
Foundations of Dynamic BFT
Sisi Duan†

Tsinghua University
Email: duansisi@tsinghua.edu.cn

Haibin Zhang∗
Beijing Institute of Technology

Email: haibin@bit.edu.cn

Abstract—This paper studies dynamic BFT, where replicas
can join and leave the system dynamically, a primitive that is
nowadays increasingly needed. We provide a formal treatment
for dynamic BFT protocols, endowing them with a flexible syntax
and various security definitions.

We demonstrate the challenges of extending static BFT to
dynamic BFT. Then we design and implement Dyno, a highly
efficient dynamic BFT protocol under the partial synchrony
model. We show that Dyno can seamlessly handle membership
changes without incurring performance degradation.

I. INTRODUCTION

Byzantine fault-tolerant state machine replication (BFT) has
been traditionally known as a primitive to build mission-
critical systems. Nowadays, BFT has gained its prominence,
because it is deemed as a core building block for blockchains:
BFT is known as the model for permissioned blockchains [54],
where the membership is static and the ledgers (replicas)
know each other’s identities but may not trust one another.
BFT is also increasingly being used in various manners in
permissionless blockchains (these protocols are also called
hybrid blockchains [26, 27, 56]). This paper studies BFT with
dynamic membership, or simply dynamic BFT, where replicas
may join and leave the system dynamically. Dynamic BFT,
a primitive that may be traditionally viewed as one enabling
desirable features from the system perspective, is nowadays
increasingly needed as a core building block for a myriad of
blockchain and security applications.
Normal recovery and reconfiguration. As in any static
distributed systems, a static BFT system has practical limi-
tations [46]: if, for instance, one of the replicas crashes, needs
maintenance, or is deemed as being faulty, the probability
for the system to be always available reduces. It may not be
always feasible to recover the faulty one, because recovering a
node can take time, and more importantly, recovering may not
always be possible (due to, e.g., permanent hardware failures).
In this case, a better approach is to create a new replica to
replace the faulty one.
Proactive recovery. Dynamic BFT can be used to build a
robust BFT system with proactive recovery that works in the
long run. The problem of proactively secure BFT systems has
been studied in many previous works [10, 51]. These systems
use a trusted hardware to periodically restart nodes, in a hope it
will evict the adversary. The adversary (e.g., viruses), however,
may well stay in the system, rendering the effort useless. A

†Sisi is with Institute for Advanced Study and BNRist.
*Corresponding author.

fresh replica, however, does not have such a problem. Dynamic
BFT thus provides an alternative and arguably better solution
to the traditional proactive recovery approach.
Consortium blockchains. The static membership property of
BFT may significantly limit the applicability of consortium
blockchains. The blockchain entities may choose (or be forced)
to leave the constortium, while new entities may join the
consortium. For instance, Libra, now rebranded as Diem, has
already faced such a situation, where dynamic membership is
managed by their smart contract after an agreement has been
reached by the BFT.
Hybrid blockchains. The hybrid blockchains using BFT need
to select a fixed number of BFT replicas, called committees,
which can easily become sitting ducks. It is vital to be able to
change committees while keeping the system up and running.

A. Technical Challenges and Our Contributions

A formal treatment of dynamic BFT. Despite the need
for dynmaic BFT, there has, until now, been no rigorous
formalization offered for dynamic BFT. While some related
primitives have been defined in crash failure model [11, 46]
and Byzantine failure model [20, 39, 40], there lacks a good
abstraction for dynamic BFT with provable security. Looking
at dynamic BFT from a modern vantage—in the “era of
blockchains”—is long overdue. This paper fills in this gap and
offers a formal treatment of dynamic BFT. Our specification
covers a syntax separating BFT from the membership service,
an approach stemming from the work of Schiper for the crash
failure model [46]. Our definitions of security, however, take
a rather different turn by treating indistinctively regular and
membership requests. More crucially, our treatment has the
following two features:

• In lifting security definitions to dynamic BFT, we define a
new property (consistent delivery) that we find crucial to
the security of dynamic BFT. We show some natural and
alternative delivery properties fail to work.

• Our treatment consists of a number of security definitions
for different notions of “being correct” for dynamic BFT,
each being meaningful, from the weakest to the strongest
we can envision.

Identifying (new) issues for dynamic BFT. Despite a long
line of work for dynamic membership (mainly in crash fault-
tolerant systems), we discover some (new) issues:

• Problems due to dynamic quorum (specified in Sec. IV).
In dynamic BFT, the membership change leads to the the

11317

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Sisi Duan. Under license to IEEE.
DOI 10.1109/SP46214.2022.00117

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

87

change of the quorum size, creating various liveness issues.
• Problems due to view changes (specified in Sec. IV). In dy-

namic BFT with view changes (i.e., leader election), there
are various issues as well. For instance, the next leader
may be unable to collect enough view change messages,
may even be unaware of the view change occurring. Even
worse, multiple replicas may claim they are the leader in
the same view.

• Problems due to message delivery (specified in Sec. III-E).
Static distributed systems have a message delivery assump-
tion that messages transmitted among correct replicas are
eventually delivered. This assumption does not hold for
the dynamic setting, as some correct replicas, while being
correct when sending messages, may leave the system in
some future configuration. We find that even some classic
protocols in the secure distributed computing community
(e.g., [46]) simply assume message delivery across con-
figurations and the proofs for these protocols are actually
flawed.

Configuration discovery protocols. Our protocols rely on
configuration discovery sub-protocols, where clients and new
replicas obtain the membership of the system. The config-
uration discovery protocols are not just crucial from the
functionality perspective but to the correctness of our dynamic
BFT protocols. We provide one such protocol which uses
explicit membership discovery. We also present in appendix
two alternative protocols using implicit membership discovery.
Constructions, assumptions, and their presentation. We
consider two different assumptions: the standard quorum as-
sumption (assuming optimal resilience for each configuration)
and the G-correct assumption (assuming a fraction of correct
replicas never leave the system). Based on each assumption,
we provide protocols satisfying different definitions of security
we propose. We first present Dyno, the main protocol in the
paper. We then present the variants of Dyno. We formally
prove the security of all the protocols.

One of our aims is to handle membership change seam-
lessly. Dyno retains the full efficiency of the underlying
BFT protocol and can handle membership requests indepen-
dently of view changes. Dyno, however, does make significant
modifications—while adding no performance overhead—to
both the normal-case operation and the view change mecha-
nism of the underlying BFT protocol. We show Dyno is highly
efficient and robust under various join and leave scenarios.

II. RELATED WORK

BFT. As a generic approach that tolerates arbitrary failures,
BFT can be categorized into synchronous BFT [1], partially
synchronous BFT [10, 14, 15, 50] and asynchronous BFT [16,
17, 33]. In this work, we focus on partially synchronous BFT.
Primary partition vs. partitionable membership services.
A membership service may be primary partition or partition-
able [11]. In a primary partition service, views at all replicas
are totally ordered. In a partitionable one, views are partially
ordered, i.e., multiple disjoint views may exist at the same
time. The paper studies the primary partition model only.

Dynamic group communication. The group membership
problem and the view synchronous communication problem
were first discussed by Birman and Joseph [7]. A group mem-
bership abstraction provides a dynamic yet consistent view
of active members. View synchronous communication [7, 47]
extends group membership to support reliable broadcast within
members of views. Extended virtual synchrony [37] extends
virtual synchrony, ensuring a consistent relationship between
delivery of messages and that of configuration changes across
all replicas. Spread [5] and Secure Spread [4] encompass
both virtual synchrony and extended virtual synchrony in the
crash failure model. Secure Spread enhances Spread with
authentication, integrity, access control, and confidentiality.

Chockler et al. [11] provide a comprehensive survey on dy-
namic group communication systems: the group membership
service (for adding and removing processes) is defined first,
while the communication primitives (e.g., reliable broadcast,
atomic broadcast) are specified in a second step. In these
systems, the group membership service is the basic layer of
various communication stacks. In contrast, Schiper’s specifica-
tions describe communication primitives first and then mem-
bership changes and allow that all membership changes come
from explicit invocations of membership requests [46]. The
primitive defined for atomic broadcast, for instance, is called
dynamic atomic broadcast, or simply atomic multicast. Schiper
argued that the choice leads to more “natural” and simpler
specifications. Schiper [46] also shows that his specifications
are only slightly different from the ones surveyed in [11] in
terms of liveness properties.

Guerraoui et al. recently proposed dynamic Byzantine re-
liable broadcast (DBRB), where replicas can join and leave
the system dynamically [20]. From the definition perspective,
DBRB solves a rather different problem (broadcast) from ours
(consensus) and focuses on asynchronous settings. From the
technical perspective, DBRB allows divergent view paths that
will eventually converge to the same view.

Rampart [39] and SecureRing [25] implement state machine
replication in the Byzantine failure model and rely on Byzan-
tine failure detectors to achieve liveness.
Reconfiguration for atomic storage. Dynamic atomic
read/write (R/W) storage can be consensus-based [19, 36, 44]
and consensus-free. Aguilera et al. demonstrate in DynaS-
tore [2] that dynamic atomic storage can be solved, without
using consensus (or randomization), in asynchronous settings.
Starting from DynaStore, a number of consensus-free dynamic
atomic storage constructions have been proposed (e.g., [3, 18,
23]). Kuznetsov and Tonkikh present asynchronous atomic
storage with Byzantine failures [28].
Reconfiguration for SMR. Lamport proposes in Paxos to
manage membership changes as part of the system state [30].
After an agreement is reached for a membership request,
replicas wait for α batches of requests to be executed before
they install the new configuration. Lorch et al. proposed
SMART [34] where reconfiguration of the system is managed
by creating an additional group of replicas. The two groups
of replicas run parallel Paxos instances until the system

21318

state is fully migrated to the new group. For primary/backup
replication, solutions for reconfiguration are studied in a
crash failure setting [22, 49]. Raft [38] presents a two-phase
approach for reconfiguration. The first phase is a transitional
configuration called joint consensus. To transition to a new
configuration, replicas in both configurations participate in
the joint consensus, while agreement is independently main-
tained. This approach allows replicas in older configuration
to continue providing service to the clients and replicas in
new configuration to catch up with the history. Only after the
joint consensus has been committed, the system moves to the
new configuration. BFT-SMaRt is a BFT system that supports
reconfiguration [50], where membership requests are treated as
a special type of client requests and order all requests together.
Our systems use this strategy as well. But doing so alone
without further modifying the protocol, may create liveness
issues (zero throughput), as we will theoretically show for
any leader-based BFT protocols in Sec. IV and experimentally
show for BFT-SMaRt in Sec. VIII.
Reconfiguration using auxiliary master. Reconfiguration of
a system (storage, SMR, or primary backup replication) can
be managed by an auxiliary master [31, 35, 43]. For instance,
Vertical Paxos shows (in the crash failure setting) that it is
sufficient to use f +1 replicas to build a configuration master
that manages the configuration of SMR.
Membership management. Dynamic BFT is in sharp contrast
to membership management, a service managing the nodes in
distributed systems [12, 13, 24, 32, 41, 42, 45, 52]. The service
can either be built from a standalone SMR (e.g, Apache
Zookeeper [21], Google Chubby [9]) or via self discovery of
the membership (e.g., SWIM [13]). In contrast, dynamic BFT
is a fundamentally different primitive, which can be viewed
as a self-configurable SMR.
Durability. Durability is a capacity of surviving state machine
replication system crash or shutdown and bringing recovering
replicas up to date. The property has been previously consid-
ered in the context of static groups [6, 10], while we consider
a similar one for dynamic groups from a different perspective.

III. SYSTEM AND THREAT MODEL

A. Static BFT
Conventional Byzantine fault-tolerant (BFT) protocols have

a constant set of replicas, a fraction of which may fail
arbitrarily (Byzantine failures). In BFT, a replica delivers
requests, each submitted by a client. A request may include
one or more operations. A replica executes the operations in
the request and sends a reply to the corresponding client. The
client computes a final response based on the reply messages.

In a system with n replicas, BFT tolerates f ≤ ⌊n−1
3 ⌋

Byzantine failures, which is optimal. Correctness for BFT is
specified as follows:
• Agreement: If a correct replica delivers a request m, then

every correct replica eventually delivers m.
• Total order: If a correct replica delivers a message m

before delivering m′, then another correct replica delivers
a message m′ only after it has delivered m.

• Liveness: If a correct client submits a request m, then a
correct replica eventually delivers m.

• Integrity: No correct replica delivers the same message
m more than once; if a correct replica delivers a message
m and the client that submits m is correct, then m was
previously submitted by the client.

Total order and integrity are safety properties, while the
other two are liveness properties. Agreement and liveness
together imply a client eventually receives a valid response.
A BFT formalization may explicitly assign sequence numbers
to client requests and ask correct replicas to execute requests
according to the order.

Generally speaking, partially synchronous BFT protocols
rely on view changes (with a form of leader rotations) for
liveness and therefore proceed in views. A view change is
triggered when a leader appears to be faulty (e.g., PBFT [10]),
or triggered periodically according to some strategy (e.g.,
Spinning [53], HotStuff [55]). Asynchronous BFT protocols,
however, do not have the view change mechanism.

B. Dynamic BFT

We consider a BFT system with replicas taken from a
finite set Π = {p1, p2, · · · } (also called the universe). Each
replica pi ∈ Π has a public/private key pair (pki, ski) and
we assume for simplicity its public key is known by all
processes in the set and serves as a unique identifier for
pi. A dynamic BFT group consists of a subset of Π. The
replicas in a BFT group are members of the group. We
use the notion of configuration to represent the successive
membership of a BFT group. Let Mc be the membership (the
group of replicas) of a configuration numbered by an integer c,
initialized as 0 (the initial configuration). A replica changes
its configuration via configuration installation. We introduce
the following definitions:

Definition III.1. A replica p is in configuration c, if p ∈ Mc.

Definition III.2. The (current) configuration of p is c if p
has installed configuration c but has not installed another
configuration after c.

Definition III.3. The latest configuration of the system is c,
if at least one correct replica installs c and no correct replica
has installed c′ where c′ > c.

Definition III.4. A replica p is correct in configuration c, if
p installs configuration c, and p is correct (not faulty) in c.
(Note p might or might not be faulty in configuration c + 1,
but is not faulty in c.)

Definition III.5. A replica p is c-correct, if 1) p is correct in
configuration c, and 2) no correct replicas in c install any
configuration greater than c, or some correct replica in c
installs configuration c + 1 after c and p ∈ Mc+1. (p is c-
correct if c is the latest configuration for all correct replicas
in c, or p is in the next configuration of c.)

Definition III.6. A replica p is c-faulty if p ∈ Mc and p is not
c-correct. (A replica p can be correct in configuration c but

31319

c-faulty, as, for instance, p may be removed from the group
precisely after configuration c but before configuration c + 1
and is never in configuration c+ 1.)

Definition III.7. A replica p is g-correct, if 1) p is 0-correct
(where 0 is the initial configuration of the system), and 2)
there does not exist a c > 0 such that p is not c-correct. (A
g-correct replica is correct in all its configurations.)

Definition III.8. A replica p is gc-correct for c ≥ 0, if 1) p is
c-correct, and 2) there does not exist a c′ such that c′ > c
and p is not c′-correct. (A gc-correct replica is correct in
configurations c′ ≥ c. A g0-correct replica is g-correct.)

Our notion of configurations (dealing with membership)
is independent of views (in the sense of view changes for
partially synchronous BFT). A dynamic partially synchronous
BFT can have both the notion of configurations and the notion
of views. Note a static BFT group is a special case of the
dynamic BFT model with a fixed number of replicas and a
single configuration.

C. Group Membership Change for Dynamic BFT

We consider two membership requests that can modify
the membership: the join request that adds a new replica
to the group and the leave request that removes a replica
from the group. The membership requests are different from
regular BFT requests (write and read requests) that do not
change the membership. We assume without loss of generality
that membership requests are the only method of modifying
the membership. We levy no restrictions on who may issue
membership requests. They may be invoked by any authorized
clients (e.g., replicas joining or leaving the system, system
administrators, trusted CAs, high-level programs). We also
do not discuss why a replica is included or excluded but
only present how we do so. In practice, as illustrated in the
examples in Sec. I, there is typically no ambiguity in agreeing
on who will join or leave the group and why and when the
group membership needs to change.

Upon execution of a join request for pi at a replica pj in
configuration c, the membership for pj becomes Mc ∪ {pi}
(and correspondingly pj installs the new configuration). Upon
execution of a leave request for pi at a replica pj in configu-
ration c, its membership becomes Mc − {pi}.

For two configuration memberships Mi and Mj with i < j,
we use Mj/Mi to represent the replicas that exist in Mj but
do not exist in Mi. For instance, if Mi = {p2, p3, p4} and
Mj = {p3, p4, p5, p6}, then Mj/Mi = {p5, p6}. Let nc and tc
be the number of replicas and c-faulty replicas in configuration
c, respectively. In configuration c, we have nc = |Mc|.

D. Assumptions

We now specify the system assumptions.
Standard quorum assumption. We assume the optimal re-
silience model in this work. Namely, the maximum number
of failures the system can tolerate in configuration c is fc ≤
⌊nc−1

3 ⌋. A quorum of replicas consists of at least ⌈nc+fc+1
2 ⌉

replicas. We use Qc to represent the quorum size in config-
uration c. This is a standard and optimal assumption. Unless
mentioned otherwise, we consider the default assumption.
G-correct assumption. We also consider a stronger assump-
tion which is not essential but may yield some (much) simpler
protocols for some cases. Let F = max({fc}) + 1 for all
c ≥ 0. G-correct assumption requires there exist at least F
replicas that are correct across all configurations. In other
words, “enough” correct replicas never leave the system.

In addition, we make two standard assumptions for dynamic
membership (used in all other such scenarios): first, the
number of replicas that join or leave the system is bounded
(a natural assumption is that from configuration c to c+ 1, at
least Qc c-correct replicas are still in c+1); second, the initial
configuration is known by all replicas in the universe Π.

E. Property Specification

In our formalization, membership requests and regular BFT
requests may be collectively called requests. We treat member-
ship requests in the same way as regular requests. Thus, when
specifying the correctness of dynamic BFT below, a request
m may be either a membership request or a regular request.
In particular, an invocation of a join or leave request is just
an invocation of a special client request. An execution of a
join (resp. leave) request corresponds to the delivery of the
request and installation of a new configuration via the add
(resp. remove) operation in the request.

• Agreement: If a correct replica in configuration c delivers
a request m, then every correct replica in configuration c
eventually delivers m.

• Same configuration delivery: If a correct replica pi (resp.
pj) delivers m in configuration ci (resp. cj), then ci = cj .

• Total order: If a correct replica in configuration c delivers
a message m before delivering m′, then another correct
replica in configuration c delivers a message m′ only after
it has delivered m.

• Liveness: If a correct client submits a request m, then even-
tually a correct replica in some configuration c delivers m.

• Integrity: No correct replica delivers the same message
m more than once; if a correct replica delivers a message
m in some configuration and the client that submits m is
correct, then m was previously submitted by the client.

The same configuration delivery property is a natural re-
quirement for the membership service and is defined pre-
viously (e.g., [11, 46]). A BFT system may assign increas-
ing sequence numbers to different client requests to order
transactions. Under such a syntax, we may unify the same
configuration delivery property and total order property:

• Enhanced total order: If a correct replica in configuration
c delivers a request m with a sequence number, and another
correct replica in configuration c′ delivers a request m′ with
the same sequence number, then m = m′ and c = c′.

A practical, durable BFT system relies on a state transfer
protocol to bring recovering replicas or replicas that have
fallen behind its peers up to date [6, 10]. In dynamic BFT,

41320

new replicas joining the group also need the state transfer
mechanism to catch up with other replicas. New replicas or
recovering replicas may be deemed as being faulty before they
obtain the system state.

Some, but not all, existing BFT protocols are specified
without explicit agreement property, but these protocols can
easily satisfy it. This is, however, not the case for dynamic
BFT, as achieving agreement is not at all trivial; hence,
we explicitly consider agreement in all our dynamic BFT
constructions.
The need for additional properties. Having discussed dy-
namic BFT properties naturally mirroring properties from
static BFT, let us now motivate the need of additional proper-
ties. In static BFT settings, agreement, total order, and our
liveness definition imply that a correct client will receive
replies to its requests. More concretely, for a client request m,
agreement and liveness guarantee that all correct replicas will
eventually deliver m. Since there are n ≥ 3f + 1 replicas, a
client can safely deliver a response through the majority voting
approach, computing a response after receiving f+1 matching
replies. In fact, a typical definition of liveness in static BFT
already requires that a client will eventually receive replies to
its request so the agreement property is not “needed”.

The classic definitions do not immediately work for dy-
namic groups. First, not knowing the membership of the
system or the total number of replicas in some configuration,
the client may never be certain when to deliver the replies to
the requests. Second, even if the client knows the membership
information, the membership may have changed by the time
a message is processed. These two factors motivate the need
of defining additional properties.
Attempt-1. A “natural” enhancement to liveness that could
circumvent the membership issue may be defined as follows:
• If a correct client submits a request m, then the client

eventually delivers a response from replicas.
Unfortunately, the definition does not capture any meaning-

ful correctness guarantees in the dynamic BFT setting. One
may easily design a trivial protocol satisfying the above defi-
nition, where a correct client receives an irrelevant response.
Attempt-2. Another choice is to define the following property:
• Membership discovery: A correct client having submitted
m can eventually learn about the membership of the
configurations for which m is delivered.

The membership discovery property requires the client
eventually knows the membership information (the identities
of replicas) for the configuration where its message is deliv-
ered. It does not say if a client can or need to learn the latest
(current) membership, which is challenging in asynchronous
environments (even if we assume a partially synchronous
model for liveness). Indeed, even if a client obtains the
latest membership information, the membership may have
been changed when the client submits the request or when
the request is being processed. The membership discovery
property appears general to encompass many scenarios we
could envision, whether the client obtains the membership

information via a standalone subprotocol (either before or
after its requests are processed), or obtains the membership
information during the protocol runtime.

Intuitively, the membership discovery property, together
with agreement, liveness, and total order, would imply that
a client knows when it receives enough matching replies from
the same configuration and can safely deliver a response based
on majority voting. More precisely, with a client request m,
agreement and liveness guarantee that all correct replicas in
some configuration will eventually deliver a client message m;
total order guarantees that m has to be delivered within the
same configuration, say, c; knowing the precise membership
of the configuration c that delivers m and the total number of
members in the configuration c, a client can safely deliver a
response through the conventional majority voting approach,
computing a response after receiving fc + 1 matching replies
in the configuration c.

Unfortunately, the above argument has a major flaw. Even
if the client learns the information of the configuration c for
which the request m is delivered and even if we assume
perfect channels, the reply messages sent by correct replicas
in configuration c may not be able to reach the client. This is
because the perfect channel guarantees message delivery only
when the sender is—all the time—correct, but the sender may
leave the system in some future configurations; indeed, due
to network asynchrony, a reply message from some replica pi
may not reach the client before pi leaves the system.

We comment that while we do not adopt the definition of
membership discovery, our constructions are indeed motivated
by the idea.
Final attempt. Finally, we define the following property:

• Consistent delivery: A correct client submitting m will
deliver a correct response which is consistent with the state
in some configuration where m is delivered.

The property is slightly unconventional, encompassing both
liveness and safety. One can, however, easily divide the prop-
erty into a liveness one (a correct client eventually receives a
reply to its request) and a safety one (the delivered request by a
correct client is consistent with the state of some configuration
where the request is delivered).

To formally define consistent delivery, we use the state
machine replication notation [29, 48]. A deterministic state
machine consists of the following tuple of values: a set
of states, a set of requests, a set of replies, a transition function
that takes as input a request and a state and outputs an updated
state, and an output function that takes as input a request and
a state and outputs a reply. Requests are submitted by clients
and replies are sent to clients. The states encode the system
state (including configurations and various variables kept).

We say a reply re is consistent with a state st for a correct
state machine, if the reply re was generated by the output
function for some request and the state st. As we consider
deterministic state machines, and as total order is achieved
by all correct replicas, the same request and the same state
determines the same reply for correct replicas.

51321

if clause main clause assumption constructions

V correct in c gc-correct standard quorum Dyno-S
Dyno

V1 correct in c c-correct G-correct Dyno
standard quorum Dyno-A

V2 correct in c correct in c
G-correct Dyno-C

standard quorum Dyno-AC
V ′ c-correct gc-correct same as V
V ′
1 c-correct c-correct same as V1

V ′
2 c-correct correct in c same as V2

TABLE I: Overview of agreement definitions and construc-
tions. The definition variants can also be applied to other
dynamic BFT properties, but they do not (seem to) lead to
interesting efficiency trade-offs.

Note that correct replicas may generate a reply (and a
corresponding state) in some configuration, but as some replies
may never reach the client in this configuration, the client will
not deliver the replies in this configuration. (Recall that correct
replicas may have left the system before the reply can reach
the client.) We, however, do want to ensure that the client will
eventually deliver a reply that is consistent with the state that
the system maintains.

Also note in a conventional, static state machine replication
setting, a reply is always delivered in the same configuration,
as there are enough correct replicas. In this setting, one does
not have to define this additional “consistent delivery.”

F. Variants of Definitions

There are a number of variants for the definitions
in Sec. III-E. For instance, for agreement, both if-clauses and
main-clauses discuss “correct replicas in c.” We summarize
in Table I these variants, with definitions described above
in detail being V2, the strongest one we can envision. We
illustrate their differences using the agreement property1, and
different agreement properties lead to different constructions
with interesting efficiency trade-offs.

One can similarly describe definitions alike for other proper-
ties. The definition variants for these properties do not (seem
to) lead to more efficient constructions. So this paper only
provide constructions with different agreement definitions.

Fig. 1: Illustration for variants of definitions.

We use Fig. 1 to explain the agreement definitions. In the
example, there are three configurations and seven replicas.
Replicas p1 to p5 are correct and g1-correct. Replica p6 is 1-
correct but 2-faulty as it leaves the system after configuration
2. Replica p7 is correct in 1 but 1-faulty as it leaves the system

1Strictly speaking, we could have three more variants by asking the replicas
in the if clauses to be “gc correct.” These definitions are weaker and do not
seem to lead to interesting (more efficient) constructions.

after configuration 1. For agreement definition V , if the correct
replica p1 in configuration 1 delivers a message m2, any other
g1-correct replicas, including p2 to p5, will eventually deliver
m2. Replicas p6 and p7, however, may or may not deliver m2.
For agreement definition V1, if a 1-correct replica p1 delivers
m1, any other 1-correct replicas, including p2 to p6, have to
deliver m1. For V2, an example is m3. In particular, if a correct
replica in configuration 1 p1 delivers m3, any other correct
replicas in configuration 1, including p2 to p7, will deliver
m3. The properties for V ′, V ′

1 , and V ′
2 are similar, except that

the if clause requires c-correct replicas.
Which of the six versions should one choose? The if-clauses

in each version represents the conditions of the properties: if
weaker conditions are used, we will have stronger properties.
Note that V (resp. V ′) is weaker than V1 (resp. V ′

1) and V2

(resp. V ′
2), as gc-correct replicas are also c-correct replicas

and correct replicas. Furthermore, V1 (resp. V ′
1) is weaker

than V2 (resp. V ′
2) as the set of correct replicas in some

configuration c includes the set of c-correct replicas. One
could compare our setting with that of uniform vs. non-
uniform broadcast primitives for crash failures, where uniform
broadcast primitives are stronger ones.

G. Comparison with Previous Specifications

Our syntax follows that of Schiper to separate dynamic BFT
from its membership service [46]. As argued by Schiper, the
treatment is more natural and simpler than those of Chockler et
al. [46]. Our specification for security (correctness) properties,
however, is significantly different from that of Schiper [46].
First, our specification deals with Byzantine failures, while that
of Schiper is designed for the uniform broadcast primitives in
the crash failure model.

Second, while we define properties for regular requests
and membership requests all together, Schiper defined all
the properties for regular requests and membership requests
separately. In particular, Schiper’s work describes first total
order for regular requests and then total order for membership
requests, both in the conventional sense of request total
ordering. The total order specification of Schiper alone may
cause the following “anomaly,” as shown in Fig. 2: the correct
replica p1 may deliver a membership request before a regular
request, while the correct replica p2 delivers the regular request
before the membership request. This does not violate the two
separate total order properties defined in Schiper’s work, but
does violate the total order guarantee we define.

Fig. 2: An example that does not violate the total order
property in Schiper’s scheme but violates our definition.

That is, the two total order properties defined in Schiper’s
work, even when combined, is strictly weaker than ours. With
the “same configuration delivery” properties defined addition-
ally in Schiper’s work for both regular requests and mem-

61322

bership requests, however, one can check that the “anomaly”
would not occur. In fact, the two total order properties and
the two same configuration delivery properties defined in
Schiper’s work, all together, are equivalent to our enhanced
total order property (which encompasses the same configu-
ration delivery property). Therefore, while there is no one-
to-one correspondence between our properties and those of
Schiper, our specification and the specification of Schiper
(with appropriate modifications for Byzantine failures) can be
as a whole equivalent. Our definitions, however, appear cleaner
and simpler.

Last, Schiper’s work does not define the needed property
(consistent delivery) that is crucial to the security of dynamic
BFT.

IV. CHALLENGES OF DYNAMIC BFT

When building a dynamic BFT, one may simply treat mem-
bership requests as regular requests. The intuitive approach,
however, leads to various issues, making dynamic BFT fail
to achieve liveness. We illustrate below some challenges for
leader-based BFT protocols with view changes in partially
synchronous environments.
Liveness problems in normal-case operations. The agree-
ment property, regardless of the partially synchronous or
asynchronous assumption, requires that if a correct sender
stays online for a sufficiently long time, a correct receiver will
receive the messages from the sender. This, however, is not
the case for dynamic BFT. In particular, consider a cq-correct
replica pi that leaves the system immediately after cr where
cr > cq . Replica pi has delivered m in cq and remove(pi) in
cr. Consider another correct or cq-correct replica pj which is
still in cq . The replica needs to collect Qcq matching messages
to deliver m. Some cq-correct replicas (or even all cq-correct
replicas besides pj), however, might not be correct any more as
they already move to cr, e.g., pi has already left the system.
Therefore, correct replicas might not be able to deliver m,
creating agreement and liveness problems.
Liveness problems for view changes. We summarize various
liveness problems associated with view changes.

1) The correct leader in the new view may not be able to
obtain enough view change messages to start a new view.

2) The designated leader in the new configuration may not
be aware of the view change. This is because replicas
stay in different configurations and they fail to send all
replicas view change messages in the latest configuration.

3) Multiple replicas may claim that they are the new leader
after the view change.

Fig. 3: The liveness challenge for view changes.

We show an example in Fig. 3. Replicas move from config-
uration c = 1 to c = 3, where in all three configurations, p5 is
the leader. In configuration c = 1, there are five replicas and p3
is removed. Replicas p2, p4, p5 install configuration 2 while p1
still stays in c = 1. In configuration 2, quorum size is 3 so p2,
p4, and p5 are able to reach an agreement. In c = 2, p6 requests
to join the system. After the delivery of the request, replicas
p4, p5, and p6 install c = 3 while p2 still stays in c = 2. If
view change occurs at this stage, replica p6 is the designated
leader in the new view. Since quorum size is 4 in c = 3, p6
has to collect 4 messages to start a new view. However, p1
and p2 are not even aware of p6. Furthermore, replica p1 may
believe it is the new leader. Therefore, all correct replicas will
halt forever since replicas do not process any messages during
view changes and replicas may never resume to normal-case
operation. In a static system, the problem could be fixed by
having replicas synchronize with other replicas. In a dynamic
system, however, replicas may not even know the identities of
replicas currently in the system.

V. OVERVIEW OF OUR PROTOCOLS

We provide secure constructions satisfying various dynamic
BFT definitions in Table I based on two assumptions in
partially synchronous environments.

A. Dyno-S: An Intuitive but Inefficient Construction

Dyno-S formalizes the intuition that each time a member-
ship request is processed, a view change needs to be triggered
to prevent replicas from missing newer configurations. How-
ever, constructing such a protocol—with provable security—
using the idea is not trivial. The approach needs to solve the
challenges in Sec. IV and needs to achieve consistent delivery.
Due to space restrictions, we will present the construction in
our full paper. The major drawback of the construction is that
every view change results in a window of zero throughput, as
replicas do not process any requests during view chagnes.

B. Dyno, Dyno-C, and Dyno-AC

Dyno is our main protocol that retains its efficiency during
membership changes. It is secure in the sense of definition
V under the standard quorum assumption and is also secure
in the sense of V1 under the stronger G-correct assumption.
Jumping ahead, we also provide dynamic BFT constructions
with stronger properties (summarized in Table I). Dyno-A is
built on top of Dyno and additionally has a terse addendum
(A) protocol running. Dyno-C differs Dyno in a minor manner,
using a slightly constraint (C). Dyno-AC, as its name suggests,
incorporates the addendum protocol (A) and the modified
constraint (C). We will describe what the addendum protocol
and the constraint mean in Sec. VII.

Below, we describe Dyno at a high level. We define two
events when describing our membership approach: init() and
deliver(). The init() event is triggered where the primary in
the current view starts a new round of the protocol. The
deliver() event denotes the event that a request is committed
and ready to be delivered during normal-case operation. Our

71323

membership protocol has the following key components to
ensure correctness without performance interruption.

We manage configuration as part of the system state, similar
to prior works (e.g., Paxos, Schiper’s work, and BFT-SMaRt).
The membership request is treated in the same way as regular
requests. Replicas reach agreement on a batch of requests
in each round. If the batch consists of both regular requests
and membership requests, the regular requests are delivered
first according to a deterministic order (same as those in BFT
with static membership). After that, membership requests are
delivered. All replicas then install the new configuration.
Temporary membership management. When a join mem-
bership request is delivered, the configuration might be differ-
ent from that when the request is submitted. To simplify the
notification process, we introduce the concept of temporary
membership. Specifically, each new replica acts as a learner.
Existing replicas send the normal-case operation messages to
both replicas in the current configuration and all the temporary
members. The quorum size, however, still remains the same
as the current configuration. Upon the deliver() event, the
membership is updated and becomes the same as temporary
membership. Doing so allows us to have a more efficient state
transfer mechanism.
Configuration discovery protocols and consistent delivery.
We devise configuration discovery protocols in order for new
replicas and clients to learn the membership of the current
system. We provide protocols achieving the goal implicitly
and explicitly. The protocols are also vital to achieve consistent
delivery, as the client needs configuration discovery to verify
replies from the replicas currently in the system.

There are two more techniques we need to achieve consis-
tent delivery. First, we enforce agreement across configurations
to ensure all correct replicas, not just a fraction of correct
replicas, up to date. Second, replicas maintain a total order
of execution history and configuration history (a subset of
execution history). The execution history contains proof of
delivery (in the form of signatures, proving that a quorum of
replicas have agreed to deliver the request) for each request
to ensure total order and agreement. The configuration history
includes the proof of delivery for membership requests only.
The configuration history is used to verify if the correct replica
has installed certain configurations. The configuration history
allows a client to determine if it has received enough matching
replica replies to safely deliver them in some configuration.
Note it is possible the client cannot deliver the replies in the
configuration where the request is issued, but the client will
deliver them in some future configuration.
Carefully designed view changes. To ensure that the des-
ignated leader in a new view receives a quorum of view
change messages, we introduce additional workflow during
view changes. Specifically, each replica includes its configu-
ration number in a view change message together with a valid
proof of delivery for the membership requests.

For any replica pi in configuration c, it compares c to c′,
where c′ is the configuration number carried in a view change
message sent by pj . If c′ is smaller, pi forwards the view

change message to all replicas in Mc/Mc′ . Note that Mc/Mc′

is sufficient as the replica pj (if correct) must have already sent
the message to Mc′ . On the other hand, if c is smaller, there are
two cases: pi has previously sent a view change message; pi
has not previously sent a view change message. In the former
case, pi re-sends its view change message to Mc′/Mc. In the
latter case, pi will send its view change message (if applicable)
directly to all replicas in Mc′ . This ensures that replicas in the
new view is able to collect a sufficiently large number of view
change messages to enter the new view.

VI. THE DYNO PROTOCOL

We now present Dyno, focusing on how membership re-
quests and regular requests are processed and the workflow of
view changes. Throughout the paper, we assume each message
m is unique. In this section, we use the normal-case operation
as an oracle, denoted by the init() and deliver() events, as
discussed in Sec. V. In particular, we use Bracha’s reliable
broadcast [8] as the normal-case operation and we discuss the
details of how the init() and deliver() events are triggered in
Appendix A. We use Bracha’s broadcast since it is a primitive
that achieves agreement, which we find crucial for dynamic
BFT. For each request, we use proof of delivery to denote the
proof that the request can be safely delivered. In our case, this
refers to 2f + 1 matching messages in the second phase of
Bracha’s broadcast (or prepare certificate in the PBFT term)
or f + 1 matching messages in the third phase (or f + 1
⟨COMMIT⟩ messages in the PBFT term).

When we describe the protocol, we consider a configuration
discovery protocol triggered via the ObtainConfig() func-
tion. Replicas and clients can query the function to obtain the
current configuration. The detail of configuration discovery is
discussed in Sec. VI-B. In this section, we ignore the details
of the garbage collection as conventional checkpoint protocols
can be used in our system.

A. The Protocol

Clients submitting regular requests. A client is able to
obtain a configuration c and the set of replicas Mc via the
ObtainConfig() function. To submit a request, a client first
broadcasts a message ⟨SUBMIT, c, ⟨REQUEST, cid, o⟩⟩ to all
replicas in configuration c. The request ⟨REQUEST, cid, o⟩ is
a regular request with a valid signature, where cid is the id
of the client and o is the operation. There are two cases for
the replies the client might get. 1) If the client gets a reply
from fc + 1 replicas in Mc, it completes the request. 2) The
client may get a reply from a replica in c′ where c′ > c.
In this case, the client verifies the configuration history chist
(described in great detail later) and checks whether c′ is a valid
configuration. If c′ is valid, the request is completed. If none of
the cases apply and the client times out, the client performs
configuration discovery again and submits the request, until
the request is completed.
Normal-case operation and membership requests. The
pseudocode for normal-case operation at replica pi is shown
in Fig. 5. When a replica in c receives a request from a client

81324

Initialization
c {current configuration}

func submit()
� to join {new replica}

c,Mc ← ObtainConfig()
broadcast ⟨SUBMIT, c, ⟨JOIN, pk⟩⟩ to Mc

start timer ∆
upon receiving ⟨CONF, c′,Mc′ , chist

′⟩ {configuration notification}
if chist′ is valid and c′ > c

c← c′, Mc ←Mc′

upon receiving 2fc + 1 ⟨HISTORY, s, h, C,P⟩
for m in h, deliver(m)

upon deliver(batch) where ⟨ADD, i,m⟩ ∈ batch
wait until state transfer is completed
stop ∆, complete the request

� to leave {existing replica}
broadcast ⟨SUBMIT, c, ⟨LEAVE, i⟩⟩ to Mc

start timer ∆
upon deliver(batch) where ⟨REMOVE, i,m⟩ ∈ batch

stop ∆, complete the request
� to submit a regular request {client}

c,Mc ← ObtainConfig()
broadcast ⟨SUBMIT, c, ⟨REQUEST, cid, o⟩⟩ to Mc

start timer ∆
upon fc + 1 matching ⟨REPLY, c, re⟩ from Mc

stop ∆, complete the requst
upon fc′ + 1 matching ⟨REPLY, c′, re, chist′⟩ from pj ∈Mc′

stop ∆, complete the request
upon timeout(∆)

repeat submit()

Fig. 4: Pseudocode for a client/a replica pi that issues requests.

that has c′ in the ⟨SUBMIT⟩ message, there are two conditions.
1) If the request has already been delivered, pi directly replies
with ⟨REPLY, c′, re, chist⟩, where re is the execution result and
chist is the configuration history. 2) Otherwise, the request is
added to the pending queue. Meanwhile, if c = c′, the replica
forwards the request to the leader in the current configuration.
If c > c′, the client is still in a prior configuration, pi forwards
the request to Mc/Mc′ .

For a replica to join the system, the replica broadcasts a
⟨SUBMIT, c, ⟨JOIN, pk⟩⟩ request, where pk is the public key.
To remove a replica from the system, the replica or the
administrator broadcasts a ⟨SUBMIT, c, ⟨LEAVE, i⟩⟩ message.

When the current leader of the system has a non-empty
queue, the leader obtains a batch of request(s) from the
pending queue. If there is a ⟨JOIN, pk⟩ request, the leader
adds a ⟨ADD, j,m⟩ message to the batch, where m is a valid
⟨JOIN⟩ request and j is the identifier assigned to the replica. If
there is a ⟨LEAVE, j⟩ request, the leader adds a ⟨REMOVE, j,m⟩
message to the batch, where m is a valid ⟨LEAVE⟩ request.
Then the leader triggers the init() event. If a non-primary
replica triggers the init(batch) event for a batch, for each
⟨ADD, j,m⟩ in the batch, the replica adds pj to TM and
continues the normal-case operation where it also sends the
messages to pj . The value of f and quorum size, however,
are still determined by the group members M . In other words,
fc = ⌊ |M |−1

3 ⌋ and the quorum size is ⌈ |M |+fc+1
2 ⌉.

For any replica pj that requests to join the system, if a
replica pi maintains a higher configuration number, it executes
the sync() function and sends the configuration history to pj .
This is used for pj to directly obtain the latest configuration
of the system.

Initialization
c,M, TM {configuration, membership, temporary membership}
chist {confiugration history}

� events
upon receiving m = ⟨SUBMIT, c′, ⟨REQUEST, cid, o⟩⟩

if m has been delivered
send ⟨REPLY, c, re, chist⟩ to client cid

else
if c = c′, forward m to leader
else if c > c′, forward m to Mc/Mc′

add m to queue
as a leader

upon non-empty queue
batch← regular requsts in queue
for each m = ⟨SUBMIT, c′, ⟨JOIN, pk⟩⟩ in the queue

j ← AssignID()
batch← batch ∪ ⟨ADD, j,m⟩

for each m = ⟨SUBMIT, c′, ⟨LEAVE, j⟩⟩ in the queue
batch← batch ∪ ⟨REMOVE, j,m⟩

init(batch)
as a replica

upon init(batch)
if ⟨ADD, j,m⟩ ∈ batch

TM ← TM ∪ {pj}
sync(m)

� utility functions
func sync(⟨ADD, j,m⟩) where m = ⟨SUBMIT, c′, ⟨JOIN, pk⟩⟩

if c > c′

send ⟨CONF, c,Mc, chist⟩ to pj
func deliver(batch)

for m = ⟨SUBMIT, c′, ⟨REQUEST, cid, o⟩⟩ in batch
reply(m)

if there are membership requests
c← c+ 1
for ⟨ADD, j,m⟩ in batch

M ←M ∪ pj
for ⟨REMOVE, j,m⟩ in batch

M ←M − pj
send ⟨HISTORY, s, h, C,P⟩ to Mc/Mc−1

chist← chist ∪ batch
func reply(⟨SUBMIT, c′, ⟨REQUEST, cid, o⟩⟩)

if c > c′, send ⟨REPLY, c, re, chist⟩ to cid
else, send ⟨REPLY, c, re⟩ to cid

Fig. 5: Normal-case operation at replica pi.

Initialization
v, c {view, configuration}

as a replica
func view-change()

v ← v + 1
broadcast m′ = ⟨VIEW-CHANGE, v, c, C,P,PP, i⟩

upon receivingm = ⟨VIEW-CHANGE, v, c′, C,P,PP, j⟩
if c′ < c

send m to Mc/Mc′

if c′ > c and V erify(PP,P)
Mc ←Mc′

send ⟨VIEW-CHANGE, v, c, C,P,PP, i⟩ to Mc′/Mc

as the new leader
upon receiving Qc ⟨VIEW-CHANGE, v, c′, C,P, j⟩

broadcast ⟨NEW-VIEW, v, c,V,O⟩

Fig. 6: View change protocol at replica pi.

Upon the deliver() event, replica pi first delivers regular
requests and then the membership requests. If membership re-
quests are included in the batch, pi installs a new configuration
and increases c by 1. For each ⟨ADD, j,m⟩ message, pi adds pj
to M , and starts state transfer to pj . For each ⟨REMOVE, j,m⟩
message, pi removes pj from M . If pj delivers the REMOVE

request, it leaves the system.

91325

Any replica pi that requests to join the system acts as
a learner that passively learns the results from the normal-
case operation, i.e., it is added to the temporary members
by replicas in the system. Learners process the normal-case
messages following the same rules as existing replicas.After
pi delivers the join request, it waits until it completes state
transfer by accepting 2fc + 1 ⟨HISTORY, s, h, C,P⟩ messages.
After that, pi participates in the normal-case operation. The
state transfer for a new replica to catch up with the execution
history and the maintain proof of delivery for historic requests.
View change. We now sketch the major workflow for view
changes, the pseudocode of which is shown in Fig. 6.To start
view change, each replica pi increments its view number and
broadcasts a ⟨VIEW-CHANGE, v, c, s, C,PP, i⟩, where v is the
view number, c is the configuration number, C is a stable
checkpoint, P is a set of proofs of delivery for requests since
last stable checkpoint, PP is a set of membership requests.

Upon receiving a VIEW-CHANGE message from replica pj ,
a replica compares c′ carried in the message with its local
configuration number c. If c′ < c, it means that the replica
pj has not installed newer configuration(s) so some replicas
in Mc cannot receive the message. In this case, pi forwards
the VIEW-CHANGE message to Mc. If c′ > c, it means that
replica pi has not installed newer configurations. In this case,
pi broadcasts a VIEW-CHANGE message to Mc′ . Mc′ can be
obtained from PP and the proof of delivery can be obtained
from P .

Consider that c is the configuration installed by at least
one correct replica and no correct replica has installed a
configuration greater than c, the new leader can be identified
by Mc[v mod |Mc|]. When the designated leader in the new
view collects 2fc + 1 valid VIEW-CHANGE messages, it enters
the new view by broadcasting a ⟨NEW-VIEW, v, c,V,O⟩, where
V is a set of VIEW-CHANGE messages and O is a set of normal-
case operation messages. Replicas then resume normal-case
operation and process messages in O accordingly.

B. Configuration Discovery

Configuration discovery ensures that new replicas and
clients learn the membership of existing system. The approach
we present in Dyno requires clients and new replicas to
discover newer configurations (if any). In this section, we
first define configuration history. Then we present the self-
discovery approach we use in our protocol by defining the
interface used by the normal-case operation. We describe two
alternative constructions in Appendix B. The proofs for all the
configuration discovery protocols are shown in Appendix C-A.
Configuration history. We define configuration history as a
set of sequentially ordered membership requests according to
the configuration number. The configuration history is a subset
of the entire execution history. A configuration history only
includes batches of requests where each batch consists of at
least one membership request. The corresponding c number in
each message is sequentially ordered. We additional require
every replica to maintain the corresponding proof of delivery
for each membership request, i.e., a message signed by Qc

replicas in Mc. A single configuration history can be verified
by any correct replica to prove the existence of a configuration.

Initialization
c,Mc, chist {current configuration, membership, configuration history}

as a client/new replica
func ObtainConfig()

broadcast ⟨DISCOVER, c⟩ to Π
start a timer ∆
upon ⟨CONF, c′,M ′

c, chist
′⟩

if chist′ is valid and c′ > c
chist← chist′, c← c′, Mc ←M ′

c
upon timeout(∆)

return c,Mc

as a replica
upon ⟨DISCOVER, c′⟩

reply with ⟨CONF, c,Mc, chist⟩

Fig. 7: Configuration discovery: self-discovery.

Self-discovery. By default, we use a self-discovery approach
shown in Fig. 7. To obtain the configuration of the system, a
replica (or a client) pi first sends a ⟨DISCOVER, c⟩ request to
the universe, where c is the latest configuration pi is aware
of. A timer is also started. Upon receiving a ⟨DISCOVER, c′⟩
request, a replica replies with a ⟨CONF, c,Mc, chist⟩, where c
is its current configuration, Mc is the members of configuration
c, chist is the configuration history. Upon receiving a CONF

message with a valid chist, pi updates its local configuration
number, Mc, and chist. Upon time out of ∆, configuration
discovery completes and the current c and Mc are returned.

Theorem VI.1. Under the standard quorum assumption, Dyno
achieves agreement V , total order, liveness, and consistent
delivery.

The correctness of Dyno is shown in Appendix C-B.

VII. DYNO WITH STRONGER AGREEMENT PROPERTIES

We study Dyno variants with stronger properties, i.e, V1, V2,
V ′, V ′

1 , and V ′
2 . In this section, we present two approaches for

Dyno to achieve the V1 agreement property. We first show that
Dyno itself can achieve V1 by making a stronger assumption.
We then show Dyno-A, a construction based on Dyno, which
achieves V1 under the standard quorum assumption. Then we
present Dyno-AC, which adds a simple constraint on top of
Dyno-A to achieve V2. We further show that the constructions
of the protocol remain the same for Dyno with V , V1, and V2 to
achieve V ′, V ′

1 , and V ′
2 , separately. The proofs of all protocols

discussed in this section are shown in Appendix C-C.
Dyno with V1 under G-correct assumption. We do not
change the construction of the protocol to achieve the correct-
ness but assume the G-correct assumption in Sec. III. Since
we do not modify the protocol, the total order and liveness
follow that of Dyno. The agreement property, however, can
be greatly simplified.

Theorem VII.1. Under the G-correct assumption, Dyno
achieves agreement V1, total order, liveness, and consistent
delivery.

Dyno-A with V1. The assumption that there always exist at
least f + 1 g-correct replicas is not practical as it requires

101326

one to know max(f0, f1 · · ·), i.e., the maximum number of
faulty replicas in the entire life of the system. Instead, we show
another construction that achieves the V1 agreement property
without having to change the assumption of the system. In
particular, we provide an addendum protocol on top of Dyno
to achieve V1.

upon timeout
c′,Mc′ ← ObtainConfig() {obtain a new configuration if any}
if c′ = c, view-change() {defined inFig. 6 }
else

broadcast ⟨UPDATE, s, c, i⟩ to Mc

upon fc′ + 1 matching ⟨RESULT, hist⟩
deliver requests in hist

upon ⟨UPDATE, s, c′, j⟩
if pj ∈Mc′ and c > c′

send ⟨RESULT, hist⟩ to pj {execution history greater than s}

Fig. 8: Dyno-A.

As shown in Fig. 8, we introduce additional procedures
for each replica that falls behind to catch up with replicas
in newer configuration. In particular, during the normal-case
operation, each replica pi still sets up a timer for the first
request in its queue. If the request is not delivered before the
timer expires, instead of directly triggering view changes, the
replica first runs the configuration discovery protocol, obtains
a new configuration number c′, and the list of replicas Mc′ .
If c′ = c, the replica starts the view change according to the
procedures in Dyno. Otherwise, if c′ is greater than c, the
replica broadcasts an ⟨UPDATE, s, c, i⟩ message to all replicas
in configuration c′, where s is the sequence number of the
last delivered request and c is its current configuration. When
a replica pi in c′ receives an ⟨UPDATE, s, c′, j⟩ message, it
first verifies whether pj is a valid replica in configuration c′.
If the local execution history of pi is longer (i.e., the sequence
number of its last committed request is greater than s), pi sends
the execution history to pj . Upon receiving fc′ + 1 matching
hist, replica delivers the requests in hist. If a ⟨REMOVE, i⟩
request has been delivered, pi directly leaves the system.
Otherwise, pi continues to participate in the protocol.

Theorem VII.2. Under the standard quorum assumption,
Dyno-A achieves agreement V1, total order, liveness, and
consistent delivery.

The motivation of the addendum protocol is for a c-correct
replica to obtain the execution history, even if the replica falls
behind. In the case where a replica times out, it executes the
configuration discovery protocol before it starts view change.
If the replica falls behind, it obtains the execution history from
other replicas. This ensures that any c-correct replica obtains
the execution history and delivers the requests before it leaves
the system (if applicable).
Dyno with V2. Based on Dyno with G-correct assumption or
Dyno-A, we could further add more constraints to replicas so
that the protocol achieves V2, creating Dyno-C and Dyno-AC,
separately. In particular, V2 further requires that any correct
replica in configuration c also delivers a message if a correct
replica in c delivers the messages.

The additional constraint is quite simple: any correct replica
pi leaves the system (if a leave request has been submitted)
only after it delivers a ⟨REMOVE, i⟩ request. 2

The constraint ensures that any correct replica in c delivers
all the messages, even if it is removed immediately after c.
Therefore, we require a replica to discover newer configura-
tion(s) and obtain the execution history if it falls behind. This
ensures that each correct replica delivers all the requests it
should deliver according to the requirements of V2.

Theorem VII.3. Under the G-correct assumption, Dyno-C
achieves agreement V2, total order, liveness, and consistent
delivery. Under the standard quorum assumption, Dyno-AC
achieves agreement V2, total order, liveness, and consistent
delivery.

Dyno with V′, V′
1, V′

2. There is no need to change the
specification of the protocols to achieve V ′, V ′

1 , and V ′
2 .

Namely, Dyno achieves V ′, Dyno-A (or Dyno under the G-
correct assumption) achieves V ′

1 , and Dyno-C and Dyno-AC
achieve V ′

2 .

VIII. IMPLEMENTATION AND EVALUATION

Overview. We implement Dyno variants in Go using around
10,000 LOC. We implement an optimization for Dyno where a
replica that joins the system starts to participate in the normal-
case operation after the membership request is delivered. The
state transfer is executed in parallel. All the requests after the
delivery of the membership request, however, are executed
after the state transfer is completed.

Our results show that Dyno-C and Dyno-AC achieve sim-
ilar performance with Dyno, mainly because the additional
constraints and addendum protocol mostly affect the behavior
of replicas joining or leaving the system. Therefore, in this
section, we focus on the performance of Dyno and Dyno-
S. We compare Dyno with BFT-SMaRt [50], an open-source
implementation of a variant of PBFT protocol written in
Java. BFT-SMaRt supports reconfiguration where membership
requests are issued by a separate view manager.

We deploy the protocols in a cluster using up to 30
servers. Each server has 16-core 2.3GHz CPU. We use f to
represent the network size, where we use 3f + 1 replicas in
each experiment. Unlike previous protocols that mostly focus
on benchmarks with small transactions, in our experiments,
we set all transactions and reply messages to 100 bytes,
as transactions in BFT applications (e.g., blockchains) are
usually at least 100 bytes. Besides the number of replicas,
we also vary the frequencies for garbage collection (i.e.,
checkpoint), denoted as cp, and the number of clients that
submit transactions concurrently to the system. By default,
replicas execute the checkpoint protocol upon delivering every
100 batches of requests.

2It is worth mentioning that the pseudocode for Dyno already enforces such
a constraint. In fact, such a constraint is not necessary in Dyno. According to
the proof, a replica can leave after it is certain that the ⟨REMOVE, i⟩ request
will be delivered, e.g., after it receives a prepare certificate.

111327

0 1 2 3

b=50000
b=10000
b=5000

Latency breakdown (s)

Agreemment View-Change

(a) Latency breakdown of a join request (excluding
state transfer) for Dyno-S.

0 20 40 60 80

b=50000
b=10000
b=5000

Latency breakdown (s)

Agreemment State-Transfer Transition

(b) Latency breakdown of a join request for Dyno
(latency of agreement in all cases are lower than
100ms and not visible in the figure).

0 20

cp=500
cp=200
cp=100

Latency breakdown (s)

Agreemment State-Transfer Transition

(c) Latency of a join request for Dyno and Dyno-
S (latency of agreement in all cases are lower
than 100ms and not visible in the figure).

b = 5000 b = 10000 b = 50000
0

1

2

3

4

0.05 0.06 0.1

1.96

2.31

3.44

L
at

en
cy

(S
ec

)

Dyno Dyno-S

(d) Latency of membership requests
(agreement only) for Dyno under differ-
ent checkpoint frequency.

0 200 400 600 800 1,000 1,200
0

20

40

60

80

100

Number of clients

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

f = 1 f = 1 (BFT-SMaRt)
f = 2 f = 5

(e) Throughput of Dyno and BFT-
SMaRt.

f = 1 f = 2 f = 5
0

20

40

60

80

100

76.09

68.8

56.5

50.88
49.02

41.77

Pe
ak

th
ro

ug
hp

ut
(k

tx
/s

ec
)

Dyno BFT-SMaRt

(f) Peak throughput of Dyno and BFT-
SMaRt.

0 20 40 60 80 100
0

50

100

150

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

existing replica new replica

(g) Throughput of Dyno under a join
request.

0 50 100 150
0

50

100

150

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

existing replica 1st replica
2nd replica 3rd replica
4th replica

(h) Throughput of Dyno under mul-
tiple join requests.

0 50 100 150 200 250
0

20

40

60

80

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

g-correct 1st replica
2nd replica 3rd replica

(i) Throughput of BFT-SMaRt under
multiple join requests.

0 20 40 60 80 100 120 140
0

50

100

150

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

g-correct 1st replica
2nd replica 3rd replica
4th replica 5th replica
6th replica

(j) Throughput of Dyno under multiple
leave requests.

0 50 100 150
0

20

40

60

80

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

g-correct 1st replica
2nd replica 3rd replica

(k) Throughput of BFT-SMaRt under
multiple leave requests.

0 20 40 60 80 100 120 140
0

50

100

150

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

Dyno BFT-SMaRt

(l) Throughput of Dyno and BFT-
SMaRt under multiple join and leave
requests. System begins with 4 repli-
cas.

0 50 100 150 200
0

50

100

150

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

g-correct new replica
left replica

(m) Throughput of Dyno under mul-
tiple join and leave requests. System
begins with 10 replicas.

0 50 100 150 200
0

20

40

60

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

g-correct new replica
left replica

(n) Throughput of BFT-SMaRt under
multiple join and leave requests. Sys-
tem begins with 10 replicas.

0 50 100 150 200
0

50

100

150

Time (Sec)

T
hr

ou
gh

pu
t

(k
tx

/s
ec

)

g-correct 1st replica (J)
2nd replica (J) 3rd replica (J)
1st replica (L) 2nd replica (L)
3rd replica (L)

(o) Throughput of Dyno under fre-
quent join and leave requests. J is for
join and L is for leave.

Fig. 9: Performance of Dyno-S, Dyno, and BFT-SMaRt.

Latency. We evaluate the latency of membership requests
for Dyno and Dyno-S. We set f = 1 and let one client
submit regular requests continuously. We let a replica submit
a membership request (join or leave) after 5000, 10000, and
50000 requests are submitted, separately (denoted as b in the
figures). We show the latency for agreement only in Fig. 9d.
Dyno has 50ms to 100ms latency on average. The results are
similar to those of regular requests. In contrast, since Dyno-S
runs a view change protocol upon every membership change,
the latency is significantly higher. The latency breakdown for
Dyno-S is shown in Fig. 9a. It can be observed that view
change is the bottleneck, and the latency is higher if more
requests are processed before the view change.

Since each new replica performs a state transfer after joining
the system, we also assess the latency of state transfer for
each of the experiments. We show the results for Dyno in
Fig. 9b. We separate the latency for state transfer (network
communication) and the latency for transition (the replica
processes the historic client requests). As shown in the figure,
the latency becomes significantly higher as b increases. This
is expected since a large number of requests need to be
synchronized during the state transfer. In contrast, the latency
for agreement is almost negligible.

For the experiment with b = 10000, we also vary the
checkpoint frequency and assess the latency of a join request.
As shown in Fig. 9c, checkpoint frequencies do not have

121328

a direct impact on the latency. This is expected since each
replica synchronizes all the historic transactions so the network
bandwidth consumption is dominated by the state transfer.
Throughput and scalability. We evaluate the throughput of
Dyno for f = 1, f = 2, and f = 5. As shown in Fig. 9e,
when f = 1, the peak throughput of Dyno is 76 ktx/s, which is
among the highest for partially synchronous BFT known so far.
When f increases, the performance downgrades, as observed
for almost all BFT protocols. We report the peak throughput
of Dyno and BFT-SMaRt in Fig. 9f. Dyno achieves higher
peak throughput than BFT-SMaRt, partly due to the efficiency
of the underlying implementation.
Performance under membership requests. We assess the
performance for membership requests for Dyno. We let f = 1
and let 400 clients submit regular requests concurrently to the
system. We evaluate three different scenarios: 1) performance
under join requests; 2) performance under leave requests; 3)
performance under both join and leave requests.
Performance under join requests. We let one replica submit
a join request and assess the throughput of both a g-correct
replica (i.e., a replica that is correct since time 0) and the new
replica. As shown in Fig. 9g, the system does not suffer from
any performance degradation upon a join request.

For performance under multiple join requests, we begin with
4 replicas (f = 1). We then issue membership requests and
add replicas one after another on a regular basis, until the
system has 8 replicas. We show the throughput for a g-correct
replica and every new replica that joins the system. As shown
in Fig. 9h, the system suffers from performance degradation
upon receiving every join request and resumes back to normal
after a period of time. For instance, when the first replica
joins, the throughput downgrades from 50 ktx/s on average
to around 30 ktx/s, a 40% degradation. This is expected
since the new replica performs state transfer while processing
regular requests. After the state transfer completes, however,
the throughput goes back to 50-60 ktx/s. As every replica joins,
the overall system throughput degrades gradually. This is also
expected, since the system has more replicas. When the system
has 8 replicas, the overall throughput decreases from 50-60
ktx/s to 40-50 ktx/s.

We match most of the system configuration parameters
and evaluate the performance of BFT-SMaRt in the same
setting. The results are shown in Fig. 9i. Unlike Dyno, in
BFT-SMaRt, the throughput of replicas that join the system
is consistently lower than that of existing ones. Furthermore,
the overall throughput degradation as replicas join for Dyno
is consistently lower than that of BFT-SMaRt.
Performance under leave requests. We begin with 10 replicas
(f = 3) and then let 6 replicas leave one after one another. The
throughput of the system is shown in Fig. 9j. In contrast to
the prior case, the throughput is more stable, mostly because a
replica can directly leave the system upon the delivery of the
remove request. The performance for BFT-SMaRt is similar,
as shown in Fig. 9k, besides that the overall throughput of
BFT-SMaRt is about 30%-40% lower than that of Dyno.

Performance under multiple join and leave requests. We also
assess the performance under both join and leave requests. In
particular, we trigger 3-5 random join or leave requests under
30-sec intervals. We first begin with 4 replicas and evaluate the
performance for both Dyno and BFT-SMaRt. We present the
performance of a g-correct replica in Fig. 9l. The performance
is similar to that under only join or leave requests. BFT-SMaRt
may hit low (close to 0) throughput during some requests. In
contrast, the performance of Dyno is in general more stable.

We let the system have f = 3 (10 replicas) in the beginning
and conduct the same experiment again. We present the results
for Dyno in Fig. 9m and BFT-SMaRt in Fig. 9n. We present
the performance of a g-correct replica, a replica that joins the
system, and a replica that leaves the system. The results for
both protocols, despite the fact that the throughput is in general
lower, are similar to that when f = 1.

We also evaluate Dyno under frequent membership requests,
where we begin with 10 replicas and let replicas frequently
join and leave under random intervals. As shown in Fig. 9o,
with frequent membership requests, the throughput of the
system tends to be more turbulent, as replicas have to perform
frequent state transfer for newly joined replicas.

IX. CONCLUSION

We study dynamic BFT protocols, where replicas may join
and leave the system. We formally define the security defini-
tions for dynamic BFT and present different but meaningful
variants. We present Dyno, a highly efficient dynamic BFT
protocol. We show, with a up to 30-server deployment, that
Dyno is efficient, handling membership requests with low cost.

ACKNOWLEDGMENT

We thank Xiaoyun Wang, Xiao Sui, Baohan Huang, and the
anonymous reviewers for the help and comments for the paper.
Sisi is also with Shandong Institute of Blockchain. Sisi was
supported in part by Tsinghua Independent Research Program,
Shandong Key Research and Development Program under
grant No. 2020ZLYS09 and National Key Research and Devel-
opment Program of China under grant No. 2018YFA0704701.
Haibin was supported in part by Teli Young Scholar program.

REFERENCES

[1] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. Sync hotstuff:
Simple and practical synchronous state machine replication. In S&P,
2020.

[2] M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic
storage without consensus. Journal of the Acm, 58(2):96–99, 2009.

[3] E. Alchieri, A. Bessani, F. Greve, and J. Fraga. Efficient and modular
consensus-free reconfiguration for fault-tolerant storage. In OPODIS,
2017.

[4] Y. Amir, C. Nita-Rotaru, S. Stanton, and G. Tsudik. Secure spread:
An integrated architecture for secure group communication. TDSC,
2(3):248–261, 2005.

[5] Y. Amir and J. Stanton. The spread wide area group communication
system. Technical report, Citeseer, 1998.

[6] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia. On the
efficiency of durable state machine replication. In ATC, 2013.

[7] K. P. Birman and T. A. Joseph. Reliable communication in the presence
of failures. TOCS, 1987.

[8] G. Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In
PODC, pages 154–162. ACM, 1984.

131329

[9] M. Burrows. The chubby lock service for loosely-coupled distributed
systems. In OSDI, pages 335–350, 2006.

[10] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. TOCS, 20(4):398–461, 2002.

[11] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication
specifications: A comprehensive study. CSUR, 33(4):427–469, 2001.

[12] J. Cowling, D. R. K. Ports, B. Liskov, R. A. Popa, and A. Gaikwad. Cen-
sus: location-aware membership management for large-scale distributed
systems. In ATC, 2009.

[13] A. Das, I. Gupta, and A. Motivala. Swim: Scalable weakly-consistent
infection-style process group membership protocol. In DSN, 2002.

[14] S. Duan, K. Levitt, H. Meling, S. Peisert, and H. Zhang. ByzID:
Byzantine fault tolerance from intrusion detection. In SRDS, 2014.

[15] S. Duan, H. Meling, S. Peisert, and H. Zhang. BChain: Byzantine
replication with high throughput and embedded reconfiguration. In
OPODIS, pages 91–106, 2014.

[16] S. Duan, M. K. Reiter, and H. Zhang. Beat: Asynchronous bft made
practical. In CCS, pages 2028–2041. ACM, 2018.

[17] S. Duan and H. Zhang. Pace: Fully parallelizable bft from reproposable
byzantine agreement. IACR Cryptol. ePrint Arch., 2022.

[18] E. Gafni and D. Malkhi. Elastic configuration maintenance via a
parsimonious speculating snapshot solution. In DISC, 2015.

[19] S. Gilbert, N. A. Lynch, and A. A. Shvartsman. Rambo: a robust, re-
configurable atomic memory service for dynamic networks. Distributed
Computing, 23(4):225–272, 2010.

[20] R. Guerraoui, J. Komatovic, P. Kuznetsov, Y. A. Pignolet, D. Seredin-
schi, and A. Tonkikh. Dynamic Byzantine reliable broadcast. In
Q. Bramas, R. Oshman, and P. Romano, editors, OPODIS, 2020.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In ATC, 2010.

[22] L. Jehl and H. Meling. Asynchronous reconfiguration for paxos state
machines. ICDCN, 2014.

[23] L. Jehl, R. Vitenberg, and H. Meling. Smartmerge: A new approach to
reconfiguration for atomic storage. In DISC, 2015.

[24] H. D. Johansen, R. Van Renesse, Y. Vigfusson, and D. Johansen.
Fireflies: A secure and scalable membership and gossip service. TOCS,
33(2):1–32, 2015.

[25] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-smith. The SecureRing
protocols for securing group communication. In HlCSS, 1998.

[26] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford.
Enhancing bitcoin security and performance with strong consistency via
collective signing. In USENIX Security, pages 279–296, 2016.

[27] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford.
Omniledger: A secure, scale-out, decentralized ledger. S&P, 2018.

[28] P. Kuznetsov and A. Tonkikh. Asynchronous reconfiguration with
byzantine failures. DISC, 2020.

[29] L. Lamport. Using time instead of timeout for fault-tolerant distributed
systems. TOPLAS, 6(2):254–280, 1984.

[30] L. Lamport. The part-time parliament. TOCS, 16(2):133–169, 1998.
[31] L. Lamport, D. Malkhi, and L. Zhou. Vertical paxos and primary-backup

replication. In PODC, 2009.
[32] J. Leitao, J. Pereira, and L. Rodrigues. Hyparview: A membership

protocol for reliable gossip-based broadcast. In DSN, 2007.
[33] C. Liu, S. Duan, and H. Zhang. Epic: Efficient asynchronous bft with

adaptive security. In DSN, 2020.
[34] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and

J. Howell. The SMART way to migrate replicated stateful services. In
Y. Berbers and W. Zwaenepoel, editors, EuroSys, pages 103–115, 2006.

[35] J. MacCormick, N. Murphy, M. Najork, C. Thekkath, and L. Zhou.
Boxbood: Abstractions as the foundation for storage infrastructure. In
OSDI, 2004.

[36] J. P. Martin and L. Alvisi. A framework for dynamic byzantine storage.
In DSN, 2004.

[37] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended
virtual synchrony. In ICDCS, pages 56–65. IEEE, 1994.

[38] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In ATC, pages 305–319, 2014.

[39] M. K. Reiter. Secure agreement protocols: reliable and atomic group
multicast in rampart. In CCS, pages 68–80, 1994.

[40] M. K. Reiter. A secure group membership protocol. IEEE Transactions
on Software Engineering, 22(1):31–42, 1996.

[41] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and
data mining. ACM Transactions on Computer Systems, 2003.

[42] R. V. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure
detection service. In Middleware, 2009.

[43] R. V. Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. OSDI, 2004.

[44] R. Rodrigues and B. Liskov. Rosebud: A scalable Byzantine-fault-
tolerant storage architecture. 2003.

[45] R. Rodrigues, B. Liskov, K. Chen, M. Liskov, and D. Schultz. Automatic
reconfiguration for large-scale reliable storage systems. TDSC, 2012.

[46] A. Schiper. Dynamic group communication. Distributed Comput.,
18(5):359–374, 2006.

[47] A. Schiper and A. Sandoz. Uniform reliable multicast in a virtually
synchronous environment. 1993.

[48] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. CSUR, 22(4):299–319, 1990.

[49] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira. Dynamic reconfigu-
ration of primary/backup clusters. In ATC, 2011.

[50] J. Sousa, E. Alchieri, and A. Bessani. State machine replication for the
masses with bft-smart. In DSN, pages 355–362, 2014.

[51] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verı́ssimo.
Highly available intrusion-tolerant services with proactive-reactive re-
covery. IEEE Trans. Parallel Distributed Syst., 21(4):452–465, 2010.

[52] L. Suresh, D. Malkhi, P. Gopalan, I. P. Carreiro, and Z. Lokhandwala.
Stable and consistent membership at scale with rapid. In ATC, 2018.

[53] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s
wheels? byzantine fault tolerance with a spinning primary. In SRDS,
2009.

[54] X. Wang, S. Duan, J. Clavin, and H. Zhang. BFT in blockchains: From
protocols to use cases. ACM Computing Surveys (CSUR), 2021.

[55] M. Yin, D. Malkhi, M. Reiterand, G. G. Gueta, and I. Abraham. Hotstuff:
BFT consensus with linearity and responsiveness. In PODC, 2019.

[56] M. Zamani, M. Movahedi, and M. Raykova. Rapidchain: A fast
blockchain protocol via full sharding. In CCS, pages 931–948, 2018.

APPENDIX A
NORMAL-CASE OPERATION ORACLE OF DYNO

We describe the normal-case operation of Dyno and how
the init() and deliver() events are triggered. In particular, we
use Bracha’s broadcast paradigm and use PBFT notations to
present the protocol. The pseudocode is illustrated in Fig. 10.

Initialization
v, c,M, TM {view, configuration, membership, temporary membership}

� events
upon receiving a valid m = ⟨PRE-PREPARE, v′, c′, s, batch⟩

if ⟨ADD, j,m⟩ ∈ batch
TM ← TM ∪ {pj}

if non-primary, init(batch)
broadcast ⟨PREPARE, v, c, s, h(batch)⟩ to TM

upon receiving 2fc + 1 matching ⟨PREPARE, v, c, s, δ⟩
prepared(δ, v, c, s)← true
broadcast ⟨COMMIT, v, c, s, δ⟩ to TM

upon receiving fc + 1 matching ⟨COMMIT, v, c, s, δ⟩
broadcast ⟨COMMIT, v, c, s, δ⟩ to TM

upon receiving 2fc + 1 matching ⟨COMMIT, v, c, s, δ⟩
deliver(batch) where h(batch) = δ

� oracle functions
func init(batch) {init() event}

if leader, broadcast ⟨PRE-PREPARE, v, c, s, batch⟩ to TM
{switch to procedures shown in Fig. 4}

func deliver(batch) {deliver() event}
{switch to procedures shown in Fig. 4}

Fig. 10: Normal-case operation and how the init() and deliver()
events are triggered.

The pseudocode specifies the workflow for replicas in the
current configuration c and pending replicas, i.e., replicas that
request to join the system. Replicas run a Bracha’s broadcast
protocol and replicas that request to join the system act as
learners before the corresponding join requests are delivered.

141330

In particular, for replicas in Mc, the leader first triggers the
init() event by broadcasting a ⟨PRE-PREPARE, v, c, s, batch⟩
message to TM , where TM is the temporary members.
(TM is updated according to Fig. 5). Upon receiving a
⟨PRE-PREPARE, v′, c′, s, batch⟩ message, a replica pi verifies
the following: 1) v′ = v; 2) the signatures of client re-
quests in batch are valid; 3) pi has not accepted another
⟨PRE-PREPARE⟩ message with sequence number s; 4) s is
within a valid range. A non-primary replica also triggers
the init(batch) event accordingly. After that, pi broadcasts
a ⟨PREPARE, v, c, s, h(batch)⟩ to all replicas in TM where
h(batch) is the hash of the batch. Replica pi waits until
it receives 2fc + 1 valid ⟨PREPARE⟩ messages, i.e., pi has
previously accepted a ⟨PRE-PREPARE, v, c, s, batch⟩ message.
We say that batch is prepared by the replica. After that,
pi broadcasts a ⟨COMMIT, v, c, s, δ⟩ to all replicas in TM .
If a replica receives fc + 1 ⟨COMMIT⟩ messages but has
not previously broadcast any ⟨COMMIT⟩ message, it also
broadcasts a ⟨COMMIT, v, c, s, δ⟩ messages. A set of either
2fc + 1 ⟨PREPARE⟩ messages or fc + 1 ⟨COMMIT⟩ messages
serve as a prepare certificate. Note that this is different from
protocols such as PBFT but crucial in our protocol. The
certificate also serves as a proof of delivery. Finally, if a replica
receives 2fc + 1 ⟨COMMIT, v, c, s, δ⟩ messages, it triggers the
deliver(batch) event.

No that during the view changes, a message in the form of
⟨VIEW-CHANGE, v, c, C,P,PP, i⟩ carries P and PP which are
related to the normal-case operation oracle. The P is a set of
prepare certificates for requests with sequence number greater
than C, the PP is a set of ⟨PRE-PREPARE⟩ messages where
each message includes at least one membership request.

APPENDIX B
CONFIGURATION DISCOVERY OPTIONS

We present two alternatives options for configuration dis-
covery: lazy discovery and configuration master.
Lazy discovery. Lazy discovery delays the discovery of the
configuration after the delivery of the request. In particular,
to obtain the latest configuration, a new replica or a client pi
directly obtains the universe, i.e., Π. In this case, every time
a client or a replica receives a messages, it must verify the
configuration history accordingly.
Configuration master. Both self-discovery and lazy discovery
require all clients and new replicas to broadcast to all replicas
in the universe. Alternatively, we could build a standalone
configuration service all replicas/clients can query to obtain
the latest configuration of the system, as shown in Fig. 11. We
assume that all replicas and clients know the identities of all
replicas in the configuration master. The configuration master
can be built as one or a subset of all replicas in the system.
We let the master passively learn the latest configuration. In
particular, if the configuration changes, replicas send a set of
2fc + 1 ⟨COMMIT⟩ messages together with the correspond-
ing ⟨PRE-PREPARE⟩ message to the configuration master. The
2fc+1 ⟨COMMIT⟩ messages serve a a proof of delivery and the
⟨PRE-PREPARE⟩ messages can be used to verify the membership

request(s). In this way, the configuration master also obtains
the entire configuration history.

Note that the configuration master does not have to be
replicated using SMR. This is mainly because the entire
configuration history is totally ordered. Therefore, any con-
figuration history can be self validated.

Initialization
c,Mc, chist {configuration, membership, and configuration history}

as a client/new replica
func ObtainConfig()

send ⟨QUERY, i⟩ to CMaster
upon ⟨CONF, c′,M ′

c, chist
′⟩

if chist′ is valid and c′ > c
chist← chist′, c← c′, Mc ←M ′

c
return c,Mc

as a configuration master
upon ⟨QUERY, j⟩

send ⟨CONF, c,Mc, chist⟩ to pj
upon M = 2fc + 1 ⟨COMMIT, v, c, s, h(batch)⟩ messages

chist← chist ∪M , update c and Mc

Fig. 11: Configuration discovery: configuration master.

APPENDIX C
PROOFS

A. Proof of Configuration Discovery

Lemma C.1. A configuration history chist can be verified by
any replica/client.

Proof: Let chist be a configuration history from configuration
0 to c. All the replicas know the members in M0 according to
our assumption. The chist consists of all the proofs of delivery
monotonically ordered by configuration numbers. Let the sets
of proofs of delivery be {certi} s.t. 0 ≤ i ≤ c The proof of
delivery numbered by configuration 0 consists of signatures
from Q0 replicas in M0. Therefore, all replicas can verify
cert0. Furthermore, every replica/client can obtain M1 from
cert0 since it consists of the information of new replicas and
replicas that are removed in the end of configuration 0. Sim-
ilarly, cert1 consists of Q1 signatures, so every replica/client
can verify it accordingly. It is then straightforward to see that
chist can be verified by any replica. 2

Lemma C.2. The configuration history is totally ordered.

Proof: We assume that there are two valid configuration
histories chist1 and chist2, both from configuration 0 to c.
Let c′ be the first configuration where the proofs of delivery
are inconsistent, i.e., 1) 0 < c′ ≤ c; 2) Mj is the same in
both chist1 and chist2 for 0 ≤ j < c′. Let cert1c′ ∈ chist1

and cert2c′ ∈ chist2. cert1c′ consists of Qc′−1 signatures from
Mc′−1. Similarly, cert2c′ consists of Qc′−1 signatures from
Mc′−1. The two quorums of replicas have at least one correct
replica in common. Therefore, at least one correct replica has
signed both the requests such that chist1 and chist2 have
inconsistent proofs of delivery, a contradiction. 2

Lemma C.3. Self-discovery achieves configuration discovery.

Proof. Let c be the latest configuration. A replica pi broadcasts
a ⟨DISCOVER, c′⟩ to all replicas in the universe. In other words,

151331

all replicas in Mc will eventually receive ⟨DISCOVER, c′⟩. All
correct replicas in Mc will reply with ⟨CONF, c,Mc, chist⟩
where chist is a valid configuration history. It is straightfor-
ward to see that pi eventually receives a valid configuration.
If ObtainConfig() is queried for a sufficiently large number
of times, the latest configuration and members in the config-
urations will be returned.

Lemma C.4. Lazy discovery achieves configuration discovery.

Proof. Π includes replicas in the latest configuration.

Lemma C.5. Configuration master achieves configuration
discovery.

Proof. Following Lemma C.3, any correct replica in the
configuration master is able to obtain members from a valid
configuration since it follows the procedure of self-discovery.
Therefore, any client/replica queries the configuration master
is able to obtain members from a valid configuration if the
configuration master is correct.

Theorem C.1. (Configuration discovery) If ObtainConfig()
is queried for a sufficiently large number of times, members
from the latest configuration c will be returned, if there exists
any such c.

Proof. Correctness follows from Lemma C.3-C.5.

B. Proof of Dyno

We prove correctness of the protocol based on the default
definitions of correctness.

Lemma C.6. During the view change, if the leader in view v
is correct and timers are properly set up, correct replicas will
eventually enter view v.

Proof. Let the latest configuration of the system be c, i.e., at
least one c-correct replica pi has installed c by delivering some
membership request m. The replica previously received Qc−1

matching ⟨COMMIT⟩ messages for m. Among the replicas, at
least Qc−1 − fc−1 ≥ fc−1 + 1 are correct (set S). There are
two cases from configuration c − 1 to c: at least one replica
joins the system; no replica has joined the system. If no replica
has joined the system, all replicas are aware of the replicas in
c. Therefore, the new leader eventually receives fc+1 ⟨VIEW-
CHANGE⟩ messages. We now only need to show the first case.

In particular, any new replica that joins the system com-
pletes state transfer with 2fc−1 + 1 replicas in the system.
Among the 2fc−1 + 1 replicas, at least one correct replica in
S is included according to the quorum intersection. Therefore,
the new replica must have maintained consistent execution
history as replicas in S. Furthermore, there are two sub-cases
considering all the replicas that join the system in c: none of
the new replicas is correct; at least one of the new replica is
correct. In the first case, the new leader will receive fc + 1
⟨VIEW-CHANGE⟩ messages, as all correct replicas in c− 1 are
aware of Mc. In the second sub-case, at least one new replica
pi is correct. It will broadcast a ⟨VIEW-CHANGE⟩ message to
all replicas in c. If a replica has not previously installed c but

receives the message from pi, the replica will also send its
⟨VIEW-CHANGE⟩ message to Mc. Thus, all correct replicas will
receive fc+1 matching ⟨VIEW-CHANGE⟩ messages. Eventually
all correct replicas in c will receive ⟨VIEW-CHANGE⟩ messages,
including the new leader in view v.

Lemma C.7. If a correct replica pi delivers a request m with
sequence number s in view v and configuration c, and another
correct replica delivers m′ with sequence number s in view
v′ and c where v′ > v, m = m′.

Proof. If pi delivers m in view v and c, at least Qc replicas
have previously broadcast ⟨COMMIT⟩ message. Among the
replicas, Qc − fc replicas are correct. The correct replicas
all have previously stored prepare certificates (either a set of
2fc + 1 ⟨PREPARE⟩ messages or fc + 1 ⟨COMMIT⟩ messages)
for m with s. If view change occurs, according to Lemma C.6,
replicas will eventually move to a view v′ where the leader is
correct. There are two cases for configuration c: c is the latest
configuration; the latest configuration is c′ where c′ > c.
Case (1): The new leader in view v′ receives Qc matching
⟨VIEW-CHANGE⟩ messages. In the new view, the leader assigns
each sequence number s with a m if there is a prepare
certificate for s. If a replica accepts s with a different m′ in
the new view, at least one ⟨VIEW-CHANGE⟩ messages includes
a valid prepare certificate for m′. The certificate consists of at
least Qc′ ⟨PREPARE⟩ messages or fc′ +1 ⟨COMMIT⟩ messages
for c′ ≤ c. According to the protocol, a correct replica will not
send a ⟨PREPARE⟩ message for request m′ if it has already sent
a ⟨PREPARE⟩ message for some request m. Therefore, at least
one correct replica has sent a ⟨PREPARE⟩ message for request
m′ in configuration c′ and ⟨PREPARE⟩ message for request m
in configuration c′, both in the same view, a contradiction.
Case (2): Since at least one c′-correct replica pj installs
c′, it has delivered at least one membership request, i.e.,
⟨ADD⟩ and/or ⟨REMOVE⟩ requests. Therefore, at least Qc′−1

replicas have previously broadcast ⟨COMMIT⟩ messages for
the membership request(s), among which Qc′−1 − fc′−1 are
(c′ − 1)-correct. There are two cases: c = c′ − 1, c < c′ − 1.

If c = c′ − 1, Qc = Qc′−1, at least one c-correct replica
in the intersection of Qc and Qc′−1 has delivered m before
delivering the membership request(s). Similar to the proof
shown in Case (1), m = m′.

We now show the case for c < c′ − 1. Assume that the
correct replica pj delivers m′ in view v′ and configuration
c′, pj receives Qc′ − fc′ matching messages, among which
at least fc′ + 1 are correct. Let the set of replicas be S. We
conclude that none of the replicas in S is gc-correct. This
is because a gc-correct replica that enters configuration c′

must have delivered at least one batch of requests (including
a membership request) after it delivers m. Now we consider
a correct replica pk in S. We assume pk joins the system
in configuration c′′ where c < c′′ < c′. Replica pk must
have delivered a request m′′ that includes ⟨ADD, k⟩. Before it
continues to process requests in configuration c′′, it completes
a state transfer with Qc′′ replicas in configuration c′′, among
which fc′′ + 1 replicas are correct. The correct replicas must

161332

have sent an execution history with valid prepare certificate for
m′ with sequence number s. A correct replica will not send
⟨PREPARE⟩ message for m′ if it has sent ⟨PREPARE⟩ message
for m or has received a prepare certificate. Therefore, at least
one correct replica has sent ⟨PREPARE⟩ message for both m
and m′, or at least one correct replica has received a valid
prepare certificate for m and later sent ⟨PREPARE⟩ message
for m′, a contradiction.

Theorem C.2. (Agreement V) If a correct replica in c
delivers a request m, then every gc-correct replica eventually
delivers m.

Proof. We show that if a correct replica pi delivers a regular
request m, all gc-correct replicas will deliver m, with the same
sequence number s. We prove the theorem under two cases for
configuration c: 1) c is the latest configuration; 2) c is not the
latest configuration.
Case (1): If pi delivers m, at least 2fc + 1 replicas have
previously broadcast ⟨COMMIT⟩ messages, among which at
least fc+1 replicas are correct. If view change does not occur,
all replicas eventually receive fc + 1 ⟨COMMIT⟩ messages. If
they have not previously sent one, they will also broadcast
⟨COMMIT⟩ messages. Therefore, all correct replicas will even-
tually collect Qc matching ⟨COMMIT⟩ messages and deliver m.
If view change occurs, Lemma C.7 shows that replicas will
only deliver m with sequence s in the new view. Accordingly,
any gc-correct replica eventually delivers m.
Case (2): Let c′ < c be the latest configuration, There are two
sub-cases: at least Qc c-correct replicas are still in c′; fewer
than Qc replicas that are still c′-correct. The correctness of
the first sub-case follows case (1). We now show the second
sub-case. In this case, at least one c-correct replica has left the
system in configuration c′′ where c < c′′ < c′. In other words,
at least one correct replica has delivered ⟨REMOVE⟩ request
and at least Qc′′ replicas have previously broadcast ⟨COMMIT⟩
messages, among which Qc′′ − fc′′ are c′′-correct. Any c′′-
correct replica maintains the entire execution history. This is
because all gc-correct replicas maintain the entire execution
history. Furthermore, any new replica in the system starts to
participate in the protocol after it completes the state transfer.
Therefore, at least Qc′′ − fc′′ c

′′-correct replicas include m in
their execution history together with a valid prepare certificate.
Similarly, if c′ > c′′, any c′′-correct replica that has delivered
the membership request must have included m in its execution
history. If the number of gc-correct replicas is greater than
Qc′ − fc′ and m has not been delivered for a sufficiently long
time, view change will occur. As shown in Lemma C.7, in the
new view, replicas will only accept m with sequence number
s. Eventually, gc-correct replicas will accept m. If the number
of gc-correct replicas is lower than Qc′ − fc′ and replicas still
continue to process requests, gc-correct replicas that have not
delivered m will catch up with other correct replicas after the
next view change and eventually deliver m.

Lemma C.8. In the same view v, if a correct replica pi
delivers a request m with sequence number s in configuration

c, and another correct replica pj delivers a request m′ with
sequence number s in configuration c′ where c′ ≥ c, m = m′.

Proof. If pi delivers m in c, it receives Qc matching ⟨COMMIT⟩
messages. If pj delivers m′ in c′, it receives Qc′ matching
⟨COMMIT⟩ messages. If c = c′, the correctness simply follows
from static BFT. We now show the correctness for c′ > c.
Without loss of generality, we consider c′ = c+1. Correctness
for c′ > c+ 1 can be proved by induction.

There are three cases from c to c′: new replicas join the
system from c to c′; some replicas leave the system from c to
c′; multiple replicas join and leave from c to c′.
Case (1): We first consider the case where one replica joins in
configuration c′, i.e., Qc′ = Qc or Qc′ = Qc+1. If Qc = Qc′ ,
correctness simply follows. If Qc′ = Qc + 1, Qc + 1 replicas
have sent ⟨COMMIT⟩ messages for m′ in c′. Since Qc replicas
have sent ⟨COMMIT⟩ messages for m in c, the two quorums in
total have size 2Qc +1. We also know that Qc = ⌈nc+fc+1

2 ⌉,
where nc is the number of replicas in configuration c and
fc is the number of failures the system can tolerate. Since
configuration c′ has nc + 1 replicas, the two quorums have at
least 2Qc+1− (nc+1) = 2⌈nc+fc+1

2 ⌉−nc ≥ fc+1 replicas
in total. In our system, any new replica that joins the system
participates in the protocol after it completes state transfer
from replicas in c. Therefore, if any of the fc + 1 correct
replicas is a new replica, it will not accept m′ if m is included
in its execution history. We also assume that nc ≥ 3fc +
1. Therefore, at least one correct replica has sent ⟨COMMIT⟩
message for m in c and m′ in c′, a contradiction. For the
case where multiple replicas join, nc becomes nc + l and Qc

becomes Qc + q where 0 ≤ q ≤ l (concretely, q is bounded
by ⌈ l

3⌉). The proof is similar to the case for l = 1.
Case (2): If l replicas are removed, nc becomes nc− l and Qc

becomes Qc − q where 0 ≤ q ≤ l. Consider the worst case
where Qc becomes Qc−l, there are 2Qc−l = 2Qc′+l replicas
in total for any two quorums. There are 2Qc′ + l− (nc′ + l) ≥
fc′ +1 correct replicas in common. Thus, at least one correct
replica has sent conflicting messages.
Case (3): We know that Qc replicas have broadcast m and
Qc−fc c-correct replicas (set S) have maintained valid prepare
certificates. If pj delivers m′ in c′, at least Qc′ − fc′ correct
replicas have previously delivered m′. If there exists a correct
replica pi in Qc′ −fc′ that is not in S, pi must have joined the
system in c as a correct replica will not deliver both m and
m′ with the same sequence number. Before pi participates
in the protocol, it completes state transfer with Qc replicas
in configuration c, i.e., all delivered requests before ⟨ADD, i⟩
request. If pi delivers m′, it does not have m in the execution
history. Thus, none of Qc replicas has sent a valid prepare
certificate for m during state transfer, a contradiction with the
fact that Qc replicas have sent PREPARE messages for m.

Lemma C.9. A correct replica pi delivers a request m with
sequence number s, configuration c, and view v. Another
correct replica pj delivers a request m′ with sequence number
s in configuration c′ and view v′ where c′ ≥ c and v′ > v.
Then m = m′.

171333

Proof. Without loss of generality, we let c′ = c + 1 and let
c′ be the latest configuration, as the case for c′ > c + 1 can
be proved in the same way. Let the configuration changes in
view v′′ s.t. v ≤ v′′ ≤ v′. When configuration changes in v′′, at
least one correct replica pk in both Mc and Mc′ has delivered
m. This is because from view v to the beginning of view v′′,
the configuration does not change. From configuration c to c′,
the view v′′ does not change. Therefore, if pi delivers m and
pk delivers m′′, this is a contradiction with Lemma C.7 or
Lemma C.8. Furthermore, from view v′′ to v′, configuration
does not change, so if pj delivers m′ with s also in the
configuration c′, a contradiction with Lemma C.7.

Theorem C.3. (Total Order) If a correct replica in config-
uration c delivers a message m before delivering m′, then
another correct replica in configuration c delivers a message
m′ only after it has delivered m.

Proof. The correctness within the same view is shown
in Lemma C.8 and correctness across views is in
Lemma C.9.

Theorem C.4. (Same configuration delivery) If a correct
replica pi (resp. pj) delivers m in configuration ci (resp. cj),
then ci = cj .

Proof. For each correct replica pi (resp. pj), it delivers a
request upon receiving 2fci + 1 (resp. 2fcj + 1) matching
⟨COMMIT, v, c, s, h⟩ messages. It is straightforward to see that
ci = cj since the ⟨COMMIT⟩ messages have a matching
configuration number c.

Lemma C.10. A client eventually obtains a valid configu-
ration c from the configuration discovery protocol such that
at least one gc-correct replica in Mc has installed the latest
configuration.

Proof. A client repeats the submit() function and obtains
configuration until it obtains a valid reply. Thus, the client
eventually obtains a valid configuration c (according to Theo-
rem C.1) such that at least one gc-correct replica is in Mc.

Theorem C.5. (Liveness) If a correct client submits a request
m, then a correct replica in some configuration c eventually
delivers m.

Proof. We already show in Theorem C.2 that if pi delivers
m, all gc-correct replicas will eventually deliver m. Consider
c′ is the latest configuration, there are two cases: there exist
at least fc + 1 gc-correct replicas in c′; there are fewer than
fc+1 gc-correct replicas in c′. In the first case, the client will
eventually receive fc + 1 matching replies.

We now show the second case where there are fewer than
fc + 1 gc-correct replicas in c′. According to Lemma C.1, a
configuration history can be verified by the client. Therefore,
if the client obtains a configuration c such that at least one gc-
correct replica in Mc has installed the latest configuration, the
request will eventually be broadcast to all replicas. Eventually
in some configuration, m is included in the queue of the leader
and then processed. According to the agreement property, the

request will eventually be delivered by all gc-correct replicas.

Theorem C.6. (Consistent delivery) A correct client submit-
ting m will deliver a correct response which is consistent with
the state in com configuration where m is delivered.

Proof. A correct client completes a request if it has received
fc +1 matching replies. If the client previously submitted the
request in c, it completes the request. Otherwise, the client
verifies the configuration history. According to the total order
and agreement properties, any correct replica will execute and
deliver m with following the same order. Therefore, all correct
replicas will generate matching response to the client.

C. Proof of Dyno, Dyno-A, Dyno-AC

Theorem C.7. (Dyno achieves agreement V1 under G-
correct assumption) If a correct replica in configuration c
delivers a request m, then every c-correct replica eventually
delivers m.

Proof. According to Theorem C.2, if a correct replica delivers
m, then every gc-correct replica eventually delivers m. There
are at least fc+1 gc-correct replicas according to the assump-
tion. Therefore, all c-correct replicas will eventually receive
fc + 1 ⟨COMMIT⟩ messages. Every correct replica broadcasts
a ⟨COMMIT⟩ message if it receives fc +1 matching messages.
Therefore, all c-correct replicas will eventually receive 2fc+1
⟨COMMIT⟩ messages and deliver m.

Theorem C.8. (Dyno-A achieves agreement V1) If a correct
replica in c delivers a request m, then every c-correct replica
eventually delivers m.

Proof. According to Theorem C.2, if a correct replica delivers
m, then every gc-correct replica eventually delivers m. Let
the latest configuration of the system be c′. We show that a
c-correct replica pi that has not delivered m will eventually
deliver m. If fewer than 2fc+1 replicas are still correct, replica
pi will eventually time out. pi will query the configuration
service and obtain c′′ s.t. c′′ ≤ c′. The case for c′′ = c′

is trivial. If c′′ < c′ and there are more than fc′′ + 1 gc′′ -
correct replicas, they will send correct hist to pi. We know
that m is included in hist of correct replicas in c′′. Thus, pi
will deliver m. If there are fewer than fc′′ + 1 gc′′ -correct
replicas, replica pi will continue querying ObtainConfig()
and eventually obtain c′. According to the protocol, pi will
eventually obtain the request history and deliver m.

Theorem C.9. (Dyno-AC achieves agreement V2) If a correct
replica delivers a request m in c, then every correct replica
in c eventually delivers m.

Proof. According to Theorem C.8, every c-correct replica will
deliver m. If a correct replica pi leaves the system, it must have
already delivered ⟨REMOVE, i⟩. Before pi delivers ⟨REMOVE, i⟩,
it must have delivered m since membership requests are
delivered after regular requests.

181334

