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Abstract—The conflicts between input privacy and efficiency
in single-server non-interactive verifiable computation (NIVC)
makes it interesting to consider the multi-server models of
NIVC. Although the existing multi-server NIVC schemes provide
meaningful improvements, they either require the servers to
communicate or leave the client’s data unprotected. It has been
an open problem to design multi-server NIVC with both input
privacy and non-communicating servers. In this paper we define
a multi-server verifiable computation (MSVC) model where
the client secret-shares its input x among non-communicating
servers, each server locally computes a function F to get a partial
result, and finally the client reconstructs F (x) from all partial
results. We construct five MSVC schemes for outsourcing low-
degree polynomials and thus answer the open question for such
polynomials. Our schemes are t-private such that any t servers
learn no information about x. Our schemes are t-secure such that
any t servers cannot persuade the client to output wrong results.
The privacy and security can be either information-theoretic or
computational. Comparing with the existing schemes, our servers
can be at least two orders faster.

I. INTRODUCTION

Outsourcing computation has been very popular in recent
years due to the prevalence of cloud computing and the
proliferation of mobile devices. It allows computationally
weak devices to offload heavy computations to powerful cloud
servers in a scalable pay-per-use manner. The outsourced
computations are usually modeled as evaluating a function F
at an input x. There are two fundamental security concerns
in outsourcing computation: (1) The servers may be malicious
or malfunctioning and return incorrect results. (2) The servers
may be curious about the client’s data (e.g., input x) and
abuse it. In [89], the problems of verifying the correctness
of the server’s computation and protecting the client’s data
have been termed as the computation integrity problem and
the data confidentiality problem, respectively.

In the theoretical community, solutions to the computation
integrity problem date back to as early as the interactive
proofs of [6], [56] and the efficient arguments of [69], [70].
Goldwasser et al. [57] constructed interactive proofs that
are suitable for outsourcing the computation of log-space
uniform boolean circuits. In particular, for circuits of depth
d and input length n, the prover is efficient and runs in
time poly(n) and the verifier is super-efficient and runs in
time (n + d) · polylog(n) and space O(log n). They found
it very interesting to outsource computations with a non-
interactive or single-round scheme, where the server sends
at most one message to the client, and extended their result

to a non-interactive argument for a more restricted class of
functions. Such schemes are particularly interesting because
the client can farm out computations without preserving active
connections to servers and later the result can be returned via
email with a fully written down “certificate” of correctness.

Since [57], theoretical research in the field of outsourcing
computation has largely focused on non-interactive schemes
for ensuring computation integrity and results in many differ-
ent models [19], [30], [51], [52], [59]. We are mostly interested
in the non-interactive verifiable computation (NIVC) model
of Gennaro et al. [51]. This single-server model consists of
two phases [4]: an offline phase, where the client sends an
encoding of F to the server; and an online phase, where the
client sends an encoding of x to the server, the server replies
with an encoding of F (x), and the client performs verification
and reconstructs F (x). The client’s offline computation is
executed only once and the cost can be amortized over many
evaluations of F . The client’s online computation should be
substantially faster than the native computation of F (x). The
server’s computation should be as fast as possible.

There are two different lines in the study of single-server
NIVC. One of the lines [4], [38], [51] focuses on the outsourc-
ing of generic functions such as any boolean circuits. These
schemes provide not only computation integrity but also input
privacy. However, the client/server’s computations in these
schemes are quite impractical due to their dependance on the
expensive cryptographic primitives such as fully homomorphic
encryptions (FHEs) and garbled circuits (GCs). The other line
[17], [46], [48], [49], [80] focuses on more efficient schemes
that are free of FHEs and GCs, at the price of sacrificing input
privacy or the generality of functions.

In a single-server NIVC for outsourcing generic functions,
it is quite challenging to achieve both input privacy and high
efficiency. In fact, both Ananth et al. [2] and Schoenmakers et
al. [81] believe that some form of FHE is inherently required
by such schemes: in order to keep x private, the encoding of
x in single-server NIVC can be viewed as an “encryption”
of x and the encoding of F (x), which is computed with
F and the “encryption” of x, must allow the recovery of
F (x). The question is still challenging even if we consider the
outsourcing of specific functions. The client may have to send
an SHE (somewhat homomorphic encryption) ciphertext of x
to the server and the server has to perform many expensive
public-key operations to generate an encoding of F (x).

A number of recent works have resorted to multiple servers,
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in order to resolve the conflicts between input privacy and
efficiency in NIVC. Canetti et al. [27], [28] constructed multi-
server schemes where the client’s input is always given to
the server in clear. Ananth et. al. [2] constructed multi-server
schemes for outsourcing boolean circuits, where the client’s
input is hidden with the expensive primitive of GCs. Their
schemes require sequential communications: the client sends
a message to the first server; from the second server on, each
server receives a message from the previous server and sends a
message to the next server, and the last server sends a message
to the client. By distributing Pinocchio [79] to three (or more)
servers, Schoenmakers et al. [81] constructed schemes for
outsourcing any boolean/arithmetic circuits, where the client’s
input is information-theoretically private from each server. In
Trinocchio [81], the servers run an MPC protocol to evaluate
F and the MPC requires the servers to communicate with each
other; the security relies on non-falsifiable assumptions [54].

Therefore, if we restrict our attention to NIVC schemes that
use multiple servers, the state of the art offers protocols that
either provide no input privacy (e.g. [27], [28]) or require the
servers to communicate with each other (e.g. [2], [81]). In this
paper, we are interested in efficient multi-server schemes that
achieve input privacy with non-communicating servers.

Input privacy is extremely important and enables the client
to save time by outsourcing computations, even if the input
is sensitive [81] and the servers are not expected to learn any
partial information. Free of server communications is also an
important feature, from which both the cloud servers and the
client may benefit. Communications among servers require the
servers to operate sequentially. Very complex coordinations
among servers may be needed and therefore significantly
diminish the efficiency of the entire system, especially when
the servers belong to competing cloud services. In multi-server
NIVC schemes, the privacy of the client’s input usually relies
on the assumption that servers do not collude with each other
(e.g., [81]). Requiring servers to communicate means that each
server may know which other servers are working on the same
computation and facilitate them to collude. Without server
communications, it may be possible for the client to keep
the leased servers anonymous and thus reduce the potential
threat. In fact, Ananth et al. [2] put forward a very interesting
open question of constructing schemes where the client sends
a single message to each of the servers and receives a single
message from each of the servers, and can obtain the correct
result from this (i.e., a model in which the servers do not
communicate with each other at all).

A. Our Contributions

We answer the open question of [2] for outsourcing low-
degree multivariate polynomials, which may have many in-
teresting applications (see Section I-B). We propose a new
multi-server verifiable computation (MSVC) model. In our
model, a k-server verifiable computation is a protocol between
a client and k servers. In such a protocol, the client distributes
both a share of the function F and a share of the input x
to each server; each server locally computes a partial result;

TABLE I
t-private (secure) k-server VC schemes for degree-d polynomials

k t-security t-privacy verification delegation
Π1 d(t+ 1) + 1 i.t. i.t. private public
Π2 (d+ 1)t+ 1 i.t. i.t. private public
Π3 dt+ 1 i.t. i.t. private public
Π4 d(t+ 1) + 1 DHI i.t. public public
Π5 (d+ 1)t+ 1 DLog i.t. public public

and finally the client performs verification and reconstructs
F (x) from all servers’ partial results. An MSVC scheme is
t-secure if no t servers can persuade the client to output
a wrong result. Both information-theoretic (i.t.) security and
computational security will be considered. An MSVC scheme
is t-private if no t servers can distinguish between two inputs.
We shall consider information-theoretic privacy. We construct
five schemes (see Table I) for securely outsourcing P(q,m, d),
the set of polynomials that have coefficients in a finite field
Fq , m variables, and total degree ≤ d.
Input privacy & security. The client’s input x is information-
theoretically t-private in all schemes. The schemes Π1,Π2, and
Π3 also have information-theoretic t-security; Π4 and Π5 are
computationally t-secure under the DHI assumption [30] and
the DLog assumption, respectively.
Delegatability. In all schemes, any client can prepare its input
x, verify the servers’ partial results and reconstruct F (x), i.e.,
all schemes are publicly delegatable [80].
Verifiability. The schemes Π1,Π2 and Π3 are privately verifi-
able such that only the client that prepared x is able to verify
the servers’ partial results. Π4 and Π5 are publicly verifiable
such that any third party can verify.
Outsourceability. The client in Π1 and Π4 has to perform an
offline preprocessing of F . We follow the amortized model of
[51], [79], [80] and call an MSVC outsourceable if the client’s
online computation is substantially faster than the native
computation of F (x). Our schemes are all outsourceable.
Server’s computation. In all schemes, the computation of
each server is very efficient and roughly equivalent to evalu-
ating the outsourced function F once.
Number of servers. To outsource degree-d polynomials with
t-privacy, Π3 requires dt+ 1 servers. This number of servers
is optimal/least provided that information-theoretic t-privacy
is needed and the servers do not communicate. In fact, such
MSVC implies a t-private k-player d-multiplicative secret
sharing [12], which exists if and only if k > dt.
Limitations. The number of servers required by our schemes
is linear in the degree d of the outsourced polynomial. A large
d may result in a large number of servers. Therefore, although
our schemes can handle polynomials of any degree, for sake of
practicality they are more suitable for outsourcing low-degree
polynomials, which have interesting applications.

B. Applications

Curve fitting on private data points. Curve fitting [5] is
the process of constructing a curve or function y = f(x)
that has the best fit to a set of data points {(xi, yi)}mi=1.
Depending on whether the data points exhibit a significant
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degree of error, curve fitting may be realized with least
squares regression [34] or interpolation [34]. In least squares
regression, to fit a degree-d polynomial, one has to evaluate
polynomials in {(xi, yi)}mi=1, whose degrees are determined
by d. Small values of d are usually preferred and approached
first [58]. Thus, low-degree polynomial evaluations will be
frequently used. The same situation occurs in multiple linear
regression and interpolation. When the data points contain
highly sensitive personal information [65], [77], our schemes
provide solutions that are both private and secure.
Private information retrieval. In a t-private k-server PIR,
each server stores a database F = (F1, F2, . . . , Fn); by
sending a query to each server and learn the servers’ answers,
the client can reconstruct a block Fi of its choice but any
t servers cannot learn i. The t-private t-Byzantine robust k-
server PIR schemes of [15], [73] allow the client to reconstruct
correctly, even if t servers respond incorrectly. They also
enable the identification of cheating servers. For general t, the
best such schemes to date have communication complexity
O(n1/(⌊(2k−1)/t⌋−4)). Identification of cheating servers may
be overly strong in many scenarios such as private media
browsing [62], where it suffices for the client to detect the
existence of cheating. Our MSVC gives t-private k-server
PIR with private (resp. public) detection of cheating and
better communication complexity of O(n1/⌊(2k−1)/t⌋) (resp.
O(n1/ν(k,t)), where ν(k, t) = max{⌊ 2k−1

t+1 ⌋, ⌊
2k−1
t ⌋ − 1}).

Comparing with PIR for honest servers, our schemes incur
limited extra cost.
Privacy preserving statics and GAS. Computations of many
meaningful statistics such as average, variance, covariance,
RMS, correlation coefficient and many more, and the Genetic
Risk Scores in GAS (Genetic Association Studies) [10] heavily
depend on the low-degree multivariate polynomial evaluations.
Our schemes provide secure outsourcing solutions that pre-
serve the privacy of sensitive data.

C. Efficiency
Our schemes are all outsourceable in the amortized model

of [51], [79], [80]. Nevertheless, we focus on the more realistic
metrics of performance such as the client’s time cost and
monetary cost in MSVC. The time cost is the total time
spent by the client in preparing input, waiting for the latest
answer from a server, and verifying the results. The monetary
cost is measured with the equivalent local computing cost of
the input preparation, the result verification, and all servers’
computations. We test the proposed schemes by evaluating
polynomials of degree 2, 4, 8, 16, 32 and 64. The experimental
results show that the ratio of the client’s time cost to the time
of locally computing F (x) tends to the ratio of the computing
speed of the client to that of each server; and the ratio of the
client’s monetary cost to the cost of locally computing F (x)
tends to a multiple of the previous ratio, where the multiple
is roughly equal to the number of servers. In the schemes
with preprocessing (i.e., Π1 and Π4), the client will benefit
only if the same function is evaluated multiple times. In our
experiments for d = 2, this number is ≤ 20.

D. Our Techniques
t-Privacy. In our constructions, t-privacy is achieved by secret-
sharing the input x ∈ Fmq among all servers using Shamir’s
threshold scheme [87] for vectors. The client chooses a random
degree-t curve c(u) that passes through (0,x) and distributes
k > dt curve points to k servers; the k servers provide k eval-
uations of F ; finally the client interpolates ϕ(u) = F (c(u))
and learns F (x) = ϕ(0).
t-Security. The verification techniques in five schemes are
different. In Π1, the client picks a random line ℓ(u) and
makes both the line and the restriction of F on the line (i.e.,
f(u) = F (ℓ(u))) public. It also increases the degree of c(u)
by 1 such that c(u) intersects ℓ(u) at a random point. With this
choice, k = d(t + 1) + 1 evaluations of F suffice to recover
ϕ(u). For verifications, it evaluates F at the random point in
two different ways: one is with ϕ(u) and the other is with
f(u). It accepts only if two results agree. The main idea is
leaving the heavy computation of f(u) to the offline phase
such that the client is able to quickly retrieve the value for
verification in the online phase.

In Π2, the client additionally secret-shares a random field
element α among the servers, by using a degree-t univariate
polynomial b(u). Each server is giving a point on c(u) and a
share of α, which is an evaluation of b(u). The client offloads
the computation of F (x) and αF (x) to k = (d + 1)t + 1
servers. This is done by every server providing both a share
of F (x) and a share of αF (x) such that the client is able to
recover ϕ(u) = F (c(u)) and ψ(u) = F (c(u))b(u). If the free
terms of both polynomials differ by a factor α, then the client
believes that ϕ(u) is correct. Without knowing α, any t servers
can cheat successfully only with a very small probability.

In Π3, the client will choose c(u) such that it passes through
through (α,x) for a random field element α. It makes a
critical change by choosing both the coefficients of c(u) and
α from an extension field of Fq such as Fq2 , instead of Fq .
Then any k = dt + 1 evaluations of F suffice to recover
ϕ(u) = F (c(u)) and give F (x) = ϕ(α). Without knowing
α, the wrong partial results provided by any t servers will
result in the client reconstructing a value in Fq2 \ Fq with
overwhelming probability and be rejected by the client.
Π4 is obtained from Π1 by converting the private ver-

ification to public. In Π1, the client has to memorize the
locations where c(u) and ℓ(u) intersect. This leads to a private
verification that compares the evaluations of two polynomials,
i.e., ϕ(u) and f(u). Given a cyclic group G = ⟨g⟩ of order q,
we publish the exponentiation of two locations and thus move
the comparison to the exponent of g. We prove the scheme is
secure under the DHI assumption in G.

The scheme Π5 is obtained from Π2 with a public key gα.
The verification is moved to the exponent of g as checking
whether (gα)F (x) = gαF (x). We prove the scheme is secure
under the DLog assumption in G.

E. Related Work
In the security community, correctness of outsourced com-

putations may be verified with replication, audit, or secure
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co-processors. The replication based solutions [3], [29], [63],
[68] may be not viable and provide no input privacy. The
audit-based solutions [16], [78], [82] require recalculation of
the server’s work or knowledge of the server’s hardware. The
secure co-processors [90], [95] are either poor in physical tam-
per resistance or expensive. In the cryptographic community,
expensive cryptographic operations had been outsourced to
semi-trusted devices [35].

Interactive proofs. Interactive proofs [6], [56] allow a power-
ful prover to convince a weak verifier of the truth of statements
that could be too complex to be computed by the verifier. The
statement may take the form F (x) = y. Early research in this
field focused on how to use limited resources to verify complex
statements. The IP=PSPACE theorem of [75], [88] shows that
polynomial space computations is verifiable in polynomial
time. It was scaled down in [50] for a superpolynomial time
prover. For NC circuits, Goldwasser et al. [57] proposed
interactive proofs where the prover runs in polynomial time
and the verifier runs in nearly linear time. The protocol of
[57] has been refined and implemented in [39], [91], [93].
For NC circuits, these systems do not require preprocessing,
have a highly efficient verifier, achieve low overhead for the
prover, and have information-theoretic security. However, they
are interactive and leave the client’s input unprotected.

Interactive arguments. The MIP=NEXP theorem of [8]
constructed multi-prover interactive proofs with a polynomial
time prover and a polylogarithmic time verifier, and led to
the notion of probabilistically checkable proofs (PCP) [7].
Although a few locations of PCP suffice for verification,
PCP is too long and infeasible for the verifier to process.
Kilian [69], [70] suggested the prover send a Merkle tree
based commitment of PCP and then interactively open the
verifier-requested locations. Kilian’s idea results in interactive
arguments [24] where the soundness holds for computationally
bound provers. Ishai et al. [67] simplified the PCP by using a
homomorphic encryption based technique. The simplified PCP
was refined and implemented in [25], [84]–[86]. These systems
can outsource generic functions, require a preprocessing for
the verifier and have high prover overhead. These interactive
systems provide no input privacy.

Succinct non-interactive arguments of knowledge. The
non-interactive argument system of Micali [76] removed the
interactions in [69], [70] by applying a random oracle to
the commitment and then using the output to choose the
locations that will be opened. More efficient non-interactive
argument systems [19], [52], [60], [61], [79] were based on
the CRS model and called succinct non-interactive arguments
(SNARGs). SNARGs were then strengthened to succinct non-
interactive arguments of knowledge (SNARKs) [19], [45],
[52], [61], [79] such that the prover producing a convinc-
ing proof must “know” a witness. Recently many efficient
SNARKs implementations [36], [83] have been proposed. An
updated survey for both interactive proofs and SNARKs can
be found in Thaler [92]. Most of the SNARKs require non-
falsifiable assumptions [54], though some of the recent works

such as [61] allows one to sidestep non-falsifiable assumptions
by using stronger computational models. SNARKs in general
provide no input privacy.

Homomorphic authenticators (HAs). HAs [1], [21], [22],
[30], [32], [53] allow a client to compute authenticators for the
elements of a dataset x = (x1, x2, . . . , xm) such that the server
is able to generate authenticator for a computation F (x). The
verification however is as heavy as the native computation.
Catalano et al. [31], [33] constructed outsourceable HAs with
multilinear maps. By considering multiple datasets, Backes
et al. [9] and Gorbunov et al. [59] constructed HAs that
have efficient amortized verification. None of them keeps data
private. Fiore et al. [49] constructed HAs for encrypted data
that can only compute quadratic polynomials.

Multiplicative secret sharing (MSS). In MSS [12], a client
secret-shares the data x = (x1, x2, . . . , xd) among multiple
servers; each server can locally compute a partial result such
that all partial results sum to

∏d
i=1 xi. Verifiably MSS (VMSS)

[96] additionally enables the client to verify the servers’ partial
results and achieves information-theoretic privacy and security.
However, it only allows the computation of monomials.

Homomorphic secret sharing (HSS). HSS [23], [74] allows
a client to secret-share the data x among servers and then
offload the computation of F (x) to servers. HSS provides
computational input privacy and no verifiability.

Multiparty computation. In the client-servers setting, Barkol
et al. [11] constructed MPC protocols that allow a client to
privately compute constant-depth circuits, but without verifi-
cation. Dachman-Soled et al. [42] proposed an MPC protocol
for computing multivariate polynomials where parties hold
different variables as private inputs. The work of making MPC
practical has been successful [72]. However, the primary focus
of MPC is not outsourcing and each party’s computation is
typically as heavy as the native computation.

Multi-prover interactive proofs. The multi-prover interactive
proofs (arguments) [20], [71] are quite efficient. However, they
are interactive and leave the client’s input unprotected.

Verifiable secret sharing (VSS). In VSS [26], [47], the adver-
sary can completely dictate the behavior of the participants un-
der its control and may also control the dealer. The verifiability
of VSS guarantees that even if the dealer is corrupted, it still
has consistently shared some value among the participants and
the same value is later reconstructed. In our MSVC, the client
may be considered as a dealer that shares x among the servers
(participants). There are four fundamental differences between
MSVC and VSS. First, the client in MSVC is never cheating.
Second, the servers in MSVC never directly reconstruct x.
Instead, each server locally computes a partial result with
its share. The client is responsible to reconstruct F (x) from
partial results. Third, although VSS is applicable to MPC, the
resulting protocols require communications among the parties.
Fourth, MSVC allows the detection of cheating but provides
no guarantee of reconstructing a unique value.

Verifiable PIR. In the verifiable PIR protocols of [97], [98],
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TABLE II
The running time Tclient of the client and the total running time Tservers of

all servers (seconds)

case Π4 Π5 Trinocchio
Tclient Tservers Tclient Tservers Tclient Tservers

medium 0.29 33 0.07 17 0.04 6561
large 0.49 115 0.13 59 0.05 20106

any server that provided a wrong answer will be identified.
Although these protocols use no additional servers, both the
client and the servers in these protocols have to do a lot of
public-key operations. For example, in the protocols of [97],
[98], the client has to spend thousands of seconds in retrieving
an item from a database of 216 items. In contrast, our client
and severs only need tens of milliseconds and tens of seconds
respectively to retrieve an item from a database of 106 items.

Trinocchio. Comparing with [81], our schemes are free
of server communications and non-falsifiable assumptions.
Trinocchio [81] has a case study of multivariate polynomial
evaluations (a medium case and a large case). We do the same
case studies with Π4 and Π5, which share the same properties
of public delegation/verification with [81]. The experimental
results (Table II) show that the clients in our schemes may be
slightly slower but the servers are at least two orders faster.
Moreover, Π5 is free of a heavy preprocessing of F , which is
needed by Trinocchio. Trinocchio represents any function as
an arithmetic circuit and the servers need to perform a large
number of exponentiations, which result in worse performance.
The number of required servers in MSVC depends on the
degree of F . However, this is a theoretical consequence of
information-theoretic privacy plus non-communicating servers.
In [81], the servers have to interactively run MPC to evaluate
F (x). The same number of servers would be needed if the
Trinocchio servers are not allowed to communicate.

II. MULTI-SERVER VERIFIABLE COMPUTATION

For any set S, we denote with “s ← S” the procedure of
choosing an element s uniformly from S. For an algorithm
A, we denote with “y ← A(x)” the procedure of running A
on an input x and assigning its output to y. For any integer
k > 0, we denote [k] = {1, 2, . . . , k}. For any set T and any
vector x, xT will stand for the subvector (xi)i∈T .

A k-server verifiable computation scheme is a protocol
between a client and k servers S1, . . . ,Sk. In such a protocol,
the client provides both a share of the input x and a share of
the function F to each server; each server computes a partial
result; and finally the client recovers F (x) from the k partial
results. Let F be a set of functions. A k-server verifiable
computation scheme Π = (KeyGen, ProbGen, Compute,
Verify) for F consists of the following algorithms:

• (pkF , vkF , {ρi}ki=1) ← KeyGen(λ, F ): The key gener-
ation algorithm takes a security parameter λ and any
function F ∈ F as input and generates a value pkF ,
which will be used by the client to prepare its input
x ∈ Dom(F ), k function shares ρ1, . . . , ρk, which will
be used by the servers to compute partial results, and a
value vkF , which will be used by the client to perform
verifications.

• (vkx, {σi}ki=1) ← ProbGen(pkF , x): The problem gen-
eration algorithm uses pkF to encode any input x ∈
Dom(F ) as k input shares σ1, . . . , σk, which will be
given to the servers to compute with, and a value vkx,
which will used by the client to perform verifications.

• πi ← Compute(i, ρi, σi): For every i ∈ [k], the server’s
algorithm computes a partial result πi with (ρi, σi).

• {F (x),⊥} ← Verify(vkF , vkx, {πi}ki=1): The verification
algorithm uses vkF and vkx to determine if {πi}ki=1 form
a valid encoding of F (x). If it is invalid, outputs ⊥;
otherwise, reconstructs F (x) from {πi}ki=1.

An MSVC scheme is publicly delegatable if pkF is public
such that anyone is able to run ProbGen to delegate computa-
tions. An MSVC scheme is publicly verifiable if both vkF and
vkx are public. Otherwise, the scheme is privately verifiable.
Public delegation/verification are generally preferred. In this
paper, we will construct publicly delegatable schemes, among
which some are publicly verifiable and the others are privately
verifiable. In particular, all schemes have a public vkF .

An MSVC scheme is correct if KeyGen and ProbGen pro-
duce values that always enable the honest servers to compute
values that will verify successfully and be converted into F (x).

Definition 1. (Correctness) An MSVC scheme Π is said to
be F-correct if for any F ∈ F , any (pkF , vkF , {ρi}ki=1) ←
KeyGen(λ, F ), any x ∈ Dom(F ), any (vkx, {σi}ki=1) ←
ProbGen(pkF , x), any {πi ← Compute(i, ρi, σi)}ki=1, it holds
that Pr[Verify(vkF , vkx, {πi}ki=1) = F (x)] ≥ 1− negl(λ).

In MSVC, a set of colluding servers may try to persuade the
client to output a wrong value with incorrect partial results. For
privately verifiable schemes, security against such attacks may
be defined by properly generalizing the security experiment
of [17], where the adversary can make a number of trials, to
our multi-server setting (see Experiment 1). While the trials
are essential in [17], they are not necessary here because the
vkF in MSVC is always public and the colluding servers can
finish the trials on their own. In Experiment 1, the adversary
A models a set ST of colluding servers for some T ⊆ [k].
Given F, pkF , vkF and ST ’s shares of the function, A picks
an input x, learns ST ’s shares of the input, and then chooses a
set of partial results for ST . It breaks the security of MSVC if
finally the challenger accepts and reconstructs a wrong value.

Experiment 1. (ExpPriV
A,Π (T, F, λ))

(a) (pkF , vkF , {ρi}ki=1)← KeyGen(λ, F );
(b) x← A(F, pkF , vkF , ρT );
(c) (vkx, {σi}ki=1)← ProbGen(pkF , x);
(d) π̂T ← A(F, pkF , vkF , ρT , x, σT );
(e) π̂i ← Compute(i, ρi, σi) for every i ∈ [k] \ T ;
(f) ŷ ← Verify

(
vkF , vkx, {π̂i}ki=1

)
;

(g) if ŷ /∈ {⊥, F (x)}, output 1; otherwise, output 0.

Definition 2. (Security for privately verifiable schemes) For
T ⊆ [k] and ϵ > 0, an MSVC scheme Π is said to be (T, ϵ)-
secure if for any function F ∈ F , any input x ∈ Dom(F ),
and any adversary A, Pr[ExpPriV

A,Π (T, F, λ) = 1] ≤ ϵ, where
the probability is taken over the randomness of A and the
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experiment. Moreover, Π is (t, ϵ)-secure if it is (T, ϵ)-secure
for any set T ⊆ [k] of cardinality ≤ t.

While Experiment 1 deals with schemes where vkF is public
but vkx is private. In our publicly verifiable schemes, both vkF
and vkx are public. The security of such schemes may defined
by generalizing the security experiment of [80] in single-server
setting to our multi-server setting. The resulting experiment
ExpPubV

A,Π (T, F, λ) is identical to ExpPriV
A,Π (T, F, λ) (as shown

in Experiment 1), except that the item (d) is replaced with
π̂T ← A(F, pkF , vkF , ρT , x, vkx, σT ) such that A’s strategy
is also based on the public key vkx.

Definition 3. (Security for publicly verifiable schemes) For
T ⊆ [k], an MSVC scheme Π is T -secure if for any F ∈ F , for
any PPT adversary A, Pr[ExpPubV

A,Π (T, F, λ) = 1] ≤ negl(λ),
where the probability is taken over the randomness of A and
the experiment. In particular, Π is t-secure if it is T -secure
for any set T ⊆ [k] of cardinality ≤ t.

Procedure. σΠ(T, F, x)
(pkF , vkF , {ρi}ki=1)← KeyGen(λ, F );
(vkx, {σi}ki=1)← ProbGen(pkF , x);
output σT .

In MSVC, a set of colluding servers may try to learn the
client’s input from their input shares. For any T ⊆ [k], F ∈ F ,
and x ∈ Dom(F ), ST will learn |T | input shares, which can
be generated by the procedure σΠ(T, F, x). Informally, we say
that Π is T -private if no strategy of ST is able to distinguish
between two inputs.

Definition 4. (Input privacy) For T ⊆ [k], an MSVC scheme
Π is T -private if for any F ∈ F , any x0, x1 ∈ Dom(F ),
σΠ(T, F, x

0) and σΠ(T, F, x
1) are identically distributed. If

Π is T -private for any T ⊆ [k] of cardinality ≤ t, then Π is
said to be t-private.

Remark. The adversaries in Definition 2 and 4 are un-
bounded. Thus, both the private verifiability and the input
privacy are information-theoretic.

III. PRIVATELY VERIFIABLE SCHEMES

In this section we show three privately verifiable schemes
for P(q,m, d). Each polynomial F (x) = F (x1, . . . , xm) in
this family has up to n =

(
m+d
d

)
terms. For any t, we shall

show k-server schemes that are both t-secure and t-private.
The three schemes will require d(t+ 1)+ 1, (d+ 1)t+ 1 and
dt + 1 servers, respectively. The third scheme is optimal in
terms of the number of servers; and the other two will be
turned into publicly verifiable schemes in Section IV.

In all constructions, the basic idea of achieving t-privacy
is secret-sharing the input x ∈ Fmq among all servers using
Shamir’s threshold scheme [87] for vectors. That is, the client
draws a random degree-t curve

c(u) = x+ r1u+ · · ·+ rtu
t (1)

that resides in Fmq and passes through (0,x), and then dis-
tributes k curve points to k servers. The k servers return the

evaluations of F on k points, which will allow the client to
interpolate a degree ≤ dt polynomial

ϕ(u) = F (c(u)) (2)

and then learn F (x) = F (c(0)) = ϕ(0). For the sake of
polynomial interpolation, we always assume that k < q and
each server Si is associated with a field element i ∈ Fq .

The three schemes are mainly different in their verification
techniques, which result in different numbers of servers.

A. The First Construction

In our first construction (Scheme 1), the client will be
convinced that the ϕ(u) in (2) is correct if it takes the correct
value at a random point α← F∗

q\[k]. In fact, when some of the
servers’ partial results are wrong, the ϕ(u) interpolated from
partial results will not take the correct value at a random point,
except with very small probability. To verify, the client must
be able to learn ϕ(α) = F (c(α)), the value of F at a random
point a = c(α). The client could choose a in KeyGen(λ, F )
and precompute F (a) for all future verifications. However,
that will require the client to memorize a, in order to choose a
random curve c(u) that passes through a in ProbGen(pkF ,x),
and thus result in a scheme without public delegation. If the
client picks a in ProbGen(pkF ,x) and after c(u) has been
chosen, then it will have to locally compute F (a), which is
as heavy as the outsourced computation.

Scheme 1. The k-Server Scheme Π1 (k = d(t+ 1) + 1)
KeyGen(λ, F ): Choose ℓ0, ℓ1 ← Fmq , let ℓ(u) = ℓ0 + ℓ1u and

ρi = F for every i ∈ [k], compute f(u) = F (ℓ(u)), and
output pkF = ℓ(u), vkF = (ℓ(u), f(u)) and {ρi}ki=1.

ProbGen(pkF ,x): Choose a ← F∗
q , α ← F∗

q \ [k], r1, . . . , rt ←
Fmq , let a = ℓ(a), rt+1 = α−t−1(a− (x+

∑t
s=1 rsα

s)) and
c(u) = x +

∑t+1
s=1 rsu

s, compute σi = c(i) for every i ∈ [k],
and output vkx = (a, α) and {σi}ki=1.

Compute(i, ρi, σi): Parse ρi as F and output πi = F (σi).

Verify(vkF , vkx, {πi}ki=1): Interpolate a polynomial ϕ(u) of degree
< k such that ϕ(i) = πi for all i ∈ [k]. If ϕ(α) = f(a), output
ϕ(0); otherwise, output ⊥.

The client may bypass this difficulty by choosing a random
line ℓ(u) = ℓ0 + ℓ1u in KeyGen, precomputing the restriction
of F on the line as f(u) = F (ℓ(u)), and making (ℓ(u), f(u))
public. Then the client may choose a random curve

c(u) = x+ r1u+ · · ·+ rtu
t + rt+1u

t+1 (3)

that passes through (0,x) and intersects with ℓ(u) at a random
point a = ℓ(a) = c(α), where a ← F∗

q and α ← F∗
q \ [k].

After interpolating ϕ(u) = F (c(u)) from the servers’ partial
results, the verification may be done by checking whether
ϕ(α) = f(a). Now the client only needs to evaluate two low-
degree polynomials, i.e., ϕ(u) and f(u). The main idea of
speeding up the precomputation of F (a) and thus achieving
fast verification is dividing the computation of F (a) = f(a)
into two steps: (i) computing f(u) = F (ℓ(u)); and (ii)
computing f(a); and then leaving the heavier step (i) to
KeyGen such that it can be amortized.
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When the partial results {πi}ki=1 are all correctly computed,
we have that πi = F (c(i)) for all i ∈ [k]. Then the polynomial
ϕ(u) interpolated in Verify is F (c(u)). The correctness of
Π1 follows from the facts that ϕ(α) = F (c(α)) = F (a) =
F (ℓ(a)) = f(a) and ϕ(0) = F (c(0)) = F (x). Regarding
input privacy and security, we have the following:

Theorem 1. The scheme Π1 is t-private and (t, ϵ)-secure with
ϵ = d(t+1)

q−2−d(t+1) (see Appendix A).

B. The Second Construction

In our second construction (Scheme 2), the client will use
(1) to secret-share its input among the servers and use (2)
to reconstruct the output. To add verifiability, the client will
additionally secret-share a random field element α ← F∗

q

among the k servers using a random polynomial

b(u) = α+ γ1u+ · · ·+ γtu
t (4)

of degree ≤ t. Each server returns not only F (c(i)) but also
b(i)F (c(i)). Finally, the client interpolates two polynomials

ϕ(u) = F (c(u)), ψ(u) = F (c(u))b(u) (5)

of degree ≤ dt and ≤ (d+ 1)t, respectively. The verification
is done by checking whether ψ(0) = αϕ(0).

Scheme 2. The k-Server Scheme Π2 (k = (d+ 1)t+ 1)
KeyGen(λ, F ): Let ρi = F for all i ∈ [k]. Output pkF =⊥, vkF =⊥

and {ρi}ki=1.
ProbGen(pkF ,x): Choose α← F∗

q , r1, . . . , rt ← Fmq , γ1, . . . , γt ←
Fq , let c(u) = x +

∑t
s=1 rsu

s and b(u) = α +
∑t
s=1 γsu

s,
and compute σi = (c(i), b(i)) for all i ∈ [k]. Output vkx = α
and {σi}ki=1.

Compute(i, ρi, σi): Parse ρi as F , compute vi = F (c(i)) and wi =
vib(i), and output πi = (vi, wi).

Verify(vkF , vkx, {πi}ki=1): Interpolate a polynomial ϕ(u) of degree
≤ dt such that ϕ(i) = vi for all i ∈ [k] and a polynomial ψ(u)
of degree ≤ (d + 1)t such that ψ(i) = wi for all i ∈ [k]. If
ψ(0) = αϕ(0), output ϕ(0); otherwise, output ⊥.

When the partial results {(vi, wi)}ki=1 are all correctly
computed, we have that vi = F (c(i)) and wi = F (c(i))b(i)
for all i ∈ [k]. Then the polynomials ϕ(u) and ψ(u), which
are interpolated in Verify, will satisfy (5). The correctness of
Π2 then follows from the facts that ψ(0) = ϕ(0)b(0) = αϕ(0)
and ϕ(0) = F (c(0)) = F (x). The cheating servers may forge
a set of partial results which then result in two polynomials
ϕ̂(u) and ψ̂(u) in Verify. However, without knowing α,
ψ̂(0) = αϕ̂(0) will be false except with very small probability.

Theorem 2. The scheme Π2 is t-private and (t, ϵ)-secure with
ϵ = 1

q−1 (see Appendix B).

C. The Third Construction

In our third construction (Scheme 3), the client will work
over Fq2 . Instead of choosing a random curve c(u) that passes
through (0,x), it will choose a random curve

c(u) = x+ r1(u− α) + · · ·+ rt(u
t − αt) (6)

that passes through (α,x) at a random point α ← F∗
q2 \ [k].

Each server Si will be given a curve point (i, c(i)) such that
any t servers learn no information about x. Given k = dt+1
servers, the client would be able to reconstruct the degree ≤ dt
polynomial ϕ(u) = F (c(u)) and learn F (x) = ϕ(α) ∈ Fq .

Scheme 3. The k-Server Scheme Π3 (k = dt+ 1)
KeyGen(λ, F ): Let ρi = F for all i ∈ [k]. Output pkF =⊥, vkF =⊥

and {ρi}ki=1.
ProbGen(pkF ,x): Choose α← F∗

q2 \ [k] and r1, . . . , rt ← Fmq2 , let
c(u) = x +

∑t
s=1 rs(u

s − αs), set σi = c(i) for all i ∈ [k].
Output vkx = α and {σi}ki=1.

Compute(i, ρi, σi): Parse ρi as F and output πi = F (σi).

Verify(vkF , vkx, {πi}ki=1): Interpolate a polynomial ϕ(u) of degree
≤ dt such that ϕ(i) = πi for all i ∈ [k]. If ϕ(α) ∈ Fq , output
ϕ(α); otherwise, output ⊥.

When the partial results {πi}ki=1 are all correctly computed,
we have πi = F (c(i)) for all i ∈ [k]. Then the polynomial
ϕ(u) interpolated in Verify is F (c(u)). The correctness of Π3

follows from the fact that ϕ(α) = F (c(α)) = F (x) ∈ Fq . The
cheating servers may provide incorrect partial results, which
then result in a polynomial ϕ̂(u) ̸= F (c(u)) in Verify. The
cheating will be detected if ϕ̂(α) /∈ Fq . Therefore, ϕ̂(u) will
not allow the cheating servers to break the security unless
ϕ̂(α) ∈ Fq \ {ϕ(α)}. However, without knowing α, the last
event will not occur except with very small probability.

Theorem 3. The scheme Π3 is t-private and (t, ϵ)-secure for
ϵ = (q−1)dt

q2−2−dt (see Appendix C).

IV. PUBLICLY VERIFIABLE SCHEMES

The schemes in Section III are privately verifiable. Public
verifiability allows a third party to verify as well and thus
settle the possible disputes between client and servers. We
shall convert Π1 and Π2 to schemes with public verification.
The security of the new schemes is not information-theoretic
but relies on cryptographic assumptions (see Appendix D).

A. The First Construction

In Π1, the client accepts the servers’ partial results if and
only if ϕ(α) = f(a), where (a, α) is a private key for
verification. To obtain a publicly verifiable scheme (Scheme
4), we shall choose a cyclic group G = ⟨g⟩ of prime order q

Scheme 4. The k-Server Scheme Π4 (k = d(t+ 1) + 1)
KeyGen(λ, F ): Choose ℓ0, ℓ1 ← Fmq , let ℓ(u) = ℓ0 + ℓ1u, compute

f(u) = F (ℓ(u)); let ρi = F for every i ∈ [k]; output pkF =
ℓ(u), vkF = (ℓ(u), f(u)) and {ρi}ki=1.

ProbGen(pkF ,x): Choose a← F∗
q , α← F∗

q \ [k], r1, . . . , rt ← Fmq ,
let a = ℓ(a), rt+1 = α−t−1(a−(x+

∑t
s=1 rsα

s)) and c(u) =
x+

∑t+1
s=1 rsu

s; choose a cyclic group G = ⟨g⟩ of order q; let
vkx = (g, ga, . . . , ga

d

, gα, . . . , gα
k−1

); let σi = c(i) for every
i ∈ [k]; output vkx and {σi}ki=1.

Compute(i, ρi, σi): Parse ρi as F and output πi = F (σi).

Verify(vkF , vkx, {πi}ki=1): Interpolate a polynomial ϕ(u) of degree
≤ d(t+1) such that ϕ(i) = πi for all i ∈ [k]. If gϕ(α) = gf(a),
output ϕ(0); otherwise, output ⊥.
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and apply a new verification as follows:

gϕ(α) = gf(a). (7)

To enable the verification, a key of the form vkx = {gai} ∪
{gαi} will be made public.

Proofs for the correctness and t-privacy of Π4 are identical
to those of Π1 and omitted. Regarding security, we show a
reduction from the (k − 1)-DHI problem to the problem of
satisfying (7) with the partial results crafted by an adversary.

Theorem 4. The scheme Π4 is t-secure under the (k−1)-DHI
assumption in G (see Appendix E).

B. The Second Construction

In Π2, not only the client’s input x is secret-shared with a
degree ≤ t curve c(u) but also a random field element α is
secret-shared using a degree ≤ t polynomial b(u). Each server
evaluates F on a point of the curve and returns both the result
and the product of this result with a share of α. The client
then interpolates ϕ(u) = F (c(u)) and ψ(u) = F (c(u))b(u). It
accepts the servers’ partial results if and only if ψ(0) = αϕ(0),
where α is a private key for verification. To obtain a publicly
verifiable scheme (Scheme 5), we shall choose a cyclic group
G = ⟨g⟩ of prime order q and apply the verification

gψ(0) = gαϕ(0). (8)

To enable the verification, vkx = gα is made public.

Scheme 5. The k-Server Scheme Π5 (k = (d+ 1)t+ 1)
KeyGen(λ, F ): Let ρi = F for every i ∈ [k]. Output pkF =⊥,

vkF =⊥ and {ρi}ki=1.
ProbGen(pkF ,x): Choose α← F∗

q , r1, . . . , rt ← Fmq , γ1, . . . , γt ←
Fq , let c(u) = x +

∑t
s=1 rsu

s, b(u) = α +
∑t
s=1 γsu

s, and
σi = (c(i), b(i)) for all i ∈ [k]. Choose a cyclic group G = ⟨g⟩
of order q. Output vkx = gα and {σi}ki=1.

Compute(i, ρi, σi): Parse ρi as F , σi as (c(i), b(i)), compute vi =
F (c(i)), wi = vib(i), output πi = (vi, wi).

Verify(vkF , vkx, {πi}ki=1): Interpolate a polynomial ϕ(u) of degree
≤ dt such that ϕ(i) = vi for all i ∈ [k] and a polynomial ψ(u)
of degree ≤ (d + 1)t such that ψ(i) = wi for all i ∈ [k]. If
gψ(0) = gαϕ(0), output ϕ(0); otherwise, output ⊥.

Proofs for the correctness and t-privacy of Π4 are exactly
identical to those of Π2 and omitted. Regarding security, we
show a reduction from the DLog problem to the problem of
satisfying (8) with the partial results crafted by an adversary.

Theorem 5. The scheme Π5 is t-secure under the DLog
assumption in G (see Appendix F).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our schemes
in Section III and IV. Our evaluation will cover not only the
client’s time cost but also its monetary cost, in executing the
schemes. In particular, for monetary cost, although consump-
tions of various computing resources could be accounted, our
evaluation will be simplified and mainly base on the running
times of all algorithms.

We denote respectively with Tk, Tp, T ic , Tv and Tn the time
needed by the client running KeyGen(λ, F ), the client running
ProbGen(pkF ,x), the ith server running Compute(i, F, σi),
the client running Verify(vkF , vkx, {πi}ki=1), and the client
locally computing F (x). Let Tc and T ∗

c be the total and
maximum running time of the servers, i.e.,

Tc =

k∑
i=1

T ic ; T ∗
c = max{T 1

c , T
2
c , . . . , T

k
c }. (9)

Our evaluation will focus on the following question: (△)
In terms of the time/monetary cost, under what conditions and
to what extent the client will benefit from using MSVC?

A. Time Cost
Among the five schemes, Π1 and Π4 have a non-empty

KeyGen, which is heavier than the native computation of
F (x). In all schemes, the client has to prepare its input x for
computation and verify the servers’ partial results, by running
ProbGen and Verify respectively.

In the field of verifiable computation, many pioneer works
such as [51], [79], [80] have suggested that the one-time cost
Tk of executing KeyGen(λ, F ) can be amortized when the
same function F is evaluated many times, and a scheme is
outsourceable if the total running time of ProbGen and Verify
is far smaller than that of the native computation, i.e.,

Tp + Tv ≪ Tn. (10)

Following this idea, a proof for (10) appears in Section G and
shows that our schemes are all outsourceable provided that

kmt2 + k3 + (k + d)λ = o (nd) , (11)

where n =
(
m+d
d

)
. Given a security parameter λ, the param-

eters (q,m, d, t) in our schemes may be chosen such that

q ≈ 2O(λ), m = poly(λ), d = O(1), t = O(1), (12)

to satisfy (11) and thus result in outsourceable schemes.
In terms of time cost, we believe that a client may benefit

from MSVC, only if the client spends less time in learning
F (x), compared with locally computing F (x). While the
requirement of (10) is interesting and may realize this idea
in a setting where the servers’ computations take essentially
no time (i.e., Tc = 0), it is generally not realistic.

In MSVC, some of the servers may finish their computations
earlier than the others and the client may receive their partial
results earlier. However, the client will not be able to verify
until all partial results arrive. If all servers initiate their
computations simultaneously, the time that has to be spent by
the client before actually learning F (x) will be Tp+Tv+T ∗

c ,
where T ∗

c is the maximum of the servers’ running time. In the
amortized model of [51], [79], [80], a client will benefit from
MSVC with reduced time cost if and only if

Tp + Tv + T ∗
c < Tn. (13)

As per (13), in terms of time cost, the aforementioned
question (△) may be answered by analyzing the parameter

Rt = (Tp + Tv + T ∗
c )/Tn, (14)
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the ratio of the client’s time cost in MSVC to its time cost of
locally computing F (x). In particular, the client may benefit
from MSVC if and only if Rt < 1; the smaller the Rt is, the
more the client will benefit from using MSVC. Ideally, we
would like Rt to be as small as possible.

The actual values of Rt may depend on factors such as the
scale of the problem instance (F,x). As there is a gap between
the computing speed of the client and that of every server,
Rt < 1 may be easily satisfied by large problem instances.
Ideally, we would like to have Rt < 1 for small problem
instances as well. Given (q, d), the scale of the problem (F,x)
may be measured with m, the number of variables in F . In
order to answer the question of (△), we need to decide an
m0 such that Rt < 1 for all m > m0, and analyze how Rt
will vary as m is increasing.

B. Monetary Cost

Cloud computing aims to cut costs. Computing resources
provided by the cloud servers are usually much cheaper than
those owned by the client. A main motivation for the client to
outsource computations is reducing the monetary cost.

By locally computing F (x), the client has to spend time Tn
and the monetary cost of this local computation may be quite
high. By using MSVC, the amount of local computations is
reduced to Tp + Tv. However, the client has to additionally
pay for the Tc unit of cloud servers’ computations. Let Rp
be the ratio of the price of the client’s local computation to
that of the cloud servers’ computation. Then the client’s total
monetary cost in MSVC will be equivalent to Tp+Tv+Tc/Rp
units of its local computation. In terms of monetary cost, the
client will benefit from using MSVC if and only if

Tp + Tv + Tc/Rp < Tn. (15)

As per (15), in terms of monetary cost, the aforementioned
question (△) may be answered by analyzing the parameter

Rp⋆ = Tc/(Tn − Tp − Tv), (16)

the least value of Rp such that (15) holds for all Rp > Rp⋆.
The actual values of Rp⋆ may depend on factors such as the

scale of (F,x). The smaller the Rp⋆ is, the easier it is for the
client to benefit from using MSVC. We are mostly interested
in the values of Rp⋆ when m > m0, in order to decide when
the client will benefit in terms of both the time cost and the
monetary cost. More precisely, we need to analyze how Rp⋆

will vary as m > m0 is increasing, and decide an upper bound,
say Rp⋆0, of Rp⋆ for all m > m0.

C. Break-Even Points

In Π1 and Π4, the client has to perform a one-time execution
of KeyGen(λ, F ). Although these schemes are outsourceable
according to (10) and under the condition of (11), the client
will not really benefit from using them unless the same
function F is evaluated multiple times.

If the time Tk needed by KeyGen(λ, F ) is accounted and
the function F is evaluated at N inputs, then the client’s time

cost per input in MSVC will be Tp + Tv + T ∗
c + Tk/N and

the client may benefit from using MSVC if and only if

Tp + Tv + T ∗
c + Tk/N < Tn. (17)

Given an m0 from Section V-A, we call the smallest integer
N = Nt such that (17) holds for all m > m0 a break-even
point for the client’s time cost. On the other hand, the client’s
monetary cost per input will be Tp+Tv+Tc/Rp+Tk/N and
the client may benefit from using MSVC if and only if

Tp + Tv + Tc/Rp+ Tk/N < Tn. (18)

Given an m0 from Section V-A and an Rp⋆0 from Section V-B,
we call the smallest integer N = Nm such that (18) holds for
all m > m0 and Rp = Rp⋆0 a break-even point for the client’s
monetary cost. Ideally, we would like Nt and Nm to be as
small as possible. In order to answer the question of (△), we
need to analyze how Nt and Nm vary as well.

D. Our Implementation

In this section, we describe our implementations in detail.
The main parameters in our schemes include λ, q,m, d and t,
where λ is a security parameter, (q,m, d) specify a function
family P(q,m, d), and t is the threshold for privacy and
security. We will describe both the choices of these parameters
and the choice of the cyclic group G in Π4 and Π5. We
will also describe the libraries and platforms with which our
experiments will be conducted.
Security parameters, cyclic groups and finite fields. Our
implementations achieve λ-bit security for λ = 128. Our
privately verifiable schemes Π1,Π2 and Π3 are ϵ-secure for
ϵ = O(1/q). In order to assure 128-bit security, a sensible
choice of q would be q ≈ 2128. In particular, we shall choose
q = 2128 + 51 in our implementation of these schemes.
Then the servers in Π1 and Π2 will perform polynomial
evaluations over a 129-bit finite field Fq , except in Π3 where
the computation is done over a 257-bit finite field Fq2 . The
security of our publicly verifiable schemes Π4 and Π5 relies
on the DLog assumption in a cyclic group G of prime
order q. For the sake of efficiency, we choose G to be
the ristretto255 group [43], a cyclic group of prime order
q = 2252+27742317777372353535851937790883648493 that
is obtained from Bernstein’s Curve25519 [18] by applying
Hamburg’s Decaf point compression technique [64] for con-
structing prime-order groups. It is believed that such a group
provides 128-bit of security strength [41]. As a result, we have
that q ≈ 2253 and the servers in Π4 and Π5 will perform
polynomial evaluations over a 253-bit finite field.
Libraries. The field operations in Fq and Fq2 are implemented
with FLINT (v2.8.0), the fast library for number theory,
which is based on GMP. The ristretto255 cyclic group G is
implemented with libsodium (v1.0.18). The programming of
all schemes is done in C.
Platforms. We perform each server’s computation (i.e., the
Compute in MSVC) on a virtual machine VMs that runs a
Ubuntu 20.04 operating system with a single core of a 3.60
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GHz CPU and 8GB of RAM; and perform both the client’s
computation (i.e., KeyGen, ProbGen and Verify) and the native
computation on a virtual machine VMc that runs a Ubuntu
20.04 operating system with a single core of a 1.9 GHz CPU
and 4GB of RAM. With these choices we try to mimic the
gap of computing speed between the client’s device (e.g., a
netbook) and the servers’ machines.

Degree of polynomials. In theory there is no limitation on the
degree d of the polynomials that can be outsourced by MSVC.
However, due to three reasons, our schemes are more suitable
for outsourcing low-degree polynomials.

• First, the number k of servers required by each of our
schemes is linear in d. A large d would result in a large
number of servers. While k ≥ dt + 1 is necessary in
order to provide information-theoretic t-privacy with non-
communicating servers, and thus one of our schemes (i.e.,
Π3) is already optimal in terms of the number of servers
and can hardly be improved, it may be still undesirable
to use too many servers. Therefore, we prefer to use the
proposed MSVC to evaluate polynomials of small degree
d, in order to limit the number of required servers.

• Second, the Theorem 8 in Appendix G shows that our
schemes are outsourceable (i.e., Tp+Tv ≪ Tn), provided
that (11) is satisfied. As we are working over finite fields
of order q ≈ 2O(λ), many choices of (m, d, t) would meet
the requirement of (11), e.g., (m, d, t) = (poly(λ), O(1),
O(1)) or (m, d, t) = (O(1),poly(λ), O(1)). Among
these choices, the client will benefit most from the former
one, which requires d = O(1).

• Third, comparing with high-degree polynomials, the low-
degree ones are preferred in many scenarios. For example,
the information-theoretic PIR protocols [37], [94] require
low-degree polynomial interpolations and give quite prac-
tical communication complexity; in the polynomial re-
gression based curve fitting, low-degree polynomials are
usually preferred and approached first [58], and require
low-degree multivariate polynomial evaluations.

Many existing works experiment with low-degree polyno-
mials. For example, the degree-2 and degree-3 polynomial
evaluations have been the focus of the implementations of
[39], [85]. Pinocchio [79] and Trinocchio [81] also experiment
with polynomials of degree 6, 8 and 10. In Section V-E, we
will provide a detailed analysis of the parameters Rt,Rp,Nt
and Nm with the experimental results of degree-2 polynomial
evaluations. However, besides d = 2, we will also consider
polynomials of degree d = 4, 8, 16, 32, 64 and show slightly
rough analysis of the same parameters, in order to have a more
complete overview of the performance.

Threshold for privacy and security. Our schemes in Section
III and IV are both information-theoretically t-private and t-
secure. Any choice of the threshold t may have its pros and
cons. Besides privacy and security, the t also has direct impact
on the number of required servers and the client’s computation
complexity. A larger t not only implies stronger privacy and
security, but also results in a larger number k of servers and

Fig. 1. The value of Rt = (Tp + Tv + T ∗
c )/Tn in degree-2 polynomial

evaluations (d = 2, t = 1, 2, 3 and m = 200, 400, . . . , 2000 in all schemes)

a heavier workload of the client. A smaller t would imply
less servers and faster verification, but also lower security
level. How to choose t may not only depend on the client’s
preference, but also depend on the actual situation of how
many servers can collude with each other. In our model and
constructions, the servers do not need to communicate with
each other, in order for the client to reconstruct F (x). Such
model and constructions allow the client to keep every server
anonymous from the others. Then it would be difficult for
even two servers to collude. Thus, it seems not unreasonable
to choose a small t. Based on these observations, we will
experiment with relatively small t such as t = 1, 2, 3.

E. Experimental Results: Polynomials of Degree Two

As stated in Section V-D, for degree-2 polynomial eval-
uations, we choose t = 1, 2, 3 and choose q to be either
a 129-bit prime or a 253-bit prime. Given q, the scale of a
problem instance (F,x) ∈ P(q,m, 2)× Fmq can be measured
with m, the number of variables in F . In the experiments,
we choose m = 200, 400, . . . , 2000 and analyze how Rt,Rp
(for all schemes) and Nt,Nm (for Π4 and Π5) vary as m is
increasing. For each (t,m), we run the KeyGen, ProbGen and
Verify on VMc and run the Compute on VMs, respectively.
We also evaluate F (x) on VMc. We repeat each execution 5
times and record the average CPU time such that the standard
deviations are within 5% of the means.
Time cost. Fig. 1 plots the experimental results of Rt for the
five MSVC schemes and for all settings of (t,m) ∈ {1, 2, 3}×
{200, 400, . . . , 2000}. For Π1,Π2,Π4 and Π5, it shows that
Rt < 1 starting from m = 200 (m0 = 200) and Rt tends
to be < 0.6 when m is large. Thus, in terms of time cost,
the client may benefit from using these schemes when m ≥
200. Furthermore, the client may bring its time cost in these
schemes down to 0.6Tn when m is large enough. On the other
hand, for Π3, Fig. 1 shows that Rt > 1 for all m and Rt
tends to be ≈ 1.2 when m is large, which leads to a seemingly
surprising conclusion that the client will not benefit from using
Π3. However, we will see shortly that this is not always true
and whether one will benefit from Π3 largely depends on the
gap between the computing speed of the client and that of
the servers. On one hand, when m is large enough, we always
have that Tp+Tv = o(Tn) in all schemes. As a result, we will
roughly have Rt ≈ T ∗

c /Tn. On the other hand, each server in
Π1,Π2,Π4 and Π5 needs to evaluate F at a random point of
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Fig. 2. The value of Rp⋆ = Tc/(Tn − Tp − Tv) for degree-2 polynomial
evaluations (d = 2, t = 1, 2, 3 and m = 200, 400, . . . , 2000 in all schemes)

Fmq and the workload is roughly equal to that of computing
F (x). In our experiments, T ∗

c is needed by VMs evaluating F
once and Tn is needed by VMc evaluating F (x). Note that the
ratio of the speed of VMc to that of VMs is 1.9/3.6 ≈ 0.53.
Therefore, in the four schemes, given that the client and each
server have the same workload, we would have that Rt→ 0.53
as m→∞. This fact has been partially reflected in Fig. 1 as
Rt ≤ 0.6 starting from m = 1600. In Π3, the situation is
quite different. Each server has to evaluate F once, but at a
random point of Fmq2 . Based on the fast integer multiplication
of FLINT, the workload of each server is roughly twice of that
of the client. With our virtual machines, one would have that
Rt→ 1.06 as m→∞, which is partially reflected in Fig. 1.
In order for Rt < 1 in Π3, one requires that the ratio of the
speed of VMs to that of VMc is > 2.
Monetary cost. Fig. 2 plots the experimental results of
Rp for the five schemes and for all settings of (t,m) ∈
{1, 2, 3} × {200, 400, . . . , 2000}. For every t ∈ {1, 2, 3}, it
shows that the Rp⋆ value of every scheme is decreasing as m
is increasing. In particular, when m = 2000, the Rp⋆ values
are as shown in Table III. Therefore, for every t ∈ {1, 2, 3}
and Π ∈ {Π1,Π2,Π3,Π4,Π5}, as long as the ratio of the
price of VMc’s computation to that of VMs’s computation is
larger than the (t,Π)-entry of Table III, the client will benefit
in terms of monetary cost by using MSVC to evaluate a 2000-
variate polynomial of degree 2. When m→∞, we expect the
Rp⋆ values of every scheme to converge. When m is large
enough, we have that Tp + Tv = o(Tn) and thus

Rp⋆ = Tc/(Tn−Tp−Tv) ≈ Tc/Tn ≈ kT ∗
c /Tn ≈ k ·Rt, (19)

where k is the number of required servers in each scheme.
Given the estimated Rt limits (≈ 0.53 for Π1,Π2,Π4,Π5 and
≈ 1.06 for Π3), the estimated Rp⋆ limits (see Table IV) can
be easily computed as well. A simple comparison shows that
our experimental results of Rp⋆ (as shown in Table II) for
m = 2000 are both lower bounded by and quite close to the
estimated limits of Rp⋆ (as shown in Table IV). As per (19),

TABLE III
The experimental results of Rp⋆ (m = 2000)

Rp⋆ Π1 Π2 Π3 Π4 Π5

t = 1 2.8 2.2 3.5 2.9 2.3
t = 2 3.9 3.9 6.1 3.9 4.0
t = 3 5.1 5.4 8.7 5.1 5.9

TABLE IV
The estimated limits of Rp⋆ (m → ∞)

Rp⋆ Π1 Π2 Π3 Π4 Π5

t = 1 2.6 2.1 3.2 2.6 2.1
t = 2 3.7 3.7 5.2 3.7 3.7
t = 3 4.8 5.3 7.4 4.8 5.3

m

Fig. 3. The value of Nt = Tk/(Tn−T ∗
c −Tp−Tv) for degree-2 polynomial

evaluations (d = 2, t = 1, 2, 3 and m = 200, 400, . . . , 2000 in all schemes)

the Rp⋆ limits are linear in k and the Rt limits, respectively.
The client will benefit most from MSVC when k is small and
the computing gap between client and servers is large.

Break-even points. Only two of the schemes (Π1 and Π4)
have a non-empty KeyGen algorithm. Fig. 3 plots the exper-
imental results of Nt for these schemes and for all settings
of (t,m) ∈ {1, 2, 3} × {200, 400, . . . , 2000}. It shows that
Nt ≤ 7 when m is large enough. That is, if Tk is accounted,
then in terms of time cost the client will benefit from evaluat-
ing F at least 7 times. The actual values of Nm depend on our
choices of the Rp⋆0, an upper bound of the Rp⋆ in (16). If we
choose Rp⋆0 = 6 in both schemes, then for t = 1, 2, 3 we will
respectively have Nm ≤ 5, 8, 20 in these schemes. That is, in
terms of monetary cost the client will benefit from evaluating
F at least 5, 8, and 20 times, respectively.

F. Experimental Results: Polynomials of Higher Degree

We also consider higher-degree polynomials to have a more
complete overview of performance. In these experiments, we
choose d = 4, 8, 16, 32, 64, choose t = 1 and choose q to
be either the 129-bit prime or the 253-bit prime from Section
V-D. Given (q, d), the scale of a problem instance (F,x) ∈
P(q,m, d)× Fmq can be measured with m. However, for our
choice of d, a small m may result in a huge n =

(
m+d
d

)
, the

number of coefficients in an m-variate polynomial of degree d.
For example, for (m, d) = (32, 10), we have n = 1471442973,
which is too large for a real application. Instead of using m, we
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Fig. 4. The value of Rt = (Tp+Tv+T ∗
c )/Tn in higher-degree polynomial

evaluations (d = 4, 8, 16, 32, 64, t = 1 and n = 106 in all schemes)

Fig. 5. The value of Rp⋆ = Tc/(Tn−Tp−Tv) for higher-degree polynomial
evaluations (d = 4, 8, 16, 32, 64, t = 1 and n = 106 in all schemes)

will use the number of coefficients in F to measure the scale of
(F,x). We try to experiment with homogeneous polynomials
that have 106 coefficients. In particular, we choose (d,m) =
(4, 69), (8, 18), (16, 10), (32, 7), (64, 6) such that it is possible
to have a polynomial with 106 coefficients. For each setting
of (d,m), we run the KeyGen, ProbGen and Verify on VMc

and run the Compute on VMs. We also execute the native
computation of F (x) on VMc. We repeat each execution 5
times and record the average CPU time such that the standard
deviations are within 5% of the means.
Time cost. Fig. 4 plots the experimental results of Rt for the
five schemes and for all settings of (d,m). For Π1,Π2,Π4

and Π5, it shows that Rt < 0.7. Thus, in terms of time cost,
the client may benefit from using these schemes when the
polynomial has ≥ 106 coefficients. For Π3, it shows that Rt >
1. Comparing with the degree-2 setting, these schemes have
quite similar performances for every d ∈ {4, 8, 16, 32, 64}.
Monetary cost. Fig. 5 plots the experimental results of Rp⋆ for
the five schemes and for all settings of (d,m). It shows that the
Rp⋆ value of every scheme is increasing as d is increasing. In
particular, these values are lower bounded by and quite close
to the estimated limits of Rp⋆ in Table V.

VI. APPLICATIONS

A. Curve Fitting with Private Data Points

Given a set of data points {(xi, yi)}mi=1 that result from
an experiment or a real-life scenario, we may assume there
is a function y = f(x) that passes through the data points
and perfectly represents the quantity of interest at all non-data
points. Curve fitting [5] is the process of constructing a curve
or function that has the best fit to the data points. When the
data points exhibit a significant degree of error, the strategy is

TABLE V
The estimated limits of Rp⋆ (m → ∞)

R̃p Π1 Π2 Π3 Π4 Π5

d = 4 4.8 3.2 5.3 4.8 3.2
d = 8 9.0 5.3 9.5 9.0 5.3
d = 16 17.5 9.5 18.0 17.5 9.5
d = 32 34.4 18.0 35.0 34.4 18.0
d = 64 68.4 35.0 68.9 68.4 35.0

to derive a single curve that represents the general trend of the
data and may be realized with least squares regression (LSR)
[34]. When the data points are very precise, the strategy is to
fit a curve or a series of curves that pass directly through each
of the points and may be realized with interpolation [34].

In LSR, to fit a degree-d polynomial y =
∑d
j=0 ajx

j , the
idea is to minimize S =

∑m
i=1(yi −

∑d
j=0 ajx

j
i )

2, the sum
of the squares of the residuals between the measured values
{yi}mi=1 and the values calculated with the model. The best
fit is obtained by setting ∂S

∂ai
= 0 for 0 ≤ i ≤ d and then

solving a linear equation system in {ai}di=0. In particular, the
solution of each ai may be represented as a rational function
of the data points {(xi, yi)}mi=1. For example, for d = 1, both
the numerator and the denominator of the rational function are
polynomials of degree ≤ 3 in the 2m variables {(xi, yi)}mi=1.
In general, fitting with a degree-d polynomial requires one
to evaluate polynomials whose degrees are determined by
d. In particular, small values of d are usually preferred
and approached first [58]. Therefore, low-degree polynomial
evaluations will be frequently used. The same situation occurs
in multiple linear regression and interpolation.

In real-life scenarios, the data points may contain highly
sensitive personal information such as the patients’ brain white
matter microstructure [77] and inspiratory pressure [65]. Our
schemes allow the client to outsource curve fitting with private
data points to cloud, without leaking the personal information.

B. PIR with Cheating Detection

PIR [37] is a cryptographic primitive that has important real
applications [40]. It allows a client to retrieve an item Fi from
a database F = (F1, F2, . . . , Fn) and reveals no information
about i to the database server(s). In a t-private k-server PIR
[94], each server keeps a copy of F and answers to the client’s
query, the client reconstructs Fi from all servers’ answers, and
any t servers cannot learn i. The communication complexity
of PIR is the total number of communicated bits for retrieving
one bit from the database. The low-degree polynomial interpo-
lation based t-private k-server PIR [37], [94] have nontrivial
communication complexity of O(n1/⌊(2k−1)/t⌋). Despite of
efficient communication, PIR has not been widely deployed
due to high computational complexity [14]. One can offload
the PIR servers’ computations to cloud [66], which however
may be untrusted and respond incorrectly. It is an interesting
problem [13] to deal with dishonest PIR servers.

The t-private t-Byzantine robust k-server PIR schemes
((t, t, k)-BRPIR) of [15], [73] allow the client to reconstruct
correctly, even if t servers provide wrong answers. By using
error-correcting techniques, they provide information-theoretic
security and enable the identification of cheating servers. In
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particular, the techniques of [15], [73] may result in (t, t, k)-
BRPIR with communication complexity O(n1/(⌊(2k−1)/t⌋−4)),
which is the best to date for general t. There are also schemes
[44], [55] that are mostly suitable for retrieving O(n1/2) bits
per query and have communication complexity O(n1/2).

Identification of cheating servers may be overly strong in
many scenarios such as private media browsing [62], where
a database of movies is stored on several non-communicating
servers and the client hides its media diet by using PIR to
retrieve a movie. In this scenario, it may suffice for the client
to detect the existence of cheating and then refuse to pay. If
we consider this relaxed security, then it may be possible to
obtain meaningful efficiency improvements.

In the literature, t-private k-server PIR schemes [94] with
best communication complexity for general t are based on low-
degree multivariate polynomial evaluations. Given a prime q,
the database F may be regarded as a vector over Fq . Let
m, d > 0 be integers such that

(
m
d

)
≥ n. With an injection

E : [n]→ {0, 1}m that maps [n] to 0-1 vectors of weight d, F
may be encoded as F (x1, . . . , xm) =

∑n
j=1 Fj

∏
s:E(j)s=1 xs,

a polynomial in P(q,m, d) such that F (E(i)) = Fi for all
i ∈ [n]. Then the work of retrieving Fi can be reduced to the
work of computing F (x) at x = E(i). The MSVC schemes
in Section III and IV directly translate to t-private k-server
PIR schemes that can detect the cheating of t servers. In
particular, Π3 gives a scheme with communication complexity
O(n1/⌊(k−1)/t⌋). By using the partial derivative-based tech-
nique of [94], this communication complexity can be further
reduced to O(n1/⌊(2k−1)/t⌋), which is asymptotically better
than the schemes of [15], [73]. If we consider computational
verifiability, then Π4 and Π5 would yield PIR schemes that
allow public detection of cheating.

Theorem 6. Let µ(k, t) = max{⌊k−1
t+1 ⌋, ⌊

k−1
t ⌋ − 1}. There

is a t-private k-server PIR scheme that allows public detec-
tion of cheating by t servers with communication complexity
O(n

1
µ(k,t) ). (see Appendix H)

By using the partial derivative-based technique of [94], the
number of servers in Theorem 6 may be halved.

Theorem 7. Let ν(k, t) = max{⌊ 2k−1
t+1 ⌋, ⌊

2k−1
t ⌋−1}. There is

a t-private k-server PIR that allows public detection of cheat-
ing by t servers with communication complexity O(n

1
ν(k,t) ).

Comparison with BRPIR. As ν(k, t) > ⌊(2k−1)/t⌋−4, the
PIR in Theorem 7 is more efficient than the (t, t, k)-BRPIR
of [15], [73], in terms of communication. As the price, the
security is relaxed to cheating detection.
Comparison with PIR for honest servers. Comparing with
PIR for honest servers, PIR with cheating detection needs addi-
tional cost. We implement the t-private k-server PIR (wyPIR)
of [94] and the PIR from Theorem 6 (a Π4-based PIR4 and a
Π5-based PIR5), using the security parameters, cyclic groups,
libraries and platforms from Section V-D. We choose t = 1,
(d,m) ∈ {(2, 1415), (3, 183), (4, 72), (5, 44), (6, 33), (7, 28)},
and experiment with a database of n = 106 blocks of 257 bits.
Fig. 6 plots the maximum and total running time of servers,

Fig. 6. Cost for retrieving a 257-bit block from a database 106 blocks
(wyPIR is the baseline protocol [94]; PIR4 and PIR5 are based on Π4 and
Π5 respectively; all without using the partial derive technique)

the total running time of the client, and the communication
complexity in each scheme. It shows that:

• The maximum running time of servers in all all schemes
is roughly equal to each other;

• The total running times of servers in PIR4 and PIR5 are
within 2 and 1.5 times that of wyPIR, respectively;

• The client’s running time in PIR4 and PIR5 are within
15 and 6 times that of wyPIR, respectively; and

• The communication complexities of PIR4 and PIR5 are
within 2 and 1.5 times that of wyPIR, respectively.

On the number of servers. In order to use degree-d polyno-
mial evaluations to do t-private PIR with the same communi-
cation complexity O(n1/d), PIR4 and PIR5 use d(t+ 1) + 1
and (d+1)t+1 servers, respectively. They are more than the
dt + 1 servers used by wyPIR. Furthermore, PIR4 uses less
servers than PIR5 if and only if d < t.

VII. CONCLUSIONS

In this paper, we define a new MSVC model and con-
struct five MSVC schemes for outsourcing low-degree poly-
nomials over a finite field, of which three are (information-
theoretically) privately verifiable and two are publicly ver-
ifiable. All schemes are publicly delegatable, information-
theoretically private, and outsourceable, and have highly ef-
ficient server computations. Our schemes yield multi-server
PIR schemes that can detect the existence of cheating.
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APPENDIX A
PROOF FOR THEOREM 1

Proof for input privacy. According to Definition 4, we need
to show that for any set T ⊆ [k] of cardinality ≤ t, any
F ∈ P(q,m, d), and any x0,x1 ∈ Fmq , σΠ1(T, F,x

0) and
σΠ1

(T, F,x1) are identically distributed. It suffices to take
T = [t] and show that for any x ∈ Fmq , σΠ1

(T, F,x) is
uniformly distributed over Fmtq . The specifications of Π1 show
that ProbGen(pkF ,x) will output σi = c(i) for every i ∈ [k].
In particular, σT = (σi)i∈T will satisfy the equation system

1− 1
αt 1− 1

αt−1 · · · 1− 1
α

2− 2t+1

αt 22 − 2t+1

αt−1 · · · 2t − 2t+1

α
...

... · · ·
...

t− tt+1

αt t2 − tt+1

αt−1 · · · tt − tt+1

α


︸ ︷︷ ︸

G


r1
r2
...
rt

 =


σ1 − x− 1

αt+1 (a− x)

σ2 − x− 2t+1

αt+1 (a− x)
...

σt − x− tt+1

αt+1 (a− x)

 .

(20)

Note that G is non-singular as α /∈ [t]. For any choice of σT ,
there is a unique set of random vectors r1, r2, . . . , rt such that
(20) is satisfied. Hence, σT is uniformly distributed over Fmtq .

Proof for security. By Definition 2, it suffices to show that
for any set T ⊆ [k] of cardinality t, any F ∈ P(q,m, d), any
adversary A, Pr[ExpPriV

A,Π1
(T, F, λ) = 1] ≤ ϵ. W.l.o.g., we

take T = [t] and consider the Experiment 1:
• The challenger mimics KeyGen(λ, F ) as follows: choose

ℓ0, ℓ1 ← Fmq , let ℓ(u) = ℓ0 + ℓ1u and ρi = F for every
i ∈ [k], compute f(u) = F (ℓ(u)), set pkF = ℓ(u) and
vkF = (ℓ(u), f(u)). It then invokes the adversary A with
(F, pkF , vkF , ρT ).

• Given (F, pkF , vkF , ρT ), A chooses an input x ∈ Fmq
and gives it to the challenger.

• The challenger mimics ProbGen(pkF ,x) as follows:
choose a← F∗

q , α← F∗
q \ [k], r1, . . . , rt ← Fmq , compute

a = ℓ(a), rt+1 = α−t−1(a − (x +
∑t
s=1 rsα

s)), define
c(u) = x +

∑t+1
s=1 rsu

s, set vkx = (a, α) and σi = c(i)
for all i ∈ [k]. It then gives σT to A.

• A chooses t partial results π̂T = (π̂1, . . . , π̂t) ∈ Ftq and
gives them to the challenger.

• For every i ∈ [k] \ T , the challenger computes π̂i ←
Compute(i, ρi, σi).

• The challenger mimics Verify(vkF , vkx, {π̂i}ki=1) as fol-
lows: interpolate a polynomial ϕ̂(u) of degree < k such
that ϕ̂(i) = π̂i for all i ∈ [k]. If ϕ̂(α) = f(a), set
ŷ = ϕ̂(0); otherwise, set ŷ =⊥.

• If ŷ /∈ {⊥, F (x)}, then outputs 1; otherwise, outputs 0.
For every i ∈ [k], let πi be the output of correctly executing

Compute(i, ρi, σi). Then πi = π̂i for every i ∈ [k] \ T ; and
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ϕ(u) = F (c(u)) is the polynomial of degree < k such that
ϕ(i) = πi for all i ∈ [k]. Note that ŷ ̸=⊥ if and only if
ϕ̂(α) = f(a). As f(a) = ϕ(α), ŷ ̸=⊥ if and only if

ϕ̂(α) = ϕ(α). (21)

On the other hand, ϕ(0) = F (x). When (21) is true, we have
that ŷ = ϕ̂(0) and thus ŷ ̸= F (x) if and only if

ϕ̂(0) ̸= ϕ(0). (22)

Equation (22) requires that ∆(u) = ϕ̂(u)− ϕ(u) is a nonzero
polynomial and (21) requires that the random field element α
is a root of the degree < k polynomial ∆(u). As ∆(u) has
at most k − 1 roots in F∗

q \ [k] and α ∈ F∗
q \ [k] is randomly

chosen and completely hidden from A (which can be seen
from (20)), we have that

Pr[ExpPriV
A,Π1

(T, F, λ) = 1]

= Pr[(ŷ ̸=⊥) ∧ (ŷ ̸= F (x))]

= Pr[(ϕ̂(α) = ϕ(α)) ∧ (ϕ̂(0) ̸= ϕ(0))]

≤ Pr[(ϕ̂(α) = ϕ(α)) | (ϕ̂(0) ̸= ϕ(0))]

≤ (k − 1)/(q − 1− k).

Hence, Π1 is (t, ϵ)-secure with ϵ = d(t+1)
q−2−d(t+1) .

APPENDIX B
PROOF FOR THEOREM 2

Proof for input privacy. By Definition 4, we need to show
that for any set T ⊆ [k] of cardinality t, any F ∈ P(q,m, d),
and any x0,x1 ∈ Fmq , σΠ2(T, F,x

0) and σΠ2(T, F,x
1) are

identically distributed. It suffices to set T = [t] and show for
any x ∈ Fmq , σΠ2

(T, F,x) is uniformly distributed over the
set F(m+1)t

q . However, this is obvious because the input shares
are all computed with Shamir’s threshold scheme [87].

Proof for security. By Definition 2, it suffices to show that
for any T ⊆ [k] of cardinality t, any F ∈ P(q,m, d), any
adversary A, Pr[ExpPriV

A,Π2
(T, F, λ) = 1] ≤ ϵ. W.l.o.g., we

take T = [t] and consider Experiment 1:
• The challenger mimics KeyGen(λ, F ) as follows: let ρi =
F for all i ∈ [k], and set pkF =⊥ and vkF =⊥. It then
invokes A with (F, pkF , vkF , ρT ).

• Given (F, pkF , vkF , ρT ), A chooses an input x ∈ Fmq
and gives it to the challenger.

• The challenger mimics ProbGen(pkF ,x) as follows:
choose α ← F∗

q , r1, . . . , rt ← Fmq , γ1, . . . , γt ← Fq , let
c(u) = x +

∑t
s=1 rsu

s and b(u) = α +
∑t
s=1 γsu

s,
compute σi = (c(i), b(i)) for all i ∈ [k], and set vkx = α.
It then gives σT to A.

• A chooses t partial results {(v̂i, ŵi)}i∈T and gives them
to the challenger.

• For every i ∈ [k]\T , the challenger computes (v̂i, ŵi)←
Compute(i, ρi, σi).

• The challenger interpolates a polynomial ϕ̂(u) of degree
≤ dt such that ϕ̂(i) = v̂i for all i ∈ [k]; and a degree
≤ (d + 1)t polynomial ψ̂(u) such that ψ̂(i) = ŵi for

all i ∈ [k]. If ψ̂(0) = αϕ̂(0), then it sets ŷ = ϕ̂(0);
otherwise, it sets ŷ =⊥.

• If ŷ /∈ {⊥, F (x)}, then outputs 1; otherwise, outputs 0.
It’s easy to see that ŷ ̸=⊥ if and only if ψ̂(0) = αϕ̂(0). For

ϕ(u) = F (c(u)) and ψ(u) = ϕ(u)b(u), we always have that
ψ(0) = αϕ(0). Thus, the event ŷ ̸=⊥ occurs if and only if

ψ̂(0)− ψ(0) = α(ϕ̂(0)− ϕ(0)). (23)

On the other hand, ϕ(0) = F (x). When (23) is true, we
will have that ŷ = ϕ̂(0) and thus ŷ ̸= F (x) if and only
if ϕ̂(0) ̸= ϕ(0). Note that α ∈ F∗

q is randomly chosen and
completely hidden from A (i.e., ST ) due to the security of
Shamir’s threshold scheme. Thus, we have that

Pr[ExpPriV
A,Π2

(T, F, λ) = 1]

= Pr [(ŷ ̸=⊥) ∧ (ŷ ̸= F (x))]

= Pr

[
α =

ψ̂(0)− ψ(0)
ϕ̂(0)− ϕ(0)

∧ (ϕ̂(0) ̸= ϕ(0))

]

≤ Pr

[
α =

ψ̂(0)− ψ(0)
ϕ̂(0)− ϕ(0)

∣∣∣ (ϕ̂(0) ̸= ϕ(0))

]
≤ 1/(q − 1).

Hence, Π2 is (t, ϵ)-secure with ϵ = 1/(q − 1).

APPENDIX C
PROOF FOR THEOREM 3

Proof for input privacy. By Definition 4, we need to show
that for any set T ⊆ [k] of cardinality t, any F ∈ P(q,m, d),
and any x0,x1 ∈ Fmq , σΠ3

(T, F,x0) and σΠ3
(T, F,x1) are

identically distributed. It suffices to take T = [t] and show
that for any x ∈ Fmq , σΠ3(T, F,x) is uniformly distributed
over Fmtq2 . In an execution of Π3, ProbGen(pkF ,x) will output
an input share σi = c(i) for all i ∈ [k]. In particular, σT =
(σi)i∈T will satisfy the following equation system

1− α 1− α2 · · · 1− αt
2− α 22 − α2 · · · 2t − αt

...
... · · ·

...
t− α t2 − α2 · · · tt − αt


︸ ︷︷ ︸

G


r1
r2
...
rt

 =


σ1 − x
σ2 − x

...
σt − x

 .

Note that the coefficient matrix G is non-singular because α /∈
[t]. For any value of σT ∈ Fmtq2 , there is a unique set of vectors
r1, . . . , rt such that the above equation system is satisfied.
Hence, σT is uniformly distributed over Fmtq2 .

Proof for security. By Definition 2, it suffices to show that
for any T ⊆ [k] of cardinality t, any F ∈ P(q,m, d), any
adversary A, Pr[ExpPriV

A,Π3
(T, F, λ) = 1] ≤ ϵ. W.l.o.g., we

take T = [t] and consider Experiment 1:
• The challenger mimics KeyGen(λ, F ) as follows: let ρi =
F for all i ∈ [k], pkF =⊥, and vkF =⊥. It then invokes
A with (F, pkF , vkF , ρT ).

• Given (F, pkF , vkF , ρT ), A chooses an input x ∈ Fmq
and gives it to the challenger.
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• The challenger mimics ProbGen(pkF ,x) as follows:
choose α ← F∗

q2 \ [k], r1, . . . , rt ← Fmq2 , let c(u) =

x +
∑t
s=1 rs(u

s − αs), set vkx = α and σi = c(i) for
all i ∈ [k]. It then gives σT to A.

• A chooses t partial results {π̂i}i∈T and gives them to
the challenger.

• For every i ∈ [k] \ T , the challenger computes π̂i ←
Compute(i, ρi, σi).

• The challenger interpolates a polynomial ϕ̂(u) of degree
≤ dt such that ϕ̂(i) = π̂i for all i ∈ [k]. If ϕ̂(α) ∈ Fq , it
sets ŷ = ϕ̂(α); otherwise, it sets ŷ =⊥.

• If ŷ /∈ {⊥, F (x)}, then outputs 1; otherwise, outputs 0.
The event ExpPriV

A,Π3
(T, F, λ) = 1 occurs if and only if

ϕ̂(α) ∈ Fq \ {F (x)}, i.e., if and only if α is a root of at least
one of the q−1 polynomials in {ϕ̂(u)−δ : δ ∈ Fq \{F (x)}}.
Note that A knows nothing about α ∈ F∗

q2 \ [k], which
was randomly chosen. We must have that Pr[ϕ̂(α) ∈ Fq \
{F (x)}] ≤ (q− 1)dt/(q2− 1− k). Hence, Π3 is (t, ϵ)-secure
for ϵ = (q − 1)dt/(q2 − 2− dt).

APPENDIX D
CRYPTOGRAPHIC ASSUMPTIONS

Definition 5. (DLog Assumption) Let G be a cyclic group
of order q > 2λ. For a generator g ∈ G and α ← Zq we
define the advantage of an adversary A in solving the DLog
problem as AdvDLog

A (λ) = Pr[A(g, gα) = α]. We say that
the DLog assumption holds in G if for any PPT adversary A,
AdvDLog

A (λ) ≤ negl(λ).

Definition 6. (D-DHI Assumption [30]) Let G be a cyclic
group of order q > 2λ. For a generator g ∈ G and α← Zq we
define the advantage of an adversary A in solving the D-DHI
problem as AdvDHI

A (λ) = Pr[A(g, gα, . . . , gαD

) = g1/α] and
we say that the D-DHI assumption holds in G if for any PPT
adversary A and for D = poly(λ), AdvDHI

A (λ) ≤ negl(λ).

APPENDIX E
PROOF FOR THEOREM 4

By Definition 3, it suffices to show that for any T ⊆ [k]
of cardinality ≤ t, any F ∈ P(q,m, d), any PPT adversary
A, ϵ := Pr[ExpPubV

A,Π4
(T, F, λ) = 1] must be negligible in λ.

W.l.o.g., we take T = [t] and construct a PPT algorithm B
that uses A to solve the (k − 1)-DHI problem in G:

• Given I = (g, gα, . . . , gα
k−1

), B mimics KeyGen(λ, F )
as follows: choose ℓ0, ℓ1 ← Fmq , let ℓ(u) = ℓ0 + ℓ1u,
compute f(u) = F (ℓ(u)), set ρi = F for every i ∈ [k],
pkF = ℓ(u), and vkF = (ℓ(u), f(u)). It then invokes A
with (F, pkF , vkF , ρT ).

• A chooses an input x ∈ Fmq and gives it to B.
• B mimics ProbGen(pkF ,x) as follows: choose a ← F∗

q ,

σ1, σ2, . . . , σt ← Fmq , set vkx = (g, ga, . . . , ga
d

, gα, . . . ,

gα
k−1

). It then gives both vkx and and σT to A.
• A chooses π̂T = {π̂i}i∈T ∈ Ftq and gives it to B.
• B computes πi = F (σi) for all i ∈ [t] and interpolates

a polynomial δ(u) =
∑k−1
i=0 δiu

i of degree < k such

that δ(i) = π̂i − πi for all i ∈ [t] and δ(i) = 0 for all
t < i ≤ k. Note that B is able to compute gδ(α) with I
and the coefficients of δ(u). If δ(0) ̸= 0 and gδ(α) = 1,
B outputs

g1/α =

(
k−1∏
i=1

gδiα
i−1

)− 1
δ0

, (24)

Note that what A sees in this procedure is identically dis-
tributed to what it should see in ExpPubV

A,Π4
(T, F, λ). In partic-

ular, the vectors r1, . . . , rt ∈ Fmq used to encode x are implicit
and uniquely determined with (20). Furthermore, the rt+1

could be computed as rt+1 = α−t−1(a− (x+
∑t
s=1 rsα

s)).
Although B is unable to compute the partial result πi for
every t < i ≤ k, we have that δ(u) = ϕ̂(u) − ϕ(u), where
ϕ̂(u) is interpolated from (π̂1, . . . , π̂t, πt+1, . . . , πk) such that
ϕ̂(i) = π̂i for all i ∈ [t] and ϕ̂(i) = πi for all t < i ≤ k, and
ϕ(u) is interpolated from (π1, . . . , πt, πt+1, . . . , πk) such that
ϕ(i) = πi for all i ∈ [k]. It is clear that A wins in the security
experiment if and only if δ(0) ̸= 0 and gδ(α) = 1, where
“gδ(α) = 1” signs that the partial results chosen by A will be
accepted and “δ(0) ̸= 0” signs that Verify will output a value
̸= F (x). WhenA wins, (24) will allow B to learn g1/α. Hence,
we have that Pr[B(I) = g1/α] = Pr[ExpPubV

A,Π4
(T, F, λ) =

1] = ϵ. Under the (k − 1)-DHI assumption in G, ϵ must be
negligible in λ. Hence, Π4 should be t-secure under the same
assumption.

APPENDIX F
PROOF FOR THEOREM 5

By Definition 3, it suffices to show that for any T ⊆ [k] of
cardinality ≤ t, any F ∈ P(q,m, d), any PPT adversary A,
ϵ := Pr[ExpPubV

A,Π5
(T, F, λ) = 1] is negligible in λ. Without

loss of generality, we take T = [t] and construct a PPT
algorithm B that uses A to solve the DLog problem in G:

• Given I = (g, gα), B mimics KeyGen(λ, F ) as follows:
let ρi = F for all i ∈ [k], pkF =⊥ and vkF =⊥ . It then
invokes A with (F, pkF , vkF , ρT ).

• A chooses an input x ∈ Fmq and gives it to B.
• B mimics ProbGen(pkF ,x) as follows: choose c1, . . . ,

ct ← Fmq , b1, . . . , bt ← Fq , set vkx = gα and σi =
(ci, bi) for every i ∈ [t]. It then gives vkx and σT to A.

• A chooses π̂i = (v̂i, ŵi) ∈ F2
q for all i ∈ [t] and gives

π̂T to B.
• Let vi = F (ci) and wi = vibi for i ∈ [t]. B interpolates a

polynomial δ(u) of degree ≤ dt such that δ(i) = v̂i − vi
for all i ∈ [t] and δ(i) = 0 for all t < i ≤ k; and
interpolates a polynomial ∆(u) of degree ≤ (d + 1)t
such that ∆(i) = ŵi − wi for all i ∈ [t] and ∆(i) = 0
for all t < i ≤ k. If g∆(0) = gαδ(0) and δ(0) ̸= 0, then
B outputs α = ∆(0)/δ(0); otherwise, it outputs ⊥.

Note that what A sees in the above procedure is identically
distributed to what it should see in ExpPubV

A,Π5
(T, F, λ). The

vectors r1, . . . , rt ∈ Fmq and the numbers γ1, . . . , γt ∈ Fq for
encoding x are implicit but uniquely determined by σT , gα

and x. Although B is unable to compute the partial result πi =
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(vi, wi) for every t < i ≤ k, it is true δ(u) = ϕ̂(u) − ϕ(u),
where ϕ̂(u) is interpolated from (v̂1, . . . , v̂t, vt+1, . . . , vk)
such that ϕ̂(i) = v̂i for all i ∈ [t] and ϕ̂(i) = vi for
all t < i ≤ k, and ϕ(u) is interpolated from (v1, . . . , vk)
such that ϕ(i) = vi for all i ∈ [k]. Similarly, it is true
that ∆(u) = ψ̂(u) − ψ(u), where ψ̂(u) is interpolated from
(ŵ1, . . . , ŵt, wt+1, . . . , wk) such that ψ̂(i) = ŵi for all i ∈ [t]
and ψ̂(i) = wi for all t < i ≤ k, and ψ(u) is interpolated
from (w1, . . . , wk) such that ψ(i) = wi for all i ∈ [k]. It
is clear that A wins in the security experiment if and only
if δ(0) ̸= 0 and g∆(0) = gαδ(0), where “g∆(0) = gαδ(0)”
signs that the partial results chosen by A will be accepted and
“δ(0) ̸= 0” signs that Verify will output a value ̸= F (x). When
A wins, B is to learn α = ∆(0)/δ(0). Hence, Pr[B(I) = α] =
Pr[ExpPubV

A,Π5
(T, F, λ) = 1] = ϵ. Under the DLog assumption

in G, ϵ must be negligible in λ. Hence, Π5 is t-secure under
the same assumption.

APPENDIX G
OUTSOURCEABILITY

Definition 7. (Outsourceability) An MSVC scheme is said to
be outsourceable if for any x and {πi}ki=1, the time Tp + Tv
required by ProbGen(pkF , x) and Verify(vkF , vkx, {πi}ki=1) is
o(Tn), where Tn is the running time of the native computation
F (x).

Theorem 8. If kmt2 + k3 + (k + d)λ = o(nd), where n =(
m+d
d

)
, then the five MSVC schemes are all outsourceable.

Proof. In Π1,Π2 and Π3, ProbGen and Verify require
O(kmt2) and O(k3) field operations in Fq (or Fq2 ), respec-
tively. The native computation requires O(nd) field operations.
Under the given condition, we have that Tp+Tv = o(Tn) and
thus these schemes are outsourceable. In Π4 and Π5, ProbGen
requires O(kmt2) field operations, and Verify requires both
O(k3) field operations and O(k + d) exponentiations in G,
where the group operations are equivalent to around O((k +
d)λ) field operations. Under the given condition, we have that
Tp + Tv = o(Tn). Thus, Π4 and Π5 are outsourceable.

APPENDIX H
PIR WITH CHEATING DETECTION

Let d = µ(k, t). By using Π4 (when k = d(t + 1) + 1)
or Π5 (when k = (d + 1)t + 1) to publicly and verifiably
compute F (E(i)), the client has a PIR scheme that can detect
the cheating of ≤ t servers. Its communication complexity is
O(n1/d) = O(n1/µ(k,t)).
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