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Abstract— Pediatric flexible flat foot (PFFF) is known to in-
crease the foot structure’s load, causing potential disability. Foot
orthoses are one of the most common non-surgical methods to
improve the medial longitudinal arch of the foot for improving
PFFF. However, orthoses are not routinely prescribed due to
their high cost, and discomfort caused by a restriction of foot
movement. Furthermore, there are no quantitative standards
or guidelines for an orthotic prescription, which makes the
decision-making process of less experienced podiatrists chal-
lenging. In this study, the authors investigated convolutional
neural networks to classify the needs of orthotic prescription.
Using image augmentation techniques and training a VGG-
16 model, we achieved high precision and recall, 1 and 0.969
accordingly, to classify orthotic prescription needs.

I. INTRODUCTION

Pediatric flexible flat foot (PFFF) involves a cycle of a
collapse of the medial longitudinal arch of the foot in a
weight-bearing posture and restoration of the arch during
non-weight-bearing posture in children. The prevalence of
PFFF widely varies from 0.6% to 77.9% due to many factors
including body mass index (BMI), age, and gender [1][2].

PFFF can lead to a potential disability, including severe
pes plano valgus deformity in adulthood, requiring surgical
treatments. For reducing the pain and improving the medial
longitudinal arch, the most common non-surgical treatments
include intrinsic muscle exercises, and orthotic prescription
[3]. Foot orthoses can provide early intervention, promoting
musculoskeletal development, stability, and improving lower
extremity and foot alignment [4].

While orthoses significantly improve PFFF aggravation
for many patients, some clinical outcomes showed non-
predictable results in terms of discomfort, intrinsic muscle
movement restriction and/or lower self-esteem [5][6][7]. In
addition, the cost of custom-made orthotics for PFFF can
range between $200 and $800, while it requires newly
prescribed orthotics every 6 to 12 months with the growth of
foot in children [8]. Given high costs and clinical outcomes,
it is crucial to classify patients who need the devices accu-
rately [9]. Unfortunately, there are no reliable quantitative
standards for orthotic prescription while primarily relying
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on the presence of pain and progression of deformities
[4][10]. A podiatrist with a depth of experience diagnoses
the severity of PFFF and prescribes orthosis based on phys-
ical examination, gait analysis, radiography, photography,
footprints, and pedobarography, which requires profound
training, experience, and expenses [11].

While many studies have classified flexible flat feet, no
data-driven study has further classified orthotic prescription
needs. Xu et al. developed a gait recognition system using
pressure sensors. While this study successfully classifies flat
feet using the self-organizing-map (SOM) neural network
(NN) and support vector machine (SVM), the study does not
address the classification between flexible flatfoot or rigid
flatfoot or the needs of orthotic prescription [12]. Li’s study
collected data from smart-insoles embedding baropodometry,
stabilometry, and biomechanical sensors. The authors devel-
oped a modified weights-and-structure-determination neural
network model to distinguish between flat foot versus non-
flat foot. This study also did not extend the analysis further
for investigating PFFF and orthotic prescription [13].

In this paper, we trained a convolutional neural network
model to predict the need of foot orthotic prescription using
pedobarography images. A Pedobargraph is a system that
measures plantar pressures using use the critical light reflec-
tion technique while walking [14]. Pedobarography measures
the contact patterns, pressure distribution, and magnitude
between the foot and the floor, widely used in quantitative
clinical gait analysis studies [15]. We aim to reduce the time
and effort of less experienced podiatrists for determining foot
orthotic prescription by using pedobarography images only.

II. DATA

The general hospital Institutional Review Board approved
this study (IRB No.: 2021-07-004) and waived the informed
consent. This study was performed in accordance with the
World Medical Association Declaration of Helsinki and
under the approved guidelines.

We retrospectively recruited and collected data from 68
children diagnosed with/without PFFF who are 4 to 12
years old from a rehabilitation outpatient foot clinic between
June 2014 and June 2021. Among 68 participants, 64 were
diagnosed with PFFF where only 33 individuals were pre-
scribed with orthoses by highly experienced podiatrists. The
participants’ age, stature, weight, and foot size information
is given in Table I.

In this study, the researchers utilized pedobarography to
classify PFFF orthotic prescriptions. Pedobarograph data
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TABLE I: Study Participant Information - Among 68 partic-
ipants, 22 were female.

Average Standard
Deviation

Age (years) 5.180 1.452
Height (cm) 111.479 10.882
Weight (kg) 20.872 5.368
Foot Size (cm) 18.049 1.959

were collected at 50 Hz using an EMED n-50 pedobarograph
(Novel, Munich, Germany) with a sensor area of 475×320
mm2 with 6,080 sensors (Figure 1). The pedobarograph was
located at the midpoint of a 6-m walkway. We collected data
from five successful trials of each subject walking at a self-
selected speed for each foot. The mean value of 5 trials from
each foot was chosen for analysis based on its acceptably low
within-subject variability.

III. METHODS

1) Image Preprocessing: In order to achieve high accu-
racy of image classification through convolutional neural
networks, it requires a large amount and diverse set of
training data.

To overcome the limitation of the small data set size, the
authors randomly permutated left and right foot images of
the data, producing a total of 1,122 images (57.05 GB). Each
image was labeled if at least one of the feet was diagnosed
as flat foot and required an orthotic prescription.

After image permutation, we applied image augmenta-
tion to enhance convolutional neural networks’ performance.
Image augmentation produces images by slightly changing
the original images, including scaling, rotating, shifting,
interpolating, and normalization [16][17].

As the original images come in different sizes, we resized
their shortest side to 256 pixels and then cropped their middle
256×256 square. Images were also normalized using (1). The
mean and standard pixel values were calculated per channel
- In our images, we had three channels: red, green, and blue.

normalized_image =

image−mean×max(pixel_value)
std×max(pixel_value)

(1)

As all foot images might not be aligned in the same
direction or skewed on the frames, images were rotated
within -15◦ to 15◦, and the corresponding bounding box was
updated. We also shifted images to the left, right, up, or down
to change the position of the objects in the image to avoid
positional bias [18]. For interpolation, we applied bilinear
interpolation [19].

(a) Non flat feet

(b) Flat feet : No orthosis prescribed

(c) Flat feet : orthoses prescribed

Fig. 1: Original pedobarography images of non flat feet and
flat feet cases

2) Image Classification: In this study, the main objective
is classifying whether the subject may require a referral
for an orthoses prescription. Experienced podiatrists labeled
images in training, validation, and testing sets. Processed
images with labels from Section III-.1 were used as input
for building an image classification model.
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Fig. 2: Accuracy of the model for training and validation
data (x-axis : epochs, y-axis : accuracy)

A convolutional neural network (CNN) shows high accu-
racy in image segmentation, recognition, and classification.
CNN consists of a stack of convolutional layers, pooling
layers, rectified linear unit (ReLU) layers, fully connected
layers, and loss functions [20].

In this study, we utilized the pre-trained VGG-16 model
[21]. VGG-16 is an implementation of CNN with 3×3 small
receptive filters, 1×1 convolution filters, max-pooling over a
2×2 pixel window, and stride of 2. The depth of VGG-16 is
16 layers, which is significantly deeper and contributes to the
model to perform better than many other models, including
GoogLeNet [22] for image classification. Utilizing very small
filters in all layers allows VGG-16 to have a deeper depth,
resulting in superior outcomes.

The model was pre-trained using ImageNet data, which is
an image database storing several millions of images with
labels [23]. VGG with up to 19 layers won the ImageNet
challenge in 2014, showing an outstanding performance in
image classification and recognition tasks. Using the pre-
trained model, we reshaped the final layer to have the same
number of outputs as two, the number of classes in the data
set.

IV. RESULTS

After image permutation, we transformed data by image
augmentation. We shifted, rotated, and scaled images with
the probability of 0.5 and applied bilinear interpolation. For
RGB image normalization, we set mean as [0.485, 0.456,
0.406], std as [0.229, 0.224, 0.225], and max(pixel_value)
as 255.0.

TABLE II: Confusion matrix for final validation dataset

Positive Negative
Positive
(Predicted) 125 0

Negative
(Predicted) 4 94

Our experiment used 894 images for training, 223 images
for validation, and five for testing. For VGG-16, we set our
learning rate as 0.001 and momentum as 0.9. The experiment
shows that the accuracy increased, while loss decreases as
epoch increases (Figure 2 and Figure 3). With the epoch
of 10, the validation set accuracy reached 98.21%, with
the precision of 1 and the recall of 0.969 (Table II, (2)).
Additionally, the accuracy of test data was 100%.

precision =
TP

TP + FP

recall =
TP

TP + FN
(2)

F1 = 2× precision× recall

precision+ recall
(3)

We also compared the model performance with other state-
of-the-art convolutional neural network models, including
ResNet [24] and GoogLeNet-V3 [25] with the same data
set. GoogLeNet-V3 computes multi-level features by using
1×1 and 3×3 convolutions within the same module of the
network and sends its concatenated output to the next layer.
GoogLeNet-V3 demonstrates high computational efficiency
by distributing the depth and width of the network in a
balanced way. ResNet overcomes deeper neural networks’
performance degradation issues and achieves high accuracy
using shortcut connections by skipping one or more layers.
While ResNet uses a deeper depth than VGG, the model
shows higher computational efficiency than VGG-16 by
global average pooling. In our experiment, the depth for
ResNet was set as 50.

The experiment result shows that VGG-16 outperforms
(Table III). Although the training time takes longer, we
found that VGG-16 would be the most accurate model for
making a clinical decision to recommend foot orthoses using
pedobargraphy images.

Fig. 3: loss of the model for training and validation data
(x-axis : epochs, y-axis : loss)
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TABLE III: Validation accuracy (%) of different deep learning models
(ResNet [24], GoogLeNet-V3 [25])

.
GoogLeNet-V3 Resnet VGG-16

Validation Accuracy (%) 78.92 86.55 98.21
Training Time (min) 19.33 28.53 52.59

V. DISCUSSION
Foot orthoses can reduce pain, discomfort, and fatigue by

keeping the foot in a proper position. As foot orthoses could
cause discomfort, causing low acceptability, experts often
avoid routinely prescribing foot orthoses in children with
PFFF. Without quantitative guidelines, the foot orthoses pre-
scription process heavily depends on experienced pediatric
podiatrist opinions and one’s discomfort level.

In this study, the authors applied image augmentation
and convolutional neural networks to develop a model to
assist the orthotic prescription decision-making process for
less experienced pediatric podiatrists. The experiment result
confirms that VGG-16, a convolutional neural network model
could determine the need for a foot orthoses prescription with
a high F1 score value (0.984, (3)).

In our future study, we will develop an image classification
model using podiatric X-ray data. Furthermore, we will in-
vestigate its accuracy, time efficiency, and cost-effectiveness
compared to the model introduced in this study. This will
further assist inexperienced podiatrists in developing a data-
driven decision-making process for PFFF orthotic prescrip-
tion.
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