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Abstract— This work presents automated apnea event de-
tection using blood oxygen saturation (SpO2) and pulse rate
(PR), conveniently recorded with a pulse oximeter. A large,
diverse cohort of patients (n=8068, age≥40 years) from the sleep
heart health study dataset with annotated sleep events have
been employed in this study. A deep-learning model is trained
to detect apnea in successive 30 s epochs and performances
are assessed on two independent sub-cohorts of test data. The
proposed algorithm showcases the highest test performance of
90.4% area under the receiver operating characteristic curve
and 58.9% area under the precision-recall curve for epoch-
based apnea detection. Additionally, the model consistently
performs well across various apnea subtypes, with the highest
sensitivity of 93.4% for obstructive apnea detection followed by
90.5% for central apnea and 89.1% for desaturation associated
hypopnea. Overall, the proposed algorithm provides a robust
and sensitive approach for sleep apnea event detection using a
noninvasive pulse oximeter sensor.

Clinical relevance— The study establishes high sensitivity
for automated epoch-based apnea detection across a diverse
study cohort with various comorbidities using simply a pulse
oximeter. This highly cost-effective approach could also enable
convenient sleep and health monitoring over long-term.

I. INTRODUCTION

Sleep-disordered breathing (SDB) is a respiratory disorder
of recurring partial or complete cessation of breathing during
sleep. This progressive condition is commonly known as
sleep apnea, and it is highly prevalent in 6% to 17% of
the general adult population and as high as 49% in the
advanced age groups with moderate to severe apnea levels
[1]. The risk factors for developing SDB are complicated, and
the American academy of sleep medicine (AASM) suggests
screening for sleep apnea in all adult patients with heart
failure (HF), elevated blood pressure (BP), atrial fibrillation,
resistant hypertension, type-2 diabetes or stroke [2]. Still,
it has been reported that about 85% of those with SDB are
undiagnosed [3]. This is likely due to a lack of patient aware-
ness and cumbersome testing methodology by overnight
polysomnography (PSG). PSG is an often expensive gold-
standard test conducted in a sleep center, with sensors in-
cluding nasal airflow meter, pulse oximeter, respiratory effort
chest belts, electrocardiogram (ECG), electroencephalogram,
and others. The alternate home sleep apnea test (HSAT)
allows the flexibility to test from the comfort of home, but
requires the user to wear obtrusive nasal cannula, chest belts,
ECG, etc. [4]. The acquired overnight data from either PSG
or HSAT are then scored based on AASM practice standards
[5] by trained technicians. Therefore, cost-effective comfort-
able rapid screening and continuous monitoring remain a
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challenging problem.
There has been tremendous progress particularly in at-

home apnea monitoring, focusing on alternate screening
approaches with one or more combinations of noninvasive
sensors. ECG typically captures respiratory dynamics and the
derived heart rate variability (HRV) contains information of
elevated sympathetic nervous system (SNS) activity during
arousals, that are often associated with hypopnea. ECG has
been widely studied for sleep apnea screening with publicly
available Physionet 2000 dataset [6]. However, the algo-
rithms requiring robust ECG processing are not generalizable
to other ECG datasets [7]. SpO2 and photoplethysmogram
(PPG) waveform derived pulse rate variability (PRV) are
shown to provide good performance for apnea detection
[8]. However, pulse oximeters typically do not output PRV,
as it requires additional computational and memory burden
to output PRV, which is still considered as research-level
feature. Hence, the public datasets involving pulse oximeters
only provide clinically useful pulse rate (PR) and SpO2
outputs. SpO2 desaturation-associated apneic events alone
[9] can severely underestimate the overall apnea event count
and duration, as only about 78% apneas and 54% hypopneas
are associated with significant desaturations [10].

This work presents a fully automated epoch-based algo-
rithm for sleep apnea monitoring using the ubiquitous pulse
oximeter derived SpO2 and PR signals. While PSG tradi-
tionally uses a finger-tip pulse oximeter, additional device
form factors including in-ear, wristbands, etc. can be used
[11], that provide additional flexibility and comfort for the
patients. This study showcases the use of SpO2 and PR
from this cost-effective unobtrusive device alone for apnea
detection while improving compliance due to comfortable
sensing. A convolutional neural network (CNN) based deep-
learning (DL) model is designed to perform binary apnea
detection for each 30 s epoch of pulse oximeter vitals.
This provides two-fold measurements of 1) apnea duration,
and 2) apnea episode count. This real-time implementable
DL algorithm for sleep apnea event detection is evaluated
on a diverse cohort of patients with sleep disorders and
cardiovascular comorbid conditions.

II. METHODS
A. Dataset

Sleep heart health study (SHHS) dataset [12], a prospec-
tive cohort study of the cardiovascular and other conse-
quences of SDB, has been used in this work. All participants
were 40 years or older with no history of sleep apnea
treatment or ongoing home oxygen therapy at the baseline
visit. The dataset was collected over a decade with two
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Fig. 1. DL architecture for epoch-based apnea detection with K=5, N=8, P=0.2, M=3. Input shows 150 s PR and SpO2 segments with apnea, indicated
by ground truth [apnea, no-apnea] probability of [1, 0]. Input is fed to three 1D convolutional layers with kernel sizes, K, filter sizes (4N,4N,N), and
strides (2,1,1). Dropout and maxpool layers are placed with dropout probability, P and pool size, M. Two fully connected dense layers with sizes (8N,N)
are placed at the end. The last softmax layer generates apnea probability.

polysomnogram visits: SHHS1 (1995 – 1998), and SHHS2
(2001 – 2003), producing 5763 and 2651 patient records,
respectively. The current analysis includes 5424 patients
from SHHS1 and 2644 patients from SHHS2 that were free
of any missing signals.

Both the SHHS datasets include overnight SpO2 and PR
signals with 1 Hz sampling frequency (fs). An ‘ox stat’
signal is also available at the same fs to indicate the quality
status. The annotated apnea and hypopnea events from sleep
technicians required both events to be associated with ≥
10 s change in respiratory signal. Similar to current AASM
guidelines, apnea events only needed to be associated with
significant airflow reduction. Hypopneas were identified with
≥ 30% reduction in any respiratory signal for > 2 breaths or
at least 2% desaturation for more subtle changes in breathing.
To comply with the current guidelines, hypopnea annotations
without either an arousal or at least a 3% desaturation event
are ignored.

A train-test participant split is carried out in the SHHS2
cohort based on stratified apnea-hypopnea index (AHI) sever-
ity category (none, mild, moderate, and severe) with 30%
(n=793) participants for testing and the remaining 70%
(n=1851) for training and validation. The entire SHHS1
cohort (n=5424) is reserved as another test dataset.

B. Data Preprocessing

The algorithm starts with minimal PR and SpO2 process-
ing. Poor samples are rejected based on ‘ox stat’ index. Next,
PR samples outside the range of 40-150 beats per minute
and SpO2 samples outside 70-100% are rejected. These
outliers may be due to data outages or motion artifacts. The
rejected timestamp data are replaced by linear interpolation.
To reduce individual baseline effects, PR is standardized and
SpO2 mean is subtracted for each participant.

A desaturation event is identified at a SpO2 sample point
if a drop ≥ SpO2drop from baseline (SpO2baseline) occurs in
the next 30 s, with a slope ≥ 0.1% per second, resulting in a
minimum value of SpO2nadir. The SpO2baseline is the mean

SpO2 in the previous 60 s window. After a desaturation event
onset is detected, the event end is the minimum of time when
signal reaches 1) SpO2baseline−1, or 2) 1.5×SpO2nadir, or
3) 120 s. The extracted desaturation events and given arousal
annotations are used to keep valid hypopnea events based on
current AASM guidelines. A SpO2drop value of 2.9%, close
to standard 3% is selected to minimize the error between
estimated and given desaturation count.

C. Apnea Detection

A DL model is trained to perform binary classification
of apnea or no-apnea for each 30 s epoch. The ground truth
labels for epochs are generated from the corrected continuous
annotations based on the following rules: 1) if an epoch
contains an entire apnea event, it is labeled positive; 2) if an
event spans across multiple epochs, the first epoch is positive
if at least 50% of the epoch has apnea, the last epoch is
positive if at least 50% has apnea or if the first epoch has
< 50% apnea; 3) Any intermediate epochs, if present, are
positive.

A LeNet-like architecture with 1D convolutional layers
is used to extract features from input PR and SpO2 signal
segments and detect apnea for each epoch. Each segment
is 150 s long and composed of 2 previous and 2 future
epochs, with the label corresponding to the center 30 s
epoch. Fig. 1 shows the entire architecture. Model is imple-
mented in Python using Keras library with PlaidML backend.
The optimal hyperparameters are obtained using the NNI
library by maximizing the validation data receiver operating
characteristic area under the curve (ROCAUC). The training
is performed with Adam optimizer to minimize categorical
cross-entropy loss, with early stopping based on validation
loss stability. The validation data is a 20% split out of the
training data.

As the dataset is imbalanced with about 10% positive
apnea epochs, output probability scores are converted to
apnea or no-apnea labels with a threshold that optimizes
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Fig. 2. Mean (a) ROC and (b) PR curves on the SHHS2 test dataset.

geometric mean (g-mean) of sensitivity and specificity,

G−mean =
√

Sensitivity × Specificity. (1)

The optimization is performed on the training data to derive
the optimal threshold for each train-test split.

A robust testing design over 25 trials validates the perfor-
mance and stability of the DL model architecture. In each
trial, model is trained with randomly selected 70% SHHS2
participants and tested on the remaining cohort. Results
section reports average performances over these trials.

D. Apnea Episodal Performance Analysis

In addition to epoch-based apnea detection, the analysis
is extended to determine apnea episodal performance [13].
For this, consecutive positive epochs are combined as one
episode. Episode sensitivity and positive predictive value
(PPV) are defined as,

Episode Sensitivity =
#TPtrue

#TPtrue +#FN
, and (2)

Episode PPV =
#TPpred

#TPpred +#FP
. (3)

The TPtrue is defined as a true episode that is at least
partially overlapped by one or more predicted episodes
and TPpred is a predicted episode that is at least partially
overlapping one or more true episodes.

III. RESULTS

A. Apnea Epoch Detection Performance

Table I shows the CNN DL model performance for train
and test datasets including metrics: accuracy, sensitivity,
specificity, F1-score, PPV, precision-recall area under the
curve (PRAUC) and ROCAUC. Balanced sensitivity and
specificity scores are obtained after g-mean optimization.

TABLE I
AVERAGE APNEA EPOCH DETECTION PERFORMANCE

Epoch
Performance (%) SHHS2 Train SHHS2 Test SHHS1 Test

Accuracy 82.2 82.2 84.3
Sensitivity 82.8 82.9 68.9
Specificity 82.2 82.1 86.4
F1-score 47.8 47.9 51.1

PPV 33.6 33.6 40.6
PRAUC 58.9∗ 58.9 56.4

ROCAUC 90.4 90.4 86.2
Average performance (25 trials) with σ ≤ 1, ∗: 1 < σ ≤ 2

TABLE II
AVERAGE APNEA EPISODAL PERFORMANCE

Episodal Performance (%) SHHS2 Test SHHS1 Test
PPV 34.2∗ 41.5∗

Sensitivity 79.4 66.3
Average performance (25 trials) with σ ≤ 1, ∗: 1 < σ ≤ 2

Figs. 2a and 2b show the ROC and PR curves for the SHHS2
test dataset, with the solid line indicating mean performance
across 25 trials. The mean (m) and standard deviation (σ)
of AUC across these trials are reported as m± σ.

This epoch-based analysis is also equivalent to the apnea
durational performance, as described in [13], with 30 s
resolution. With > 80% SHHS2 sensitivity, we have a high
probability of apnea epoch detection and with precision or
PPV of 0.41 for SHHS1, we beat the random prediction with
apnea prevalence < 0.10. High AUC scores of 0.86 and 0.56
are observed for the ROC and PR curves even after a huge
data imbalance. The standard deviations across performances
in 25 trials are < 1% in almost all cases.

B. Apnea Episodal Performance

Table II shows apnea episodal performance statistics,
where specificity or true negative episodes are undefined.
True apnea episodes are detected with a sensitivity of 79.4%
and 66.3% for SHHS2 and SHHS1 test datasets respectively.

C. Apnea and Hypopnea Subtype Performance

Table III presents findings of SDB subtype detectability,
including obstructive, central, mixed sleep apnea (OSA,
CSA, MSA), and desaturation or arousal associated hypop-
nea (H-desat, H-arousal). The second column in Table III
shows the average percentage of epochs in each subtype out
of the total positive epochs, given in the last row. H-arousal
constitutes the highest percentage of epochs followed by H-
desat and OSA. The sensitivity column shows the average
percentage of epochs correctly detected as positive. OSA,
CSA, and H-desat, generally associated with desaturation,
are detected with > 89% sensitivity for SHHS2. Further, a
notable sensitivity of 69% is achieved for arousal-associated
hypopnea using the presented hybrid SpO2-PR based algo-
rithm.

IV. DISCUSSION

Sleep apnea diagnosis is a challenging problem due to a
lack of comfortable, cost-effective, and accurate screening
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TABLE III
AVERAGE APNEA AND HYPOPNEA SUBTYPE PERFORMANCE

Epoch Percentage (%) Sensitivity (%)
SHHS2 Test SHHS1 Test SHHS2 Test SHHS1 Test

OSA 25.7 26.8 93.4 81.1
CSA 5.4 3.3 90.5∗ 82.1
MSA 0.0 0.0 80.3# 65.1∗

H-desat 31.3 29.8 89.1 78.0
H-arousal 37.6 40.1 69.3∗ 52.9∗

Total apnea epochs in SHHS2 Test: 80, 868, and SHHS1 Test: 611, 628.
Average performance (25 trials) with σ ≤ 1, ∗: 1 < σ ≤ 2, #:2 < σ

solution. Several alternate apnea detection methods with
noninvasive sensing either have inconsistent performance on
large cohorts [7] or focus only on desaturation-associated
events [9], thereby severely underestimating apnea episode
count and duration. Further, most works directly estimate
AHI, which does not account for apnea duration that is found
to be strongly linked to mortality [14]. This work combines
a convenient and off-the-shelf pulse oximeter sensor with
a robust algorithm, that works well across various SDB
subtypes. Unlike previous research studies that generally test
on relatively small datasets with limited disease conditions
and age groups, our test performance results are based on a
heterogenous SHHS cohort with various cardiovascular and
other comorbidities, mimicking a real-world application.

With 90.4% ROCAUC for apnea epoch detection across
the entire SHHS2 cohort, the presented model outperforms
earlier work with 86% ROCAUC for desaturation-only ap-
neic event detection on the same cohort [9], without ac-
counting for H-arousal. Combining H-desat and H-arousal
hypopneas results in a sensitivity of 68.1% on the entire
SHHS cohort. This is on par with 65.8% sensitivity with
ECG sensor [15]. Further, the AASM inter-scorer reliability
program reported only 65.4% agreement per epoch for hy-
popnea, with 16.4% scoring no event [16]. Around 53−69%
detection rate of H-arousal in the present work indicates the
model’s unique advantage to detect subtle arousal-related
changes in PR [17]. This is one of the most challenging
issues, with even HSAT devices being unable to detect H-
arousals [4].

The study achieves good performances in both test cohorts,
with relatively lower sensitivity for the SHHS1 dataset that
could be attributed to the poorer oximeter and PSG data
quality in the first visit. Only about 66% of the SHHS1
participants have above-average PSG quality compared to
87% for SHHS2. 11% of the SHHS1 participants have
< 6 hr of usable oximetry signal, while 97% of the SHHS2
participants have ≥ 95% good quality signal during sleep.
SHHS1 also has a younger population with a mean age of
63 yrs compared to 68 yrs. The presented DL model is
trained on a subset of the older age-group SHHS2 cohort
and tested on a relatively more diverse and larger SHHS1
cohort. Retraining the DL model with a large cohort of
young age group representation can also potentially address
the difference in performance.

We developed and tested a data-driven algorithm that
achieves high epoch-level durational and episodal perfor-

mances for apnea detection across various subtypes. The
model performance is robust across multiple trials and
achieves state-of-the-art results on large independent test
cohorts with wide-ranging comorbidities. With featureless
training and minimal time series processing, it is easier
to evaluate the algorithm on a new dataset or deploy on
real-world medical devices without requiring manual feature
engineering or time-consuming model optimizations. Due to
the comfort and ease of pulse oximeter placement by users
themselves, clinicians can easily pre-screen at-risk patients
from their homes, or monitor the effect of any treatment over
its course by taking into account both apnea episode count
and duration.
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