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Abstract— Preterm infants in a neonatal intensive care unit
(NICU) are continuously monitored for their vital signs, such
as heart rate and oxygen saturation. Body motion patterns
are documented intermittently by clinical observations. Chang-
ing motion patterns in preterm infants are associated with
maturation and clinical events such as late-onset sepsis and
seizures. However, continuous motion monitoring in the NICU
setting is not yet performed. Video-based motion monitoring
is a promising method due to its non-contact nature and
therefore unobtrusiveness. This study aims to determine the
feasibility of simple video-based methods for infant body motion
detection. We investigated and compared four methods to
detect the motion in videos of infants, using two datasets
acquired with different types of cameras. The thermal dataset
contains 32 hours of annotated videos from 13 infants in open
beds. The RGB dataset contains 9 hours of annotated videos
from 5 infants in incubators. The compared methods include
background substruction (BS), sparse optical flow (SOF), dense
optical flow (DOF), and oriented FAST and rotated BRIEF
(ORB). The detection performance and computation time were
evaluated by the area under receiver operating curves (AUC)
and run time. We conducted experiments to detect motion
and gross motion respectively. In the thermal dataset, the best
performance of both experiments is achieved by BS with mean
(standard deviation) AUCs of 0.86 (0.03) and 0.93 (0.03). In
the RGB dataset, SOF outperforms the other methods in both
experiments with AUCs of 0.82 (0.10) and 0.91 (0.05). All
methods are efficient to be integrated into a camera system
when using low-resolution thermal cameras.

I. INTRODUCTION

Preterm birth is a leading cause of morbidity and mortality
in infants. The rates of survival and survival without severe
impairment drop rapidly with the decrease of gestational age.
These rates are also related to active lifesaving treatment
and comfort care after birth [1]. These preterm infants are
often hospitalized in a neonatal intensive care unit (NICU)
or a medium care unit (MCU) depending on their maturity.
To provide timely and adequate care and treatment, the
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vital signs of the patients such as the electrocardiogram
(ECG) and photoplethysmography (PPG) are continuously
monitored on patient monitors. However, not all clinically
relevant information is yet monitored continuously. For in-
stance, motion patterns in infants are only intermittently
observed, even though changing motion patterns in preterm
infants are associated with maturation and clinical events
such as late-onset sepsis and seizures [2], [3]. Therefore,
continuous motion detection is significant and valuable for
infant monitoring in NICUs and MCUs.

Unobtrusive methods to detect motion in neonates have
been widely investigated by researchers. For instance, the
ballistography obtained from a pressure-based mattress was
used to detect infant motion [4]. The frequency component
of motion and the instability in monitored physiological
signals were extracted to represent the motion of preterm
infants [5]. The long-term motion derived from PPG showed
that the amount of brief motion (less than 5s) decreases
with the increasing postmenstrual age (PMA) of preterm
infants [2]. Additionally, camera systems were used for infant
detection and tracking, which can recognize an infant’s body
or caregiver’s appearance [6], [7]. Even though video-based
methods were widely used in motion detection [8], [9],
[10], the comparison of efficiency and performance of these
motion detection methods for preterm infants has not been
conducted.

The aim of this study is to compare the performance of
four video-based methods for motion detection in preterm
infants, including background substruction (BS), sparse op-
tical flow (SOF), dense optical flow (DOF), and oriented
FAST and rotated BRIEF (ORB). This paper first starts with
a brief description of the datasets and methods. Afterwards,
all methods are optimized and applied on two datasets. The
detection performance and computation time of all methods
are compared and discussed at the end of the paper.

II. DATASETS

This study uses two datasets from preterm infants admitted
to the NICU and MCU in the Maxima Medical Center
(MMC) in Veldhoven, the Netherlands. One dataset was
acquired using an RGB camera (UI-3860LE-C-HQ, with a
resolution of 1280 * 720 pixels and a frame rate of 10 fps)
placed on top of the incubator to capture the head and upper
body of the infant. A total of 9-hour videos from 5 infants
were collected and the mean (standard deviation, SD) PMA
of infants were 31.2 (2.1) weeks in this RGB dataset. The
thermal dataset was from our previous study on respiration

2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC)
Scottish Event Campus, Glasgow, UK, July 11-15, 2022

This work is licensed under a Creative Commons Attribution 3.0 License.
For more information, see http://creativecommons.org/licenses/by/3.0/

3047

20
22

 4
4t

h 
An

nu
al

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
&

 B
io

lo
gy

 S
oc

ie
ty

 (E
M

BC
) |

 9
78

-1
-7

28
1-

27
82

-8
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
EM

BC
48

22
9.

20
22

.9
87

17
00



monitoring [11]. Three thermal cameras (FLIR Lepton 2.5,
with a resolution of 60 x 80 pixels each and a frame rate of
9 fps) were positioned around the infants’ beds. The video
frames from three cameras were synchronized and merged
to observe infants from different directions simultaneously in
each frame. In total, 32-hour thermal videos from 13 infants,
with mean PMA of 36.7 (3.3) weeks were used in this study.

Both datasets were retrospectively annotated based on the
videos. The thermal videos were annotated by one of the
authors in our previous study [11]. Another author annotated
the RGB videos for this study, following the same annotation
scheme described in [11]. This study focuses on three classes
of event labels including gross motion, fine motion, and
still. Gross motion indicates motion with the torso or chest.
Fine motion involves motion from limbs, fingers, or facial
expressions. The video frames corresponding to interrupting
events like parent’s or caregiver’s hands in the view, feeding,
infant out of bed, infant not in good view (e.g. very low light
condition), and camera motion were excluded in this study.
After exclusion, the duration of each included event and the
corresponding percentage are shown in Table I.

For this study, the ethical committee of MMC provided
a waiver. Informed consent was obtained from the infants’
parents before the study.

III. METHODS

Four video-based methods (BS, SOF, DOF, and ORB)
were implemented to measure motion between two consecu-
tive frames for all included RGB and thermal video frames.
In the preprocessing step, each frame was transformed into a
grayscale image and normalized by a histogram equalization
to improve efficiency and contrast. For each method, the
motion was derived from video frames, taking the whole
field of view of the cameras as the region of interest (ROI).
Fig. 1 shows the processed frames for the different methods
in both datasets.

A. Background Substruction

The BS method uses the difference between the current
frame and a defined background model to detect the motion
region where the model is violated [12]. The background
model is first initialized with a fixed number of frames
and then updated to adapt to the impact of the changing
external environment such as light. There are various ways
to initialize and update the background model. In this study,
we applied a gaussian mixture model based on Zivkovic‘s
method [12] to initialize and update the background model
and detect the foreground region in each frame. The number
of pixels that were determined as foreground by the method
was used to quantify the motion in each frame.

TABLE I
EVENT DURATION BY HOURS (PERCENTAGE)

Dataset Gross Motion Fine Motion Still Total
RGB 1.9 (23%) 3.1 (37%) 3.3 (40%) 8.3 (100%)

Thermal 7.6 (32%) 11.2 (47%) 5.2 (22%) 24.0 (100%)

B. Optical Flow

The optical flow method uses the change of tracking points
between consecutive frames to detect motion, assuming pixel
intensities of an object do not change between consecutive
frames [13]. This change is quantified by a motion vector
with magnitude and direction corresponding to the detected
motion. Depending on the density of pixels that are tracked
by the optical flow method, the method can be categorized
into SOF and DOF.

Regarding SOF, we first detected tracking points in each
frame based on the Shi-Tomasi corner detection algorithm
[14]. Then, we computed the optical flow of these tracking
points based on Lucas-Kanade method with pyramids [15].
To prevent the mistracking of the optical flow points, we ran
a ‘backward check’ on two consecutive frames and we only
selected points in the first frame when their corresponding
points calculated by backward check from the second frame
were within a certain distance. The tracking points were re-
freshed at every tenth frame to improve robustness. Last, we
calculated the average displacement (measured by Euclidean
distance) of tracking points between current and previous
frames to quantify the motion.

Regarding DOF, we computed the motion vectors for all
the pixels between two consecutive frames based on Gunnar
Farneback’s algorithm [16]. The motion vectors contained
the magnitude and direction of each pixel. The magnitude of
all the pixels was summed to quantify the motion.

C. Oriented FAST and Rotated BRIEF

The ORB method is a fast binary feature descriptor,
combining FAST (Features from Accelerated Segment Test)
[17] feature point detection and BRIEF (Binary Robust
Independent Elementary Features) [18] feature descriptor. It
is widely used in feature matching and object detection [9],
[19]. ORB first finds pixels that are significantly different
from neighbor pixels in a frame as tracking points, using the
FAST algorithm. Afterwards, these tracking points in two
consecutive frames are described and matched based on a
BRIEF descriptor with a rotation angle [19]. To reduce the
number of mismatching points, we calculated two nearest
neighbors based on hamming distance for each tracking point
and rejected the points whose two nearest neighbors were
too close. Similar to SOF, we quantified the motion in each
frame by calculating the average Euclidean distance between
the matched tracking points in current and previous frames.

D. Evaluation

We tested all methods using two experiments. In the first
experiment, called motion detection, we merged the labels
of gross motion and fine motion as ‘motion labels’ and used
each method to discriminate motion from still. In the second
experiment, called gross motion detection, each method was
used to discriminate gross motion from the other (consisting
of fine motion and still). First, the motion measure calculated
by each method was normalized and smoothed by a notch
filter. Next, the area under receiver operating curves (AUC)
was used to evaluate the performance of the methods. The

3048



Fig. 1. Sample frames from thermal (top row) and RGB (bottom row) datasets, processed by the each method. (BS: background substruction. SOF: sparse
optical flow. DOF: dense optical flow. ORB: oriented FAST and rotated BRIEF). The green dots represent the tracking points in methods (SOF and ORB).

computation time was measured by the run time on the same
hardware. The mean (SD) of these metrics were used to
characterize the results of all methods.

All analysis in this study was implemented using Python
3.8.3 with opencv-contrib-python 4.5.5.62 (CPU-only) on a
CPU of 2.60GHz (Intel Core i7-9750H) with no architecture-
specific instruction.

IV. RESULTS

Table II shows the mean (SD) of AUC and run time of all
infants corresponding to four methods and two datasets for
both experiments. In the thermal dataset, BS outperforms
the other methods with mean (SD) AUCs of 0.86 (0.03)
and 0.93 (0.03) for both experiments. In the RGB dataset,
SOF performs best for motion detection and is as good
as DOF when detecting gross motion. The performance of
two methods (SOF and ORB) based on sparse tracking
points increases with higher video resolution, whereas the
resolution has little influence on the performance of DOF.
The run time does not differ per method for the thermal
data, which has a low resolution. In the RGB dataset, the
run time is always higher, particularly the run time of DOF
increases largely at high resolution.

TABLE II
MOTION DETECTION AND GROSS MOTION DETECTION PERFORMANCE

IN AUC AND RUN TIME. RESULTS ARE PRESENTED IN MEAN (SD). THE

BEST RESULTS FOR RGB AND THERMAL ARE INDICATED IN BOLD.

Method Dataset Motion
Detection

Gross Motion
Detection

Run Time
(ms)

BS RGB 0.76 (0.13) 0.89 (0.04) 30.0 (1.80)
Thermal 0.86 (0.03) 0.93 (0.03) 16.0 (0.05)

SOF RGB 0.82 (0.09) 0.91 (0.05) 28.9 (2.63)
Thermal 0.74 (0.06) 0.87 (0.07) 15.9 (0.05)

DOF RGB 0.79 (0.11) 0.91 (0.05) 234 (3.40)
Thermal 0.78 (0.09) 0.91 (0.05) 15.8 (0.64)

ORB RGB 0.77 (0.11) 0.84 (0.06) 36.2 (1.10)
Thermal 0.70 (0.11) 0.81 (0.10) 15.6 (0.02)

Fig. 2. Motion measure from each motion detection method over one
hour in the thermal dataset, with background colored by corresponding
annotations (GM: gross motion, FM: fine motion). (a) Motion measure from
BS. (b) Motion measure from SOF. (c) Motion measure from DOF. (d)
Motion measure from ORB.

Fig. 2 shows an example of one-hour annotations in
the thermal dataset with corresponding motion measures
calculated by four methods BS, SOF, DOF, and ORB. It
can be observed that most gross motions are well reflected
in all motion measures. BS and SOF are better at fine motion
detection than DOF and ORB. ORB is most ‘noisy’ when
the infant keeps still, but is more sensitive to consecutive
gross motion (e.g. gross motion periods around 3000s).

V. DISCUSSION

Our results show that all the methods can capture gross
motion well based on differences between two consecutive
frames. The overall lower performance in the motion detec-
tion experiment can be explained by the limited performance
on fine motion detection for all methods (shown in Fig. 2).

The low performance in fine motion detection is not sur-
prising, because the detection of quick sudden changes (e.g.
eyelid twitch) is challenging for all methods. In particular,
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for BS, when a fine motion occurs, the changing pixels may
not violate the background model over a certain threshold,
leading to missing detection. Whereas tracking-point-based
methods such as SOF and ORB can fail to detect fine motion
since the tracking points may not locate at the changing
pixels. DOF, on the other hand, assumes a slowly varying
displacement field, causing the quick fine motion to be
smoothed out [16].

The BS method performs best in both experiments when
using thermal videos, but the performance decreases in
RGB videos. This may be because the thermal videos are
unaffected by light conditions, compensating the sensitivity
to light conditions in BS. Moreover, BS and DOF are based
on all pixels in a frame, meaning that they cannot benefit
from the increased resolution of RGB videos as much as
the methods based on sparse tracking points (SOF and
ORB) which can be more reliable in high-resolution images.
Additionally, the lower performance and the noisy motion
measure of ORB may be caused by mismatched tracking
points. Because the color of infants’ skin is fairly uniform,
it is challenging for ORB to correctly match points. ORB
is more suitable in the applications of object finding with
moving background [9], [19]. Interestingly, the BS method
used on the thermal videos outperforms all the RGB-video
results. However, further studies are needed to draw conclu-
sions on the possible differences between the two modalities
since differences in patient population and available views
between the two datasets are also present.

The run time of the DOF method increases much more
than other methods when running in high-resolution RGB
videos. This is because of the high complexity of motion
vector computation and the dense tracking points (all pixels).

One limitation of this study is that the event labels were
annotated only based on visual observation of videos, which
can lead to errors in the annotations when it is difficult to
capture the onset and offset of fine motion events. Another
limitation is that the patient population between the two
datasets is different, as the thermal camera could only be
used when infants are in open beds. The thermal camera
cannot see through the incubator and at the time of the study,
it was not allowed to use the three thermal cameras inside.
The infants in the thermal dataset are, therefore, more mature
with possibly different motion patterns than the preterm
infants filmed with the RGB camera in the NICU.

This study analyzes the motion detection performance
using video frames collected on infants, corresponding to
(gross) motion and still. However, interrupting events (e.g.
caregiver takes infant in/out of the bed) are quite common in
the daily routine in NICUs and MCUs. To achieve continuous
motion monitoring, future work will investigate infant’s
presence detection (to detect infants in/out of bed) and
infants segmentation (to automatically select ROI) methods
using videos [6], [7], [10]. In addition, the motion measures
calculated by all methods will be further processed into
binary or trinary signals explicitly indicating the motion
status of infants to clinicians.

VI. CONCLUSIONS

This study compares (gross) motion detection performance
and computation time for BS, SOF, DOF, and ORB us-
ing low-resolution thermal videos and high-resolution RGB
videos of infants. Our findings suggest that using BS with
low-resolution thermal videos to detect (gross) motion in
preterm infants is more suitable, SOF is a good alternative
when using high-resolution videos. This study is a first step
towards the use of videos to continuously monitor motion in
neonatal wards, which could lead to prediction and detection
of clinical deteriorations and events.
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