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Abstract— Acute heart failure is caused by various factors
and requires multiple drug therapies to remedy underlying
causes. Due to the complexity of pharmacologic effects of
cardiovascular agents, few studies have theoretically addressed
the multidrug optimization problem. This paper proposes a
drug infusion system for acute heart failure that controls
cardiovascular performance metrics (cardiac output, left atrial
pressure, and mean arterial pressure) within desired ranges
as dictated by the cardiovascular parameters (systemic vascu-
lar resistance, cardiac contractility, heart rate, and stressed
blood volume). The key to our system design is modeling
and controlling cardiovascular parameters to yield the desired
cardiovascular metrics. A ‘tailored drug infusion’ technique
controls parameters by solving the optimization problem in
order to conquer the complexity of multi-dependencies and the
different dosage limits among multiple drugs. A ‘cardiovascular
space mapping’ technique identifies the desired parameters
from the desired metrics by deriving the analytical solutions
of the metrics as functions of the parameters. To facilitate
clinical discussions, parameters were set to realistic values in
5,600 simulated patients. Our results showed not only that
the optimized drug combinations and dosages controlled the
cardiovascular metrics to within the desired ranges, but also
that they mostly corresponded to the recommended clinical
use guidelines. An additional value of our system is that it
proactively predicts the limitations of the tailored drug therapy,
which supports the clinical decision of pivoting to alternative
treatment strategies such as mechanical circulatory support.

I. INTRODUCTION

Patients with acute heart failure (AHF) are managed with
pharmacological therapy to stabilize their hemodynamics.
The selection of drugs is determined based on clinical
findings and various examination results. In recent clinical
practice, classes of cardiovascular agents, including diuretics,
positive inotropes, vasopressors, and vasodilators are consi-
dered effective for treating AHF [1]–[3].

The complex underlying pathophysiologies of AHF and
the unclear interactions and maximally tolerated dose ranges
make it difficult to optimize drug therapy for each patient. In
addition, because the patient’s condition can easily fluctuate
with slight changes in the infusion rate of these drugs, strict
monitoring of the patient’s condition and manual adjustments
of drug dosages are required.

To reduce the burden of patient monitoring and manual
interventions, several closed-loop systems have been develo-
ped to automatically adjust drug infusion rates to control the
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Fig. 1: Proposed Cardiovascular Control System Design

patient’s arterial pressure (AP ) and/or cardiac output (CO),
while few studies are aiming to achieve optimal pharmaco-
logical therapy considering the patient’s pathophysiologies,
especially when the complexity of multiple drug use exists.
[4]–[7].

This paper proposes a drug infusion system for acute heart
failure that optimally controls and maintains cardiovascular
performance metrics (:=CV metrics): cardiac output (CO),
left atrial pressure (PLA), and mean arterial pressure (MAP )
– within a desired range as dictated by the patient’s cardio-
vascular parameters (:=CV parameters): systemic vascular
resistance (Rs), cardiac contractility (Ees), heart rate (HR),
and stressed blood volume (SBV ). The inputs for the pro-
posed system are multiple therapeutic drugs having different
effects; the outputs are CV metrics. The inputs interact with
the CV parameters to determine the CV metrics.

Our proposed methods involve two key techniques, as
shown in Fig. 1, where the CV parameters space and the CV
metrics space are denoted by X and Y , respectively. The
first technique is designed to tackle the complexity of multi-
ple drug infusions: multi-dependencies and different dosage
limitations. This tailored drug infusion method optimizes
the drug combination and dosage from the initial state of
heart failure into the desired state of stable hemodynamics
within the CV parameters space (x0 ∈ X → xd ∈ X) via a
linear programming formulation using a drug infusion model.
Here, one challenge is identifying the control target, i.e., the
desired CV parameters that correspond to the desired CV
metrics. The second technique is designed to address this
inverse problem. This cardiovascular space mapping method
identifies the desired CV parameters from the desired CV
metrics (yd ∈ Y → xd ∈ X) via the derived analytical
solution of PLA and CO as functions of CV parameters.
We applied Guyton’s Venous Return Curve to the pulmonary
circulation, then analytically solved its intersection with the
Frank-Starling Curve of the left ventricle.

In simulation experiments, the parameters are set to rea-
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listic values to facilitate clinical discussions and exploration
of actionable insights that support the treatment of AHF.
Our results showed not only optimized drug combinations
and dosages but also revealed the limitations of these drug
treatments. Such information can provide clinical decision-
making support for a clinician to pivot proactively from drug
treatments to mechanical interventions.

II. METHODS

A. Cardiovascular Parameter Control System Design
Drugs directly affect CV parameters based on their phar-

macology. Changes in CV parameters will in turn affect CV
metrics. Thus, the key to our system design is modeling and
controlling CV parameters values to yield the desired outputs
in terms of CV metrics.

In our system, let x denote the CV parameters x :=
[Rs, Ees, HR, SBV ]T ∈ R4. Assuming x is measurable,
the patient’s initial CV parameters x0 are given. Next, let
the input u be the drug infusion u := [u1, · · · , u5]T ∈ R5 as
described in TABLE I. The infusion drugs were selected to
represent key classes used in treatment of AHF: Dobutamine
(DOB) as a positive inotrope, Norepinephrine (NE) as a
vasopressor, Sodium Nitroprusside (SNP) as a vasodilator,
Dextran (DEX) as a fluid, and Furosemide (FRO) as a diure-
tic. Then, let y be the CV metrics y := [MAP,PLA, CO]T .

The following two subsections will introduce the two
techniques shown in Fig. 1. The first technique, tailored drug
infusion, optimizes the drug combination and dosage that
converts the initial CV parameters x0 ∈ X of AHF patient
into the desired one xd ∈ X via a linear programming formu-
lation using the drug infusion model. The second technique,
cardiovascular space mapping, identifies the control target
xd ∈ X from the desired output yd ∈ Y .

B. Tailored Drug Infusion (x0 ∈ X → xd ∈ X)
Firstly, this proposed technique models the multi-

dependencies of simultaneous multiple drug infusion when
drug effects have converged. The assumptions in this model
are a) each drug functions to add its effects linearly to
influence CV parameters and b) cross-terms of the multiple
inputs, e.g., u1 × u2 are not considered. Then, our drug
infusion model becomes

x = Bu+ x0 (1)

where x shows the CV parameters following drug infusion,
once updated and converged. The input matrix B is the drug
library that represents the multi-dependency effect from each
drug to CV parameters. In the case of our drug inputs, the
drug library matrix is represented by

B =





0 k12+ k13− 0 0
k21+ k22+ 0 0 0
0 0 0 0 0

k41+ 0 k43− k44+ k45−





based on known pharmacological effects [2], [8]. Each
element is equivalent to the gain, and the plus or minus sign
indicates the direction of the change. For example, drug input

TABLE I: Intervention Drugs for AHF Treatment

Input Name Abb. Max Dose Unit

u1 Dobutamine DOB 10 [µg/kg/min]
u2 Norepinephrine NE 3 [µg/kg/min]
u3 Nitroprusside SNP 10 [µg/kg/min]
u4 Dextran DEX 25 [ml/kg]
u5 Furosemide FRO 180 [mg]

u3 (Sodium Nitroprusside) decreases Rs and SBV , as shown
by the gains k13− and k43−.

The above-simplified model decribes a set of linear si-
multaneous equations to compute the CV parameters when
drugs are infused. Thus, the input optimization problem with
the input dosage limitations can be formulated by a linear
programming problem:

Minimize
wTu∗ (2)

subject to
xd − x0 = Bu∗

0 ≤ u∗ ≤ ū

where u∗ is the optimal input that minimizes the total dosage
of the drug use with the designed weight w = [w1, · · · , w5]T

and ū is the dosage limitation.

C. Cardiovascular Space Mapping (yd ∈ Y → xd ∈ X)
1) Analytical Solution (X → Y ): We derived the analyti-

cal solution that maps the CV parameter space X to the CV
metrics space Y using approximation. This was derived from
the intersection of the Frank-Starling Curve and Guyton’s
Venous Return Curve formula [9], [10].

Firstly, the Frank-Starling Curve defines the relationship
between CO and PLA. The mechanics of the Frank-Starling
Curve derived in [11] shows

CO =
HR · Ees

β(Ees +
HR
60 ·Rs)

· ln PLA + α

α

[
ml
min

]
(3)

where heart rate (HR), systemic vascular resistance (Rs),
and left ventricular contractility (Ees) are the given CV
parameters and α and β are constant parameters to define the
end-diastolic pressure-volume relationship (EDPVR) [12]. In
(3), EDPVR is assumed to be

Ped = α (exp{β(Ved − V0)}− 1) (4)

⇔ Ved =
1

β
ln

Ped + α

α
+ V0 [ml]. (5)

Note that Ped is left ventricular end-diastolic pressure and is
equivalent to PLA in the filling phase.

Secondly, we applied Guyton’s Venous Return Curve to
the pulmonary circulation [10], [13],

CO =
1

Rvp

(
Vp

Cp
− PLA

) [
ml
sec

]
(6)

where Rvp is the resistance for pulmonary venous return, and
where Cp and Vp are the compliance and the stressed blood
volume in the pulmonary circulation, respectively. Assuming

1389



Fig. 2: Schema of Cardiovascular Space Mapping

that total stressed blood volume (SBV ) is distributed by the
compliance ratio of the systemic and pulmonary circulation,
Vp is given by

Vp ≈ Cp

Cs + Cp
SBV (7)

where Cs is the compliance of the systemic circulation.
Substituting Vp in (6) with (7) yields

CO =
1

Rvp

(
SBV

Cp + Cs
− PLA

) [
ml
sec

]
. (8)

Thirdly, solving (3) and (8) with respect to (PLA, CO),
the analytical solution of PLA and CO is given by

PLA = −α

(
aW

(
− b

a exp
(
c
a

))

b

)
− α [mmHg] (9)

CO = −aW

(
− b

a
exp

( c
a

))
+ c

[
L

min

]
(10)

where W (·) is defined as the Lambert function and

a =
1

1000

HR · Ees

β(Ees +
HR
60 ·Rs)

(11)

b = − 60

1000

α

Rvp
(12)

c =
60

1000

1

Rvp

(
SBV

Cs + Cp
+ α

)
. (13)

2) Numerical Solution (yd ∈ Y → xd ∈ X): The inverse
problem of computing the mapping function Y → X is in-
trinsically difficult due to the inverse nonlinear relationships
between the two spaces and their dimensional difference. A
conceptual representation behind the solution to compute the
desired CV parameter xd is shown in Fig. 2.

Firstly, leveraging the analytical solution (9) and (10)
makes it efficient to simulate various patient scenarios and
outcomes. These simulations provide many pairs of diverse
CV parameters x and their resulting CV metrics y. These
computed pairs are stored in a database.

Secondly, by filtering the database by yd in the target
region, our method can identify the set of desired CV
parameters xd. In this filtering process, another constraint

TABLE II: Constant Parameters used in Experiments

Const. Value Unit (γ = µg/kg/min) Description

k12+ 0.100 [(mmHg.s)/(γ.ml)] NE → Rs

k13− -0.211 [ml/(γ.kg)] SNP → Rs

k21+ 0.0625 [mmHg/(γ.ml)] DOB → Ees

k22+ 0.050 [mmHg/(γ.ml)] NE → Ees

k41+ 0.339 [ml/(γ.kg)] DOB → SBV
k43− -1.430 [ml/(γ.kg)] SNP → SBV
k44+ 1.000 [ml/ml] DEX → SBV
k45− -0.400 [ml/(mg.kg)] FRO → SBV
α 0.440 unitless EDPVR
β 0.030 unitless EDPVR
Cp 18.6 [ml/mmHg] Pulmonary Compliance
Cs 102.0 [ml/mmHg] Systemic Compliance
Rvp 0.0686 [mmHg.sec/ml] Pulmonary VR Resistance
w1···4 1.0 unitless weights w in (2)
w5 0.1 unitless weight w in (2)

TABLE III: Control Targets in CV metrics space Y

MAP PLA CI

Target 1 [70.0, 106.7] [3.0, 7.0] [2.5, 3.0]
Target 2 [70.0, 106.7] [2.0, 10.0] [2.3, 3.2]

can be applied for MAP (mean arterial pressure) which is
given by

MAP = CO ·Rs. (14)

III. SIMULATION RESULTS

A. Setting

The constant parameters are set as shown in TABLE II
based on our best available knowledge from [8] to support
clinical discussions even with simulated data. Although
choices of particular values may be arguable, the proposed
methods remain the same.

1) Exp.1 Treatability Analysis: The simulated AHF pa-
tients are assumed to have different CV parameters values
formed as all combinations of Rs = [0.80 : 0.15 : 1.40],
Ees = [0.75 : 0.25 : 2.50], HR = [60 : 20 : 120], and
SBV = [600 : 100 : 4000], generating a total of 5,600
patients.

The desired outcome yd ∈ Y is computed based on the two
target CV metrics ranges shown in TABLE III. Here, cardiac
index (CI [L/min/m2] := CO/BSA, BSA: body surface
area) is considered for assessing the Forrester Classification
[14] where the horizontal axis is PLA and the vertical axis
is CI . BSA was fixed at an average value of 1.6 [m2].
The range of MAP is a common prerequisite for both
control targets. Given the desired outcome yd, the desired
CV parameter xd was derived by our proposed method of
cardiovascular space mapping. Then, the optimized input
u∗ was computed by our other proposed method of tailored
drug infusion that converts x0 to xd. In this simulation
experiment, the design parameter of the weight w5 is set to
0.1 to favor use of FRO over SNP to decrease SBV . If the
linear programming problem solution is feasible to at least
one xd in Target 1, then the patient is treatable to Target 1.
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TABLE IV: Statistics of the Simulated Patients Before Drug Infusion in Forrester Classification

Rs Ees HR SBV MAP PLA CI

Subset I (warm & dry) 1.07±0.21 1.83±0.50 94.42±21.52 2011.73±590.91 87.88±22.05 10.96±4.28 3.12±0.68
Subset II (warm & wet) 1.10±0.21 1.62±0.55 89.05±22.28 3483.58±341.05 100.85±25.14 22.50±2.72 3.49±0.78
Subset III (cold & dry) 1.15±0.20 1.30±0.54 83.41±22.11 1154.73±518.55 54.90±12.04 6.29±4.13 1.79±0.27
Subset IV (cold & wet) 1.29±0.13 0.79±0.09 76.88±20.32 3231.21±418.01 69.03±7.35 23.12±3.41 2.01±0.14

Fig. 3: Treatability of 5,600 Patients on (PLA, CI) [Exp.1]

If the patient is not treatable to Target 1 and the solution is
feasible to at least one xd in the Target 2, then the patient
is considered treatable to Target 2. Otherwise, the patient
is considered untreatable. To save on the computational
expense of this experiment, two hundred xd in each control
target were chosen randomly.

2) Exp.2 Pathophysiological Scenario Analysis: This si-
mulation experiment investigates how our tailored drugs
function in specific clinical scenarios. The following sce-
narios were thoroughly studied in Forrester Classification
Subsets II, III and IV. To investigate the outcomes of tailored
drug infusion, all of the xd in each target range are tested,
meaning multiple solutions of tailored drug infusion can be
computed from one patient in Exp.2.

1) warm and wet patient in Subset II
x0 : [Rs = 1.4, Ees = 2.5, HR = 80, SBV = 3500]

2) cold and dry patient in Subset III
x0 : [Rs = 1.0, Ees = 1.5, HR = 100, SBV = 800]

3) cold and wet patient in Subset IV
x0 : [Rs = 1.4, Ees = 0.75, HR = 120, SBV = 2700]

B. Results
1) Exp.1: The results of Exp.1 Treatability Analysis va-

lidated that the proposed optimal drug infusion system can
treat the initial CV metrics to within the desired range. The
outcomes of 5,600 patients are shown in Fig. 3. In this
experiment, our proposed methods resulted in 3,465 patients
treatable within the bounds of Target 1, 515 patients treatable
within the bounds of Target 2, and 1,620 untreatable patients.

The gray dashed lines in Fig. 3 indicate the boundaries
separating Forrester Classification Subsets according to de-
gree of patient perfusion and pulmonary congestion; these

Fig. 4: Control Results by CV metrics y [Exp.1]

Fig. 5: Treatable Probability by Subsets [Exp.1]

are, Subset I (warm & dry), Subset II (warm & wet), Subset
III (cold & dry), and Subset IV (cold & wet). The CV
parameters and CV metrics before the drug infusion are
shown in TABLE IV.

Both Fig. 3 and Fig. 4 clearly show a favorable result
in terms of CV metrics in that treatable patients were
transitioned into the target region.

2) Exp.2: The results of Exp.2 Pathophysiological Sce-
nario Analysis are shown in Fig. 6 and describe how our
tailored drug infusion performed in each pathophysiological
scenario. The corresponding results for CV parameters are
shown in Fig. 7. These results will be discussed from a
clinical perspective about how tailored drug therapy relates
to standard clinical treatments for these categories of AHF
patients.

IV. DISCUSSION

1) Exp.1: Firstly, the 5,600 patients before drug infusion
are discussed. From TABLE IV, the mean PLA and CI va-
lues of each Subset indicate that all patients are well assigned
to the four Subsets. In addition, volume overload (increased
SBV ) is prominent in the ‘wet’ Subsets (Subsets II and IV),
while low perfusion (decreased MAP ) is seen in the ‘cold’
Subsets (Subsets III and IV). All these features are consistent
with clinical findings and underlying pathophysiologies.

Next, the use of different interventions for untreatable
patients is discussed. The probability of treatability is shown
in Fig. 5. Our simulation indicates that the largest percentage
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Fig. 6: Tailored Drug Infusion for each Scenario in Subset II, III, and IV [Exp.2]

Fig. 7: Cardiovascular Parameter Change via Tailored Drug Infusion for each Scenario in Subset II, III, and IV [Exp.2]

of untreatable patients is in Subset IV. The untreatable
patients can be interpreted as patients who will require ad-
vanced management beyond drug therapy - i.e., mechanical
circulatory support.

According to the study of patients in the cardiac intensive
care unit by Forrester Classification [15], the patients in
Subset IV needed invasive interventions, e.g., left ventricular
assist device (LVAD) or intra-aortic balloon pump (IABP),
more frequently than the other patients in different Subsets.
In contrast, several percent of patients, even in Subset I, nee-
ded invasive (or advanced) interventions. Our result similarly
implied that a patient in any Subset may need other therapeu-
tics beyond drug treatment. Thus, proactive decision-making
support for physicians to switch intervention therapy should
be carefully determined by each patient’s pathophysiological
scenario.

This pivotal decision has been one of the critical challen-
ges in clinical settings in managing AHF [16]. Our methods
and simulation results can assist in this challenge. Firstly, our
methods can judge the treatability for each patient scenario
even in an anomalous case in any Subset of Forrester Classi-
fication, e.g., an untreatable case in Subset I. Our method can
simulate treatability by adjusting the design parameters in
our methods: control target region, drug combinations, or the
weight w in the objective functions. Secondly, it is possible to
create a treatability classifier by machine learning approach
whose labeled data could be our simulated data samples,
i.e., CV parameters and CV metrics for the features and the
resulting treatability for the label. This data-driven approach
has the potential to make the classifier more accurate than
our present proposal because it can unify the real patient’s
data in addition to our simulated labeled data.

2) Exp.2: We simulated three different scenarios to inves-
tigate whether the optimal drug combinations were correctly
used in accordance with present clinical practice. Firstly,
diuretics and/or vasodilators are the first-line drugs for pa-
tients with pulmonary congestion. As shown in Fig. 6, it
was confirmed that FRO and SNP were used in Subsets II
and IV (wet). In contrast, fluid replenishment is the first-line
treatment if a patient is evaluated to be in a hypovolemic

state, and our system provided adequate DEX for Subset
III. Secondly, positive inotropes are recommended for AHF
patients with low cardiac output (cold) in clinical practice,
while our experiment indicated DOB was used in all Subsets.
This can be explained as follows: a) DOB was used to
improve CI in cold patients by increasing their Ees (direct
effect), and b) DOB decreased PLA in wet patients by
increasing CO (indirect effect) according to (8). The direct
effect of DOB is well known in clinical practice, while our
result additionally demonstrated the beneficial indirect effect
of DOB for pulmonary congestion. Finally, a vasopressor is
considered in clinical settings with low blood pressure when
the response of fluid resuscitation is inadequate. However,
in our simulation, NE was administered to Subset II patients
with elevated MAP , which was not in accordance with
the clinical guidelines. This inconsistency can be addressed
within our system, for example by more heavily weighing the
penalty for the use of NE by adjusting the design parameter
w2 in (2).

Regarding optimal inputs, our system found that most
of the treatable patients could be transitioned into multiple
cardiovascular states within the target regions. It would be
beneficial to further optimize tailored drug infusions among
the multiple feasible solutions in order to identify the most
optimal single solution. For example, there could be an
additional objective function,

∑
i ui/ūi that minimizes the

sum of the dosage ratios for each drug. The results of such
an additional optimization for each scenario are shown in Fig.
8. Indeed, this result corresponds to the drug choices in the
Forrester Classification guideline. It is noteworthy that the
objective function can be set flexibly for any of the various
objectives of drug treatment for each clinical situation. For
example, minimizing the myocardial oxygen consumption
(MVO2) is crucial in reducing the risk of ischemia. Our
proposed approach is designed to accommodate new drugs
such as β-blockers which decrease HR and Ees. While
decreasing HR helps minimize MVO2, decreasing Ees also
lowers CO. Thus, leveraging β-blockers to treat AHF is a
challenging task in the present clinical practice. As a next
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Fig. 8: Optimized Drug Use among Treatable Solutions

step, our system should be evaluated in the context of diffe-
rent optimization problems for various clinical scenarios.

3) Limitation: In this study, we obtained the analytical
solution assuming that the proportion of the volume of sys-
temic circulation and pulmonary circulation remains constant
in heart failure. However, this proportion depends on the
functional balance between the left and right ventricles.
Applying the generalized circulatory equilibrium framework
[13] would help develop our analytical solution.

The present simulation assumes the simultaneous adminis-
tration of multiple drugs. Pharmacokinetics, e.g., the onset
of action and peak effect, are not considered. Needless to
say, dynamic drug responses should be incorporated into
the analysis to simulate the time course of realistic drug
interventions.

In the human cardiovascular system, multiple regulatory
systems stabilize hemodynamics. One of the most powerful
regulatory systems is sympathetic cardiovascular regulation
via the baroreflex system. In this study, we did not imple-
ment the baroreflex system. However, various studies have
demonstrated the quantitative influence of the baroreflex on
CV parameters. Such observations allow us to implement the
sympathetic nervous system in our future model.

V. CONCLUSION

In this paper, we have proposed a drug infusion system for
acute heart failure. The key to our system design is the mo-
deling and controlling of CV parameters to yield CV metrics
within a desired range. The tailored drug infusion technique
controls parameters by conquering multi-dependencies and
different dosage limits among various drugs. The cardio-
vascular space mapping technique identifies the desired
parameters from the desired metrics.

Our simulation results of 5,600 different scenarios showed
not only that the optimized drug combinations and dosages
successfully controlled the cardiovascular metrics to within
the desired ranges but also that they mostly corresponded to
the recommended drug clinical use guidelines. Importantly,
our methods also were able to identify limits on response
to drug therapy, which supports the clinical decision of
pivoting to treatment strategies that may include mechanical
interventions.

Our next steps will be to investigate how robustly our sys-
tem can be adapted to meet additional clinical requirements
such as the addition of drugs with potentially more complex
interactions and less well-characterized on- and off-target
pharmacological effects; or to address the clinical need for

minimizing myocardial oxygen consumption also in patients
with acute heart failure.
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