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Abstract— This paper presents a new medical severity scoring
system, used to assess the risk of hemodynamic and pulmonary
decompensation for patients being treated in intensive care
units. The score presented here includes drug circulatory
support and ventilation mode data for the evaluation of the
patient’s biosignals and laboratory values. It is shown that
Gated Recurrent Unit-based neural networks are able to predict
the maximal severity class within a 24 hour prediction time-
frame (hemodynamic: 0.85 AUROC / pulmonary: 0.9 AUROC),
and can estimate the underlying decompensation score for
prediction times of up to 24 hours with mean errors of 6.3% of
the maximal possible pulmonary, and 9.6% of the hemodynamic
score. These results are based on 60h observation period.

Clinical relevance—Hemodynamic and pulmonary decom-
pensation are life threatening, dynamic events that can lead to
death of patients. Early detection of these incidents is essential
in order to intervene therapeutically and to improve survival
chances. In everyday intensive care physicians are confronted
with a vast number of laboratory values and vital parameters.
There is a risk that early stages of hemodynamic and pulmonary
decompensation are misjudged. The implementation of robust
warning systems could support physicians in detecting these
critical events and initiate therapeutical intervention in time,
which would achieve significant reduction of patient mortality.

I. INTRODUCTION
Hemodynamic and pulmonary decompensation (DEC) de-

scribe the rapid or slow progressive deterioration of the
heart’s or lung’s functionality respectively. While the effects
of an underlying disease could be compensated for a certain
time, the incipient DEC might lead to life threatening situa-
tions for the patient. Since the dynamics of these processes
pose a challenging task for clinicians, it is desirable to
support the diagnosis by robust prediction tools.

For this purpose we describe classification- and prediction-
systems that have been trained on a real-world data set
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containing more than 10k anonymized patient records, all
collected between 2013 and 2021 at an intensive care
unit (ICU) of the Klinikum Bremen-Mitte in Germany. A
patient’s record contains a set of multiple time series over
assessment data, i.e. biosignals, medications, lab results, total
balance of excretions, as well as treatment and demographic
information. In order to predict the maximal hemodynamic
and pulmonary severity class for a certain prediction time
interval, we need to map the patient data to two numerical
scores which allow the severity to be gauged. The scores
allow automatic labelling of the data, and thus training of
the prediction network. They are defined by two sets of rules
that map relevant medical data to DEC scores describing
the seriousness of DEC for each point in time, discretized
into three classes, i.e. none, beginning-moderate, and severe
DEC. The machine learning part trains deep Gated Recurrent
Unit (GRU) network models on observation periods over the
patients’ assessment and treatment data, or alternatively over
the DEC score time series. For both approaches, we can
calculate the ground truth labels of subsequent prediction
time windows (classification task), or the ground truth score
itself (score prediction task).

The rest of this paper is structured as follows. In Sec. II,
we present established medical scoring systems, and give
a brief overview on time series classification with recurrent
neural networks applied in medical data analysis. Sec. III de-
scribes the proposed classification-/ and prediction-systems
in detail, such as data preprocessing, the GRU models,
and (hyper-)parameter selection. In Sec. IV, we present and
discuss results of our approach w.r.t. a retrospective data set
containing >10k anonymized patient records. In Sec. V we
conclude and lay out future work ideas.

II. RELATED WORK

Scoring systems are established and routinely used tools in
the field of intensive care medicine. They depict the complex
clinical condition of each patient at a certain time, based
on treatment and biometric data, vital parameters, laboratory
values and create a one-dimensional scale. This reduction of
clinical data provides an objective, comparative assessment
of patients condition, disease severity and allows the outcome
to be predicted. Additionally, scores are used in research,
health economics, quality assurance and medical education.

Specific scores like the Glasgow Coma Scale [14] or the
Sequential Organ Failure Assessment [15] quantify special
diseases or organ failure. Severity scores like the Acute Phys-
iology and Chronic Health Evaluation (APACHE IV) [18]
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and the Simplified Acute Physiology Score (SAPS III) [11]
categorize the common physiological status. Therapeutic and
care procedures are evaluated by the Therapeutic Intervention
Scoring System (TISS-28) [10]. In contrast to these scoring
systems, we focused on hemodynamic and pulmonary DEC.
In order to define these two events, we assessed commonly
used basic parameters, as well as medication and ventilatory
support information. Parameters that describe a specific
entity or advanced monitoring, which is used in late, severe
phase of DEC, are left out in order to capture early stages
of DEC and different entities.

Machine learning-based prediction of cardiac or respira-
tory failure is a well studied field (cf. [16] for a literature
review). For example, Kim et al. [7] describe LSTM net-
works for the prediction of cardiac arrest (AUROC 0.886)
and respiratory failure (AUROC 0.869) 1h to 6h prior to its
occurrence. These results are based on medical time series
collected over the patients’ whole stay on the ICU with a
sampling frequency f = 1 datapoint/hour. Kwon et al. [9]
report similar LSTM-results for predicting cardiac arrest
(AUROC 0.85) up to 24h before the event by using 8h of
input data (f = 6 datapoints/hour).

III. METHODS

A. Patient Data Management System

The basis of machine learning models used for prediction
and classification in the medical domain, is given by knowl-
edge stored in patient data management systems (PDMS).
In this work, we import data from the IntelliSpace Critical
Care and Anesthesia Data system, developed by Philips [5].

Each case, i.e., a patient data record, contains the follow-
ing data groups amongst others: assessment, medication, lab
result, treatment and demographic information. Data groups
itself provide data entries, such as time series of observations
made during the patient’s hospital stay. According to a white
paper defined by the medical project partners, and approved
for this retrospective study by the ethical committee, we
received up to 106 anonymized data entries from six dif-
ferent data groups for each case. For the classification and
prediction tasks under scope, we focussed on 19 data entries
out of 5 data groups (cf. Fig. 1), required to calculate the
DEC scores defined in Sec. III-C.

B. Data Filtering and Preprocessing

Due to missing or corrupt information (e.g. malfunction
in sensors, data persistence issues) and the asynchronous
data recording process (e.g. high frequent blood pressure
readings vs. low frequency blood gas analysis), the patients’
clinical data records need to be cleaned before they can
be used by classification algorithms. In the following, we
describe preprocessing steps yielding clean and synchronized
time series that can be fed into the classification/prediction
algorithms described in Sec. III-D.

1) Padding: The first step in the preprocessing pipeline is
to search for empty data entries. According to data recording
procedures, missing values for medication group entries
indicate that the corresponding drug has not been applied.

case

demographic PDMS case number
treatment O2 insufflation [l/min]

lab results
pH
arterial CO2 partial pressure [mmHg]

arterial O2 partial pressure [mmHg]

medication

vasopressin [IE/h]

dobutamine [µg/kg/min]

epinephrine [µg/kg/min]

norepinephrine [µg/kg/min]

assessment

ventilation mode
inspiratory tidal volume [ml]

positive end-expiratory pressure [cmH2O]

peak inspiratory pressure [cmH2O]

mandatory respiration rate [breaths/min]

Horowitz quotient
inspiratory O2 concentration [%]

O2 saturation [%]

spontaneous respiratory rate [breaths/min]

mean arterial pressure [mmHg]

heart rate [beats/min]

Fig. 1: Subset of information from the patient data manage-
ment system that is used for the prediction of hemodynamic
and pulmonary DEC. Note that the PDMS case number
served as a case identifier for the medical partners that had
access to non-anonymized data for verification of derived
DEC scores, while the data processing team members worked
solely on anonymized data.

Since this situation is indistinguishable from cases where
recordings of drug dispensing have been lost, we pad missing
medication entries by dedicated values termed NaN.

2) Corrupt Case Removal: We define a case as being
corrupt, and thus remove it from further processing, if one
or more of the following conditions hold:

• The case is missing a complete data entry that is
required to compute the DEC scores (except the medi-
cation group that has been padded in step (1)).

• The case is missing a PDMS case number. Predictions
of our system cannot be verified by the clinicians
without this number.

• The time spanned by the case’s data entries’ time series,
i.e., the documented time of hospital stay, is shorter
than the observation period and prediction time frame
required by the classification algorithm (cf. Sec.III-D).

3) Aligning Start- and Endtime: With the goal to equalize
the lengths of a case’s time series, we define the case’s start
time s and end time e as the earliest and latest point in
time at which its data entries (cf. Fig.1) contain a piece of
information. For time series that start after s, or end before
e, we insert a NaN value at the corresponding point in time.

4) Resampling: Retrospective data imported from the
PDMS is available with a maximal rate of approx. one data
point per hour. Even data recorded at high frequency, such
as arterial pressure or heart rate, is down-sampled for storage
reasons several days after the patient is discharged from the
hospital. The more important reason for resampling is the
asynchronous structure of the time series. By starting at a
case’s aligned start time s, we resample each time series
with a frequency of one data point per hour by averaging.
Missing input values are set to NaN.

5) Missing Value Imputation: Considering the prediction
tasks at hand, i.e., establishing a mapping between time series
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Fig. 2: Exemplary assessment time series of case 944, which are required for the calculation of the pulmonary DEC score (cf.
Sec.III-C). The graphs depicted result from preprocessing and filtering steps described in Sec.III-B (except standardization),
and zoom into the time frame containing the second pulmonary DEC peak in Fig. 3.

and DEC scores/classes, it becomes clear that gaps in the
input data disturb training and inference of the networks. Our
missing data imputation scheme includes two steps. First,
we apply linear interpolation for 2 hour gaps in assessment
entries (except ventilation mode), as well as for treatment
and lab result time series. After standardization (cf. next
paragraph), and directly before feeding the data into the GRU
network, we replace remaining NaN values (gaps of > 2
hour length) by 0 (the mean of standardized features).

6) Standardization: Recurrent neural networks work best
if the different types of input data are rescaled to a com-
mon domain. This behavior is due to the fact that input
data adjust the network’s layer weights during the training
process, and certain dimensions with higher value ranges
might exert a higher influence, even if they are less important
to the network’s task. Therefore, we standardize the neural
network’s input features, i.e., the single time series, to 0-
centered mean (µ) and ±1 for the standard deviation (σ).
Note that standardization is executed after the calculation of
DEC scores (cf. Sec III-C). We further strictly split training
and test data sets, i.e., the features’ µ and σ are calculated
separately for training and test data.

C. Decompensation Scores

In comparison to established scoring systems (cf. Sec. II),
we define two separate scores to describe the event of
hemodynamic or pulmonary DEC during treatment on the
ICU: The hemodynamic DEC score includes the vital pa-
rameters mean arterial pressure and heart rate in relation
to drug circulatory support (cf. TABLE I). The pulmonary
DEC score includes spontaneous respiratory rate, peripheral
oxygen saturation and end-tidal carbon dioxide as measured
vital parameters, different laboratory values taken from blood
gas analysis and oxygenation or support by a ventilator (cf.
TABLE II). On the basis of these parameters, we define the
pulmonary and hemodynamic DEC scores as given in eqn.
(1)-(2), as well as severity thresholds as shown in TABLE III.

In addition to the DEC score time series, we calculated
confidence time series. For each point in time t of a single
case, they describe the fraction of available parameters at t,
and thus support the classifier when being trained solely on
DEC score time series (cf. Sec. IV-A).

TABLE I: Hemodynamic DEC scores for different parameter.

hpi(t):
s(hpi(t)): 0 1 2 3 4

hp1(t) =heart rate 50-90 45-49|91-100 40-44|101-110 40-44|101-110 <40|>110
hp2(t) =mean arterial pressure 65-80 60-64 50-59 50-59 <50
hp3(t) =catecholamine therapy none singular singular combined singular or

combined
(in high dose)

norepinephrine 0 0.01-0.09 0.1-0.4 0.1-0.4 >0.4
epinephrine 0 0.01-0.09 0.1-0.4 0.1-0.4 >0.4
dobutamine 0 1-3 3.1-5 3.1-5 >5
vasopressin 0 0 0 0 >0.01

TABLE II: Pulmonary DEC scores for different parameter.

ppi(t)
s(ppi(t)): 0 1 2 3

pp1(t) =spontaneous respiratory rate 10-25 26-30 31-35 >35
pp2(t) =O2 saturation 96-100 95-90 85-89 <85
pp3(t) =arterial O2 partial pressure 70-100 69-65 64-60 < 60
pp4(t) =arterial CO2 partial pressure 35-45 30-34|46-49 25-29|50-58 <29|>59
pp5(t) =pH 7.35-7.45 7.46-7.49| 7.5-7.55|7.16-7.25 >7.55|<7.15

7.26-7.34
pp6(t) =inspiratory O2 concentration 30-35 36-49 50-60 61-100
pp7(t) =O2 insufflation 0 2-5 6-8 >8
pp8(t) =Horowitz quotient 400-600 200-399 100-199 <100
pp9(t) =mandatory respiration rate 10-20 21-23 24-26 >26
pp10(t) =peak inspiratory pressure 10-25 26-28 29-30 ≥31
pp11(t) =positive end-expiratory pressure 5-8 9-11 12-15 16-25
pp12(t) =inspiratory tidal volume 401-500 301-400 201-300 <200
pp13(t) =ventilation mode spontaneous oxygen assisted spontaneous bivent

breathing insufflation breathing

hds(t) =

3∑
i=1

s(hpi(t)) (1)

pds(t) =

13∑
i=1

s(ppi(t)) (2)

TABLE III: Score intervals for different DEC classes.

class of decompensation hds(t) pds(t)
none 0− 3 0− 4
beginning-moderate 4− 5 5− 20
severe > 5 > 20

D. Recurrent Neural Networks

Time series classification (TSC) is a long studied field in
Artificial Intelligence that maps one or more time ordered
lists of data to probabilities over classification labels [1].
Classical approaches include the Dynamic Time Warping al-
gorithm [13], shapelet-based methods [17], or nearest neigh-
bor calculations based on Mahalanobis-distances between
time series and class representatives [12].
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Fig. 3: One day moving averaged DEC scores over time of
stay for case 944. Note that both pulmonary peaks build up
within approx. 24h.

The successful use of deep artificial neural networks
(DNN) in the computer vision domain has triggered sub-
stantial research that investigated the usefulness of DNNs
for TSC [3]. The basic principle is to apply recurrent neural
networks (RNNs) that not only propagate the input data in a
unidirectional way through the net of weights, but feed (parts
of) a layer’s output to itself or a preceding layer. Although
RNNs are able to model time-dependencies in the input data,
they are prone to exploding error gradients calculated during
the network’s training phase. This problem can be tackled
by utilizing Long Short-Term Memory (LSTM) network
cells [6]. Instead of common network cells that maintain a
single state, LSTM cells maintain two internal states, i.e.
the long-term and the short-term memory. These states are
updated while the time-ordered input data passes through the
unfolded LSTM-network via so-called gates. The forget gate
controls which parts of the long-term memory (representing
already processed time steps) can be forgotten. The input
gate controls which parts of the input data’s current time
step and the long term memory of the previous time step
enter into the current long-term memory. The output gate
finally controls the output of the long term memory, either
to be used as an input for the subsequent LSTM fold, or as
the output of the overall LSTM network layer.

The work presented in this paper uses Gated Recurrent
Unit (GRU) network cells [2]. In contrast to LSTM cells,
GRU cells maintain a single internal state, and require 4
instead of 6 update equations. Thus, they contain fewer
weights to optimize (weight terms W and bias terms b in
equations (3)-(6)), making them less prone to overfitting, and
showing faster convergence compared to LSTMs. Equations
(3)-(6) describe a GRU cell’s update rules [4].

z(t) = σ
(
WT

xzx(t) +WT
hzh(t−1) + bz

)
(3)

r(t) = σ
(
WT

xrx(t) +WT
hrh(t−1) + br

)
(4)

g(t) = tanh
(
WT

xgx(t) +WT
hg

(
r(t) � h(t−1)

)
+ bg

)
(5)

h(t) = zt � h(t−1) +
(
1− z(t)

)
� g(t) (6)

Here, z(t) describes the GRU cell’s gate controller that
controls the input gate and the forget gate. The gate controller
r(t) controls which parts of the GRU’s previous fold output
is forwarded to the cell’s main layer g(t). The cell’s output is

(a) classification network (b) prediction network

Fig. 4: Illustration of GRU-based network architectures used
for severity of DEC classification and DEC score prediction,
both for the pulmonary case. Networks for the hemody-
namic case differ in the size of the GRU-layers’ kernel, i.e.
〈6× 288〉, reflecting the different number of input parameter.
For networks that solely work on DEC score and confidence
time series, the kernel size is given by 〈2× 288〉.

given by h(t), and serves either as an input for the subsequent
GRU fold, or as the output for the overall GRU layer.

E. Selected (Hyper-)Parameter and Implementation Details

The ability of neural networks to generalize from training
data heavily depends on the selected optimizer and further
(hyper-)parameter. In this work, we used the Adam opti-
mizer [8] with a static learning rate lr = 0.04, exponential
decay rates β1 = 0.9, β2 = 0.999, and an early stopping
of 100 training epochs if the loss does not decrease over
3 epochs. Further major configuration is given by batchsize
bs = 512, the number of GRU layer units glu = 96, and for
the classification networks the number of dense layer units
dlu = 8, and a dropout rate of dr = 0.33.

The methods presented in Sec. III have been implemented
on an Intel(R) Xeon(R) Gold 5218 CPU with 64 GB of
available system RAM. For training and inference of the
network models, we used a Nvidia Tesla V100 GPU with
32GB of available memory. This research-server has been
setup within the protected IT-environment of the Gesundheit
Nord (GeNo) hospital association, and was reachable for the
data scientists via dedicated VPN access. We implemented
the described system inside a Docker container, running
on top of the Ubuntu 20.04.2 LTS OS. For data import,
preprocessing, network training/inference, and analyses we
used pandas, NumPy, SciPy, scikit-learn, and TensorFlow.

IV. EVALUATION

A. Research Question and Approach

The evaluation investigated the question of how well the
GRU networks described in Sec. III-D are suitable to predict
hemodynamic and pulmonary DEC, given a certain time-
frame of observation data for training and inference cases.
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To answer this question we 1) trained classification-networks
(cf. Fig. 4a) that estimate the maximal severity-class (cf.
Tab III) within a given prediction timeframe, and 2) trained
prediction-networks that estimate the numerical DEC scores
for some fixed points in time within the prediction interval.
While the former might be used as an alarming system that
indicates whether a severe DEC event can be expected, the
latter might be used for the concrete prediction of a certain
point in future time.

In order to evaluate both tasks, we applied a repeated
(stratified) k-fold cross-validation training and inference
scheme with r = 10 repeats, k = 10 folds, and a training-
set validation split of 0.25. Stratification, which equalizes
class distributions over all folds, has only been applied for
classification, since it is not applicable in score prediction.

We chose categorical accuracy and the AUROC-score
(area under the true positive rate vs. false positive rate curve
for varying operational points) as performance metrics for
classification. Since AUROC is usually defined for binary
classification tasks, the AUROC-score presented here is
based on an averaged one-versus-all calculation for all three
classes (cf. TABLE III). For the DEC score prediction task,
we used the mean squared error between ground truth and
estimated DEC score as the performance criterion.

While it would have been possible to train and test
the networks on a data set that contains a single random
sample from each of the preprocessed cases (cf. Sec. III-
B), we decided to oversample each case by completely non-
overlapping samples of length of the observation period and
prediction time interval. Even if two samples from a single
case fall into the training and test dataset, this approach does
not introduce data leakage, since we do not classify case
identities, but the severity of future DEC status instead.

Finally, we investigated whether classification and pre-
diction results depend on the kind of input data used, i.e.,
preprocessed vital sign time series vs. derived DEC score
and confidence time series (cf. Sec. III-C). This question
seemed reasonable, since the neural network has to learn
the functional dependencies given in TABLE I and II when
training on the former, but not when working on the latter.

B. Results

From 10283 cases included in our dataset, filtering and
preprocessing yielded 8140 usable cases. After removing
cases that do not contain any information for at least one
of the required data entries, we found 7552 cases to be
usable for hemodynamic classification and prediction, and
3495 cases for pulmonary processing respectively. Due to
the minimal required sample length of observation period
and prediction time frame, we could finally draw 84h long
samples from 3911 cases for hemodynamic assessment, and
from 2455 cases for pulmonary assessment.

TABLE IV shows the results of the cross-validated clas-
sification of DEC classes. It can be seen that both in terms
of categorical accuracy and AUROC-score the pulmonary
classifier outperforms the hemodynamic one by a small
margin. Although accuracy values of 72.65% and 83.68%
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(b) Exemplary comparison of predicted pulmonary DEC scores
(solid) and ground truth values (dashed) for case 2082. Each point
on the solid curve is predicted 24h before its abscissa. Although,
the predicted curve reasonably follows the ground truth, certain
gaps can be observed, e.g. at 336h and 408h. However, we do
not consider this as critical, since these errors are relatively small
compared to the max. possible pulmonary DEC score of 39.

Fig. 5: The DEC score prediction results depicted above are
based on a 60h observation period. For classifier training and
inference 9199 samples from 2455 cases have been included
for pulmonary prediction, and 13348 samples from 3911
cases for hemodynamic prediction.

appear moderate w.r.t. majority classes representing 58.0%
and 75.4% of all samples, AUROC-values of 0.85 and 0.9
indicate a good classifier performance.

Fig. 5a illustrates the networks’ cross-validated DEC score
prediction capabilities. With a forecast period ranging be-
tween 2h and 24h after the query-time, mean absolute errors
are given by approx. 6.3% of the maximal pulmonary, and
9.6% of the maximal hemodynamic DEC score. For both
cases we observe that prediction errors increase with the
forecast period. In addition, Fig. 5b shows good compara-
bility between 24h predictions and ground truth values for
pulmonary DEC scores for an exemplary case.

Finally, classification and prediction networks only
marginally benefit from training on DEC score and confi-
dence time series, instead of parameter time series, if at all.
An example for slightly better network performance is given
by categorical accuracy and AUROC values for the severity
classification of pulmonary DEC (cf. TABLE IV).

C. Discussion

In contrast to the related work presented, which requires
time-consuming labelling by the medical staff, i.e., whether
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TABLE IV: Decompensation Class Prediction: mean and standard deviation of categorical accuracy and AUROC.

DEC classifier input time series #cases #samples observation time prediction time no / moderate / severe DEC categorical accuracy AUROC

hemodynamic vital signs 3911 13348
60h 24h

58.03% / 32.27% / 9.70% 72.65%± 0.94% 0.85± 0.01
score and confidence 71.37%± 0.98% 0.84± 0.01

pulmonary vital signs 2455 9002 22.65% / 75.44% / 1.91% 83.05%± 1.19% 0.89± 0.02
score and confidence 83.68%± 1.22% 0.90± 0.02

or not cardiac arrest and respiratory failure occur at a given
point in time, results given in Sec. IV-B are achieved by
neural networks with training processes targeted to patients’
fine-grained hemodynamic and pulmonary conditions. These
DEC states are expressed as functions over data collected
in the ICU. In doing so, we can not only classify finer
subdivided DEC conditions, instead of a patient’s ultimate
heart or lung system failure, but can also predict the fur-
ther development of the patient’s condition by dedicated
scores. The achieved classification performance is in terms of
AUROC-scores on a similar level when compared to results
found in literature. This is noteworthy in that our approach
implements ternary instead of binary classification.

Looking at the rather moderate categorical accuracy re-
sults, we tried to improve accuracy by oversampling of
the minority classes, as well as by class-dependent sample-
weighting in the networks’ loss functions. Both approaches
are usually applied to mitigate problems arising with imbal-
anced datasets (cf. ground truth class distribution given in
column 7 of TABLE IV). However, here they did not lead
to noteworthy improvements, so we surmise that the issue is
due to samples with DEC scores oscillating around the limit
between two classes within the prediction window.

The problem described can also be alleviated as a result
of the quantitative DEC score prediction. With mean 24h-
prediction errors of 6.3% (pulmonary), and 9.6% (hemody-
namic) of the maximal achievable score, physicians could
use this system to estimate the course of the DEC in the
following 24 hours with sufficient accuracy.

V. CONCLUSIONS

Our work demonstrates that it is possible to predict hemo-
dynamic and pulmonary DEC of patients being monitored
in ICUs by using GRU-networks. Both in terms of severity
classes and DEC scores, the system presented here shows
encouraging results which lead us to believe that it can serve
as a basis for an on-site warning system in the future.

Before such a real-world application, more immediate
future work has to address further validation and explain-
ability questions. In order to consider different etiologies of
hemodynamic and pulmonary DEC, we will systematically
explore combinations of so far unused data entries of patient
records. Furthermore, we will collect new patient data during
an upcoming second evaluation phase. Since new data will
be available with higher sampling rate, we aim for validation
of the current system, improved classification and prediction
results as well as shorter observation periods. Beside further
investigation of suitable network architectures, we also will
focus on DEC events that show rapid deterioration, since
these cases require special medical attention.
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