
  


 

Abstract— Accurate assessment of the type, duration, and 

intensity of physical activity (PA) in daily life is considered very 

important because of the close relationship between PA level, 

health, and well-being. Therefore, the assessment of PA using 

lightweight wearable sensors has gained interest in recent years. 

In particular, the use of activity monitors could help to measure 

the health-related effects of specific PA interventions. Our study, 

named as Run4Vit, focuses on evaluating the acute and long-

term effects of an eight-week running intervention on PA 

behaviour and vitality. To achieve this goal, we developed an 

algorithm to detect running and estimate instantaneous cadence 

using a single trunk-fixed accelerometer. Cadence was computed 

using time and frequency domain approaches. Validation was 

performed over a wide range of locomotion speeds using an 

open-source gait database. Across all subjects, the cadence 

estimation algorithms achieved a mean bias and precision of -

0.01 ± 0.69 steps/min for the temporal method and 0.02 ± 1.33 

steps/min for the frequency method. The running detection 

algorithm demonstrated very good performance, with an 

accuracy of 98% and a precision superior to 99%. These 

algorithms could be used to extract metrics related to the 

multiple dimensions of PA, and provide reliable outcome 

measures for the Run4Vit longitudinal running intervention 

program.  

 
Clinical Relevance—This work aims at validating a multi-

dimensional physical activity (PA) classification algorithm for 

assessing the acute and long-term effects of eight weeks running 

intervention on PA behaviours and vitality.  

I. INTRODUCTION 

Sedentary lifestyle is currently considered as a global 
pandemic [1], with major health-related issues such as 
cardiovascular disease and premature death [2]. Conversely, 
practicing regular physical activities (PA) has a wide range of 
health benefits including the reduction of cardiovascular 
disease, diabetes, cancer, obesity or depression among others 
[3]. Because of modern lifestyle (e.g. desk-bound work, 
television viewing), about two third of European adults do not 
reach the PA recommendations provided by WHO [4]. In this 
context, the use of activity monitors could help to measure the 
health-related effects of specific PA interventions, as well as 
to defined effective personalized interventions by providing 
relevant outcome measures.  
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Clinical-oriented analyses identified key PA assessment 

components as the activities' type, duration, and intensity [5]. 

Moreover, their temporal fluctuation, as well as, variance in 

day-to-day activities are of interest to characterize 

individuals' specific behavior and predict the trend of 

functional status [5]. Indeed, even when adults meet the 

weekly PA guidelines, sedentary postures for prolonged 

periods affect metabolic health, known as the “Too much 

sitting” issue [6, 7]. Thus, basic quantitative PA metrics such 

as the daily walking time, number of bouts, or the total 

sedentary time (e.g. sitting, standing, lying) may be useful to 

assess the overall PA behaviors and compare results across 

studies [8]. However, more advance analysis related to 

dynamics of PA time-series might be relevant for analyzing 

PA patterns in the context of sedentary behaviors and 

intervention outcomes [5, 9].  

The methodology for classification of PA behavior into 

multiple ‘states’ representation as a multidimensional time-

series (barcode) and quantification of temporal pattern have 

already been developed and validated for clinical applications 

such as old adults [9] or patients with chronic pain [5]. 

However, those algorithms have not been validated for heathy 

individual performing moderate-to-vigorous or vigorous PA 

(e.g. running). Furthermore, the intensity of each detected 

activity is based on the average locomotion cadence 

computed over the corresponding walking bout, ignoring 

inter-bout fluctuations.  
The main objective of this study is to extend the algorithm 

proposed in [11] in order to extract walking and running 
instantaneous cadence (i.e. PA intensity) in daily life. To 
achieve this goal, two validations are necessary for; (1) the 
running detection method, and (2) the instantaneous cadence 
estimation algorithm over a wide range of locomotion speeds. 
Future work will consist of applying this analytical toolbox to 
a real-life longitudinal study. Indeed, this work falls within a 
more general framework named as Run4Vit study, which 
focuses on the relationship between running activity and 
vitality - acute and long-term effects of eight weeks running 
intervention. The outcomes of the current PA classification 
algorithms will allow us to quantitatively measure the effects 
of this running intervention on PA behaviors and vitality.  
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II. MATERIALS AND METHODS 

A. Database 

1) MAREA database  
To validate the algorithms, we used the open-source 

“Movement Analysis in Real-world Environments using 
Accelerometers” (MAREA) gait database [10]. 11 healthy 
subjects (age: 33 ± 7 y/o) participated in the study that was 
approved by the Ethical Review Board of Lund, Sweden. Each 
subject was equipped with a 3-axes accelerometer (Shimmer 
Research, Dublin, Ireland) fixed on the trunk, as well as 
instrumented insoles used as gold standards. We tested the 
performance of the algorithms using the two following 
protocols: (1) treadmill incremental test, where the test starts 
at 4km/h, then the speed is increased by 0.4km/h every minute 
until 8km/h; (2) indoor walk & run, in which subjects walk 
and run for 3min each at self-selected speed. The treadmill 
incremental test offers a large range of walking and running 
speeds, while the indoor walk & run presents a walk-to-run 
transition in a natural environment.  

2) Run4Vit database 
Then, we tested the validated algorithm to a subset of data 

from the Run4Vit project that was approved by the Ethic 
commission of the University of Salzburg, Austria. 28 healthy 
sedentary females (age: 23 ± 3 y/o) recorded their daily PA 
(~12 hours/day) for 6 days, at pre- and post-intervention, using 
a single trunk sensor (ECGMove4, Movisens®). The 
intervention consists of running three times per week (~30 
min/session) during eight consecutive weeks.  

B. Trunk sensor algorithms 

1) Locomotion & step detection 

Locomotion periods and heel-strike (HS) events were 

extracted using an adapted version of the algorithms proposed 

in [11], as shown in the Fig. 1. The acceleration norm, used to 

be unresponsive to sensor orientation and placement, is first 

down sampled to 40 Hz. Then, a peak enhancement filtering 

method is applied using: (1) low-pass and detrending filters. 

A cutoff frequency of 3.2 Hz was selected to remove high 

frequency noise while allowing the detection of high step 

cadence up to ~ 195 steps/min; (2) continuous wavelet 

transform (CWT); and (3) Savitzky-Golay smoothing filter. 

The CWT and smoothing filter were applied to heighten steps-

related peaks, making the algorithm robust to artefacts in 

impaired gait. The scale of the CWT, which determines how 

much the wavelet is stretched or compressed, is a critical 

parameter for the step detection and cadence estimation. 

Several CWT scale values (from 5 to 10) were tested to find 

the appropriate wavelet fitting for both walking and running 

frequency components. Then, from the signal obtained after 

peak enhancement, accN-LPF-CWT, all the peaks with an 

amplitude above a fixed threshold (Th=0.1 (g)) are selected 

as potential HS events. Finally, the start and end of the 

locomotion periods (StartLoc and EndLoc), as well as the HS 

events, are selected using the criteria defined in [11].  

2) Instantaneous cadence estimation 

Two methods were implemented to compute the cadence 

from a single trunk sensor: (1) a time-domain approach based 

on peak detection corresponding to HS events, and (2) a 

frequency-domain method based on Fast Fourier Transform 

(FFT).  

In the temporal domain, the processed accelerometer signal is 

segmented using 6s sliding windows with 5s overlap to obtain 

an estimate each second. Then, the cadence was calculated on 

each 6s window based on 𝑁𝑠𝑡𝑒𝑝𝑠 and 𝐷𝑤 as: 

 𝐼𝑛𝑠𝑡𝐶𝑎𝑑𝑇 =
𝑁𝑠𝑡𝑒𝑝𝑠

𝐷𝑤
 

In the frequency domain, accN-LPF-CWT is segmented into 

6s windows (with 5s overlap to obtain one cadence estimate 

per second). The 6s window length was chosen as an optimum 

for both, robust features extraction and tracking of 

instantaneous cadence every second.  Then, spectral analysis 

using FFT (Hann window) is computed, and the 𝐼𝑛𝑠𝑡𝐶𝑎𝑑𝐹  is 

defined as the frequency of the maximum peak in the power 

spectrum.  

 

 
Figure 1. Flowchart of processing stages 
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3) Walking vs running detection 

Adults tend to spontaneously start running (walk-to-run 

transition) at a stride frequency around 140 steps/min [12], 

[13]. In order to consider inter-subjects’ variability, we used 

130 steps/min as a cadence threshold. Moreover, this 

threshold is a reasonable proxy of the absolutely-defined 

vigorous ambulatory intensity (metabolic equivalents) [14].  

To improve the specificity of the running detection, this 

criterion was combined with a threshold on the amplitude of 

the acceleration norm empirically chosen based on 

observation (𝑇ℎ𝑎𝑚𝑝 = 2.55 𝑔). 

C. Validation and statistical analysis 

The performance of cadence estimation algorithms was 

assessed using the Bland-Altman analysis for each subject 

during the treadmill incremental test. In case of non-normally 

distributed errors (tested using the Shapiro Wilk test), median 

and inter quartile range (IQR) are used as bias and precision, 

respectively. Then, mean of the bias and precision across 

subjects were computed to estimate the overall performance 

obtained for the MAREA database. The significance level 

was set to p < 0.05. The performance of the running detection 

algorithm was assessed in terms of accuracy, precision, 

sensitivity and specificity using the indoor walk & run 

protocol.  

III. RESULTS 

A. Filtering, CWT scale optimization 

In order to select the appropriate CWT scale parameter, we 

first visually checked the accN-LPF-CWT signals to ensure 

that the peak enhancement procedure is working properly. 

Secondly, we computed the rms errors between the estimated 

and the reference cadence for CWT scale values ranging from 

5 to 10. The lowest average error across all subject was 

obtained for the scale parameter 7.  

B. Instantaneous cadence estimation 

Fig. 2 shows the acceleration norm, as well as the obtained 

instantaneous cadences of one subject in the two conditions 

(treadmill incremental test and indoor walk & run). The time 

and frequency-domain estimations (blue and red lines 

respectively) fit very well the ground-truth cadence measured 

from the instrumented insoles (purple line, Fig. 2). Bland-

Altman analysis obtained for one subject during the treadmill 

incremental test is shown in the Fig. 3. As the computed errors 

were not normally distributed, we used the median and IQR 

statistical metrics for each subject (Fig. 3). The mean bias and 

precision (IQR) across all subjects for both the temporal 

method (-0.01 ± 0.69 steps/min) and the frequential method 

(0.02 ± 1.33 steps/min) revealed no systematic error (bias) 

and very precise estimations (< 1.5 steps/min).  

C. Walking vs running detection 

The Fig. 2B presents the cadence estimation, as well as the 

walk-to-run transition. On the 10 analyzed subjects’ data, we 

observed a high inter-subject variability. Indeed, some start 

running at about 135 steps/min, while others around 145 

steps/min. Consequently, a threshold on cadence only was not 

giving satisfactory results. However, the combination of 

thresholds on the amplitude of acceleration norm and cadence 

was an appropriate solution. Indeed, the mean and standard 

deviation (mean ± std) of the accuracy (98 ± 3.8%), precision 

(99.8 ± 0.4%), sensitivity (96.2 ± 7.6%) and specificity (99.8 

± 0.4%) computed across the 10 subjects of the MAREA 

database demonstrate good performance of the running 

detection algorithm. The amplitude threshold was empirically 

selected based on visual evaluation of the recorded signals. 

For all subjects, the running and walking periods were 

properly classified. However, the sensitivity is slightly lower, 

meaning that, for some subjects, the transition was not 

precisely detected, and some running gait were classified as 

walking.  

D. Run4Vit application 

Finally, we tested the validated algorithm on a subset of data 

from the Run4Vit study.  The Fig. 4 shows an illustrative 

example of locomotion detection (walking and running) and 

instantaneous cadence estimation applied to a long term 

recording of one subject (~14 hours). This subject is quite 

active at the end of the day with several walking bouts, as well 

 

Figure 2. Instantaneous cadence estimation; (A) treadmill incremental 

test, and (B) indoor walk & run protocol. The top black curves 

represent the accelerometer norms measured by the trunk-mounted 
inertial sensor. The purple, blue and red lines correspond to the 

instantaneous cadence estimated by the reference system (ground 

truth), the time-domain and the frequency-domain trunk-sensor-based 

algorithms, respectively. 

 

 

Figure 3. Bland-Altman analysis obtained for the treadmill incremental 

test for one subject; (A) time-domain method, (B) frequency-domain 

approach. 
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as, some running periods with a cadence greater than 140 

steps/min. Based on a preliminary visual inspection, the 

algorithm works well for long term recording and challenging 

environment. 

IV. DISCUSSION 

The single accelerometer-based algorithm for 

step/locomotion detection adapted from [11], and cadence 

estimation developed in this work demonstrated a good 

performance when applied to a large range of walking and 

running speeds (4 to 8 km/h). The running detection algorithm 

also demonstrated good results (accuracy and precision 

greater than 98 and 99% respectively) when applied to the 

MAREA database. Moreover, the algorithm is based on the 

norm of the accelerometer signal. Thus, functional calibration 

procedures do not need to be applied, making this algorithm 

very practical for real life monitoring. 

The current version of the algorithm shows good 

performance for both time and frequency-domain cadence 

estimation (Fig. 2 and Fig. 3). On the one hand, the time-

domain method, which is based on the heel-strike events, is 

more accurate for short periods of locomotion. However, the 

CWT scale and the peak detection threshold must be properly 

defined to obtain an accurate estimation. On the other hand, 

the frequency-domain method is less sensitive to outliers in 

the signal because it does not depend on an exact peak 

detection. However, the FFT is very computationally 

intensive, which can be a limitation when processing long 

recordings (~10 hours).  

The main contribution of the current work is the validation 

of the algorithms for running detection and instantaneous 

cadence estimation, extending the scope from clinical 

(atypical gait patterns [11]) to sports applications. However, 

we are aware of certain limitations. First, the validation was 

performed with a limited number of subjects. Second, the step 

detection algorithm is robust to a wide range of gait patterns, 

provided that the CWT scale is chosen correctly. This is both 

the strength and weakness of the current method.  

Finally, the validated algorithm, based on the time-domain 

cadence estimation, was successfully applied to a subset of 

long-term monitoring Run4Vit data (Fig. 4). The future work 

will consist of extending the barcode concept [5, 9] by 

including vigorous activities (e.g. running). Then, we will 

extract the classical daily PA features such as the locomotion 

(walking and running) and sedentary percent times; as well 

as, the complexity metrics aiming to capture the temporal 

fluctuations of the daily PA patterns. Those objective PA 

measures, combined with subjective evaluations based on 

questionnaires would help us understanding the effects of the 

eight weeks running intervention on PA behaviors, sleep 

quality and vitality.  
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Figure 4. Application to the Run4Vit project, example of physical 

activity classification of one subject (~14h). The top plot represents the 
processed acceleration signal (accN-LPF-CWT). The middle plot shows 

the instantaneous cadence estimation using the time-domain method. 

The bottom plot corresponds to the activity classification with sedentary 

(blue), walking (yellow), and running (red) activities. 

 

 

3648


