
Cats vs. Spectre: An Axiomatic Approach to
Modeling Speculative Execution Attacks

Hernán Ponce-de-León
Research Institute CODE

Bundeswehr University Munich
hernan.ponce@unibw.de

Johannes Kinder
Research Institute CODE

Bundeswehr University Munich
johannes.kinder@unibw.de

Abstract—The SPECTRE family of speculative execution at-
tacks has required a rethinking of formal methods for security.
Approaches based on operational speculative semantics have
made initial inroads towards finding vulnerable code and
validating defenses. However, with each new attack grows the
amount of microarchitectural detail that has to be integrated
into the underlying semantics. We propose an alternative, light-
weight and axiomatic approach to specifying speculative seman-
tics that relies on insights from memory models for concurrency.
We use the CAT modeling language for memory consistency
to specify execution models that capture speculative control
flow, store-to-load forwarding, predictive store forwarding, and
memory ordering machine clears. We present a bounded model
checking framework parameterized by our speculative CAT
models and evaluate its implementation against the state of
the art. Due to the axiomatic approach, our models can be
rapidly extended to allow our framework to detect new types
of attacks and validate defenses against them.

I. INTRODUCTION

The promise of formal methods is to provide guaran-
tees of correctness and security in exchange for rigorous
specifications and sound layering of abstractions [10]. Unfor-
tunately, the discovery of speculation-based vulnerabilities
such as SPECTRE has shown that some of the most basic
abstractions are broken at the microarchitectural level in
today’s mainstream computing architectures [28]. Modern
processors execute code speculatively and may have to roll
back state if a prediction turns out to be wrong; despite
being rolled back, the transient execution can leave traces
in the microarchitectural state that an attacker can abuse.
By causing the processor to mispredict certain conditions,
such as whether a branch is taken or not, an attacker can
exfiltrate data despite system-level protection.

There is ongoing work to incorporate microarchitectural
effects into formal methods, in order to resolve this im-
passe [9], [16], [22], [23], [34], [38], [39], [40]. The proposal
is appealing: if the semantics used for reasoning about code
takes speculation into account, we can reliably identify code
patterns vulnerable to transient execution attacks, and we
can prove the effectiveness of proposed countermeasures. A
key challenge here is the variety of attacks: while commonly
referred to under the umbrella term of speculative execution
attacks, the underlying mechanisms can be very different,
and require different semantics.

The majority of approaches rely on defining speculative
operational semantics. Operational semantics describe how a
valid program is interpreted, as sequences of computational
steps. This requires descriptions of microarchitectural imple-
mentation details such as buffers or recovery mechanisms
for wrong predictions. For example, operational semantics
for speculative execution record snapshots of the state
before every prediction to enable subsequent rollbacks.
This results in complex models and complications with
nested speculations, which have been listed as one of the
main challenges of modeling speculative execution [23], [32].
Porting an operational speculative semantics to incorporate
a different class of attack is no easy task, and no such
approach covers all known attacks.

Axiomatic semantics, as an alternative to the operational
approach, define which executions are valid. The axiomatic
approach has been successful in reasoning about concur-
rency and weak memory models. Its elegance lies in being
able to succinctly express which dependencies among reads
and writes are enforced. This enables a modular style of
reasoning. To describe different memory models, Alglave
et al. introduced the relational language CAT, which is
expressive enough to axiomatize the concurrency semantics
of processors like X86, POWER and ARM [1], [2], [4].

We argue that the axiomatic approach and CAT in partic-
ular lend themselves equally well to modeling speculative
execution semantics. To this end, we develop a set of models
describing speculative behaviors and their effects. We find
CAT to be ideally suited to capture a variety of attacks in
a simple, concise and unified manner. While the similarity
between weak memory models and speculation has been
noted before [13], [20], [37], we are the first to prove their
flexibility by providing axiomatic weak memory-style models
for several variants of speculative execution attacks and a
concrete tool to detect vulnerable code and validate defenses.
In a recent survey, Cauligi et al. [8] stated that “they are
only suited for analyzing particular Spectre variants [. . .] and
are difficult to adapt to other attacks” and that “it remains
an open problem to translate a semantics of this style into a
concrete analysis tool”.

The key advantages of defining axiomatic semantics with
CAT are simplicity and modularity, which lead to reliable
and rapid development of verification tools. Because the

235

2022 IEEE Symposium on Security and Privacy (SP)

© 2022, Hernán Ponce de León. Under license to IEEE.
DOI 10.1109/SP46214.2022.00082

20
22

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
66

54
-1

31
6-

9/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

46
21

4.
20

22
.9

83
37

74

Basic Types
(Registers) r ∈ Regs
(Values) n ∈ N

Syntax
(Expressions) 〈exp〉 := r | n | ª〈exp〉 | 〈exp〉⊗〈exp〉 | sec

(Statements) 〈stm〉 := r ←〈exp〉 | r
〈exp〉?←− 〈exp〉

| load r,〈exp〉 | store r,〈exp〉
| jmp ` | beqz r,`
| skip | fence

(Labels) ` ∈ N

(Programs) 〈p〉 := ` : 〈stm〉 | 〈p〉;〈p〉
Fig. 1. µASM syntax.

models are simple and concise, the resulting analysis tools
are less involved. Because the speculative semantics defined
as CAT models are modular, we can quickly adapt to new
types of attacks. A case in point is that in the final phase of
preparing this paper, Ragab et al. [35] presented machine
clears as a new source for transient execution. Following
the paper’s description, we were able to define a CAT model
to handle the memory ordering machine clear in less than
two hours (see §IV-E).

Overall, this paper makes the following contributions:

• We show how to use the CAT language to axiomatically
describe the effects of microarchitectures and provide
concrete models that capture the behaviors underlying
known SPECTRE attacks: speculative control flow (§III),
store-to-load forwarding, predictive store forwarding,
and memory ordering machine clear (§IV).

• We propose an analysis framework that is parametric
in its microarchitectural model (defined via CAT). The
analysis is an instance of a Bounded Model Checking
problem, implemented in the tool KAIBYO, which we
use to verify software isolation (§V).

• We evaluate our framework and compare its precision,
flexibility, and performance against state-of-the-art tools
to detect SPECTRE vulnerabilities (§VI).

II. PRELIMINARIES

We begin by introducing the target assembly language
(§II-A) and its semantics (§II-B). We then present the
CAT language (§II-C), followed by a brief description of
speculative execution attacks (§II-D), the threat model we
consider (§II-E), and possible extensions (§II-F).

A. Input Language

We target µASM, a core assembly language defined by
Guarnieri et al. [23]. The syntax is given in Fig. 1. Registers
and constants over N form the base expressions; more
complex expressions are built using the usual unary and
binary operators. Besides computing values, expressions
are used as memory addresses. We introduce the special
expression sec to represent the address of a secret (more
on this in §II-E).

=== Candidate Execution ===

e1 : load r1,idx

e2 : r2 ← (r1 < A.size)

e3 : beqz r2,e7

e4 : load r3,A+ r1

e5 : load r4,B+ r3

e6 : temp← temp & r4

e7 : skip

es : sec

=== C code ===

if (idx < A.size) {
temp &= B[A[idx]];

}

=== µASM code ===

1: load r1,idx

2: r2 ← (r1 < A.size)

3: beqz r2,7

4: load r3,A+ r1

5: load r4,B+ r3

6: temp← temp & r4

7: skip

po

po

po

po

po

po

rf
fence

Fig. 2. SPECTRE-v1 – impossible under traditional semantics, but possible
under control flow speculation.

The statements of the µASM language are (conditional)
local assignment, memory load and store, direct (jmp) and
conditional (beqz) jump, fence and skip. A statement is
paired with a unique label ` ∈N. The resulting pair ` : s is
called an instruction. We refer to instructions by their labels.
We use reg(`) and exp(`) to refer to the target register and
the memory expression of a given instruction, respectively.
Finally, programs are sequences of instructions.

Statement r ← e computes the value of expression e and
locally assigns it to register r . The conditional assignment
r

e′?←− e takes effect only if e′ does not evaluate to 0. Statement
load r,e assigns the value at the address computed from
e to register r . Conversely, store r,e assigns the value of r
to the address computed from e. Statement jmp ` directly
redirects the control flow to `. The conditional jump beqz r,`
redirects the control flow to ` only if the value of register r
evaluates to 0. A fence enforces an ordering constraint on
memory operations. A skip statement has no computational
effect. We define the set of static predecessors of label ` as

PRED(`) := {
`′ ∈N | (`′+1 = `∧`′ 6= jmp `′′)∨

`′ = jmp `∨`′ = beqz r,`
}
.

In slight abuse of notation, we write `= jmp `′ here to mean
that ` : jmp `′ is an instruction contained in the program. As
a result of the definition, PRED(`) contains the instruction
immediately preceding ` in the program order, if that is not
a jmp instruction, and any jump (direct or conditional) in
the program targeting `.

Consider the left of Fig. 2 which shows a code snippet
written in C (top) and µASM (bottom). Variable idx is an
input and A.size is the length of the array A. If r2 6= 0
(meaning that idx is in bounds for A), instruction 4 loads
the value of A[idx] (here represented by accessing address
A+ r1) into register r3; if not, the program terminates by
jumping to 7. Since the input is compared with the size of
the array, instruction 4 cannot read from arbitrary memory.
In particular, it cannot access the secret at address sec. The
loaded value in r3 is used by instruction 5 for accessing

236

a second array B. For simplicity, we assume the values of
A are smaller than the size of B, so that there is no need
for a second bounds check. We then can conclude that the
program cannot access memory out of bounds.

B. CAT Semantics of µASM

We define the semantics of a program axiomatically in
terms of its consistent executions, following the CAT approach
introduced by Alglave et al. [1], [4] for formalizing weak
memory models. Behaviors of a program are represented by
graphs where nodes (called events) model occurrences of
instructions and edges model relations or dependencies.
Given a program, we proceed in two steps. First, we
define all possible behaviors or candidate executions, which
satisfy basic properties about control and data flow. Second,
we filter out behaviors that are invalid with respect to
the target semantics, using a set of assertions given as
a CAT model. The remaining behaviors form the set of
consistent executions and define the semantics of the
program. Different assertions yield different CAT models,
each of them describing one concrete semantics. Note that
for a given program, different assertions might result in the
same set of consistent executions. When this is true for
every possible program, the CAT models are equivalent. Our
CAT model for in-order semantics is given in Fig. 4.

An event is the representation of an occurrence or instance
of an executed instruction. Let X be a set of events represent-
ing a behavior, i.e., the nodes of the corresponding graph.
There are certain properties X must fulfill to guarantee
that the behavior represents a possible control flow of
the program. Since, on top of traditional control flow,
we model speculative execution, we leave such properties
underspecified here; they are formalized in §III. For loop-
free programs there is a one to one correspondence between
events and executed instructions: there is a unique instance
of ` represented by e` ∈X. In the presence of loops, if ` is
in a loop that is executed n times, then there are n such
instances and {e1

`
, . . . ,en

`
} ⊆X. Events coming from memory

instructions form the set M⊆X, which is further split into
R and W depending on whether instructions come from
load or store statements, i.e., M = R]W. By Ma we refer
to memory events that access an address a ∈ N. Finally,
if ` is an instruction using a register and e` is an event
representing an instance of `, we use val(e`) to represent
the value of the register for that given instance.

Relations form the edges of execution graphs. The
location relation loc forms equivalence classes between
memory events accessing the same address, i.e., loc :={
(e`,e`′) | ∃a ∈N : e`,e`′ ∈Ma

}
. The reads-from relation rf

gives for each read a unique write to the same address
from which the read obtains its value:

rf⊆ (W×R)∩ loc

∀r ∈R : ∃!w ∈W : rf(w,r)

rf(w,r) ⇒ val(w) = val(r)

The last constraint above defines how the data flows between
different instructions. The candidate execution of Fig. 2
represents a behavior where the initial value of the secret
(here represented by es) flows to the access to A at index
r1; this is represented by the edge rf(es ,e4).

The coherence order co relates writes to the same address
and forms a total order for each address:

co⊆ (W×W)∩ loc

∀a ∈N : total(co,Wa)

Coherence models the order in which store instructions
hit the main memory. For each address, we assume the
existence of a write event assigning its initial value. Those
events come first in the coherence order. In figures we
represent initial writes to all addresses by a unique event
e0 : init. The only exception is address sec for which we use
es : sec; this event models the initial value of the secret.

The program order po ⊆ (X×X) represents the order in
which instructions are written. For instructions not being
part of the same loop we have (e`,e`′) ∈ po ⇒ ` < `′. For
instructions belonging to the same loop, we have that

(e i
`,e j

`′) ∈ po⇒ (`< `′∧ i ≤ j)∨ (`≥ `′∧ i < j).

In Fig. 2 we have po edges between all events e1-e7; they
represent the order of the corresponding instructions in the
µASM code. Relation fence contains every pair of events for
which there is a fence instruction in between, i.e., fence :={

(e`,e`′) ⊆ po | ∃`′′ : fence : `< `′′ < `′}. Note that relations co,
po and fence are transitive, although we represent them in
diagrams only by their direct edges. The address dependency
addr relates reads with memory events using the loaded
value for computing their addresses:

addr := {
(e`,e`′) ⊆ (R×M)∩po | reg(`) ∈ exp(`′)

∧ 6 ∃`′′ : `< `′′ < `′∧ reg(`′′) = reg(`)
}

A candidate execution is a triple (X, rf,co). Each different
combination of these three yields a possible behavior. Once
X is fixed, relations po, fence and addr can be statically
computed from the program. The right part of Fig. 2 shows
one candidate execution for the program on the left (note
that certain rf edges are omitted for clarity).

C. Specifying Memory Models with CAT

Each candidate execution as defined in §II-B yields a
possible behavior. On a given processor, however, only
some of those behaviors can occur in practice. A memory
model defines which behaviors are allowed, by specifying
which values a load instruction can read. We use CAT, the
core of which is given in Fig. 3, to formalize this. CAT is
concise but expressive enough to specify a wide range of
memory models. It has been used to clarify and formalize
the concurrency semantics not only of processors like X86,
POWER and ARM, but also the memory model of C11 and
the Linux kernel [3], [4], [6], [33], [36]. Moreover, the CAT
model of ARMv8 is part of its official documentation [2]. In
this paper we show that CAT can also be used to model the

237

〈MCM〉 := 〈assert〉 | 〈rel〉 | 〈MCM〉∧〈MCM〉
〈assert〉 := acyclic〈r〉 | irreflexive〈r〉 | empty〈r〉

〈r〉 := 〈b〉 | 〈r〉∪〈r〉 | 〈r〉∩〈r〉 | 〈r〉\ 〈r〉
| 〈r〉−1 | 〈r〉+ | 〈r〉∗ | 〈r〉;〈r〉

〈b〉 := po | fence | rf | co | loc | addr
| [〈set〉] | 〈set〉×〈set〉 | 〈name〉

〈set〉 := X |M |W |R
〈rel〉 := 〈name〉 = 〈r〉

Fig. 3. Core of the CAT language [1].

effects of microarchitectural optimizations such as branch
and alias predictors.

The role of the memory model is to filter out the
candidate executions that are not consistent according to the
intended semantics. In CAT, a memory model is a constraint
system over so-called derived relations. Derived relations
are built from the base relations described in §II-B, hand-
defined relations that refer to the different sets of events,
and named relations that we will explain in a moment.
CAT supports operators like union, intersection, difference,
inverse, transitive (and reflexive) closure and composition.
The assertions that filter candidate executions are acyclicity,
irreflexivity and emptiness constraints over derived relations.
As an example, our CAT model for in-order semantics
in Fig. 4 defines the derived relation com as the union of co,
rf and the composition of rf−1 with co. The model states that
the union of com and po must be acyclic. CAT also supports
recursive definitions of relations. We assume a set 〈name〉
of relation names (different from the predefined relations)
and require each name used in the memory model to have
a defining equation 〈name〉 = 〈r〉. Notably, 〈r〉 may again
contain named relations, making the system of defining
equations recursive. The relations then are defined to be
the least solution to this system of equations.

D. Speculative Execution Attacks

Speculative execution uses different predictors to guess,
e.g., the outcome of branching instructions or aliasing
of addresses. A prediction opens a speculation window
during which instructions are executed without knowing
whether the prediction was correct. Once the window closes,
the effects of the speculatively executed instructions are
committed (if the prediction was correct) or rolled back (if
the prediction was wrong).

Speculatively executed instructions under a misprediction
are called transient. When speculation is over, all directly
visible effects of transient instructions are discarded. How-
ever, this is only the case for the architectural state. If the
cache or other microarchitectural components have been
modified by these instructions, those effects are not (or
only partially) discarded. This can allow sensitive data to
be leaked, e.g., through cache timing [28], [31]. In these
attacks, the size of the speculation window determines the

number of operations an attacker can issue on a transient
path before the results are squashed.

The candidate execution in Fig. 2 represents a SPECTRE-v1
gadget [28]. An attacker can bypass the bounds check in the
following way [7]: first, during the setup phase, the attacker
invokes the code with valid values of idx, thereby training
the branch predictor to expect the jump not to be taken.
Second, during the transient execution phase, the attacker
invokes the program with a value of idx outside the bounds
of A. Rather than waiting for the result of the comparison
(e.g., if the value of A.size is not cached), the processor
guesses that the bounds check will be true and transiently
executes instructions 4 and 5 using the malicious idx. Note
that instruction 5 loads data into the cache in an address
that is dependent on A[idx]. When the result of the bounds
check is eventually determined, the processor rolls back the
effect of 4 and 5. However, changes made to the cache state
are not reverted. Finally, in the decoding phase, the attacker
can use a side channel to analyze the cache contents and
retrieve the value of the secret [31].

E. Threat Model

An attacker in our setting is an arbitrary program that
interacts with a program of interest (the victim). We require
some interaction between the attacker and the victim that
allows to start a transient execution phase. Root causes of
transient execution include branch and alias mispredictions,
but also machine clears [35]. For example, to exploit
SPECTRE-v1 in Fig. 2 it is sufficient that the attacker has
access to the input idx to mistrain the branch predictor.
We also assume both the attacker and the victim share the
same cache, which the attacker analyzes during the decoding
phase to retrieve the secret. The attacker can access the
cache after execution of any instruction and does not need
to wait for termination of the victim program.

The goal of the attacker is to break software isolation
by reading a secret from address sec outside its sandbox
boundary. While the attacker cannot directly access sec, they
can trick the victim into leaking sensitive information. We
consider data leakage both under normal and speculative
execution. Our attacker observes the address of executed
load instructions to see if any match sec. This is a common
leakage model for speculative isolation [8].

To model the effects of speculative execution, our seman-
tics can mispredict the outcome of all branch instructions
and the address of all memory instructions in the victim.
This is the worst-case scenario in terms of leakage regardless
of how attackers poison predictors.

F. Beyond Software Isolation

While we focus on software isolation, our semantics can
also serve as a building block for other properties. We show
in Sections III and IV that the proposed semantics captures
behaviors that are unobservable from the architectural point
of view. Guarnieri et al. [24] recently proposed a framework

238

to specify hardware-software contracts and guarantee non-
interference-style properties, such as constant time. In this
framework, contracts are formed of an execution mode (the
semantics) and an observation mode (capturing the threat
model). While the CAT models we present in the following
can serve as an execution mode, defining an observation
mode in axiomatic semantics is an open problem and left
for future work.

III. SPECULATIVE CONTROL FLOW

In this section, we show how we model control flow
(§III-A) and its speculation (§III-B) axiomatically to detect
SPECTRE-v1 (also known as SPECTRE-PHT). We also discuss
the speculation window (§III-C) and how to mitigate the
attack (§III-D).

A. Traditional Control Flow

In a traditional model of computation, instructions are
fetched, executed and retired in order (see §IV-A). In this
setting, the set X (see §II-B) is entirely defined by the value of
conditions in jump instructions. The following cases relate
instructions `,`′ along the same path. If ` immediately
follows `′ in the program order and `′ is not a conditional
jump targeting `, then ` can only execute if `′ does:

If `′+1 = `∧`′ 6= beqz r,`′′, then e` ∈X⇒ e`′ ∈X
When ` is the target of the direct jump `′, then ` can only
execute if `′ does:

If `′ = jmp `, then e` ∈X⇒ e`′ ∈X
If `′ is both the immediate predecessor of ` and a con-
ditional jump beqz r,`′′ targeting a different label, the
dependency requires that r 6= 0, otherwise the jump would
be taken:

If `′+1 = `∧`′ = beqz r,`′′, then e` ∈X⇒ (e`′ ∈X∧val(e`′))

Here, we interpret val(e`′) as a boolean to denote val(e`′) 6= 0.
The dependency requires that r = 0 when `′ is a conditional
jump beqz r,` targeting `. This corresponds to the case
where the jump is taken:

If `′ = beqz r,`, then e` ∈X⇒ (e`′ ∈X∧¬val(e`′))

The predicate PRED (see §II-A) captures the static pre-
decessors of an instruction. In a given execution however,
each event has a unique predecessor. The set X must satisfy
this. Combining the four cases above, a given instance of
an instruction ` is executed if we have that

e` ∈X⇒ ∨
`′∈PRED(`)

CFD(`,`′) (1)

where the CFD (control flow dependency) predicate is
defined as

CFD(`,`′) :=

e`′ ∈X if `′+1 = `∧`′ 6= beqz r,`′′
e`′ ∈X if `′ = jmp `

e`′ ∈X∧val(e`′) if `′+1 = `∧`′ = beqz r,`′′
e`′ ∈X∧¬val(e`′) if `′ = beqz r,`

(2)

Note that (2) does not need to consider the case where
`′+1 = `∧`′ = jmp `′′ because such instructions are not
part of PRED(`).

As we mentioned before, the program in Fig. 2 cannot
access out-of-bounds memory because, before accessing
A, idx is compared to the size of the array. To confirm
this claim, let us analyze the two possible control flow
paths of this program. If idx < A.size, the body of the if
statement is executed. Following (1), this corresponds to
executing every single instruction, i.e. X = {e1, . . . ,e7}. For
this execution, (2) requires that val(e2) 6= 0, otherwise the
jump would have been taken and e3–e6 6∈X. As val(e2) 6= 0,
we have r1 < A.size and A+ r1 is in bounds. This means
the dashed rf relation is not possible because es : sec and e4

access different addresses ((es ,e4) 6∈ loc) and the reads-from
relation requires rf ⊆ loc. The second path has val(e2) = 0.
In this execution the jump is taken and the control flow is
redirected from 3 to 7, i.e. X= {e1,e2,e3,e7}. Since only e1 is
a read event and the addresses of idx and sec are different,
no load can read from out-of-memory. We conclude this
execution does not read from sec either and the whole
program is safe.

B. Speculative Control Flow

Modern processors implement branch speculation. Sup-
pose a conditional jump is fetched but the value of its
condition is not yet known. Instead of stalling, the processor
makes a prediction on which branch will be taken and
continues executing speculatively. Our semantics needs to
consider the effects of the branch predictor and speculative
execution. Instructions following a correct prediction are
eventually committed; mispredictions lead to transient
executions that are eventually rolled back.

Let C ⊆ X represent instructions that are eventually
committed. This set captures the case where instructions are
executed (i) under normal semantics or, (ii) speculatively,
but under a correct prediction. Transient instructions are
represented by the set T⊆X. We consider as executed any
instruction that is either committed or transiently executed
and have that X=C]T.

For each event e` representing a conditional jump at ` we
use proposition bpce` to represent that the predicted branch
direction was correct or the value of the condition known.
Following the always mispredict semantics [23] (which has
been shown sufficient to obtain security guarantees w.r.t. all
branch predictors), we leave bpce` unconstrained.

In §III-A we formalized the properties X must fulfill for
traditional semantics with predicates (1) and (2). We extend
this now to capture the effects of the branch predictor.
The first two cases of (2) neither involve conditional jumps
nor branch predictors and thus remain unchanged. The two
cases below are possible when instructions execute along the
correct control flow (i.e., correct prediction or known value
of the condition) and at least one of them is a conditional
jump. If `′ is not only the immediate predecessor of `,
but also a conditional jump targeting a different label, the

239

dependency requires that r 6= 0 (otherwise the jump would
been taken) and that the branch predictor is correct:

If `′+1 = `∧`′ = beqz r,`′′,
then e` ∈C⇒ (e`′ ∈C∧val(e`′)∧bpce`′)

If `′ is a conditional jump targeting `, the dependency
requires that r = 0 and that the branch direction is correctly
predicted. This corresponds to the case where the jump is
taken:

If `′ = beqz r,`,

then e` ∈C⇒ (e`′ ∈C∧¬val(e`′)∧bpce`′)

In the presence of branch predictors, committed instruc-
tions must follow the correct control flow:

e` ∈C⇒ ∨
`′∈PRED(`)

CFD(`,`′)

The control flow dependency definition from (2) needs to
be updated with the two cases from above as follows:

CFD(`,`′) :=

e`′∈C if `′+1 = `∧`′ 6= beqz r,`′′
e`′∈C if `′ = jmp `

e`′∈C∧val(e`′)∧bpce`′ if `′+1 = `∧`′= beqz r,`′′
e`′∈C∧¬val(e`′)∧bpce`′ if `′ = beqz r,`

We capture dependency between two instructions with
transient execution in a similar way. There are four possible
cases; the first two cases are analogous to the traditional
control flow case. The differences with the remaining
two cases are the following: If `′ is a conditional jump
immediately preceding ` but targeting a different label,
then ` executing transiently implies that `′ was executed
(transiently or not) and the jump should have been taken
but the branch predictor made the wrong guess and thus
altered the control flow:

If `′+1 = `∧`′ = beqz r,`′′,
then e` ∈T⇒ (e`′ ∈X∧¬val(e`′)∧¬bpce`′)

If ` is the target of the conditional jump `′, then ` executing
transiently implies `′ was executed under any semantics and
the jump was taken due to a wrong prediction:

If `′ = beqz r,`,

then e` ∈T⇒ (e`′ ∈X∧val(e`′)∧¬bpce`′)

We capture speculative control flow dependencies with the
constraint

e` ∈T⇒ ∨
`′∈PRED(`)

SCFD(`,`′) (3)

where the speculative control flow dependency SCFD is
defined as

SCFD(l , l ′) :=

e`′∈T if `′+1=`∧`′ 6=beqz r,`′′
e`′∈T if `′ = jmp `

e`′∈X∧¬val(e`′)∧¬bpce`′ if `′+1=`∧`′=beqz r,`′′
e`′∈X∧val(e`′)∧¬bpce`′ if `′ = beqz r,`

Let us analyze the behavior of the program in Fig. 2 in
the presence of speculative execution. The two execution
paths from §III-A are still possible if bpce3

is true, i.e., if the
branch predictor is correct. Additionally, the program has
two executions where the branch predictor is wrong and
some instructions execute transiently:

¬val(e2),¬bpce3
,C= {e1,e2,e3},T= {e4,e5,e6,e7} (4)

val(e2),¬bpce3
,C= {e1,e2,e3},T= {e7}

Note that (4) has ¬val(e2) and thus idx≥ A.size. Because
idx is not in bounds, it is possible that A+ r1 = sec. In
this scenario, both es : sec and e4 access the same address
((es ,e4) ∈ loc) and thus the rf edge is possible, showing that
the secret can be read and the program is vulnerable to
SPECTRE-v1.

C. Speculation Window

Speculative execution attacks are only effective if there is a
large enough speculation window for the transient execution
phase. Thus, we need not only to consider the effects of the
branch predictor, but also the speculation window it creates.
Let sw be the size of the speculation window created by a
branch prediction. The theoretical upper limit of instructions
that can be transiently executed during this window is given
by the size of the reorder buffer. Given a relation r, the
definition below computes the pairs that are related by
composing r with itself at most k times:

r≤k :=
{

r if k = 0
r; r≤k−1 otherwise

We model that an instruction can only execute transiently
during the speculation window using the following constraint
to restrict the set T: po ⊆ po; ([T];po)≤sw−1. The constraint
imposes that the number of po-consecutive transiently
executed events is smaller than sw. Note that T can still have
more than sw elements if several mispredictions occur and
the corresponding transient events are not po-consecutive.
The constraint also directly allows nested speculations within
the same window, which is challenging to achieve with
operational semantics.

D. Mitigating SPECTRE-V1

Serializing instructions can be used to stop the speculation
and mitigate SPECTRE-v1. We model this by enforcing that
fences cannot be executed transiently:∧

` : fence
e` 6∈T (5)

Together, constraints (3) and (5) imply that instructions
following a fence cannot execute transiently unless a new
speculation is started by another conditional jump. For
example, adding a fence after instruction 3 in Fig. 2 forbids
the execution in (4) even in the presence of speculation.
This shows that our semantics does not only allow to
detect SPECTRE-v1 attacks, but also to prove that common
mitigations work.

240

e1 : load r0,A.size

e2 : load r1,idx

e3 : store idx,r1&(r0 −1)

e4 : load r2,idx

e0 : i ni t

e5 : load r3,A+ r2

e6 : load r4,B+ r3

e7 : load r5,temp

e8 : store temp,r4&r5

idx = idx & (A.size - 1);
temp &= B[A[idx]]; po

po

po

po

po

po

po

rf
rf

com= co∪ rf∪ (rf−1;co)
acyclic com∪po

In-Order

Fig. 4. Safe array access due to index masking.

IV. INSTRUCTION REORDERING

In this section, we show how to model the logical
reordering of instructions (e.g., due to aliasing or value
forwarding), the reason underlying SPECTRE-v4. We begin
with explaining in-order execution as a baseline (§IV-A) and
then present our model for store-to-load forwarding (§IV-B)
and possible defenses (§IV-C). Next, we introduce our model
for predictive store forwarding (§IV-D). Finally, we show how
CAT naturally handles the interaction between speculation,
concurrency, and weak memory models (§IV-E) due to the
composability of axiomatic models (§IV-F).

A. In-order Execution

In the simplest model of execution, the processor fetches
an instruction, stalls until its operands are available, and
finally executes. This model of computation, called in-order
execution, is straightforward to understand and analyze:
instructions are executed one-by-one following the program
order. Consider the program in Fig. 4. Since idx is masked
using A.size, accessing array A is safe. This safe behavior is
captured by the candidate execution where event e5 reads
from the initial values of the array and there are no out-of-
bounds accesses. Since this program has only one control
flow path (regardless of whether the processor supports
speculative control flow or not), this is the only possible
execution of the program under in-order semantics.

Our CAT model of the in-order semantics is shown
in Fig. 4. As usual, rf edges only relate write-read pairs
accessing the same address. The model defines a causal
dependency com∪po and forces it to be acyclic (otherwise
instructions could not be scheduled to satisfy their depen-
dencies). From rf−1;co we have that if a read r gets its
value from a write w (rf−1(r, w)), then any other write w ′
coming after w in the coherence order (co(w, w ′)) must
come after r (rf−1;co(r, w ′)), otherwise r would get its value
from w ′ instead. Setting com to be acyclic imposes that
there is a single view of how instructions hit memory. Since

e1 : load r0,A.size

e2 : load r1,idx

e3 : store idx,r1&(r0 −1)

e4 : load r2,idx

e0 : i ni t

e5 : load r3,A+ r2

e6 : load r4,B+ r3

e7 : load r5,temp

e8 : store temp,r4&r5

es : sec

idx = idx & (A.size - 1);
temp &= B[A[idx]]; po

po

po

po

po

po

po

rf

co

rf
fence

com= co∪ rf∪ (rf−1;co)

win = [W];po; ([W];po)≤sw′−1; [R]
ppo = po\(W×R)∪win∪ fence

acyclic com∪ppo

Store-to-Load Forwarding

Fig. 5. SPECTRE-v4 – impossible under in-order semantics, but possible
under store-to-load forwarding semantics.

instructions are executed in order, po must be part of the
causal dependency. All these imply event e4 must read from
the last store to that address (here e3), otherwise there would
be a cycle. Having rf(e3,e4) enforces that r2 gets the masked
value of idx. Because of the masking, we have r2 < A.size.
Finally, since the address of instruction e5 is in-bounds, e5

can only read the initial value of the array.
Instruction e3 cannot directly read the initial value of

idx (represented here by the e0 : init event). Reading the
initial (not masked) value of idx, it would be possible for
e5 to access the secret. The combination of rf and co given
in Fig. 5 forms the candidate execution representing this

unsafe scenario, but it forms a cycle of dependencies e4
rf−1

−→
e0

co−→ e3
po−→ e4. Since the CAT model forbids cycles involving

those relations, this unsafe scenario is not possible and we
can conclude the program is safe under in-order semantics.

B. Store-to-load Forwarding

Modern processors use a combination of speculative and
out-of-order execution optimizations, so some of the guar-
antees from in-order execution do not hold. Although not
observable at the architectural level, the microarchitecture
allows more executions, which might leave traces in the
microarchitectural state. In Fig. 5, if the address used by e3

is not yet known, the processor might predict that e3 and
e4 will not alias and speculatively execute e4 before e3. This
is the basis of SPECTRE-STL (one instance of SPECTRE-v4).
Our CAT model for store-to-load forwarding still imposes a
single view of how instructions hit memory (com is acyclic),
but uses a weaker notion of preserved program order (ppo)
than in-order semantics (which uses the whole po) and thus
allows the SPECTRE-STL behavior. There are three possible
scenarios where the order of events is preserved by ppo:

• Events are in program order, but they are not a write-
read pair.

241

• They are “far away” in the program order in such a
way that events in between fill the store buffer.

• The corresponding instructions are separated by a fence
and thus the events are related by a fence edge.

The relation po\(W×R) tells us that some read events can
be speculatively executed before a po-previous write. This is
allowed, e.g., if the processor knows or predicts the addresses
do not alias. Apart from write-read pairs, our CAT model
preserves every other pair of events in program order since
they are irrelevant to model store-to-load forwarding.

However, not all write-read pairs can be reordered. Once
a write event has been committed (it is no longer in the
store buffer), its address is known, alias speculation is
not possible, and the store cannot be passed over. The
size of the store buffer defines a speculation window that
can be modeled in CAT by tracking the number of write
events between the potentially reordered pair. To model
the speculation window, we preserve the program order
between a write-read pair if the number of write events
between the pair fills the buffer, forcing to retire and commit
the write event. We model this in CAT using the relation
win = [W];po; ([W];po)≤sw

′−1; [R] where sw′ is the size of the
store buffer, with sw′ ≥ 1. Note that sw′ can differ from the
speculation window sw created by the branch predictor. For
r≤k to be well defined, k ≥ 0 must hold. Relations [W] and [R]
are the identity relation restricted to write and read events
respectively, i.e., [W] = {(e,e) | e ∈W} and [R] = {(e,e) | e ∈R}.
Using [W] on the left of the composition guarantees that the
first event in every pair is a write (those not to be reordered).
Analogously, using [R] on the right forces the second event
to be a read. The inner part po; ([W];po)≤sw

′−1 represents
the writes between the potentially reordered pair that fit in
the buffer. For example, if the size of the store buffer is two,
win reduces to [W];po; [W];po; [W];po; [R], which relates all
write-read pairs in po for which there are at most two write
events in between.

Since fence instructions stop speculation, the ppo also
preserves the order of events coming from instructions for
which there is a fence in between. If we add a fence between
instructions 3 and 4 in the µASM program for Fig. 5, this
results in the dashed fence edge being part of the graph.

The preserved program order ppo is defined as the union
of the three relations described above. Let us see how this
semantics affect the possible behavior of the program. The
pair (e3,e4) is not part of ppo: it is a write-read pair from
po which can be reordered because the buffer might not be
full and there are no fences in between (even if the buffer
was full, the processor can decide to commit some of the
buffered events, making room for e3). Since it is possible
to reorder e3 and e4 and because the initial value of idx
is controlled by the attacker, the value loaded to r2 can
be bigger than A.size. The address of e5 depends on r2,
allowing to potentially read out of bounds and access the
secret. The candidate execution shown in Fig. 5 represents
this scenario and it is consistent according to our CAT model,
i.e., our semantics models SPECTRE-STL.

e1 : load r0,A.size

e2 : load r1,idx

e3 : r2 ← r1&(r0 −1)e0 : i ni t

e4 : load r3,A+ r2

e5 : load r4,B+ r3

e6 : load r5,temp

e7 : store temp,r4&r5

register ridx asm ("r2");
ridx = idx & (A.size - 1);
temp &= B[A[idx]]; po

po

po

po

po

po

rf

Fig. 6. SPECTRE-v4 – store replaced by register assignment (safe).

C. Mitigating SPECTRE-STL

At the software level, there are at least two possible ways
to mitigate SPECTRE-STL. One alternative is to add a fence
instruction resulting in the dashed fence edge in Fig. 5. Since
pairs of events related by fence are part of the ppo order,

adding this edge results in the cycle e4
rf−1

−→ e0
co−→ e3

fence−→ e4,
which is not allowed by the CAT model. This shows that
the mitigation makes the program safe under our semantics.
Another alternative is given in Fig. 6. Here, the compiler is
instructed to store the masked value in a register, resulting
in a different assembly program. Since the attack relies on
bypassing a store to memory, but the masking is now done
by a local computation using only registers, our semantics
guarantees that e4 will get the masked value in r2 and thus
the access to A will be in bounds.

D. Predictive Store Forwarding

The SPECTRE variant from §IV-B exploits the fact that
processors may predict that the addresses of two instructions
do not alias. Some processors implement the opposite,
allowing them to predict that two addresses alias even if they
finally do not match. This type of prediction was used as
the basis of a theoretical new version of SPECTRE-v4 [9], [22]
which we denote SPECTRE-PSF. AMD recently confirmed
that its Zen 3 process is vulnerable to this attack [19]. We
present a CAT model allowing this kind of prediction and
modeling such an attack.

The unsafe scenario is shown in Fig. 7. Note that this
program accesses array C using an attacker-controlled index
idx. Even if the index is compared with the size of C,
the program is vulnerable to SPECTRE-v1 as we have seen
in §III-B. Unfortunately, even if we use the mitigation
from §III-D to guarantee that e4 is not transiently executed,
the program is still vulnerable in the presence of alias
speculation. Consider the scenario where idx is 1. Despite
having different offsets, the processor can speculate that e3

and e4 alias. In this scenario, register r2 gets the value 64
which is then multiplied by 1 (the value of idx) to compute
the address of e5. Since the size of A is smaller than 64,

242

e1 : r1 ← idx< C.size

e2 : beqz r1,⊥

e3 : store C+0,64

e4 : load r2,C+idx

e5 : load r3,r2 ∗idx

e6 : load r4,A+ r3

e7 : load r5,B+ r4

e8 : load r6,temp

e9 : store temp,r5&r6

es : sec

uint8_t A[16];
uint8_t C[2] = { 0,0 };
if (idx < C.size) {

C[0] = 64;
temp &= B[A[C[idx] * idx]];

}

po

po

po

po

po

po

po

po

fence srf

rf

scom= co∪srf∪ (srf−1;co)
acyclic scom∪po

Predictive Store Forwarding

Fig. 7. SPECTRE-v4 – predictive store forwarding (unsafe).

instruction e6 performs an out-of-bounds access allowing
to read the secret.

Our CAT model for predictive store forwarding is given
in Fig. 7. The formalization closely follows the in-order
semantics with the exception that instead of using relation
rf, we use a new relation that supports alias speculation.
While events related by rf must access the same address, srf
relaxes this and only imposes that the addresses of those
two instructions must alias:

srf⊆ (W×R)∩alias

∀r ∈R : ∃!w ∈W : srf(w,r)

srf(w,r) ⇒ val(w) = val(r)

We leave the alias relation unconstrained to support arbitrary
predictors, i.e., alias := {(m1,m2) | m1,m2 ∈M}.

The candidate execution from Fig. 7 fulfills the assertion
of our predictive store forwarding CAT model showing that
the program is vulnerable to SPECTRE-PSF.

Since fence instructions stop speculation, we must enforce
that if two events are related by srf and there is a fence
between the corresponding instructions, then the events
must access the same address, i.e., srf∩ fence ⊆ loc. Note
that if the dashed fence edge in Fig. 7 is part of the graph,

the edge e3
srf→ e4 would not be allowed because C+0 6= C+idx

(in this scenario idx = 1), forcing e4 to read its value from
e0 : init and forbidding e6 to access sec.

E. Concurrency and Weak Memory Models

While all the attacks we described previously have an
inherent notion of concurrency (the attacker resides in a
sandbox different from the victim), so far we only considered
single-threaded victims. Besides branch misprediction, the
Intel Optimization Reference Manual [25] lists machine clear
(i.e., data misprediction) as a category of bad speculation.
One possible cause of such machine clears is memory

ordering in the presence of concurrency. Intel and AMD
processors implement the Total-Store-Order memory model
in which all cores see operations in program order except in
one case: a store followed by a load on a different address
may be reordered. This is because cores use local buffers
to hide the latency of store operations.

The CAT model for TSO [36] is given in Fig. 8. The
assertion acyclic com∪ (po∩ loc) enforces local consistency
within the same core. Due to the use of buffers, only the
external reads-from relation is part of the global view. Here,
rfe is the subset of rf such that the events from the pair
belong to different cores. Relation po-tso keeps all pairs in
po except write-read pairs (which from a global point of
view might be reordered), unless there is a fence instruction
between them.

Consider the concurrent program in Fig. 8 running on the
TSO memory model. Here we assume µASM is extended with
threads running on different cores: a program is composed
by a set of threads and a thread is a sequence of instructions.
The only impact this change has in the CAT semantics is
that we must guarantee po only relates events within the
same thread. The program shows a message passing pattern
where if thread_1 observes x = 1, then it should also observe
y = 1. Since the TSO semantics guarantees r0 ∗ (r0 − r1) is
always 0, the access to A is safe. The CAT model captures
this since it forbids the (unsafe) candidate execution where

r0 = 1∧r1 = 0 due to the cycle e1
po−→ e2

rf−1 ;co−→ e6
po−→ e7

rfe−→ e1.
Ragab et al. [35] noticed that if e1 is a slow load (due to

a cache miss) and e2 a fast one (cache hit), event e2 can be
transiently executed before e1. Suppose that while the load
from x is pending, both stores from thread_2 are executed
as represented by the candidate execution in Fig. 8. If this
is the case, the coherence controller notifies that the values
of x and y have changed, leading to a memory ordering
machine clear which guarantees that the behavior is not
observable at the architectural level. Abusing this kind of
behavior is non-trivial due to the strict synchronization
requirements, however there exists a speculation window
which could be use to mount an attack.

We can use CAT to capture this speculation window by
replacing (R×M) with (R×W) and adding addr to the union
in the definition of po-tso. These changes allow some read-
read pairs to be reordered. The first assertion still guarantees
the reordering is not possible if both reads access the same
address; and by adding addr to po-tso, we forbid to revert
the order when the address of the second read depends on
the value loaded by the first one. Since e1,e2 neither access
the same address nor have an address dependency, with this
modification, (e1,e2) 6∈ po-tso and the candidate execution
becomes consistent. It is then possible that r0 ∗ (r0 − r1) 6= 0
and thus, e3 can read the secret if A+1 = sec.

F. Composability of Axiomatic Models

One of the main advantages of axiomatic models is that
they are easily composable. Any of the control flow semantics
in §III can be combined with any of the CAT models in this

243

e1 : load r0, x

e2 : load r1, y

e3 : load r2,A+ r0 ∗ (r0 − r1)

e0 : i ni t

e6 : store r2, y

e7 : store r3, x

e5 : r3 ← 1

e4 : r2 ← 1

es : sec

uint8_t A[1];

thread_1:
r0 = x;
r1 = y;
temp &= B[A[r1-r0]];

thread_2:
y = 1;
x = 1;

po

po

po

po

po
rf

rf
−1 ;co

rfe

rf

com= co∪ rf∪ (rf−1;co)
com-tso= co∪ rfe∪ (rf−1;co)
po-tso= (po∩ ((R×M)∪ (W×W)))∪ fence

acyclic com∪ (po∩add)
acyclic com-tso∪po-tso

TSO

Fig. 8. Transient execution due to invalid memory ordering.

section. For instance, if an attack requires to mistrain both
the branch predictor and the memory alias predictor, this
would be detected by combining the SCFD definition in §III-B
and the Store-to-Load Forwarding CAT model in Fig. 5.

V. IMPLEMENTATION

We use Bounded Model Checking (BMC) parametrized by
our axiomatic semantics defined as CAT models for verifying
software isolation. All predicates from Sections III and IV
can be encoded using first order logic over the domain of
booleans and integers. In fact, a compact BMC encoding
to test reachability using the CAT language with traditional
control flow was developed in [17], [21]. We implemented
KAIBYO1, a prototype tool to test software isolation, as an
extension of DARTAGNAN2. Apart from the definition of the
new CAT models, we added an x86 parser and the speculative
control flow encoding from §III-B, we modified the property
being checked (from reachability to software isolation), and
we implemented the new srf relation.

KAIBYO takes as inputs a program written in X86 assembly,
a CAT model, an unrolling bound k and an address sec.
It generates a formula which is satisfiable if and only if
there is a consistent execution (according to the CAT model
and where loops where unrolled up to k iterations) where
some read event reads from es : sec. As any other BMC
technique, we only analyze bounded (finite) executions of
programs containing loops. Thus, KAIBYO only provides
security guarantees up to the given bound. Nevertheless,
any transient execution gadget found by the tool can be
exploited under the conditions laid out in §II-E.

VI. EVALUATION

We use KAIBYO to evaluate our approach and answer the
following research questions:

RQ1: Do our semantics cover known attacks?

1https://github.com/unibw-patch/Kaibyo
2https://github.com/hernanponcedeleon/Dat3M

RQ2: Do our semantics prove effectiveness of proposed
countermeasures?

RQ3: What effort is required to support new semantics in
the analysis?

RQ4: How complex are the generated formulae for state-of-
the-art SMT solvers?

In the following, we first discuss our experimental setup
(§VI-A) and then evaluate the ability of our models to capture
SPECTRE variants (§VI-B), the flexibility of the tool to support
different semantics (§VI-C), and the performance of SMT
solvers on the generated formulae (§VI-D).

A. Experimental Setup

We compare the results of KAIBYO against SPECTEC-
TOR [23] and BINSEC [16] using the following benchmarks

(PHT) Fifteen benchmarks by Kocher [27] exploiting branch
prediction.

(STL) Thirteen benchmarks from the BINSEC repository [14]
exploiting store-to-load forwarding.

(PSF) The example program from Fig. 7 (adapted from [19])
exploiting predictive store forwarding.

All benchmarks are written in C and compiled using GCC
8.3.0. The results of our evaluation are given in Fig. 9. The
expected result w.r.t software isolation when no mitigation
is used (NONE column) is either SAFE (+) or UNSAFE (-). For
each benchmark there is a variant (FENCE column) using
a fence instruction to stop branch or alias speculation; all
such variants are SAFE. A 4 entry means the tool returns
the corrected expected result. We show B if the tool cannot
analyze the program and detail the reasons below.

B. Precision of the CAT Models

All three tools support branch prediction and correctly
report all PHT benchmarks as vulnerable to SPECTRE-v1.
Both KAIBYO and SPECTECTOR also prove that adding fences
after each conditional jump stops speculation. BINSEC

has no support for fence instructions and thus it cannot
analyze the benchmarks using the mitigation. KAIBYO returns
SAFE for all benchmarks except PHT-05 which contains an
input dependent loop. In the presence of input dependent
loops, BMC techniques can find violations (see NONE

column), but they cannot prove programs correct, because
loops cannot be fully unrolled. While the same limitation
applies to SPECTECTOR and BINSEC (which are based on
symbolic execution), they return SAFE even if the analysis
is incomplete. KAIBYO returns UNKNOWN when it cannot
find a violation up to the given bound; at the same time,
it cannot prove the bound is large enough to explore all
executions, hence the B entry in the table.

SPECTECTOR has no support for store-to-load forwarding
and thus it cannot analyze any of the STL benchmarks. A
stack overflow occurs when running KAIBYO to generate the
formula for STL-09 which requires a large (>200) unrolling
bound. KAIBYO proves that adding fences between reordered
pairs makes the programs SAFE. BINSEC cannot analyze the
mitigated benchmarks due to not supporting fences. Both

244

KAIBYO SPECTECTOR BINSEC

MITIGATION � NONE FENCE NONE FENCE NONE FENCE

PHT-01 (–) 4 4 4 4 4 B

PHT-02 (–) 4 4 4 4 4 B

PHT-03 (–) 4 4 4 4 4 B

PHT-04 (–) 4 4 4 4 4 B

PHT-05 (–) 4 B 4 4 4 B

PHT-06 (–) 4 4 4 4 4 B

PHT-07 (–) 4 4 4 4 4 B

PHT-08 (–) 4 4 4 4 4 B

PHT-09 (–) 4 4 4 4 4 B

PHT-10 (–) 4 4 4 4 4 B

PHT-11 (–) 4 4 4 4 4 B

PHT-12 (–) 4 4 4 4 4 B

PHT-13 (–) 4 4 4 4 4 B

PHT-14 (–) 4 4 4 4 4 B

PHT-15 (–) 4 4 4 4 4 B

STL-01 (–) 4 4 B B 4 B

STL-02 (–) 4 4 B B 4 B

STL-03 (+) 4 4 B B 4 B

STL-04 (–) 4 4 B B 4 B

STL-05 (–) 4 4 B B 4 B

STL-06 (–) 4 4 B B 4 B

STL-07 (–) 4 4 B B 4 B

STL-08 (–) 4 4 B B 4 B

STL-09 (+) B B B B 4 B

STL-10 (–) 4 4 B B 4 B

STL-11 (–) 4 4 B B 4 B

STL-12 (+) 4 4 B B 4 B

STL-13 (–) 4∗ 4 B B 4∗ B

PSF-01 (–) 4 4 B B B B

Fig. 9. Evaluation with different SPECTRE behaviors. Expected result when
no mitigation is used is SAFE (+) or UNSAFE (–). The result of the tool is
correct 4 or it cannot analyze the program B.

KAIBYO and BINSEC prove that instructing the compiler to
use registers instead of store instructions (as in Fig. 6) makes
STL-03 and STL-12 SAFE. Both tools agree in all remaining
results except for STL-13. The reason is that, as we describe
below, the tools do not consider the same threat model.

The original C code of STL-13 and the corresponding
X86 assembly are given in Fig. 10. After masking the index
and accessing A[ridx], function load_value moves the
loaded value to the stack and back before returning. If
the instruction mov eax, [esp+15] happens before the
previous store (i.e. they are reordered), then it can read
from uninitialized memory. If the value from the initialized
memory is bigger than the size of B, then the access in
case_13 to B[eax] is out of bounds and can access the
secret. This access brings the secret to the cache and
this, according to our threat model from §II-E, might have
security consequences; thus KAIBYO reports it as UNSAFE.
However, even if the secret is loaded into edx, it does not
influence the control flow (e.g., conditional branches) or
memory addresses (e.g., offsets into arrays). Therefore the
program does not violate speculative constant time, the
property BINSEC verifies.

KAIBYO is able to detect that PSF-01 from Fig. 7 is
vulnerable to SPECTRE-v1. It also reports that even if adding
a fence after the conditional jumps stops the control
flow speculation, the program remains vulnerable due to
predictive store forwarding. Finally, by inserting a unique
fence between instructions 3 and 4, to stop both branch and
alias speculation, it proves the program SAFE. To the best
of our knowledge, KAIBYO is the only tool having support
for predictive store forwarding.

The results above answer RQ1 and RQ2 by showing that
CAT can be used to define semantics covering SPECTRE-v1
and v4 and proving that common mitigations work.

C. Flexibility of the Analysis

To answer RQ3, we report on our development efforts to
support all vulnerabilities discussed in this paper. KAIBYO is
based on the tool DARTAGNAN [18] which implements the
traditional control flow encoding from §III-A and supports
the core of the CAT language from Fig. 3. DARTAGNAN

verifies Boogie code [30] and most of our development
effort was spent in parsing X86 assembly and encoding
the stack. Extending the tool to support speculative control
flow required around 100 lines of Java code. Adding support
to store-to-load forwarding and memory order machine
clear only required to develop the CAT models from Fig. 5
and the variation of TSO described in §IV-E. The tool then
automatically detected both UNSAFE behaviors. Detecting
the attack based on predicative store forwarding required
implementing the axioms of the new relation srf. The SMT
encoding of srf enforces that both events should alias instead
of access the same address, as in rf. To implement the alias
relation we used an unconstrained boolean variable for every
pair of memory events.

D. SMT Performance

To answer RQ4, we compare the performance of four
different SMT solvers (Z3, CVC4, YICES2 and MATHSAT5)
on the generated formulae from Fig. 9. The results are given
in Fig. 11. Times are shown in seconds using a logarithmic
scale. We used a 90 min timeout. For entries B in the table,
we treat the result as a timeout. Since SMT solvers tend to
perform differently for SAT and UNSAT instances, we divided
the results in two. The top of the figure shows the results for
the original benchmarks (no mitigation). All formulae are
SAT except STL-03 and STL-12 (no formula is generated for
STL-09 due to a stack overflow). The bottom of the figure
present the results for the benchmarks in the FENCE column
which are all UNSAT instances.

For the SAT instances YICES2 generally wins, with Z3 and
MATHSAT5 being competitive. CVC4 shows always the worst
performance for these SAT formulae, sometimes three orders
of magnitude slower than the other solvers. However, CVC4
shows the overall best performance for the UNSAT instances.
In particular, for benchmarks STL and PSF where reasoning
about instruction reordering is needed, most solvers timeout.

245

uint8_t load_value(uint32_t idx) {
register uint32_t ridx asm ("edx");
ridx = idx & (A.size - 1);
uint8_t to_leak = A[ridx];
return to_leak;

}

void case_13(uint32_t idx) {
register uint8_t to_leak asm ("edx");
to_leak = load_value(idx);
temp &= B[to_leak * 512];

}

load_value:
sub esp , 16
mov eax , A.size
sub eax , 1
and eax , [esp +20]
mov edx , eax
mov eax , edx
movzx eax , A[eax]
mov [esp+15], al
movzx eax , [esp +15]
add esp , 16
r e t

case_13:
push [esp+4]
c a l l load_value
add esp , 4
mov edx , eax
mov eax , edx
movzx eax , al
movzx edx , B[eax]
movzx eax , temp
and eax , edx
mov temp , al
r e t

Fig. 10. A variant of SPECTRE-v4 from [14] written in C (left) and compiled to X86 with GCC 8.3.0 (right).

CVC4 is able to solve all such benchmarks except STL-01
for which MATHSAT5 has the best performance.

The bottom of the figure shows a clear difference in the
search space (which the solver needs to completely explore
since these instances are UNSAT) of PHT w.r.t STL and PSF.
While there are four possible outcomes for branch prediction
(following the true or false branch combined with correctly
or incorrectly predicted), alias misprediction allows a load
to draw data from any prior store, making the search space
much bigger. This suggests that it is beneficial for tools to
have a portfolio of SMT backends; this is possible using
libraries like JavaSMT, for instance [5], [26].

The solving times of SPECTECTOR and BINSEC for each of
the benchmarks in Fig. 9 are between 0.1 and 10 seconds,
meaning they are one or two orders of magnitude faster
than KAIBYO. This is not surprising since those tools are
specialized for concrete models and thus less flexible. Also,
despite branch misprediction and instruction reordering,
the benchmarks have few execution, favoring symbolic
execution approaches (which use a simple SMT query for
each execution) over BMC ones (which use a complex SMT
query for all executions).

VII. DISCUSSION

KAIBYO analyzes programs w.r.t software isolation. Cur-
rently, it cannot analyze non-interference-style properties,
and our evaluation shows the consequences of this. KAIBYO

considers a program unsafe if it accesses the secret, even if
this does not violate, e.g., constant time, because it neither
influences the control flow nor the memory addresses. As
we discussed in §II-F, given a notion of observation for
axiomatic models, our semantics could be used to also
verify non-interference-style properties. Since this requires
reasoning about pairs of executions, doing so would affect
the performance of our implementation, however.

KAIBYO demonstrates that it is possible to translate
axiomatic semantics into a concrete analysis tool, but it
is a proof-of-concept implementation with clear limits
to scalability. Improving performance of tools based on
axiomatic semantics is an active area of research; the weak
memory model community recently made progress on
scalable non-BMC tools based on axiomatic semantics [29].

VIII. RELATED WORK

This section describes the work that has been done on
security foundations since the disclosure of SPECTRE. Formal
microarchitectural models are capable of representing out-of-
order and speculative behavior. Side channels are modeled
by different notions of observations which over-approximate
the attacker capabilities and abstract from the memory
subsystem and cache. Security guarantees are formalized as
properties comparing such observations under two different
semantics: a reference execution model (generally in-order
execution) and a target execution model (e.g., speculative
and/or out-of-order executions).

Currently, the target execution model of Guarnieri et
al. [23] only covers branch speculation and captures
SPECTRE-v1 behaviors by the notion of speculative non-
interference. SPECTECTOR is a symbolic execution tool for
testing speculative non-interference. To extend its semantics
to other SPECTRE versions, one would have to adapt the
notion of microarchitectural state. Cauligi et al. extend
constant time in the presence of speculation, leading to the
new notion of speculative constant time [9]. Even though
their semantics models most of the behaviors underlying
SPECTRE (including indirect jumps, return stack buffers and
predictive store forwarding), their analysis tool PITCHFORK

does not support any of these. Doing so “would require to
generate a prohibitively large number of possible schedules”.
Guanciale et al. [22] define an out-of-order execution model
using microarchitectural instructions rather than the ISA.
They show traditional constant time (which is defined at
the ISA level) is not secure enough even in the absence of
speculation and propose a constant time property for the out-
or-order execution model. The proposed semantics is very
expressive and even allows to mispredict arbitrary values.
Unfortunately, there is no tool based on such semantics.

The approaches above can be formalized as hardware-
software contracts specifying which program executions an
attacker can differentiate [24]. On the one side, contracts
provide security foundations to build tools that help software
developers write microarchitecturally secure programs. On
the other side, for hardware developers, contracts are spec-
ifications that describe allowed microarchitectural effects

246

PHT-0
1

(–
)

PHT-0
2

(–
)

PHT-0
3

(–
)

PHT-0
4

(–
)

PHT-0
5

(–
)

PHT-0
6

(–
)

PHT-0
7

(–
)

PHT-0
8

(–
)

PHT-0
9

(–
)

PHT-1
0

(–
)

PHT-1
1

(–
)

PHT-1
2

(–
)

PHT-1
3

(–
)

PHT-1
4

(–
)

PHT-1
5

(–
)

STL-0
1

(–
)

STL-0
2

(–
)

STL-0
3

(+
)

STL-0
4

(–
)

STL-0
5

(–
)

STL-0
6

(–
)

STL-0
7

(–
)

STL-0
8

(–
)

B
STL-0

9
(+

)

STL-1
0

(–
)

STL-1
1

(–
)

STL-1
2

(+
)

STL-1
3

(–
)

PSF-0
1

(–
)

10−2

10−1

100

101

102

103

104

Timeout: 90 min

T
im

e
(s

ec
s)

PHT-0
1

(+
)

PHT-0
2

(+
)

PHT-0
3

(+
)

PHT-0
4

(+
)

B
PHT-0

5
(+

)

PHT-0
6

(+
)

PHT-0
7

(+
)

PHT-0
8

(+
)

PHT-0
9

(+
)

PHT-1
0

(+
)

PHT-1
1

(+
)

PHT-1
2

(+
)

PHT-1
3

(+
)

PHT-1
4

(+
)

PHT-1
5

(+
)

STL-0
1

(+
)

STL-0
2

(+
)

STL-0
3

(+
)

STL-0
4

(+
)

STL-0
5

(+
)

STL-0
6

(+
)

STL-0
7

(+
)

STL-0
8

(+
)

B
STL-0

9
(+

)

STL-1
0

(+
)

STL-1
1

(+
)

STL-1
2

(+
)

STL-1
3

(+
)

PSF-0
1

(+
)

10−2

10−1

100

101

102

103

104

Timeout: 90 min

T
im

e
(s

ec
s)

Z3

YICES2

CVC4

MATHSAT5

Fig. 11. Benchmarks from columns NONE (top) and FENCE (bottom). Labels show if the formula is SAT (–) or UNSAT (+). KAIBYO could not fully unroll
the program (PHT-05) or generate the formula (STL-09) for entries marked with B.

without enforcing a specific implementation. Contracts are
2-hypersafety properties [11] and thus require appropriate
techniques to efficiently model pairs of traces. RelSE is
a promising approach to extend symbolic execution for
analyzing security properties of two execution traces [15].
In fact, an extension to RelSE has recently been proposed
to test speculative constant time [16].

We were not the first to provide insights about the relation
between SPECTRE attacks and the weak memory models
which characterize modern hardware. Disselkoen et al. use
pomsets (where edges also represent dependencies) to model
executions [20]. The novel aspect of this model is that
events have preconditions which can captured failed branch
predictions. Their semantics cover SPECTRE-v1 and models
out-of-order executions, but it is not clear if they capture
SPECTRE-v4. There is also no tool based on this semantics.
CHECKMATE [37] uses graphs to capture the subtle orderings
of hardware execution events when programs run on a
microarchitecture. Their “micro-architecturally happens-
before” notion is based on po, rf and co, but their executions
are less abstract than ours: a single instruction is represented
by many events modeling fetching, execution, commit and
completion. They even explicitly model when a value is
brought to and flushed from the L1 cache. One of the
novelties of their work is the use of graphs to represent
exploit patterns like FLUSH+RELOAD and PRIME+PROBE. It
remains an open question if CAT can be use to capture such
patterns. Closest to our work are Colvin and Winter [13].
They integrate speculative control flow within a more
general verification framework using IMP-ro, a language

for reasoning about weak memory models. While IMP-ro
can handle weak memory models such as TSO, POWER and
ARM [12], their paper focuses on sequential consistency
instead of exploring the interaction between speculation
and weak memory models as we did in §IV-E. Finally, CAT
has seen far wider adoption based on the large body of
literature [3], [4], [6], [33], [36] and its use in industry [2].

IX. CONCLUSION

We studied the use of axiomatically defined semantics in
the presence of speculative and out-of-order execution, a
domain that, contrary to its operational counterpart, had
not been sufficiently explored. We showed that CAT, a
domain specific language initially developed to clarify the
concurrency semantics of weak memory models, can also
be used to analyze the consequences of microarchitectural
optimizations. Challenging aspects of speculative execution,
such as speculation nesting, are naturally modeled using our
framework. Although our axiomatic BMC-based prototype
is slower than its operational symbolic execution-based
counterparts, the pluggable abstract semantics allow for a
cleaner and more general implementation that can easily
accommodate new models, as demonstrated by the ability
to quickly add support for new attacks such as that based
on memory ordering machine clears [35].

ACKNOWLEDGMENTS

We would like to thank our anonymous shepherd and the
anonymous reviewers for their comments and feedback. We
would also like to thank Sébastien Bardin, Lesly-Ann Daniel,
and Marco Guarnieri for valuable discussions on this work.

247

REFERENCES

[1] Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics
of the weak consistency model specification language CAT. CoRR,
abs/1608.07531, 2016.

[2] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard,
and Luc Maranget. Armed cats: Formal concurrency modelling at
arm. ACM Trans. Program. Lang. Syst., 43(2):8:1–8:54, 2021.

[3] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan S. Stern. Frightening small children and disconcerting grown-
ups: Concurrency in the Linux kernel. In Proc. Int. Conf. Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pages 405–418. ACM, 2018.

[4] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory.
ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.

[5] Daniel Baier, Dirk Beyer, and Karlheinz Friedberger. JavaSMT 3:
Interacting with SMT solvers in Java. In Proc. Int. Conf. Computer Aided
Verification (CAV), volume 12760 of LNCS, pages 195–208. Springer,
2021.

[6] Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling SC
atomics in C11 and OpenCL. In Proc. Symp. Principles of Programming
Languages (POPL), pages 634–648. ACM, 2016.

[7] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution attacks
and defenses. In Proc. 28th USENIX Security Symposium (USENIX
Security), pages 249–266, 2019.

[8] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. SoK: Practical foundations for Spectre defenses. CoRR,
abs/2105.05801v2, 2021.

[9] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean M.
Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time
foundations for the new spectre era. In Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), pages
913–926. ACM, 2020.

[10] Stephen Chong, Joshua D. Guttman, Anupam Datta, Andrew C. Myers,
Benjamin C. Pierce, Patrick Schaumont, Tim Sherwood, and Nickolai
Zeldovich. Report on the NSF workshop on formal methods for
security. CoRR, abs/1608.00678, 2016.

[11] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal
of Computer Security, 18(6):1157–1210, 2010.

[12] Robert J. Colvin and Graeme Smith. A wide-spectrum language for
verification of programs on weak memory models. In Proc. 22nd
Int. Symp. on Formal Methods (FM), volume 10951 of LNCS, pages
240–257. Springer, 2018.

[13] Robert J. Colvin and Kirsten Winter. An abstract semantics of
speculative execution for reasoning about security vulnerabilities.
In Formal Methods. FM 2019 Int. Workshops, volume 12233 of LNCS,
pages 323–341. Springer, 2019.

[14] Lesly-Ann Daniel. Binsec/haunted benchmark. https://github.com/
binsec/haunted_bench, 2021. Last accessed: 10.12.2021.

[15] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/Rel:
Efficient relational symbolic execution for constant-time at binary-
level. In Proc. IEEE Symp. Security and Privacy (S&P), pages 1021–1038.
IEEE, 2020.

[16] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Hunting the
haunter — Efficient relational symbolic execution for Spectre with
haunted RelSE. In Annu. Network and Distributed System Security
Symp. (NDSS), 2021.

[17] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland
Meyer. Portability analysis for weak memory models. PORTHOS: one
tool for all models. In 24th Int. Symp. Static Analysis (SAS), volume
10422 of LNCS, pages 299–320. Springer, 2017.

[18] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland
Meyer. Dartagnan: Bounded model checking for weak memory
models (competition contribution). In Proc. 26th Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 12079 of LNCS, pages 378–382. Springer, 2020.

[19] Advanced Micro Devices. Security analysis of AMD predictive
store forwarding. https://www.amd.com/system/files/documents/
security-analysis-predictive-store-forwarding.pdf, 2020.

[20] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely.
The code that never ran: Modeling attacks on speculative evaluation.
In Proc. IEEE Symp. Security and Privacy (S&P). IEEE, 2019.

[21] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo
Heljanko, and Roland Meyer. BMC for weak memory models: Relation
analysis for compact SMT encodings. In Proc. 31th Int. Conf. Computer
Aided Verification (CAV), volume 11561 of LNCS, pages 355–365.
Springer, 2019.

[22] Roberto Guanciale, Musard Balliu, and Mads Dam. InSpectre: Breaking
and fixing microarchitectural vulnerabilities by formal analysis. In
Proc. ACM SIGSAC Conf. Computer and Communications Security
(CCS), pages 1853–1869. ACM, 2020.

[23] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés
Sánchez. Spectector: Principled detection of speculative information
flows. In Proc. IEEE Symp. Security and Privacy (S&P), pages 1–19.
IEEE, 2020.

[24] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware/-
software contracts for secure speculation. In Proc. IEEE Symp. Security
and Privacy (S&P). IEEE, 2021.

[25] Intel Corporation. Intel 64 and IA-32 Architectures Optimization
Reference Manual. Order Number 248966-044b, June 2021.

[26] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer.
JavaSMT: A unified interface for SMT solvers in Java. In 8th Int.
Conf. Verified Software, Theories, Tools, and Experiments (VSTTE),
volume 9971 of LNCS, pages 139–148, 2016.

[27] Paul Kocher. Spectre mitigations in Microsoft’s C/C++ compiler. https:
//www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.
html, 2018.

[28] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks:
Exploiting speculative execution. In Proc. IEEE Symp. Security and
Privacy (S&P), pages 1–19. IEEE, 2019.

[29] Michalis Kokologiannakis and Viktor Vafeiadis. Genmc: A model
checker for weak memory models. In Proc. Int. Conf. Computer Aided
Verification (CAV), pages 427–440. Springer, 2021.

[30] K. Rustan M. Leino. This is Boogie 2. Technical Report KRML 178,
Microsoft Research, 2008.

[31] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In Proc. IEEE Symp.
Security and Privacy (S&P), pages 605–622. IEEE, 2015.

[32] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer.
Specfuzz: Bringing spectre-type vulnerabilities to the surface. In Proc.
29th USENIX Security Symposium (USENIX Security), pages 1481–1498.
USENIX Association, 2020.

[33] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar,
and Peter Sewell. Simplifying ARM concurrency: multicopy-atomic
axiomatic and operational models for ARMv8. Proc. ACM Program.
Lang., 2(POPL):19:1–19:29, 2018.

[34] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng
Yin, and Tao Wei. SpecTaint: Speculative taint analysis for discovering
spectre gadgets. In Annu. Network and Distributed System Security
Symp. (NDSS), 2021.

[35] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage Against the Machine Clear: A Systematic Analysis of Machine
Clears and Their Implications for Transient Execution Attacks. In Proc.
30th USENIX Security Symposium (USENIX Security), 2021.

[36] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,
Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave.
The semantics of x86-CC multiprocessor machine code. In Proc. 41st
Symp. Principles of Programming Languages (POPL). ACM, 2009.

[37] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate:
Automated synthesis of hardware exploits and security litmus tests.
In MICRO, pages 947–960. IEEE Computer Society, 2018.

[38] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika
Mitra, and Abhik Roychoudhury. KLEESpectre: Detecting information
leakage through speculative cache attacks via symbolic execution.
ACM Trans. Softw. Eng. Methodol., 29(3):14:1–14:31, 2020.

[39] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra,
and Abhik Roychoudhury. oo7: Low-overhead defense against spectre
attacks via binary analysis. CoRR, abs/1807.05843, 2018.

[40] Meng Wu and Chao Wang. Abstract interpretation under speculative
execution. In Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI), pages 802–815. ACM, 2019.

248

