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Abstract— Repetitive exposure to non-concussive blast expo-
sure may result in sub-clinical neurological symptoms. These
changes may be reflected in the neural control gait and balance.
In this study, we collected body-worn accelerometry data on
individuals who were exposed to repetitive blast overpressures
as part of their occupation. Accelerometry features were gener-
ated within periods of low-movement and gait. These features
were the eigenvalues of high-dimensional correlation matrices,
which were constructed with time-delay embedding at multiple
delay scales. When focusing on the gait windows, there were
significant correlations of the changes in features with the
cumulative dose of blast exposure. When focusing on the low-
movement frames, the correlation with exposure were lower
than that of the gait frames and statistically insignificant. In a
cross-validated model, the overpressure exposure was predicted
from gait features alone. The model was statistically significant
and yielded an RMSE of 1.27 dB. With continued development,
the model may be used to assess the physiological effects
of repetitive blast exposure and guide training procedures to
minimize impact on the individual.

Clinical Relevance—This paper provides evidence to suggest
that there is signal in body-worn accelerometry that indicates
changes in gait across periods of repetitive exposure to blast
overpressures. Further investigation is needed to understand
the extent of the impact of repetitive overpressure exposures
on the brain.

I. INTRODUCTION

In the military and law enforcement, individuals may be
exposed to occupational blast overpressure, which is the
shock wave from the blast that is over normal atmospheric
pressure. Specifically, “breachers” are those who use explo-
sives to gain entry into a building or room. For tactical
reasons, these breachers typically deploy the explosives in
close proximity to expedite their movement. The majority
of exposures are at a putative sub-clinical level, meaning
that right after the blast, there is no diagnosable injury
stemming from that blast exposure. The eventuality then is
repetitive exposures to overpressures with little immediate
measurement of the neurophysiological impact.

Recent studies have drawn links between overpressure
exposure and sleep disturbances, short- and long-term neu-
rocognitive declines [1–3], emotion regulation [4], hearing
function [5,6], headaches [7], and vestibular function and
balance [8]. Chronic overpressure exposure has been shown
to yield symptomology similar to concussions, which has
an impact on the individual’s daily activities [9]. Adding to
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the complexity of the studies is the individual physiological
variability and differences in effects seen across populations.

A consistent component of the diagnosis of blast-related
brain injury is the presence of balance and gait impairment
[10,11]. In the laboratory and clinic, balance and gait are
assessed using a combination of treadmills, force plates, and
motion capture [12,13]. In naturalistic conditions, body-worn
accelerometers can provide insight into changes in gait dy-
namics [14,15].The added benefit of wearable accelerometers
is the capability for continuous, long-duration data collection
while individuals performed their regular activities.

In the present study, on-body accelerometry was collected
on breachers as they performed their training activities.
Similarly, the cumulative level of overpressure exposure was
collected using on-body dosimeters. The results demonstrate
the potential for a capability to continuously monitor the
levels of exposure and quantify the effects on changes in
gait and balance. The focus of the current analysis is on
characterizing the physiological effect, as assessed through
changes in accelerometer-based features, of overpressure
exposure.

II. METHODS

A. Study Participants

Service members in the U.S. Army Special Operations
Command (USASOC) and Special Agents in the Federal
Bureau of Investigation (FBI) train with explosives as part
of their occupation. During their period of training, data
from on-body overpressure dosimetry and head-mounted
accelerometry were collected for the duration of the period of
blast exposure. The dataset comprised 44 different recording
sessions, which included 16 unique individuals, 12 days of
recording, and 2 field sites. Data collection procedures were
approved by the MIT Committee on the Use of Humans
as Experimental Subjects, the Air Force Human Research
Protections Office, and the FBI Institutional Review Board.

B. Overpressure Dosimetry

Overpressure dosimetry was achieved through the con-
tinuous recording of acoustic pressures during the training
period. A G.R.A.S 47BX-S7 (GRAS Sound & Vibration
A/S, Holte Denmark) pressure microphone with a peak sound
pressure level of 184 dB SPL was mounted on the non-firing
shoulder facing upwards. USASOC data were collected using
a commercial audio recorder, the TASCAM DR-100mkIII
(TEAC, Montebello, CA), as detailed in [16]. The FBI
overpressure data were collected with the same G.R.A.S
microphones and a prototype recorder [17] that only stored
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Fig. 1. Representative monitoring of overpressure and on-body accelerom-
etry during periods of blast exposure. A) Continuous sound and pressure
data (blue) are averaged in 100ms windows. Peak overpressure events are
denoted in red. B) Three-axis accelerometry data, recorded on body, were
converted to a magnitude signal (black trace). As an example of detected
periods of gait, the inset shows the raw accelerometry data for a short period
of time. C) Two representative eigenvalue features (rank 1 in blue, rank 8
in red) are shown for the periods of detected gait. The rank 1 feature shows
positive trend through the periods of overpressure exposure and the rank 8
feature shows a negative trend.

impulse pressure waveforms. The U.S. military standards for
noise exposure, in MIL-STD-1474E, are quantified using an
8-hour equivalent A-weight impulse noise level – LAeq8hr.
As such, we report exposure data in similar fashion.

C. Accelerometry Signal Acquisition

On-body accelerometry data were collected using a Shim-
mer3 ECG/EMG unit (Realtime Technologies Ltd, Dublin,
Ireland). The accelerometer had 14-bit resolution, was set
to a range of ±8g, and has RMS noise reported at 0.6mg
[18]. The sampling rate was 512 Hz. Accelerometers were
mounted to the helmets of the participants typically via
Velcro or tape. Accelerometry data were collected for 29
participants across several days for a total of 98 unique data
collections. The 98 cases were narrowed down to 44 that
each had sufficient, associated dosimetry collection.

D. Gait & Low-Movement Segmentation

Accelerometry data was segmented into time periods
with gait and low-movement (LM) to distinguish changes
over time in head movements that occur during ambulation
from those that occur during periods of standing or sitting.
Similar methods of activity-based segmentation have been
used previously to measure movement abnormalities due to
Parkinson’s disease [19] and exertional heat stroke [20].
Primary considerations for Gait and LM segmentation are
built upon methods established in this prior work.

The acceleration magnitude at each time point is the
square root of the sum of the squares of accelerations in the
three axes. Segmentation of each activity type occurs when
the standard deviations of these acceleration magnitudes,
computed across an overlapping, sliding 10 s window, σm(t),
with a step size of 1 s, are sustained at certain levels. The
first activity type, Gait, is initially segmented based on time
periods in which σm(t) > 0.17, across a 30s interval, with a
tolerance for short subthreshold gaps of 15s or less duration,
for added leniency.

The second behavior type, LM, is represented by segments
containing contiguous values of 0.03 < σm(t) < 0.1, again
across a 30s interval. These thresholds constrain activity to
a lower magnitude of acceleration variance representative of
the low-movement activities of standing or sitting.

The initial segmentation described above is followed by
selection of 5 s frames for further feature processing in Sec-
tion II-E. For gait frames, there is an additional periodicity
test to ensure sufficient consistency of gait, in order to ensure
high quality gait features, as follows. The first principal
component of the three accelerometry axes in the 5 s window
is computed. Next, the autocorrelation peak within a one
second time delay is required to have a peak prominence of
at least 0.6 for the 5 s frame to be included for processing in
Section II-E. All contiguous 5 s frames within LM segments
are included for processing in Section II-E.

E. Correlation Structure Features

We hypothesized that movement dynamics would change
in relation to blast exposure and time in Gait and LM periods
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Fig. 2. Trends in eigenvalue features are plotted as a function of
overpressure exposure. The ordinate of each data point represents the slope
of the eigenvalue feature across the entire period of blast exposure in a single
session, and the abscissa is the cumulative level of overpressure exposure for
that session. The example data shown in Fig. 1C are highlighted as the data
point in red. A) For the rank 1 eigenvalue, the negative trend (blue dashed
line) indicates that, for higher levels of exposure, the gait-related eigenvalue
feature tend to have a more negative slope across the session. The correlation
between the rank 1 eigenvalue feature slope and blast exposure is −0.29.
B) Conversely, for the rank 8 eigenvalue, the greater the exposure, the more
positive the eigenvalue feature slope tends to be. The correlation between
the rank 8 eigenvalue feature slope and blast exposure is 0.46.

- the former detected by a high magnitude and stable peri-
odicity of head movements, and the latter identified where
average magnitude of head movements is relatively small.
For a particular range of movement frequencies, movement
dimensionality can be quantified by the fraction of total
movement variance that is explained by correlations between
acceleration signals across a particular set of relative time
delays.

A general approach has been developed that quantifies
movement dimensionality in this way, using correlation pat-
terns among multichannel feature sets [19]. It has been sug-
gested that changes in complexity in movement dimension-

ality can reflect subtle physiological change as it manifests
over time [21]. This has been used in several studies to relate
coordination patterns with changes in neurological state and
motor capability [21–26].

Correlation structure features are represented by the eigen-
spectra of channel-delay correlation matrices as defined in a
previous study [19]. “Channel” refers to the three acceler-
ation axes, and “delay” refers to the time delays at which
correlations are computed both between and within accel-
eration axes. Correlation matrices are constructed at four
time delay scales, {d1, d2, d3, d4}, which have seven time
delays per scale with delay spacings of {15, 35, 75, 155},
respectively. These delay spacings correspond to time delays
of {0.03, 0.07, 0.15, 0.30} seconds per scale. Another way to
think of the matrix construction is that correlation matrices
are constructed from an expanded number of acceleration
time series, with the expanded number obtained via time-
delay embedding of the original signals at multiple delay
scales [19].

Specifically, a channel-delay correlation matrix at delay
scale j is computed as

Rj=

R1,1(j) . . . R1,M (j)
...

. . .
...

RM,1(j) . . . RM,M (j)

 (1)

where M = 3 is the number of low-level feature channels.
Each submatrix Rc1,c2(j) contains the set of correlations
between channels c1 and c2 at scale j,

Rc1,c2(j)=

r1,1(j) . . . r1,N (j)
...

. . .
...

rN,1(j) . . . rN,N (j)


c1,c2

(2)

where N = 7 is the number of delays per channel and
[rd1,d2

(j)]c1,c2 is the correlation, at scale j, between channel
c1 at delay d1 with channel c2 at delay d2. The eigenvalues
of the correlation matrix, Rj , rank ordered from largest
to smallest, quantify the correlation structure and represent
features for a given scale.

F. Modeling Feature Trends over Time

A linear model is used to compute the slope and intercept
of each eigenvalue feature as a function of elapsed time.
Correlations are then computed across subjects and sessions
between the eigenspectra feature slopes and blast exposure
levels. These correlations quantify eigenvalue feature change
as a metric to distinguish among subjects with varying
degrees of blast exposure.

Specifically, the linear trends of the eigenvalue features
are estimated as follows. First, trends are only computed if
there is a sufficient number of 5 s frames across a sufficient
time duration for the resulting trends to be reliable. For Gait
features, a minimum of 10 frames is required across a time
duration of at least 30 minutes. Because LM frames are much
more ubiquitous, a more stringent requirement is used for
LM features of having at least 100 frames across a time
duration of at least 30 minutes.
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Next, the features from each session are z-scored, so
that the trend is computed in standard units. Next, a linear
function is fit to the normalized eigenvalues to capture the
slope of the feature as a function of time. Because there
are 105 eigenvalue features (3 accelerometry axes, 4 delay
scales and 7 delays per scale), there are 105 gait and 105
LM feature slopes per session.

G. Predicting Blast Exposure from Feature Trends

The ability to predict blast exposure level from feature
trends is evaluated using cross-validation training and testing
of a regression model. Ten-fold stratified cross-validation is
done, with a selection of subjects in each test fold designed to
minimize variability in average blast exposure levels across
test folds. In addition, multiple sessions from the same
subject are assigned exclusively either to a training or a
testing fold.

For each session, The 105 feature slopes across the four
delay scales are concatenated to produce a single feature
vector characterizing feature change. Next, in each cross-
validation fold 10 principal components (PCs) are extracted
across all subjects in the training set, and the PCA transform
is applied to the test data. These PCs are used as input into
the regression model described below. The 10 PCs explain
on average 97.5% of the variance of feature slopes in the
training data.

The regression model uses Gaussian mixture models
(GMMs) that are trained on a staircase of class partitions
between ”low” and ”high” blast exposure thresholds. There
are 10 staircase partitions, based on thresholds of 100, 101,
..., 109 for dividing blast exposure levels between the low
and high class. The likelihoods of GMMs trained to classify
either the low or high class based on these ten partitions are
summed together. The log-likelihood ratio computed based
on these summed likelihoods produces a test statistics, which
is then mapped into a blast exposure prediction using univari-
ate 2nd order regression. This univariate regression model is
constructed based on the test statistics in the training data.
The staircase approach to regression is described in [23]. The
approach in this paper differs from [23] by using GMMs
instead of Gaussian models in each staircase partition.

The GMMs are trained using an unsupervised and super-
vised learning phase. Unsupervised training involves creating
a universal background model (UBM) based on training
data from both classes, in which Gaussian components are
centered on randomly selected training data points, and then
trained using L iterations of the expectation-maximization
algorithm, which adjusts the means, diagonal covariances,
and component weights. Supervised training involves, for
each class model, adapting only the means of the GMM
components toward the class data in the training set [27].
In addition, an ensemble of 5 GMMs is created per parti-
tion (with likelihoods summed across ensemble GMMs) to
provide greater reliability with respect to the random UBM
initializations. Table I describes the GMM parameters.

TABLE I
PARAMETERS GOVERNING GAUSSIAN MIXTURE MODELS (GMMS)

TRAINED IN STAIRCASE DATA PARTITIONS.

Parameter Value Description
K 10 Number of GMM components
L 3 Number of batch learning iterations
σ2
1 100 GMM initial variance
σ2
2 1 GMM minimum variance
r 16 GMM adaptation parameter

III. RESULTS

The focus of the study is on characterizing the physiologi-
cal effects of overpressure exposure. The focus of the present
analyses are on detecting movement-related (i.e., gait and
balance) changes across the period of exposure and relating
the magnitude of change to the cumulative level of exposure.
First, we report on the correlation of movement features
and blast exposure. Next, we predict blast exposure from
movement features alone, using a cross-validation train-test
scheme.

A. Movement Features Across Periods of Exposure

The cumulative exposures, reported as an 8-hour equiva-
lent of the A-weighted impulse noise level (LAeq8hr), ranged
from 97 dB SPL to 118 dB SPL. The majority of exposures
were in the range of 102 dB SPL to 110 dB SPL. These
levels of exposure are typical for breaching activities.

Acceleration data was analyzed from 44 data sessions from
which there were associated blast exposure estimates. Based
on the feature and session selection criteria in Sections II-D
and II-F, a reduced number of Gait and LM sessions were
analyzed in associating feature trends with exposure levels.
For Gait features, there were 33 sessions analyzed, from 20
unique subjects, comprising a total of 2,335 frames. For LM
features, there were 41 sessions analyzed, from 22 unique
subjects, comprising a total of 14,262 frames.

Shown in Figure 1 is a representative example for a single
session of data. The overpressure exposure data has two
components. First is the 100 ms time-averaged A-weighted
energy, represented in blue. Second is the peak impulses (red
asterisks) that denote single events of particularly high (>135
dB) overpressure, typically corresponding to blast events.
The cumulative exposure for this session was 101.94 dB SPL.
On-body accelerometry data (Figure 1B) was recorded for
the duration of the exposure periods. An epoch of gait data
is illustrated. Focusing on the gait epochs in this example,
normalized magnitudes of two eigenvalue features are shown
in Figure 1C. These are the rank 1 (blue) and rank 8 (red)
eigenvalues from the forth delay scale. To summarize the
changes in the eigenvalue features across the period of blast
exposure, a slope is computed for each eigenvalue feature.
In this example, only two eigenvalue features are shown for
visual clarity, but in full, there are 21 eigenvalue features per
time-embedded scale, yielding 105 total features (see Section
II-E).
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Fig. 3. Correlations between changes in eigenvalue features across an exposure period with the cumulative level of overpressure exposure. A) For the
rank 1 and rank 8 correlations, the full set of data are shown in Fig. 2. By extension, the bar graph shows the correlations for the other eigenvalue features
that were computed during periods of gait. B) Correlations between eigenvalue features, computed during low movement (LM) periods, and the level of
overpressure exposure is shown.

B. Correlating Movement Features with Overpressure Levels

For each session of data, the slope of the eigenvalue
features was computed. Building on the example shown in
Figure 1C, the data for all subjects are shown in Figure 2.
Here again, the slopes from only two eigenvalue ranks are
shown for simplified visualization. The example session
shown in Figure 1C is highlighted in red. For the rank 1
eigenvalue in Figure 2A, there is a negative trend in feature
slopes as a function of level of exposure. However, for the
rank 8 eigenvalue (Figure 2B), the opposite is true and there
is a positive trend in feature slope with respect to level of
exposure.

The relationships between eigenvalue feature slopes across
subject and the level of exposure, exemplified in Figure 2
for two eigenvalues, is shown in Figure 3. The low-rank
eigenvalues, which explain more of the variance in the data,
putatively represent gross movement, whereas the higher
rank eigenvalues, explaining less variance in the data, po-
tentially represent more subtle movements either in gait or
in relatively-stationary periods. The Spearman correlations
between eigenvalue features and blast exposure, computed
during gait periods, are shown in Figure 3A, while those
relationships, for features computed during LM periods, are
shown in Figure 3B.

The first notable difference between the two sets of
features is that they have an opposite pattern of correlations
across eigenvalue ranks. For gait, the time trend (i.e., the
slope) of higher rank eigenvalues is positively correlated with
the level of blast exposure. For LM, on the other hand, the
time trend of higher rank eigenvalues is negatively correlated
with the level of blast exposure. The second difference is
that the magnitudes of these correlation are higher for the
gait features as compared to the LM features. This is true
both for the low and high rank eigenvalues.

C. Predicting Exposure Levels from Accelerometry

For both Gait and LM features, the 10-fold cross-
validation regression procedure described in Section II-G was

Fig. 4. Prediction of blast exposures from gait features. The dimensionality
of the features are reduced using PCA and 10 PCs (97.5% of the variance)
are retained. Model was trained using 10-fold cross-validation and accuracy
is reported on held-out data. The slope of the fit is statistically significant
(p = 0.0013). The RMSE = 1.27 dB.

used to predict blast exposure levels. LM features did not
produce predictions with statistically significant accuracy, so
the predictions based on Gait features are illustrated.

Figure 4 plots the prediction results across all 10 test folds.
The red line shows a linear fit to the predictions. Correlations
of predictions with truth are Pearson r = 0.51, (p = 0.0013)
and Spearman r = 0.61, (p = 0.0002). The prediction error,
in the form of root mean squared error, is RMSE = 1.27 dB.
R2 = 0.31 indicating about 30% of the variance in the data
is explained by the model.

D. Influence of Duration of Physical Activity

The activities involved with breaching training can be
physically demanding. The average duration of a session
was 5.1 ± 1.7 hours. As such, there may be an influence of
fatigue on the changes in physiology that co-vary with the
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exposure to overpressures. To test this possibility, we com-
puted the within-subject correlations of features with time
duration. Here, duration is taken as a proxy for fatigue level,
where longer durations of activity would indicate higher
levels of fatigue. For both Gait and LM features, within-
subject feature-time correlations were small and statistically
insignificant. Across all four delay scales and eigenvalue
ranks (105 features), the median Gait correlations were
between -0.15 and 0.15, while the median LM correlations
were between -0.1 and 0.1 (cf. Fig. 3). While the influence of
fatigue cannot be ruled out, it is unlikely that duration was a
significant covariate in explaining the relationships between
feature trends and blast exposure levels.

IV. DISCUSSION

We performed continuous overpressure dosimetry paired
with on-body accelerometry for the duration of exposure.
From the accelerometry data, we detected changes in gait
and low-movement features. The changes across the period
of exposure were correlated with the level of overpressure
exposure. Our model, trained using 10-fold cross validation,
was able to estimate the cumulative level of overpressure
exposure from gait signals alone.

A. Changes in Body Movement After Overpressure Exposure

The key finding is that there is information contained in the
body-worn accelerometry signals that can indicate exposure
to blast overpressures. Of specific interest is the accumulated
effect of repetitive exposures to high-energy overpressure
waves (i.e., >135 dB). There are a number of studies in
animal models that have shown the acute effects of repetitive
blast overpressure exposure (e.g., [28]). Yet, translating the
results to humans has proven challenging either because the
ability to collect data in operational environments is limited
to pre/post assessments, or the acute effects are variable,
subtle, and typically sub-clinical. To overcome these chal-
lenges, we have focused on collected on-body accelerometry
for the duration of the overpressure exposure. The magni-
tude of data quantity in the present study, stemming from
continuous, non-intrusive monitoring, enables more sensitive
assessment of subtle neurophysiological changes. Further,
the simultanous accelerometry and overpressure dosimetry
links the specific changes of the individual with the level of
overpressure they experienced.

B. Gait vs Low-Movement Features

The analytical framework focused on gait and LM fea-
tures. However, the gait features proved to be better corre-
lated with the levels of blast exposure than the LM features
and further, showed significant capability at predicting the
levels of exposure in the cross-validated scheme. Taken
together, there appeared to be a greater effect on the gait
of the participants as compared to their LM (i.e., sitting
or standing still) activity. In prior work, wherein gait and
standing body sway (i.e., LM) were assessed on individuals
with mild traumatic brain injury, gait features again proved
to be more informative at detecting sub-clinical deficits

[12]. Dynamic movements, or actions requiring multisensory
integration, may help to elucidate the subtle effects of blast
exposure [29].

C. Interpretation of Changes in Eigenvalue Features

The eigenvalues features, prevalent in the presented analy-
ses, are inherently sorted in terms of the amount of variance
they explain in the data. Low rank eigenvalues explain more
of the variance and the higher the rank, the less variance
explained. Yet, it appears that the higher rank eigenvalues
(e.g., ranks 5 - 10) are better correlated with overpressure
exposure. This points to the fact that more subtle changes
in movement are being impacted by overpressure exposure,
which makes the overt clinical detection challenging. Prior
works by Williamson et al. [21–23] have shown that the
eigenvalue features, as utilized here, provide insight into
changes in motor coordination, that in turn can be used to
assess neurophysiological status.

D. Limitations & Future Work

The present analyses have focused on a single sensing
modality – on-body accelerometry. Though a crucial step
in showing that there is information in the signals that
can be used to assess overpressure exposure, the strength
of the predictive models could be improved by combining
additional relevant sensing modalities, like eye movements
[30], that are simultaneously and continuously collected.
The model explained about 30% of the variance in the
overpressure exposure data. Improvements could be made by
assessing the many other aspects of the blast exposure signals
(e.g., impulse, duration) [31]. Further, there may be other
relevant variables that we have not captured (e.g., angle of the
head relative to the blast, recovery time between exposures,
individual medical history) that could contribute to the neu-
rophysiological changes. More in-depth data collections are
needed to build models that may then explain more variance
in the data.

V. CONCLUSION

We measured overpressure dosimetry, simultaneously with
continuous on-body accelerometry, as military and law
enforcement breachers performed training activities. Gait
and Low-Movement (LM) frames were extracted from the
accelerometry signals and eigenvalue-based features were
computed on both sets of frames. The changes in gait features
across the period of blast exposure were better correlated
with the cumulative levels of exposure, as compared to the
LM features. A model using gait features alone was able to
significantly predict the individual’s cumulative level of blast
overpressure exposure.

ACKNOWLEDGMENT

DISTRIBUTION STATEMENT A. Approved for public
release. Distribution is unlimited. This material is based
upon work supported by the United States Air Force under
Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this

931



material are those of the author(s) and do not necessarily
reflect the official policy, views, or position of the US
Air Force, US Army, US Special Operations Command,
Defense Health Agency, Department of Defense, or the US
Government.

We would like to thank MAJ Kurtis Gruters, Dr. Luanne
Kent, SFC Aaron Anderson, Dr. Katherine Spradley, and Mr.
Sedrick Thomas, all from the U.S. Army Special Operations
Command, for supporting data collection. We would also like
to thank Mr. Addison Ruble for supporting data collection.

REFERENCES

[1] C. R. LaValle, W. S. Carr, M. J. Egnoto, A. C. Misistia, J. E. Salib,
A. N. Ramos, and G. H. Kamimori, “Neurocognitive performance
deficits related to immediate and acute blast overpressure exposure,”
Frontiers in neurology, vol. 10, p. 949, 2019.

[2] W. Carr, J. R. Stone, T. Walilko, L. A. Young, T. L. Snook, M. E.
Paggi, J. W. Tsao, C. J. Jankosky, R. V. Parish, and S. T. Ahlers,
“Repeated low-level blast exposure: a descriptive human subjects
study,” Military medicine, vol. 181, no. suppl 5, pp. 28–39, 2016.

[3] W. Carr, D. Hassan, K. Dell, M. Yanagi, and M. LoPresti, “Perspec-
tives on repeated low-level blast and the measurement of neurotrauma
in humans as an occupational exposure risk,” Shock waves, vol. 27,
pp. 829–836, 2017.

[4] W. C. Walker, L. Franke, S. McDonald, A. P. Sima, and L. Keyser-
Marcus, “Prevalence of mental health conditions after military blast
exposure, their co-occurrence, and their relation to mild traumatic
brain injury,” Brain injury, vol. 29, no. 13-14, pp. 1581–1588, 2015.

[5] A. E. Ritenour, A. Wickley, J. S. Ritenour, B. R. Kriete, L. H.
Blackbourne, J. B. Holcomb, and C. E. Wade, “Tympanic membrane
perforation and hearing loss from blast overpressure in operation
enduring freedom and operation iraqi freedom wounded,” Journal of
Trauma and Acute Care Surgery, vol. 64, no. 2, pp. S174–S178, 2008.

[6] T. Hickman, C. Smalt, J. Bobrow, T. Quatieri, and M. Liberman,
“Blast-induced cochlear synaptopathy in chinchillas,” Scientific re-
ports, vol. 8, no. 1, pp. 1–12, 2018.

[7] V. S. Sajja, C. LaValle, J. E. Salib, A. C. Misistia, M. Y. Ghebremed-
hin, A. N. Ramos, M. J. Egnoto, J. B. Long, and G. H. Kamimori,
“The role of very low level blast overpressure in symptomatology,”
Frontiers in neurology, vol. 10, p. 891, 2019.

[8] F. W. Akin, O. D. Murnane, C. D. Hall, and K. M. Riska, “Vestibular
consequences of mild traumatic brain injury and blast exposure: a
review,” Brain injury, vol. 31, no. 9, pp. 1188–1194, 2017.

[9] B. Caplan, J. Bogner, L. Brenner, W. Carr, E. Polejaeva, A. Grome,
B. Crandall, C. LaValle, S. E. Eonta, and L. A. Young, “Relation
of repeated low-level blast exposure with symptomology similar to
concussion,” Journal of Head Trauma Rehabilitation, vol. 30, no. 1,
pp. 47–55, 2015.

[10] G. A. Elder and A. Cristian, “Blast-related mild traumatic brain injury:
mechanisms of injury and impact on clinical care,” Mount Sinai
Journal of Medicine: A Journal of Translational and Personalized
Medicine: A Journal of Translational and Personalized Medicine,
vol. 76, no. 2, pp. 111–118, 2009.

[11] M. R. Scherer and M. C. Schubert, “Traumatic brain injury and
vestibular pathology as a comorbidity after blast exposure,” Physical
therapy, vol. 89, no. 9, pp. 980–992, 2009.

[12] H. M. Rao, T. Talkar, G. Ciccarelli, M. Nolan, A. OBrien, G. Vergara-
Diaz, D. Sherrill, R. Zafonte, J. S. Palmer, T. F. Quatieri, et al.,
“Sensorimotor conflict tests in an immersive virtual environment reveal
subclinical impairments in mild traumatic brain injury,” Scientific
reports, vol. 10, no. 1, pp. 1–14, 2020.

[13] G. A. Ciccarelli, M. Nolan, H. M. Rao, T. Talkar, A. O’Brien,
G. Vergara-Diaz, R. Zafonte, T. F. Quatieri, R. J. McKindles, P. Bon-
ato, et al., “Human balance models optimized using a large-scale,
parallel architecture with applications to mild traumatic brain injury,”
in 2020 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2020, pp. 1–8.

[14] J. R. Williamson, A. Dumas, G. Ciccarelli, A. R. Hess, and M. J.
Buller, “Using gait dynamics to estimate load from a body-worn
accelerometer,” MIT Lincoln Laboratory Lexington United States,
Tech. Rep., 2016.

[15] J. R. Williamson, A. Dumas, A. R. Hess, T. Patel, B. A. Telfer,
and M. J. Buller, “Detecting and tracking gait asymmetries with
wearable accelerometers,” in 2015 IEEE 12th International Conference
on Wearable and Implantable Body Sensor Networks (BSN). IEEE,
2015, pp. 1–6.

[16] S. K. Davis, P. T. Calamia, W. J. Murphy, and C. J. Smalt, “In-ear
and on-body measurements of impulse-noise exposure,” International
journal of audiology, vol. 58, no. sup1, pp. S49–S57, 2019.

[17] C. J. Smalt, E. Yuan, C. Audette, A. Bruzka, J. Russell, O. Clavier,
Q. Hecht, and D. Brungart, “Monitoring noise in-ear and on-body for
serviceperson exposures (MNOISE),” in 2022 45th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE, 2022.

[18] RealtimeTechnologiesLtd, “Shimmer3 Spec Sheet v1.8,”
https://shimmersensing.com/wp-content/docs/support/documentation/
Shimmer3 Spec Sheet V1.8.pdf, [Online; accessed 02-December-
2021].

[19] J. R. Williamson, M. R. Telfer, Brian A, and K. E. Friedl, “Detecting
parkinsons disease from wrist-worn accelerometry in the u.k. biobank,”
Sensors, vol. 21, no. 6, p. 2047, 2021.

[20] M. J. Buller, R. E. Fellin, M. Bursey, M. Galer, E. Atkinson, B. Beidle-
man, M. Marcello, K. Driver, T. Mesite, J. F. Seay, L. Weed, B. Telfer,
C. King, R. Frazee, C. Moore, and J. R. Williamson, “Gait instability
and estimated core temperature predict exertional heat stroke,” British
Journal of Sports Medicine, in press, 2021.

[21] J. R. Williamson, K. J. Heaton, A. Lammert, K. Finkelstein, D. Sturim,
C. Smalt, G. Ciccarelli, and T. F. Quatieri, “Audio, visual, and
electrodermal arousal signals as predictors of mental fatigue following
sustained cognitive work,” in 2020 42nd Annual International Confer-
ence of the IEEE Engineering in Medicine & Biology Society (EMBC).
IEEE, 2020, pp. 832–836.

[22] J. R. Williamson, T. F. Quatieri, B. S. Helfer, J. Perricone, S. S.
Ghosh, G. Ciccarelli, and D. D. Mehta, “Segment-dependent dynamics
in predicting parkinson’s disease,” in Sixteenth annual conference of
the international speech communication association, 2015.

[23] J. R. Williamson, D. Young, A. A. Nierenberg, J. Niemi, B. S. Helfer,
and T. F. Quatieri, “Tracking depression severity from audio and
video based on speech articulatory coordination,” Computer Speech
& Language, vol. 55, pp. 40–56, 2019.

[24] K. M. Smith, J. R. Williamson, and T. F. Quatieri, “Vocal markers of
motor, cognitive, and depressive symptoms in parkinson’s disease,” in
2017 Seventh International Conference on Affective Computing and
Intelligent Interaction (ACII). IEEE, 2017, pp. 71–78.

[25] T. Talkar, S. Yuditskaya, J. R. Williamson, A. Lammert, H. Rao,
D. Hannon, A. OBrien, G. Vergara-Diaz, R. DeLaura, D. Sturim, et al.,
“Detection of subclinical mild traumatic brain injury (mtbi) through
speech and gait,” Proc. Interspeech 2020, pp. 135–139, 2020.

[26] T. Talkar, J. R. Williamson, D. J. Hannon, H. M. Rao, S. Yuditskaya,
K. T. Claypool, D. Sturim, L. Nowinski, H. Saro, C. Stamm, et al.,
“Assessment of speech and fine motor coordination in children with
autism spectrum disorder,” IEEE Access, vol. 8, pp. 127 535–127 545,
2020.

[27] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification
using adapted gaussian mixture models,” Digital signal processing,
vol. 10, no. 1-3, pp. 19–41, 2000.

[28] S. T. Ahlers, E. Vasserman-Stokes, M. C. Shaughness, A. A. Hall,
D. A. Shear, M. Chavko, R. M. McCarron, and J. R. Stone, “Assess-
ment of the effects of acute and repeated exposure to blast overpressure
in rodents: toward a greater understanding of blast and the potential
ramifications for injury in humans exposed to blast,” Frontiers in
neurology, vol. 3, p. 32, 2012.

[29] F. Haran, C. Zampieri, E. M. Wassermann, E. Polejaeva, K. C. Dell,
M. L. LoPresti, J. R. Stone, S. T. Ahlers, and W. Carr, “Chronic effects
of breaching blast exposure on sensory organization and postural limits
of stability,” Journal of Occupational and Environmental Medicine,
vol. 63, no. 11, pp. 944–950, 2021.

[30] H. M. Rao, S. Yuditskaya, J. R. Williamson, T. R. Vian, J. J.
Lacirignola, T. E. Shenk, T. M. Talavage, K. J. Heaton, and T. F.
Quatieri, “Using oculomotor features to predict changes in optic
nerve sheath diameter and impact scores from contact-sport athletes,”
Frontiers in neurology, vol. 12, p. 187, 2021.

[31] G. Kamimori, L. Reilly, C. LaValle, and U. O. Da Silva, “Occupational
overpressure exposure of breachers and military personnel,” Shock
Waves, vol. 27, no. 6, pp. 837–847, 2017.

932


