Close examination of a subset of patient medical records
revealed that a lot of patients were receiving surgical in-
terventions for their cancers. These surgical interventions
can result in immune responses, hypoxia and hypotension
stemming from a host of issues, including infection, that
can be hard to disentangle or conclusively rule out. The
shortcomings of this population and future directions are
further discussed in the paper’s concluding section.

B. Patient Day Labelling

Subsequent to the patient extraction, we labelled the indi-
vidual patient days in the ICU. The goal of our classifier was
to predict the CRS grade of a patient during the following
24 hours. The mildest CRS grades are defined by fever and
managed hypoxia and hypotension; the most severe grades
require life-saving intervention, e.g. mechanical ventilation
(hypoxia) or vasoporessors (hypotension) [9], [13].

The time of a patient’s admission was considered time 0.
Each 24 hour period following the time of the admission
until the patient was discharged for which there was data
in the EHR was labelled with an outcome variable. If a
patient was treated for a severe condition, with a vasopressor,
mechanical ventilation or FiO2 greater than 40%, then the
day was labelled as a severe CRS day. If the patient had mild
symptoms, fever and hypotension, or less serious treatments,
such as O2 supplement with inspired oxygen at less than
40%, but did not receive the more serious treatments, then
the day was labelled as mild CRS day. If the patient had none
of the treatments or symptoms indicated, then the day was
labelled as a no CRS day. This process is summarized in Fig.
1. After checking for these conditions, the 9,892 extracted
patients days consisted of 5,215 no CRS days, 1,931 mild
CRS days, and 2,746 severe CRS days.

C. Patient Day Cohort Description

There were 9892 patient days extracted via the procedure
described above. The majority of these days were demarcated
as no CRS days (5215 days). A manual examination of
the data revealed almost 80% of the no CRS days had no
patient monitoring data in the preceding 24 hours compared
to approximately 2% of mild CRS days and approximately
3% of the severe CRS days. We developed a second cohort of
patient days which required vitals and/or GCS data within the
24 hours before the prediction. The second cohort consisted
of the same 1,139 patients but with 1,134 no CRS days, 1,906
mild CRS days, and 2,667 severe CRS days. See Table 1.

D. Predictive Features

The features fall into two general groups, vitals and glas-
cow coma score (GCS) features. The vitals consisted of heart

TABLE I
SUMMARY OF THE UNIQUE PATIENTS’ DAYS EXTRACTED USING THE

DESCRIBED PROCEDURE

Patient Cohorts
Unique
Patient
Stays

No
CRS
Days

Mild
CRS
Days

Severe
CRS
Day

Total

Days
Cohort 1 1139 5215 1931 2746 9892
Cohort 2 1139 1134 1906 2667 5707

rate, respiration rate, body temperature, SpO2 levels, systolic
and diastolic blood pressure. The GCS features are the
verbal, motor and eye opening response scores. The features
derived from these measurements include the extreme values
from the data in the last 24 hours as well as all days
preceding the last 24 hours. These were the only features
used in the set of models for the first cohort. The models
for the cohort requiring data within 24 hours of prediction
contained additional statistical moments and trends from
these data. In both groups, various combinations of features
were evaluated to determine the resulting performance when
only a subset of the vitals or GCS data was used.

E. XGBoost Models

The output of the models was the probability of the patient
being no CRS, mild CRS, or severe CRS during the 24 hours
following the prediction time using all of the patient’s data
up until the time of prediction. The probabilities sum to one.
The models were XGBoost models1; scripts to train and test
the models were written in Python.

The basis of XGBoost models are decision trees. Decision
trees split training data into subgroups with single classes
being over represented based on informative feature values.
For a given decision tree, a test point will follow a path along
the tree based on its features’ values and the learned splits
to a leaf node; the probability of that test sample belonging
to a certain class depends on the proportion of examples
of that class at that leaf node. XGBoost devises decision
tree models using the training data. Each decision tree gets
training examples wrong. Additional trees can be added that
accurately predict examples previously missed. Trees can be
added and weighted depending upon their performances on
the training examples. The prediction for a test point is the
weighted sum of the predictions of the trees.

F. Model Evaluation

There were six models developed and tested as a part of
this work, two sets of three models each. The first set of three
models were the models that did not require vitals or GCS
data within the 24 hours leading up to the time of prediction.
The second set of three models did require vitals and/or GCS
data within the 24 hours leading up to the time of prediction.
Each of the sets had one model that incorporated features
from all nine data types discussed above (vitals and GCS),
a second model that incorporated only the vital sign data
types discussed above, and a final model that incorporated

1https://xgboost.readthedocs.io/en/stable/python/index.html
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Fig. 1. Summary of Rules Used to Extract Patients’ Days From MIMIC3 to Include in Our CRS Cohort

TABLE II
AUROC STATISTICS - EACH MODEL SEPARATING EACH CRS GRADE

Patient
Cohort

Features
Groups

Included

AUROC
No

CRS
(± SD)

AUROC
Mild
CRS

(± SD)

AUROC
Severe
CRS

(± SD)

Cohort 1
All Features 0.96

(0.00)
0.89

(0.01)
0.93

(0.01)

All Vitals 0.96
(0.00)

0.85
(0.01)

0.89
(0.00)

HR, RR,
SpO2,
Temp

0.95
(0.00)

0.83
(0.02)

0.87
(0.01)

Cohort 2
All Features 0.89

(0.01)
0.80

(0.02)
0.89

(0.02)

All Vitals 0.85
(0.01)

0.72
(0.02)

0.79
(0.01)

HR, RR,
SpO2,
Temp

0.82
(0.01)

0.68
(0.02)

0.76
(0.02)

only heart rate, respiration rate, SpO2 and body temperature
features. These models became increasingly more suited for
remote and continuous patient monitoring. The data types
are accurately measurable with common wearable devices.

Five-fold cross validation was used to validate each of the
six models. Days were split randomly amongst the five folds
while balancing no CRS, mild CRS, and severe CRS grades.
The splits were not even because patient stays were contained
to a single fold to ensure there was not any data leakage.
A single patient’s day data was not incorporated for both
training and testing. Performance metrics were calculated as
the mean ± standard deviation of the AUROC.

III. RESULTS

The results for our six models are summarized in Table
2. There is clear evidence that the no, mild, and severe CRS
classes are well separated regardless of the data used when

using the patient day cohort that does not require vitals or
GCS data within the 24hrs before the time of prediction.
The models separating severe CRS from non-severe CRS
(no CRS and mild CRS) had a minimum AUROC of 0.87
and separating no CRS from CRS (mild or severe) had a
minimum AUROC of 0.95. The low standard deviations in
performance across the five folds for all models shows the
consistency with which these classes are separable. The ROC
for our model using all features is shown in Fig 2.

There is evidence of GCS scores and BP data being
predictive of the CRS grades of patients in the following
24 hours. We tested for statistically significant (p < .05)
differences between the average AUROCs when using all
features, when removing GCS, and when removing GCS
and BP features for models separating severe CRS from
non-severe CRS, mild CRS from the other two conditions,
and no CRS from CRS. If assumptions of normality held,
we used a Repeated Analysis of Variance (ANOVA) with
paired posthoc t tests if significant difference was found in
the ANOVA. If normality did not hold, we used a Friedman
test with Nemenyi post hoc testing. In all three model types,
there was a significant difference between groups. All group
pairs were significantly different when separating severe CRS
from non-severe CRS and no CRS from CRS.

To address the issue of missing data being predictive, we
consider the models that predicted CRS grades on days for
which there was vitals and/or GCS data in the preceding 24
hours. These models are intended to be more practical as
they attempt to not exploit the different monitoring levels.

These models show predictive value in discriminating the
three classes in the 24 hours following prediction with a
minimum AUROC of 0.68. We note an AUROC of 0.76
separating severe CRS and non-severe CRS using only 4 vital
signs. AUROC statistics are highest for no CRS vs. CRS. See
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Fig. 2. All Feature ROC Curves - Cohort 1

Fig. 3. All Feature ROC Curves - Cohort 2

Table 2. ROCs for the All Features model are shown in Fig.
3. Again performance is consistent across the five folds.

With these three model types, we looked for statistically
significant differences between the models incorporating
different feature groups using the same procedure as above.
There was a statistically significant difference (p < .05)
between all pairings of groups for all model types. The all
feature model was the highest performing. The model using
all vital signs performed better than the model using HR, RR,
SpO2 and body temperature. The importance of GCS and BP
is supported by looking at the average feature importance
from the five-fold cross validation for the all feature model
and the vitals-only model. The top ten features are shown
in Figs 4 and 5. Features derived from GCS verbal and eye
scores appear in Fig 4. SBP-related features appear in Fig. 5.
These data sources are important predictors of CRS grades
in the following 24 hours.

IV. DISCUSSION

This paper showcases the feasibility of developing pre-
dictive models that allow for the continuous and remote
monitoring of patients at risk for CRS and assessing CRS

Fig. 4. All Feature Model - XGBoost Feature Importance

Fig. 5. Vitals-Only Model - XGBoost Feature Importance

severity on a more dynamic daily basis with promising
accuracy and precision.

CRS is a noninfectious SIRS condition that is common
in oncology, and, if it progresses to severe grades, it is
dangerous and costly for the affected patient [3], [5], [6].
The study extracted a cohort of oncology patients who could
be at risk for CRS from the MIMIC3 dataset. These patients
did not have ICD9 codes indicating treatment for infection or
sepsis, but many of them developed fever along with signs
of hypotension and/or hypoxia. These patients’ days were
labelled with CRS grades following the latest guidelines [9].
The extracted data was analyzed to understand the shortcom-
ings of existing data for understanding and predicting this
condition. Models were constructed to predict the patients’
CRS grade in the following 24 hours. The different models
incorporated data from different types of environments to
allow for predictions to be done most accurately depending
on where a patient might be monitored.

As shown in Table 3, the data extracted from MIMIC3
had patients, in general, staying at the same CRS grade
day-to-day or getting better. Over 86% of no CRS patient
days stayed the same one day to the next day (159/185).
Patients with mild CRS often improved (806/2144) or stayed
the same (1215/2144). Severe CRS grade days stayed the
same into the next day 75.1% (2537/3378) of the time.
This makes sense because the MIMIC3 dataset contains
patient records from ICUs. Closer examination of these
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TABLE III
TRANSITION MATRIX FOR CRS GRADES - SHOWING PATIENT GRADE

ONE DAY TO THE NEXT - COHORT 2

Previous Day’s CRS Grade
No

CRS
Mild
CRS

Severe
CRS Total

Current Day’s
CRS Grade

No
CRS 159 806 169 1134

(19.9 %)
Mild
CRS 19 1215 672 1906

(33.4 %)
Severe
CRS 7 123 2537 2667

(46.7 %)
Total 185 2144 3378 5707

patients EHRs showed that many of these patients were
receiving surgical interventions for their cancers. Patients
were receiving treatment the entirety of the data and closely
monitored by clinical professionals.

There is a need for continued model development and
validation in novel datasets as well as continuous and remote
patient monitoring. It will be important in subsequent itera-
tions of model development to have a more continuous view
of the patients data. This will require continuous and remote
monitoring of oncology patients who are at risk for CRS.
Critical data will include information about: the patient’s type
of cancer, the tumor burden, precise information about the
treatments being employed and a continuous picture of the
patient’s vital signs. Disease burden and treatment type make
a substantial difference in the rate and severity of CRS [14].
Many of the patients in the MIMIC3 dataset were receiving
surgical interventions and exhibiting CRS like exaggerated
immune responses. CRS is incredibly common and needs
to be better understood particularly for the emerging novel
immunotherapy treatments. Subsequent iterations of model
development will focus on patients receiving these treat-
ments.

There are easily obtainable vital sign-based features that
allow for remote patient monitoring of CRS. The models
developed in this work showed high predictive value for CRS
grades for the 24 hours following the time of prediction. We
showed an AUROC statistic of of 0.76 for identifying when
a patient was going to have severe grade CRS when only
incorporating HR, RR, SpO2, and body temperature-related
features. This is a promising first step that supports patients
being continuously and remotely monitored for severe CRS.

Clinical parameters beyond basic vital signs, that can be
incorporated episodically, will enhance model accuracy. GCS
and blood pressure enhanced the predictive performance. In
all six of our model types, there was a significant difference
(p < .05) in our models’ discriminatory accuracy depending
on the features incorporated. The discrimination was the
highest using all features, vitals and GCS scores, and higher
using the full complement of vitals than HR, RR, SpO2
and body temperature alone. Further, when looking at the
top 10 features with respect to feature importance for our
most practical models, we saw verbal GCS and SBP appear
repeatedly. Models can benefit from periodically attending
caregivers by incorporating this clinical information.

There are additional applications to target with our models
and ways in which the models could be extended. The
patients incorporated were oncology patients who were not
treated for infection or sepsis. There are other patients
within the dataset who could have been included as no CRS
examples to increase the sample of no CRS days.

SIRS conditions can be inseparable with respect to clinical
parameters. Machine learning-based solutions could assess
SIRS severity more generally. Solutions should also tar-
get separating SIRS conditions without using clinical tests.
These tasks will be undertaken as we further develop remote
and continuous monitoring for CRS and SIRS patients.
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