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Abstract— For semantic segmentation, U-Net provides an
end-to-end trainable framework to detect multiple class objects
from background. Due to its great achievements in computer
vision tasks, U-Net has broadened its application to biomedical
signal processing, especially, segmentation of waveforms in ECG
signal. Despite its superior performance for QRS complex
detection to other traditional signal processing methods, direct
application of the U-Net to R peak detection has limitation since
the U-Net structures tend to predict high probability around
true peak. Such multiple detection results require additional
process to determine a unique peak location in each QRS
complex. In this study, we use a regression process to detect R
peak instead of pixel-wise classification. Such regression process
guarantees a unique peak location prediction. We collect data
from resting ECG systems and wearable ECG devices as well
as public ECG databases and the proposed model is trained
on various combinations of the data sources. Especially, we
investigate the robustness of the model for input data from
the wearable devices when the model is trained by data from
heterogeneous devices.

I. INTRODUCTION

ECG recordings enable clinicians to obtain information of
cardiac cycle events through graphs of electrical potential
measured on the skin. The recordings are performed in
various systems, such as resting ECG, portable ECG systems.
Although resting ECG provides a simple way to evaluate the
heart, extended recording period of the portable systems has
more reliable clinical evidence [1], [2]. Especially, as recent
progress of wearable devices provides longer recording pe-
riod, laborious manual reading of ECG signal is a challenge
for practical application of long period recordings of ECG
for clinical decision. Accordingly, the need for robust and
precise analysis methods has arisen for automatic reading
process for ECG recordings.

In an ECG signal, cardiac cycle events are presented as
characteristic waveforms, such as P wave, QRS complex,
R peak, and T wave. Detection and localization of such
waveforms are key steps for automatic analysis of ECG
signal. Based on development of biomedical signal process-
ing techniques, model-based methods have been suggested
for the detection and localization tasks. However, for ECG
signal acquired by wearable devices, inherent low signal-to-
noise ratio (SNR) and patient dependancy of waveforms are
inevitable so that it is hard to guarantee robust performance
of such traditional methods [3]. Finding a universal method
for the mentioned environments requires a highly non-linear
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process and decision thresholding, which is hard to be
modelled.

Deep learning architectures have shown great achieve-
ments compared to model-based approaches, due to their
huge capability to learn highly non-linear function. Espe-
cially, convolutional neural networks (CNNs) have become
a powerful tool for image and signal processing as it shows
superior peformance to traditional methods. By convolving
features with accumulated layers, a CNN structures detect
complex features which is useful in representing main fea-
tures of target class or evaluating quantities for classifica-
tion or regression. As a special structure of CNN, fully
convolutional neural networks (FCNNs) were proposed to
perform pixel-wise classification, i.e. semantic segmentation.
Providing end-to-end trainable frameworks, FCNNs, espe-
cially U-Net, have broaden their application to biomedical
signal processing. U-Net uses a series of encoding blocks
and decoding blocks to produce semantic segmentation map
[4]. There has been attempts to apply the U-Net structure
for waveform detection tasks in ECG signal [5], [6]. Such
U-Net however tends to produce false positive R peak around
label position [5]. To localize a unique R peak in each QRS
complex range, additional process steps are needed [7].

In this study, we proposed a CNN-based two-step method
for R peak detection. Proposed method consists of QRS de-
tection step and R peak regression step. In the QRS detection
step, an U-Net structure is used to detect QRS complexes and
their specific classes. In other words, the U-Net not only
segments QRS complexes but also determines which types
the detected QRS complexes are among normal sinus rhythm
(NSR), ventricular premature contraction (VPC), and atrial
premature contraction (APC), too. In addition to a vanila
U-Net structure, we added residual blocks and squeeze-
and-excitation layers to enhance training performance and
emphasize relation between feature channels, respectively.
After the QRS complex detection, the detected QRS com-
plexes are resampled to a fixed length and each resampled
QRS complex is input to R peak regression network. As
metioned, to avoid multiple detection of R peak in one QRS
detection, a regression network predicts a R peak location
in the sense of normalized location in each QRS complex.
The prediction result can be converted to physical sample
location and it guarantees a unique R peak detection result
in each QRS complex. The proposed model was evaluated
on the dataset which consists of ECG signals from resting
ECG and wearable ECG device. Without additional process,
the proposed model successfully predicts a unique R peak
location in every QRS complex.
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Fig. 1. Description of the detection method. From an ECG signal segment,
the U-net model detects QRS compelx regions (red curves). The detected
rgeions are extracted and resampled to a fixed length, and R peak is detected
in each resampled QRS complex region by the regression model. The
detected R peak in each QRS complex is converted to R peak location
in the ECG signal segment.

II. METHODS

The basic structure of the proposed method is as follows:
1) QRS detection U-Net Fseg
2) R peak regression CNN Freg.

For an input ECG signal, the U-Net Fseg predicts pixel-wise
classes of QRS complex classes. Based on the produced
segmentation, we detect QRSon and QRSoff where the pre-
dicted class changes background into a QRS comlex class
and a QRS complex into background, respectively. During
QRSon and QRSoff detection, QRS complexes shorter than 3
samples are rejected. From the detected pairs of QRSon and
QRSoff, we extract ECG signal in [QRSon,QRSoff], rescale
the amplitude of the signal based on the minimum and
maximum of the interval, and temporally resample so that
all extracted signal has the same voltage range [0, 1] and the
fixed length Lreg. The resampled signal is then inserted to the
regression model Freg and the normalized R peak location
is predicted as a value in [0, 1]. The output for each QRS
complex is linearly converted to physical location between
QRSon and QRSoff so that 0 and 1 was converted to QRSon
and QRSoff, respectively. The detailed deep learning model
structures are described below.

A. U-Net for Semantic Segmentation of QRS Complexes

Given an input signal I ∈ RL, our U-Net model Fseg aims
to produce a semantic segmentation map S ∈ RL×C where
L and C are the signal length and the number of classes,
respectively. The proposed U-Net model consists of succes-
sive encoding blocks and successive decoding blocks. Each
encoding block consists of one CBR (Convolution, Batch
normalization, ReLU activation) block FCBR : RL×C →
RL×C′

and residual blocks FRes : RL×C′ → RL×C′
. In

each residual block, two successive CBR blocks FCBR1 :
RL×C′ → RL×C′

, FCBR2 : RL×C′ → RL×C′
are applied

to input feature I and the feature F ∈ RL×C′
is obtained.

To enhance the feature, the global average pooling spatially
squeezes the obtained feature

FGAP =
1

L

L∑
l=1

F (l, c)
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Fig. 2. Brief structure of the U-Net for QRS complex detection and detailed
structures of each block. The CBR blocks in encoding blocks, residual
blocks, and decoding blocks have the same structures. Since the proposed
model predicts class for each sample, the output has a length of 2500 where
B stands for batch size.

and the squeezed feature is compressed and expanded to ob-
tain channel excitation z by two successive fully-connected
layer, FC1 : Rl×C′ → Rl×C′/r and FC2 : Rl×C′/r →
Rl×C′

z = σ(FC2(δ(FC1(FGAP)))) ∈ R1×C′

where r is a parameter for the bottleneck in channel ex-
citation, and σ and δ is the sigmoid and ReLU activation
respectively. The channel excitation is applied to the feature
Fin and residual operation outputs the feature Fout of the
encoding block as follows:

Fout = I + z ⋆ Fin

where z ⋆ F is channel-wise multiplication and Fin ∈
RL×C′

is the input feature of the encoding block. The
feature Fout from each encoding block is skip-connected to
a corresponding decoding block, and the decoding block
concatenates upsampled features from the previous block
and the skip-connected features. The concatenated features in
the decoding block are passed through a convolution layer,
batch normalization, and the ReLU activation, then finally
spatial and channel excitation are applied at the end of each
decoding. After applying all the decoding blocks, a few
convolution layers are followed to predict a class for each
pixel.
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Fig. 3. Brief network structure for regression of normalized R peak
location. A couple of encoding blocks are followed by two fully connected
layer. B represents batch size. The structure of the encoding blocks is same
as the one of the encoding block of U-Net in Fig. 2.

Fig. 4. A screenshot of the annotation GUI with an example ECG data
loaded. For each heartbeat, P-wave, T-wave, QRS complex, and R peak are
annotated with the GUI and save them to a labelled dataset.

B. R Peak Regression

As mentioned above, detected QRS complex is rescaled
and resampled to a fixed length Lreg. The regression network
Freg predicts normalized location of R peak Rnorm in the QRS
complex:

Freg : RLqrs → [0, 1].

The normalized output Rnorm is converted into a sample
number Rsamp:

Rsamp = Rnorm × (QRSoff − QRSon) + QRSon

where QRSon and QRSoff are the start and end sample
numbers of the input QRS complex respectively.

For encoding process of the regression model, the same
structure of encoding block is used as the U-Net. A few
successive encoding blocks are followed by fully-connected
(FC) layers for regression. Except for the last FC layer, ReLU
function is used for activation. For the last FC layer which
predicts regression result, sigmoid function is used to obtain
normalize output. The detailed structure is decribed in Fig.
3.

III. EXPERIMENTAL SETUP

A. Dataset

For experiments, we combined QT Database (QT DB)
[8], Lobachevsky University Electrocardiography Database
(LU DB) [9], the in-house resting ECG data, and 1-
channel ECG data acquired by a wearable device, MEMO

Patch™(https://www.huinno.com). QT DB provides 105 2-
lead ECG recordings of 15 minutes with a sampling fre-
quency of 250 Hz, whose onset, peak, and end of P, T waves,
and QRS complexes are marked. For each patient, if a MLII
record is available for the patient, we extracted one MLII
ECG record of the length of 10 seconds since overfitting to
a patient-specific waveform morphology might be caused if
we used all available 10-second ECG records from a patient.
For data whose manual annotation is available, we selected
the interval which is overlapped with the manual annotation
interval with the manual annotation. For data whose only
automatic annotation is available, automatic annotation was
imported. LU DB contains 200 12-lead ECG data with a
sampling frequency of 250 Hz whose P, T wave and QRS
complex boundaries are annotated by cardiologists. After
data collection from the public databases, visual inspection
was performed and annotations were corrected using a self-
developed GUI based on Python 4. In contrast to the public
databases whose pre-annotations were provided, the in-house
data was annotated by clinical experts. In addition to the pub-
lic databases, the in-house resting ECG data was collected.
The data has the length of 10 seconds and were digitized
at 500 Hz. Without any cropping along temporal samples,
the data was resampled with sampling rate with 250 Hz.
Combining the three dataset, QT DB, LU DB, and the in-
house data, we divded the combined data into the ratio of
8:2 for train-validation and test data. The train-validation data
was divided again into train and validation set with the ratio
of 8:2. QRS complex regions were annotated with 3 classes
(NSR, VPC, APC) and a unique R peak was annotated
in each QRS complex. For application to wearable ECG
systems, data from MEMO Patch was used for an additional
test. MEMO Patch provides 1-channel ECG records (up to 14
days) with 24 dB resolution and 250 Hz sampling frequency.
Similar to the in-house data, the MEMO Patch data was
annotated by clinical experts. Table I shows the number of
10-second ECG data for each class.

TABLE I
THE NUMBER OF 10-SEC ECG RECORDINGS IN DATASETS.

NSR VPC APC
In-house Data 249 465 555

MEMO Patch Data 58 40 68

B. Model Architecture and Learning

The U-Net structure consists of 4 encoding blocks and
3 decoding blocks. At the end of the decoding blocks,
2 fully-connected layers are followed to produce semantic
segmentation map. Each encoding block consists 1 CBR
and 4 residual blocks. We increase the number of channel
of the 4 encoding blocks by multiples of 16. Specifically,
as the 4 encoding blocks get deeper, 16, 32, 48, and 64
channels of features are applied to the encoding blocks.
For every convolution layer of encoding blocks, weight size
is set to 7 with padding size of 3 then ReLU activation
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is followed. To decrease feature size, the first CBR block
of each encoding block convolves feature with stride of
2. For each decoding block, a CBR block is applied to
combine skip-connected features and upsampled feature from
the previous decoding block. For training, the cross-entropy
loss with softmax output was used and weight decay was set
with λ = 0.0001. The inital learning rate was set to 0.01
and learning rate decreased by the ratio 0.8 if no further
validation loss improved. Minibatch size was 16 and Adam
method was used for optimzation.

For the regression model, we resampled each QRS com-
plex as the legnth of 32. Weight size of convolution layers
and the number of channel were set to the same as one
of the U-Net. We use however just 2 encoding blocks, and
2 FC layers are followed for regression. For training, the
mean squared error loss was used and weight decay was
set with λ = 0.0001. The inital learning rate was set to
0.0001 and learning rate decreased by the ratio 0.8 if no
further validation loss improved. All weights were selected
when validation loss converged. All theses experiments were
performed on an NVIDIA RTX 3090 GPU with 24 GB
RAM.

IV. RESULTS

In this section, quantitative and qualitative results of our
experiments are presented on the mentioned dataset. The
trained model were investigated in the following two points
of view:

1) Wheter the model detects labelled QRS complex region
and correctly predicts its class

2) How precisely R peak location is detected

As described in the previous section, the trained model was
tested on two types of the test set from the combined dataset
and our wearable devices.

A. QRS Detection

For evalueation of QRS detection performance, F1 score,
precision, and recall were measured. F1 score is the harmonic
mean of precision and recall:

F1 =
2

Recall−1 + Precision−1

where

Precision =
True positive

True positive + False positive

Recall =
True positive

True positive + False negative
.

We present results for QRS detection on the two dataset
from the combined data (test data) and measurable devices
(MEMO Patch data) in Tab. II. Our model shows perfor-
mance decrement 8.3 %p, 8.2 %p and 7.3 %p in F1 score,
precision, and recall, respectively in MEMO Patch data test.

TABLE II
IOU AND F1 SCORE FOR THE TEST DATA SETS.

F1 Precision Recall
Test data 94.01 % 94.28 % 93.74 %

MEMO Patch data 85.73 % 86.06 % 86.48 %

Fig. 5. Comparision results of R peak detection using the proposed model
(Top) and NeuroKit2 (Bottom). The proposed model detects R peaks of
while the method of NeuroKit2 detect false R peaks on T-waves. The
horizontal and vertical axes of the both plots represent the number of sample
with the sampling rate of 250 Hz and voltage in mV, respectively.

B. R peak detection

For evaluation of R peak detection performance, the root
mean squared error (RMSE) was measured and the number
of test samples whose error is greater than or equal to 5 sam-
ple intervals (5+ Error) was counted. Here, the our criteria of
5 sample intervals, 0.02 seconds in time, corresponds to the
half of the 1 mm square in ECG paper. We present results
for R peak detection for the test data and MEMO Patch data
in Tab. III.

TABLE III
R PEAK DETECTION RESULTS FOR THE TEST DATA SETS. IN THE THIRD

COLUMN, THE RATIO OF THE NUMBER OF 5+ ERROR TO THE TOTAL

NUMBER OF BEATS IS EVALUATED

RMSE 5+ Error
Test data 0.56 0.36 % (12/3308)

MEMO Patch data 0.52 0.33 % (7/2097)

In the value of RMSE, R peak is detected within error than
1 sample interval. Moreover, on the both test data sets, there
is no noticeable decrement of R peak detection performance.

In Fig. 5, we plotted the results of a selective example
of MEMO Patch data that the proposed model shows more
robust results for general ECG waveforms compared to
NeuroKit2 algorithm [10]. In the example, the result acquried
by NeuroKit2 algorithm detects R peaks around the offsets
of T waves due to the sharp waveform which is patient-
specific. In contrast to the NeuroKit2 results, our method
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stablly captures QRS complex range and detects the R peak
in each QRS complex.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a CNN-based two-step method
for R peak detection. Replacing R peak detection by re-
gression process guarantees a unique R peak detection in
each QRS complex. If the uniquess and existence of a
target are guaranteed in an input data, regression could
be a more convenient method since its structure forces a
unique estimation result. Since the R peak regression is
based on the CNN-based QRS region detection, the model
shows more robust and stable R peak detection results in
spite of low SNR and patient-dependent QRS waveform.
In diagnosis, such stable detection methods enable precise
heart rate estimation for long-time ECG data. Moreover,
in QRS complex segmentation step, we extract class of
QRS complexes as well as their location and duration. Such
precise class information alleviate laborious works of clinical
staffs to inspect long-time ECG data.

Our work has room for imporvement in many ways.
Firstly, in addition to APC and VPC, more various abnormal
beat classes can be added. In this work, APC and VPC
are considered, but there still remain clinically meaningful
abnormal beat classes. Moreover, P wave and T wave are
additional waveform classes as well as QRS complexes [6].
Based on the QRS complex detection, detection of the waves
expands clinical information, such as ST segment analysis.
For the regression process, resampling of detected QRS
complexes was required for a fixed input length. By using
adaptive pooling layers which produce outputs of a fixed
size, we can get rid of the resampling step or integrate
the regression process into the U-net model so that the
model produces R peak detection result as well as semantic
segmentation results.
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