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Abstract— The penetrating ability of ultrasound (US) com-
bined with its real-time operation make it the perfect tool
for investigating muscle contraction mechanics during complex
functional tasks, e.g., locomotion.

Changes in fascicle lengths and pennation angles of muscle
fascicles strongly correlate with the capacity of skeletal muscles
to produce forces, thereby represent fundamental parameters
to be tracked. While the gold standard for extracting these
features from US images is still based on manual annotation, the
availability of recording devices capable of generating big data
of muscle dynamics makes such manual approach unfeasible,
setting the need for automated muscle images annotation tools.

Existing approaches, however, are seriously limited, also
in view of the continuous developments and technology ad-
vancements for ultrafast US and plane-wave imaging. In fact,
they rely on conventional (slow) B-mode imaging, make use
of point tracking approaches (which often fail due to out-of-
plane motion), or can only operate on very high quality images.
To overcome all these limitations, we present AEPUS, an
automated image labeling tool capable of extracting pennation
angles from low quality images using a very small number of
plane waves, therefore making it capable of exploiting all the
benefits of ultrafast US.

Clinical relevance— Ultrasound is a standard research tool
to investigate alterations of spastic muscles in children with
Cerebral Palsy. We propose a reliable and time-efficient method
to track muscle features in ultrasound images and support
clinical biomechanists in their analyses.

I. INTRODUCTION

Ultrasound (US) is a compact, non-invasive and recog-
nized tool to study human musculoskeletal functions in-vivo
[1]. With the help of US, muscle mechanics can be observed
in real-time, during complex functional tasks. For example,
biomechanical studies on muscles observe pennation angles
and fascicles lengths to conclude on force production capac-
ities [2]. In fact, in clinical populations, knowledge about
their alterations due to short or long-term treatments can be
crucial for developing new therapeutic strategies [3].

The extraction of these muscle features from US images
requires labor-intensive manual labeling. Hence, accurate au-
tomated approaches are needed to process longer sequences
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of images. Such tools can significantly reduce the processing
time and subjectivity of the results compared to a single
manual annotation [4], and to address this need, multiple
image analysis approaches have been proposed [5].

One common strategy to measure pennation angles makes
use of feature tracking algorithms, which track the positions
of fascicle’s sections through image sequences. Particularly,
the Lucas–Kanade optical flow algorithm is widely used to
track the manually marked fascicle’s end points [6], [7],
thereby obtaining an estimation of the fascicle orientation
over time. However, these methods have multiple drawbacks.
First, tracking methods require the consistent presence of
the key tracked points in all consecutive frames. Therefore,
the accuracy of the tracking is influenced by out-of-plane
movements of the muscle fibers, that naturally occur during
muscle contraction. Moreover, such approaches rely on the
assumption of slow displacement of the key tracked point
position between consecutive frames. Hence, they require
very high frame rates to track fast muscle movements. Fi-
nally, the tracking errors of the individual frames accumulate
over time, causing temporal drift. While some tools (such
as Ultratrack [8]) implement correction algorithms, manual
adjustments are still often required to get good results.
Thus, the application of tracking-based algorithms for image
analysis of high frame rate sequences still faces important
limitations.

An alternative strategy to identify pennation angles is
offered by structure-based algorithms sensitive to the parallel
arrangement of the muscle fibers, that appear in the US
images as bright, coherently oriented lines. In [9], [10],
the Hough transform was employed to recognize the line
objects by identifying the fascicle edges and grouping them.
However, this approach relies on the edge map, that cannot
be easily extracted unless US images have a high signal-to-
noise ratio (SNR). As an alternative, the Radon transform
(RT) can be directly applied to the greyscale image, and
it also allows to detect linear features in the US B-mode
scans. In fact, lines in the image appear as peaks in the
sinogram (Radon space) [11], from which the positions of the
individual fascicles can be identified [12], and by applying
maximum variance criteria the dominant orientation of the
fibers can also be computed (see Fig. 6 of [10]). Being the re-
sult of an integral transform, the sinogram is less susceptible
to noise, although some studies proposed to use additional
image enhancing techniques (e.g., vessel enhancement filters
[13]) before calculating the transformation.
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All the approaches mentioned above rely on the conven-
tional focused B-mode US imaging modality, that has a
fundamentally limited frame rate (FR). In fact, assuming the
speed of sound of 1540 m/s, 5 cm imaging depth and 128
transmission beams, the maximum achievable frame rate is
120 FPS. However, recent studies demonstrated the need for
much higher FR (> 150 Hz) to capture muscles and tendons
in motion [14]. Going beyond the classical US modalities,
we can employ ultrafast plane wave (PW) imaging [15] to
transmit unfocused waves and obtain a higher FR. More
precisely, for similar image quality, plane wave transmissions
and coherent compounding can provide a 10× increase in the
frame rate compared to the conventional scanning technique
[16]. In addition to using PW modality, the number of
required transmissions per frame should also be optimized to
decrease the data rate and reduce the hardware requirements
for the US system. However, none of the existing image
processing algorithms are tailored to operate on US images
captured in PW mode, and the question on the optimal
number of transmissions remains open.

In this work, we present AEPUS, a tool for the extraction
of pennation angles that works with low-quality (low-SNR)
US images captured with plane wave modality reaching
roughly ±2.6◦ accuracy compared to manual annotations
when using only 3 unfocused transmissions (PW3) per frame.
The method independently processes each image (thus, over-
coming the limitations of tracking-based approaches), works
in PW mode (thus, it is compatible with ultrafast US appli-
cations), and requires only a minimal number of parameters
to be tuned. In the following, we describe the algorithm,
compare it with manually annotated data, and discuss how
the number of plane waves influences the accuracy of the
proposed approach.

II. ALGORITHM

To help the detection of pennation angles, prior knowledge
on muscle physiology can be leveraged. Muscle fibers are
located in between the deep and superficial aponeuroses,
that usually have a very high brightness compared to the
individual fascicles (Fig. 1). Hence, the first step of the
algorithm consists in identifying the aponeuroses and the
region of the image containing the fascicles is identified.
Finally, the average pennation angle of the muscle fibers
can be measured in such region. The Radon transform (RT)
represents the main tool to achieve these goals, and for the
sake of a self-contained paper, we also include a primer on
its working principle.

A. Radon Transform

The Radon transform is defined as the integral of the image
intensity I (x, y) along a line parametrized by the distance
s from the origin of the image (conventionally set at the
center of the image) and the inclination angle ϕ relative to
the x-axis, that corresponds to:

Rf (ϕ, s) =

∫∫
I (x, y) δ (s− xsinϕ− ycosϕ) dxdy (1)
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Fig. 1. Original US image of a Gastrocnemius lateralis muscle captured
with 15 plane waves (max. angle 15◦).

Fig. 2. An example binary image with two lines (left) and its radon
transform (right). The green point represents the center of the image that is
the origin of radon transform.

The Radon-transformed image is called sinogram and
is represented in the (α, s) variables. For convenience, in
the subsequent sections we will use the Radon transform
Rf (α, s) with α = ϕ − π/2, so as to keep the projection
angle in a range [−π/2,+π/2].

Because of the Dirac delta function δ under the integral, a
line with parameters s∗, ϕ∗ in the image domain produces a
peak at the coordinates s = s∗ and ϕ = ϕ∗ in the RT space.
Fig. 2 shows a simple example of such phenomenon, where
two lines with inclination α0 and α1 and distance from the
origin s0 and s1 appear as peaks at the sinogram coordinates
(α0, s0) and (α1, s1). From an user’s perspective, the Radon
transform can be seen as a line-to-peak converter, where the
intensity of the peaks are determined by the summation of
the values of the pixels along the selected line in the original
image.

B. Detection of the superficial and deep aponeuroses

The proposed algorithm starts with the identification of
deep and superficial aponeuroses in the US image. As these
structures appear as highly reflective lines, applying a RT on
the original image makes them appear as peaks in the Radon
space (Fig. 3).

Extracting these peaks can be challenging, since the rect-
angular shape of the US image also transforms into a non-
flat surface in the Radon space (Fig. 4). Therefore, Fig. 3
mixes both the information about the structures (aponeuroses,
fascicles) contained in the image, and the information about
the shape (edges) of the image itself. To accurately find the
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Fig. 3. Sinogram of the original US image
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Fig. 4. Sinogram of an uniform rectangular US image, whose pixels have
the same value. When used to compensate the shape-induced artifact, the
value of the pixels is set equal to the mean brightness of the enhanced image
(see main text and Fig. 5).
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Fig. 5. Contrast Limited Adaptive Histogram Equalization enhancement
of the US image of Fig. 1.

displacements and inclination angles of the aponeuroses, we
should compensate for this shape-induced artifact.

Another factor affecting the Radon transform is the atten-
uation of ultrasound signals with the depth. In fact, imperfect
time gain compensation (TGC) creates a brightness gradient
in the US image along Z axis, which results in an inclined
surface in the Radon space.
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300

400

Fig. 6. Sinogram of the enhanced US image (of Fig. 5). The peaks rep-
resenting the aponeuroses are more pronounced compared to the sinogram
of the original image (see Fig. 3).

To mitigate for these two non-idealities and identify the
aponeuroses, we proceed as follows:

• We compensate the imperfect TGC by applying a
Contrast Limited Adaptive Histogram Equalization
(CLAHE) [17] on the original image (shown in Fig. 1)
to redistribute the lightness values. Fig. 5 shows the
resulting enhanced US image.

• We calculate the mean pixel brightness value of the
enhanced image of Fig. 5.

• We generate an uniform image that has the same res-
olution (number of pixels) as the original image, and
whose pixels have all the same value equal to the mean
brightness calculated at the step above.

• We calculate the RT of such uniform image. Fig. 4
shows the corresponding sinogram.

• We calculate the RT of the enhanced image of Fig. 5.
Fig. 6 shows the corresponding sinogram.

• We subtract the sinogram of the uniform image from
the sinogram of the enhanced image. Fig. 7 shows the
corresponding sinogram. The resulting surface has two
distinguished peaks (deep and superficial aponeuroses).

• We extract the positions of the peaks. Their coordinates
encode the inclination angle and displacements (relative
to the image’s center) of two lines which represent the
aponeuroses.

Fig. 8 shows the visualization of the result on the original
image.

C. Identification of the pennation angle

Fig. 9 shows the main steps for the identification of the
pennation angle. After locating the aponeuroses, we apply
a mask and analyze the fascicle area independently (Fig. 9
(a)). As muscle fibers appear in the US images as inclined
lines, once again we make use of the RT to detect them.

However, compared to the aponeuroses, the brightness of
the fascicles in the US image is much smaller. Therefore,
their RT is even more affected by the imperfect TGC, the
artifact of the shape of the image, and local brightness
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Fig. 7. Compensated sinogram of the US image, obtained by subtracting the
sinogram of the uniform image (Fig. 4) from the sinogram of the enhanced
image (Fig. 6). The two peaks for deep and superficial aponeuroses are
clearly visible.
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Fig. 8. Original image annotated by the aponeurosis detection algorithm.

variations. To compensate for these factors, we propose the
following steps.

1) Generation of the compensated sinogram:

• We apply a mask (based on the extracted aponeuroses)
on the original image (Fig. 9 (a)). We call the resulting
image “fascicle image”.

• The fascicle image is enhanced by the CLAHE to
compensate for tissue attenuation and improve the local
contrast.

• Multiple overlapping circles are inscribed into the trape-
zoid fascicle region to densely cover the area of interest.
Fig. 9(b) shows an example of three inscribed circles.
Each circle defines a region of interest (ROI) that we
process independently as an individual subimage (Fig.
9(c)).

• We calculate the RT of the ROI sub-image. The circular
shape of the ROI was selected due to the smoothness of
its border and rotation invariance, properties that result
into a smooth surface of the RT. Fig. 9(d) shows the
corresponding sinogram.

• We blur the subimage of Fig. 9 with a Gaussian kernel,
so that the fascicles are hardly visible. Fig. 9 (e) shows
the blurred image.

• We calculate the RT of the blurred sub-image. Fig. 9

(f) shows the corresponding sinogram.
• We compensate the sinogram of the original sub-image

(Fig. 9) by subtracting from it the sinogram of the
blurred sub-image (Fig. 9). Fig. 9 (g) shows the re-
sulting compensated sinogram.

The reason for blurring with a Gaussian kernel is because
such a kernel acts as a low-pass filter that doesn’t create a
“ringing” effect. By adding this modification, we also remove
the local image brightness variations within the disk area. As
a result, the shape-compensated RT has nearly zero mean
value and well pronounced peaks.

2) Identification of fascicle inclination in each ROI:
The criteria of the maximum variance of the projection is
widely used to identify the average inclination angle of
the fascicles [13]. This approach works well in high-SNR
scenarios (where fascicles are well pronounced and oriented
in the same direction). However, during active movements,
fascicles can partially disappear from the 2D plane of the
US scanner (due to contractions or out-of-plane movement).
Moreover, neighbor fibers can have slightly different penna-
tion angles. All these factors lead to an inaccurate output of
algorithm if relying on maximum variance criteria.

To overcome this issue, we propose the following steps.
Step 1. For each ROI, calculate the energy profile E (α)

of its compensated sinogram:

E (α) =
∑
s

(Rf (α, s))
2 (2)

where α is the projection angle, s is the displacement of the
projection line from the image’s center, and Rf (α, s) is the
intensity of the sinogram. The red, purple, and blue curves
in Fig. 9(h) are the energy profiles of three different ROIs.

Assuming to be in presence of a single line with inclina-
tion angle α0 crossing the ROI, such line would appear as a
symmetric peak in the radon space because of the projection
symmetry. Therefore, if multiple parallel lines are presented
in the subimage, the energy E (α) is also expected to be
symmetric.

Step 2. Sum together the energy profiles of all ROIs.
Step 3. Fit a Gaussian-based symmetric function f to

the E (α) curve of the above calculated sum, where the f
function is defined as:

f (α, α0, E0, E1, σ) = E0 · exp(−
(α− α0)

2

2 · σ2
) + E1 (3)

where α0 is the mean, E0 is the amplitude, σ2 is variance of
the Gaussian, α is the projection angle, and E1 is the vertical
offset.

Step 4. Calculate the mean value of the sum of the fitted
functions. The green line in Fig. 9(h) represents such mean
value.

This value is our estimation of the fascicle inclination
angle of the brightest fibers presented in the ROIs. Fig. 9(i)
visualizes the result on the original image.

It is worth noticing that, in contrast to the position of the
maximum value, the fitted mean accounts for the shape of
the E (α) peak, thereby accumulating information from more
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Fig. 9. Main steps of the pennation angle measurement algorithm. (a) Masking of the US image to isolate the fascicle area. (b) Inscription of multiple
overlapping circles (only three circles shown for simplicity) into the masked image (a), defining ROIs that are later processed independently. (c) Sample
subimage of one of the ROIs in (b). (d) Sinogram of the subimage (c). (e) Bluring of the original subimage (c) with a Gaussian kernel. (f) Sinogram of
the blurred subimage (e). (g) Compensated sinogram of the subimage, obtained by subtracting the sinogram of the blurred subimage (f) to the sinogram
of the original subimage (d). (h) Energy curves of the compensated sinogram (g) as a function of the projection angle for different ROIs (displayed only
for three ROIs for simplicity). The green line indicates the fitted mean value. (i) the original image (a) is annotated with the information of the filtered
mean calculated on (h).

pixels representing the fascicle in the image. Consequently,
the proposed approach gives a more smooth estimation of the
inclination angle in the time domain. Furthermore, instead
of averaging the fitted mean values of the individual ROIs,
the choice to first sum up the energy curves for multiple
ROIs, applying only afterwards the f curve fitting, is done
to improve the robustness to out-of-plane movements of the
fascicles.

III. EXPERIMENTAL VERIFICATION METHODOLOGY

To test the proposed algorithm under real conditions
and identify its accuracy, we collected different datasets of
muscle contractions in lower limbs captured with multiple
PW modality.

A. Description of the experimental protocol

A single healthy proband performed standing calf raises
(Fig. 10) by doing slow, smooth, and controlled movements.
This particular exercise was selected to provide largest pos-
sible variations of the pennation angle during the acquisition.

Fig. 10. Photo of the positioning of the US probe on the proband, while
performing controlled calf raises exercises.

A linear array US probe (Ge-9LD, General Electric
Healthcare, Chicago, IL, USA) was attached to the lateral
head of the Gastrocnemius muscle. For a proper attachment
of the US probe to the skin surface, we integrated the
transducer into a custom-made foam fixation, which is kept
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in position by elastic bands. The position of the array was
adjusted to minimize out-of-plane movements and maximize
the visibility of the aponeuroses and fascicles as indicated in
Fig. 3 of [5].

The probe was connected to a Verasonics Vantage 256
(Verasonics, Kirkland, WA, USA) research Ultrasound sys-
tem. The platform was programmed to emit 15 plane waves
per frame with a maximum inclination angle of 15 degrees
and capture 10 seconds of muscle contractions. The data
acquisition frame rate was limited to 15 FPS during the
measurements.

All the experimental procedures presented in this paper
followed the principles outlined in the Helsinki Declaration
of 1975, as revised in 2000.

B. Description of the dataset

In total, we made 10 data capturing sessions, each time
removing and repositioning the transducer in between the
sessions. Overall, we collected 1500 individual frames (150
per session), each comprising 15 independent plane wave ac-
quisitions. For each acquisition, we used a custom implemen-
tation of the Delay-and-Sum beamformer [18] to reconstruct
the images and store it in the IQ format. Subsequently, pre-
beamformed data were coherently compounded into high-
resolution images for testing the algorithm.

A single imaging sequence for the typical capturing ses-
sion was manually annotated by an expert (who investigated
muscles and tendons in 6 US studies in the past 2 years)
with a cloud-based tool (Labelbox Inc., San Francisco, CA,
USA). To better generalize the results, the expert inspected
all sessions to choose the most representative one for per-
forming the annotations. The original order of the images
was randomly permuted to avoid the bias in the annotations
caused by the previous frame. Then, the expert indicated
the aponeuroses and two individual fascicles in distal and
proximal areas (ROI 1 and ROI 3 in Fig. 9(b)) of each frame.

IV. RESULTS AND DISCUSSION

In-vivo evaluations of the aponeuroses’ detection show a
good agreement between the proposed algorithm and the
manually annotated data (Fig. 11). More precisely, the Z-
position of the deep aponeurosis matches the manually
annotated labels with ±3.4 pixels accuracy (two standard
deviations of the signals’ difference). At the same time,
the proposed approach gives an unbiased estimation of
the aponeuroses inclination angle with a smaller variance
compared to the manual annotation (see Fig. 11).

Regarding the fascicles, both manually and automatically
extracted data curves properly capture the temporal dynamic
of two consecutive muscle contractions presented in the
dataset (Fig. 12). However, manually annotated inclination
angles for distal and proximal areas are characterized by
different mean values and high standard deviations (STD of
1.53◦ and 1.88◦ for distal and proximal, respectively; see
red and blue dots in Fig. 12), setting the need for filtering
(solid red and blue lines in Fig. 12). In contrast, the proposed
algorithm directly outputs a more smooth estimation of the
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Fig. 11. Comparison between the proposed algorithm (using 15 PW) and
the manual annotation for the detection of the deep aponeurosis. The blue
and orange lines indicate the z-position indicated by the algoritm and manual
annotation, respectively. The green and red lines indicate the corresponding
inclination angles.
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Fig. 12. Comparison between the proposed algorithm (using 15 PW)
and expert manual annotation for fascicle inclination angle detection. Red
and blue dots indicate the manual annotations for distal and proximal,
respectively. The red and blue solid lines are the corresponding filtered
version (Butterworth low-pass filter, 5th order, cutoff frequency = 1 Hz).
The green line represents the output of the proposed algorithm.

inclination angle, that matches the filtered labels of the
proximal area (with a STD of 1.33◦). The reason for the
algorithm to match the manual annotation on the proximal
area is the following: although the algorithm accounts for all
the linear structures presented in the ROIs, it gives a higher
priority to the brighter fibers with higher energy E(α), which
is the case for the proximal fascicles in the selected dataset.

To investigate the performance of the algorithm as a func-
tion of the number of PW transmissions, we used multiple
compounding schemes (Table I) to produce image sequences
with different quality. These sequences were then processed
by the proposed algorithm, and the performance statistics
were collected.

TABLE I
COMPOUNDING SCHEMES

Mode Tilting angles [◦]
PW 1 0
PW 3 0, ±(15)
PW 5 0, ±(8.6, 15)
PW 7 0, ±(4.3, 10.7, 15)
PW 9 0, ±(4.3, 8.6, 12.9, 15)
PW 11 0, ±(2.1, 6.4, 10.7, 12.9, 15)
PW 13 0, ±(2.1, 6.4, 8.6, 10.7, 12.9, 15)
PW 15 0, ±(2.1, 4.3, 6.4, 8.6, 10.7, 12.9, 15)
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Fig. 13 shows the result of the comparison. The proposed
algorithm reaches most of its accuracy with only three plane-
wave transmissions. The PW 1 mode, composed of a single
non-tilted unfocused transmission, is characterized by a high
bias (mean = −2.1◦) and a large variation (STD = 1.72◦)
compared to the reference. After adding two more acqui-
sitions (PW 3) with ±15◦ inclination angles, the accuracy
of the angle identification gets significantly improved (mean
= 0.125◦, STD = 1.32◦). Further increasing the number of
transmission does not have a big impact on the performance.
Therefore, we can conclude that a simple PW 3 modality
can be employed for high frame rate muscle imaging, which
allows to relax the minimal hardware requirements (450
acquisition per second) to achieve 150 Hz FR. Combined
with the proposed algorithm, PW 3 mode would provide an
accuracy of roughly ±2.6◦ for the estimation of the fascicle
inclination angle.

V. CONCLUSIONS
This paper presented AEPUS, the first algorithm for the

extraction of pennation angles from US images capable of
operating with PW datasets. Compared to existing methods,
the proposed algorithm does not rely on the edge detection
([9], [10]) or thresholding (for peak extraction [12]) which
are sensitive to the quality of US image. Moreover, AEPUS
operates on a per-frame basis, without the need to manually
select the regions of interest [7] or correct the error accumu-
lated from previous frames [8].

To demonstrate the methodology, we collected US images
of slow contractions of medial gastrocnemius muscles, and
compared the output of our tool to manual annotations
performed by an expert, achieving an accuracy of ±2.6◦.
Furthermore, we investigated the tool’s performance as a
function of the number of plane waves, demonstrating that a
PW 3 configuration is sufficient for an accurate tracking of
the pennation angle.

Beyond the achieved accuracy, another important property
of the proposed algorithm is the minimal number of input
parameters. In fact, to calculate the output, only the cropped
image and the standard deviation σ for Gaussian kernel (Fig.
9(e)) should be provided.

These results can empower clinicians with a fully au-
tomated tool for the estimation of pennation angles with
PW imaging. As such, AEPUS can further inspire the

clinical translation of plane-wave-based ultrafast US imaging
approaches, that appear unique for applications (like CP
monitoring) where the fast tracking of motor movements is
of critical importance.

We made our Python implementation of the
algorithm publicly available and free-to-use under
https://github.com/Sergio5714/AEPUS.
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